
Adaptive Query Processing on RAW Data

Manos Karpathiotakis Miguel Branco Ioannis Alagiannis Anastasia Ailamaki

EPFL, Switzerland
{firstname.lastname}@epfl.ch

ABSTRACT
Database systems deliver impressive performance for large classes
of workloads as the result of decades of research into optimizing
database engines. High performance, however, is achieved at the
cost of versatility. In particular, database systems only operate ef-
ficiently over loaded data, i.e., data converted from its original raw
format into the system’s internal data format. At the same time,
data volume continues to increase exponentially and data varies in-
creasingly, with an escalating number of new formats. The con-
sequence is a growing impedance mismatch between the original
structures holding the data in the raw files and the structures used
by query engines for efficient processing. In an ideal scenario, the
query engine would seamlessly adapt itself to the data and ensure
efficient query processing regardless of the input data formats, op-
timizing itself to each instance of a file and of a query by leverag-
ing information available at query time. Today’s systems, however,
force data to adapt to the query engine during data loading.

This paper proposes adapting the query engine to the formats of
raw data. It presents RAW, a prototype query engine which enables
querying heterogeneous data sources transparently. RAW employs
Just-In-Time access paths, which efficiently couple heterogeneous
raw files to the query engine and reduce the overheads of traditional
general-purpose scan operators. There are, however, inherent over-
heads with accessing raw data directly that cannot be eliminated,
such as converting the raw values. Therefore, RAW also uses col-
umn shreds, ensuring that we pay these costs only for the subsets
of raw data strictly needed by a query. We use RAW in a real-world
scenario and achieve a two-order of magnitude speedup against the
existing hand-written solution.

1. INTRODUCTION
Over the past decades, database query engines have been heavily

optimized to handle a variety of workloads to cover the needs of
different communities and disciplines. What is common in every
case is that regardless of the original format of the data to be pro-
cessed, top performance required data to be pre-loaded. That is,
database systems always require the original user’s data to be re-
formatted into new data structures that are exclusively owned and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 40th International Conference on
Very Large Data Bases, September 1st - 5th 2014, Hangzhou, China.
Proceedings of the VLDB Endowment, Vol. 7, No. 12
Copyright 2014 VLDB Endowment 2150-8097/14/08.

managed by the query engine. These structures are typically called
database pages and store tuples from a table in a database-specific
format. The layout of database pages is hard-coded deep into the
database kernel and co-designed with the data processing operators
for efficiency. Therefore, this efficiency was achieved at the cost of
versatility; keeping data in the original files was not an option.

Two trends that now challenge the traditional design of database
systems are the increased variety of input data formats and the ex-
ponential growth of the volume of data, both of which belong in the
“Vs of Big Data” [23]. Both trends imply that a modern database
system has to load and restructure increasingly variable, exponen-
tially growing data, likely stored in multiple data formats, before
the database system can be used to answer queries. The drawbacks
of this process are that i) the “pre-querying” steps are a major bot-
tleneck for users that want to quickly access their data or perform
data exploration, and ii) databases have exclusive ownership over
their ingested data; once data has been loaded, external analysis
tools cannot be used over it any more unless data is duplicated.

Flexible and efficient access to heterogeneous raw data remains
an open problem. NoDB [5] advocates in situ query processing of
raw data and introduces techniques to eliminate data loading by ac-
cessing data in its original format and location. However, the root
cause of the problem is still not addressed; there is an impedance
mismatch, i.e., a costly adaptation step due to differences between
the structure of the original user’s data and the data structures used
by the query engine. To resolve the mismatch, the implementation
of NoDB relies on file- and query-agnostic scan operators, which
introduce interpretation overhead due to their general-purpose na-
ture. It also uses techniques and special indexing structures that
target textual flat files such as CSV. As its design is hard-coded to
CSV files, it cannot be extended to support file formats with differ-
ent characteristics (such as ROOT [10]) in a straightforward way.
Finally, NoDB may import unneeded raw data while populating
caches with recently accessed data. Therefore, even when accessed
in situ as in the case of NoDB, at some moment data must always
“adapt” to the query engine of the system.

In this paper, we propose a reverse, novel approach. We in-
troduce RAW, a flexible query engine that dynamically adapts to
the underlying raw data files and to the queries themselves rather
than adapting data to the query engine. In the ideal scenario, the
impedance mismatch between the structure in which data is stored
by the user and by the query engine must be resolved by having the
query engine seamlessly adapt itself to the data, thus ensuring effi-
cient query processing regardless of the input data formats. RAW
creates its internal structures at runtime and defines the execution
path based on the query requirements. To bridge the impedance
mismatch between the raw data and the query engine, RAW in-
troduces Just-In-Time (JIT) access paths and column shreds. Both



methods build upon in situ query processing [5], column-store en-
gines [9] and code generation techniques [21] to enable efficient
processing of heterogeneous raw data. To achieve efficient process-
ing, RAW delays work to be done until it has sufficient information
to reduce the work’s cost, enabling one to access and combine di-
verse datasets without sacrificing performance.

JIT access paths define the access methods of RAW through
generation of file- and query-specific scan operators, using infor-
mation available at query time. A JIT access path is dynamically-
generated, removing overheads of traditional scan operators. Specif-
ically, multiple branches are eliminated from the critical path of
execution by coding information such as the schema or data type
conversion functions directly into each scan operator instance, en-
abling efficient execution. By using JIT access paths multiple file
formats are easily supported, even in the same query, with joins
reading and processing data from different sources transparently.

The flexibility that JIT access paths offer also facilitates the use
of query processing strategies such as column shreds. We intro-
duce column shreds to reduce overheads that cannot be eliminated
even with JIT access paths. RAW creates column shreds by push-
ing scan operators up the query plan. This tactic ensures that a
field (or fields) is only retrieved after filters or joins to other fields
have been applied. Reads of individual data elements and creation
of data structures are delayed until they are actually needed, thus
creating only subsets (shreds) of columns for some of the raw data
fields. The result is avoiding unneeded reads and their associated
costs. Column shreds thus efficiently couple raw data access with
a columnar execution model.

Motivating Example. The ATLAS Experiment of the Large
Hadron Collider at CERN stores over 140 PB of scientific data
in the ROOT file format [10]. Physicists write custom C++ pro-
grams to analyze this data, potentially combining them with other
secondary data sources such as CSV files. Some of the analysis
implies complex calculations and modelling, which is impractical
on a relational database system. The remaining analysis, however,
requires simple analytical queries, e.g., building a histogram of
“events of interest” with a particular set of muons, electrons or jets.
A database system is desirable for this latter class of analysis be-
cause declarative queries are significantly easier to express, to val-
idate and to optimize compared to a C++ program. Loading, i.e.,
replicating, 140 PB of data into a database, however, would be cum-
bersome and costly. Storing this data at creation time in a database
would constrain the use of existing analysis tools, which rely on
specific file formats. Therefore, a query engine that queries the raw
data directly is the most desirable solution. To process ROOT and
be useful in practice, a system must have performance competitive
to that of the existing C++ code. RAW, our prototype system, out-
performs handwritten C++ programs by two orders of magnitude.
RAW adapts itself to the ROOT and CSV file formats through code
generation techniques, enabling operators to work over raw files as
if they were the native database file format.

Contributions. Our contributions are as follows:

• We design a query engine which adapts to raw data file formats
and not vice versa. Based on this design, we implement a data-
and query-adaptive engine, RAW, that enables querying hetero-
geneous raw data efficiently.

• We introduce Just-In-Time (JIT) access paths, which are gener-
ated dynamically per file and per query instance. Besides offer-
ing flexibility, JIT access paths address the overheads of existing
scan operators for raw data. JIT access paths are 1.3× to 2×
faster than state-of-the-art methods [5].

• We introduce column shreds, a novel execution method over raw
data to reduce data structure creation costs. With judicious use
of column shreds, RAW achieves an additional 6× speedup for
highly selective queries over CSV files; for a binary format, it
approaches the performance of a traditional DBMS with fully-
loaded data. Column shreds target a set of irreducible overheads
when accessing raw data (e.g., data conversion). In our experi-
ments these reach up to 80% of the query execution time.

• We apply RAW in a real-world scenario that cannot be accom-
modated by a DBMS. RAW enables the transparent querying
of heterogeneous data sources, while outperforming the existing
hand-written approach by two orders of magnitude.

Outline. The rest of this paper is structured as follows: Section 2
reviews existing methods to access data in a database. Section 3
briefly describes RAW, our prototype query engine. Section 4 in-
troduces Just-In-Time access paths. Section 5 introduces column
shreds. Sections 4 and 5 also evaluate our techniques through a set
of experiments. Section 6 evaluates a real-world scenario enabled
through the application of our approach. Sections 7 and 8 discuss
related work and conclude the paper, respectively.

2. BACKGROUND: DATA ACCESS
Databases are designed to query data stored in an internal data

format, which is tightly integrated with the remaining query engine
and, hence, typically proprietary. If users wish to query raw data,
they must first load it into a database. This section provides the
necessary background on the alternative ways of accessing data,
before introducing JIT access paths1.

2.1 Traditional: Loading and Accessing Data
Relational database systems initially load data into the database

and then access it through the scan operators in the query plan.
Each scan operator is responsible for reading the data belonging
to a single table. Following the Volcano model [16], every call to
the next() method of the scan operator returns a tuple or batch of
tuples from the table. The scan operator in turn retrieves data from
the buffer pool, which is an in-memory cache of disk pages.

In modern column-stores [8] the implementation details differ
but the workflow is similar. Typically, a call to the next() method
of a column-store scan operator returns a chunk of or the whole
column. In addition, the database files are often memory-mapped,
relying on the operating system’s virtual memory management in-
stead of on a buffer pool internal to the database.

A major overhead in this method is loading the data in the first
place [5]. Queries may also trigger expensive I/O requests to bring
data into memory but from there on, accessing data does not entail
significant overheads. For instance, a database page can be type
cast to the corresponding C/C++ structure at compile time. No
additional data conversion or re-organization is needed.

2.2 Accessing Data through External Tables
External tables allow data in external sources to be accessed as if

it were in a loaded table. External tables are usually implemented as
file-format-specific scan operators. MySQL, for instance, supports
external tables through its pluggable storage engine API [28]. The
MySQL CSV Storage Engine returns a single tuple from a CSV file
when the next() method is called: it reads a line of text from the
file, tokenizes the line, parses the fields, converts each field to the

1The discussion in this section considers only full scans and not index-
based accesses, which are orthogonal to the techniques discussed.



corresponding MySQL data type based on the table schema, forms
a tuple and finally passes the tuple to the query operators upstream.

The efficiency of external tables is affected by a number of fac-
tors. First, every access to a table requires tokenizing/parsing a
raw file. For CSV, it requires a byte-by-byte analysis, with a set of
branch conditions, which are slow to execute [9]. Second, there is
a need to convert and re-organize the raw data into the data struc-
tures used by the query engine. In the case of MySQL, every field
read from the file must be converted to the equivalent MySQL data
type and placed in a MySQL tuple. Finally, these costs are incurred
repeatedly, even if the same raw data has been read previously.

2.3 Accessing Data through Positional Maps
Positional maps are data structures that the implementation of

NoDB [5] uses to optimize in situ querying. They are created and
maintained dynamically during query execution to track the (byte)
positions of data in raw files. Positional maps, unlike traditional
database indexes, index the structure of the data and not the actual
data, reducing the costs of tokenizing and parsing raw data sources.

Positional maps work as follows: When reading a CSV file for
the first time, the scan operator populates a positional map with the
byte location of each attribute of interest. If the attribute of interest
is in column 2, then the positional map will store the byte location
of the data in column 2 for every row. If the CSV file is queried
a second time for column 2, there is no need to tokenize/parse the
file. Instead, the positional map is consulted and we jump to that
byte location. If the second query requests a different column, e.g.,
column 4, the positional map is still used. The parser jumps to col-
umn 2, and incrementally parses the file until it reaches column 4.
The positional maps involve a trade-off between the number of po-
sitions to track and future benefits from reduced tokenizing/parsing.

Positional maps outperform external tables by reducing or elim-
inating tokenizing and parsing. There are, however, a number of
inefficiencies. First, positional maps carry a significant overhead
for file formats where the location of each data element is known
deterministically, such as cases when the location of every data ele-
ment can be determined from the schema of the data. For instance,
the FITS file format, widely-used in astronomy, stores fields in a se-
rialized binary representation, where each field is of fixed size. Ad-
ditionally, there are costs we cannot avoid despite using positional
maps, such as the costs of creating data structures and converting
data to populate them with. For every data element, the scan oper-
ator needs to check its data type in the database catalog and apply
the appropriate data type conversion.

Discussion. Existing solutions for data access range from tradition-
ally loading data before querying it, to accessing raw data in situ
with the assistance of auxiliary indexing structures. All of them,
however, ignore the specificities of the file formats of the underly-
ing data and the requirements of incoming queries.

3. A RAW QUERY ENGINE
RAW is a prototype query engine that adapts itself to the in-

put data formats and queries, instead of forcing data to adapt to it
through a loading process. RAW offers file format-agnostic query-
ing without sacrificing performance. To achieve this flexibility, it
applies in situ query processing, columnar query execution and
code generation techniques in a novel query engine design. The
design can be extended to support additional file formats by adding
appropriate file-format-specific plug-ins. Because RAW focuses on
the processing of read-only and append-like workloads, it follows
a columnar execution model, which has been shown to outperform
traditional row-stores for read-only analytical queries [2, 7, 35, 36]

and exploits vectorized columnar processing to achieve better uti-
lization of CPU data caches [9]. Additionally, it applies code gen-
eration techniques to generate query access paths on demand, based
on the input data formats and queries.

RAW Internals. We build RAW on top of Google’s Supersonic
library of relational operators for efficient columnar data process-
ing [15]. The Supersonic library provides operators which apply
cache-aware algorithms, SIMD instructions and vectorized execu-
tion to minimize query execution time. Supersonic does not, how-
ever, have a built-in data storage manager. RAW extends the func-
tionality of Supersonic to enable efficient queries over raw data
by i) generating data format- and query-specific scan operators,
and ii) extending Supersonic to enable scan operators to be pushed
higher in the produced query plan, thus avoiding unnecessary raw
data accesses. A typical physical query plan therefore consists of
the scan operators of RAW for accessing the raw data and the Su-
personic relational operators.

RAW creates two types of data structures to speed-up queries
over files. For textual data formats (e.g., CSV), RAW generates
positional maps to assist in navigating through the raw files. In
addition, RAW preserves a pool of column shreds populated as a
side-effect of previous queries, to reduce the cost of re-accessing
the raw data. These position and data caches are taken into account
by RAW for each incoming query when selecting an access path.

Catalog and Access Abstractions. Each file exposed to RAW
is given a name (can be thought of as a table name). RAW main-
tains a catalog with information about raw data file instances such
as the original filename, the schema and the file format. RAW ac-
cepts partial schema information (i.e., the user may declare only
fields of interest instead of declaring thousands of fields) for file
formats that allow direct navigation based on an attribute name,
instead of navigation based on the binary offsets of fields. As an
example, for ROOT data, we could store the schema of a ROOT
file as ((“ID”,INT64), (“el_eta”,FLOAT), (“el_medium”,INT32))
if only these fields were to be queried, and ignore the rest 6 to 12
thousand fields in the file. For each “table”, RAW keeps the types
of accesses available for its corresponding file format, which are
mapped to the generic access paths abstractions understood by the
query executor; sequential and index-based scans. For example,
there are scientific file formats (e.g., ROOT) for which a file corre-
sponds to multiple tables, as objects in a file may contain lists of
sub-objects. These sub-objects are accessible using the identifier of
their parent. For such file types, RAW maps this id-based access to
an index-based scan. Enhancing RAW with support for additional
file formats simply requires establishing mappings for said formats.

Physical Plan Creation. The logical plan of an incoming query
is file-agnostic, and consists of traditional relational operators. As
a first step, we consult the catalog of RAW to identify the files cor-
responding to tables in the plan’s scan operators. RAW converts the
logical query plan to a physical one by considering the mappings
previously specified between access path abstractions and concrete
file access capabilities. We also check for available cached column
shreds and positional maps (if applicable to the file format). Then,
based on the fields required, we specify how each field will be re-
trieved. For example, for a CSV file, potential methods include
i) straightforward parsing of the raw file, ii) direct access via a po-
sitional map, iii) navigating to a nearby position via a positional
map and then performing some additional parsing, or iv) using a
cached column shred. Based on these decisions, we split the field
reading tasks among a number of scan operators to be created, each
assigned with reading a different set of fields, and push some of
them higher in the plan. To push scan operators higher in the plan
instead of traditionally placing them at the bottom, we extend Su-



personic with a “placeholder” generic operator. RAW can insert
this operator at any place in a physical plan, and use it as a place-
holder to attach a generated scan operator. Code generation enables
creating such custom efficient operators based on the query needs.

Creating Access Paths Just In Time. Once RAW makes all
decisions for the physical query plan form, it creates scan oper-
ators on demand using code generation. First, RAW consults a
template cache to determine whether this specific access path has
been requested before. If not, a file-format-specific plug-in is acti-
vated for each scan operator specification, which turns the abstract
description into a file-, schema- and query-aware operator. The
operator specification provided to the code generation plug-in in-
cludes all relevant information captured from the catalog and the
query requirements. Depending on the file format, a plug-in is
equipped with a number of methods that can be used to access a
file, ranging from methods to scan fields from a CSV file (e.g.,
readNextField()), up to methods acting as the interface to a li-
brary that is used to access a scientific data format, as in the case of
ROOT (e.g., readROOTField(fieldName, id)).

Based on the query, appropriate calls to plug-in methods are put
together per scan operator, and this combination of calls forms the
operator, which is compiled on the fly. The freshly-compiled li-
brary is dynamically loaded into RAW and the scan operators are
linked with the remaining query plan using the Volcano model. The
library is also registered in the template cache to be reused later in
case the same query is resubmitted. The generated scan operators
traverse the raw data, convert the raw values and populate columns.

The current prototype implementation of RAW supports code-
generated access paths for CSV, flat binary, and ROOT files. Adding
access paths for additional file formats (or refining the access paths
of the supported formats) is straightforward due to the flexible ar-
chitecture of RAW. Sections 4 and 5 describe how RAW benefits
from JIT access paths for raw data of different formats and how it
avoids unnecessary accesses to raw data elements, respectively.

4. ADAPTING TO RAW DATA
Just-In-Time (JIT) access paths are a new method for a database

system to access raw data of heterogeneous file formats. We design
and introduce JIT access paths in RAW to dynamically adapt to raw
datasets and to incoming queries. JIT access paths are an enabler
for workloads that cannot be accommodated by traditional DBMS,
due to i) the variety of file formats in the involved datasets, ii) the
size of the datasets, and iii) the inability to use existing tools over
the data once they have been loaded. In the rest of this section we
present JIT access paths and evaluate their performance.

4.1 Just-In-Time Access Paths
JIT access paths are generated dynamically for a given file for-

mat and a user query. Their efficiency is based on the observa-
tion that some of the overheads in accessing raw data are due to
the general-purpose design of the scan operators used. Therefore,
customizing a scan operator at runtime to specific file formats and
queries partially eliminates these overheads.

For example, when reading a CSV file, the data type of the col-
umn being currently read determines the data conversion function
to use. Mechanisms to implement data type conversion include a
pointer to the conversion function or a switch statement. The sec-
ond case can be expressed in pseudo-code as follows:

FILE* file
int column // current column

for every column {
char *raw // raw data
Datum *datum // loaded data

//read field from file
raw = readNextFieldFromFile(file)

switch (schemaDataType[column])
case IntType: datum = convertToInteger(raw)
case FloatType: datum = convertToFloat(raw)
...

}

The switch statement and for loop introduce branches in the code,
which significantly affect performance [30]. Even worse, both are
in the critical path of execution. As the data types are known in
advance, the for loop and the switch statement can be unrolled.
Unrolled code executes faster because it causes fewer branches.

Opportunities for Code Generation. JIT access paths elimi-
nate a number of overheads of general-purpose scan operators. The
opportunities for code generation optimizations vary depending on
the specificities of the file format. For example:
• Unrolling of columns, i.e., handling each requested column sep-

arately instead of using a generic loop, is appropriate for file
formats with fields stored in sequence, forming a tuple. Each un-
rolled step can be specialized based on, for example, the datatype
of the field.

• For some data formats, the positions of fields can be determin-
istically computed, and therefore we can navigate for free in the
file by injecting the appropriate binary offsets in the code of the
access paths, or by making the appropriate API calls to a library
providing access to the file (as in the case of ROOT).

• File types such as HDF [37] and shapefile [14] incorporate in-
dexes over their contents, B-Trees and R-Trees respectively. In-
dexes like these can be exploited by the generated access paths
to speed-up accesses to the raw data.

• For hierarchical data formats, a JIT scan operator coupled with
a query engine supporting a nested data model could be used to
maintain the inherent nesting of some fields, or flatten some oth-
ers, based on the requirements of the subsequent query operators.
These requirements could be based on criteria such as whether a
nested field is projected by the query (and therefore maintaining
the nesting is beneficial), or just used in a selection and does not
have to be recreated at the query output.

Generally, for complex file formats, there are more options to ac-
cess data from a raw file. Our requirement for multiple scan opera-
tors per raw file, each reading an arbitrary number of fields, further
increases the complexity. Traditional scan operators would need
to be too generic to support all possible cases. Code generation in
the context of JIT access paths enables us to create scan operators
on demand, fine-tuning them to realize the preferred option, and
to couple each of them with the columnar operators for the rest of
query evaluation. As we will see in Section 5, this flexible transi-
tion facilitates the use of methods like column shreds.

As an example, suppose a query that scans a table stored in a
CSV file. The file is being read for the first time; therefore, a po-
sitional map is built while the file is being parsed. Compared to a
general-purpose CSV scan operator, the code generated access path
includes the following optimizations:

• Column loop is unrolled. Typically, a general-purpose CSV scan
operator, such as a scan operator of the NoDB implementation
or of the MySQL CSV storage engine, has a for loop that keeps
track of the current column being parsed. The current column is
used to verify a set of conditions, such as “if the current column
must be stored in the positional map, then store its position”. In
a general-purpose in situ columnar execution, another condition
would be “if the current column is requested by the query plan,



then read its value”. In practice, however, the schema of the file
is known in advance. The actions to perform per column are also
known. Thus, the column loop and its inner set of if statements
can be unrolled.

• Data type conversions built into the scan operator. A general-
purpose scan operator needs to check the data type of every field
being read in a metadata catalog. As the schema is known, it can
be coded into the scan operator code, as illustrated earlier.
As an example, in a memory-mapped CSV file with 3 fields of

types (int, int, float), with a positional map for the 2nd column and a
query requesting the 1st and 2nd fields, the generated pseudo-code
for the first query is:
FILE *file
while (!eof) {

Datum *datum1, *datum2 // values read from fields 1,2

raw = readNextFieldFromFile(file)
datum1 = convertToInteger(raw)

addToPositionalMap(currentPosition)

raw = readNextFieldFromFile(file)
datum2 = convertToInteger(raw)

skipFieldFromFile()

CreateTuple(datum1, datum2)
}

For this query, the scan operator reads the first field of the current
row. It converts the raw value just read to an integer, and also stores
the value of the file’s position indicator in the positional map. The
operator then reads the next (2nd) field of the row, also converting
it to an integer. Because we do not need to process the 3rd field, we
skip it, and create a result for the row examined. The process con-
tinues until we reach the end of file. In a second query requesting
the 2nd and 3rd columns, the pseudo-code becomes:
for (every position in PositionalMap) {

Datum *datum2, *datum3 // values read from fields 2,3

jumpToFilePosition(position)

raw = readNextFieldFromFile(file)
datum2 = convertToInteger(raw)

raw = readNextFieldFromFile(file)
datum3 = convertToFloat(raw)

CreateTuple(datum2, datum3)
}

Improving the Positional Map. Positional maps reduce the
overhead of parsing raw files [5] but add significant overhead for
file formats where the position of each data element can be deter-
mined in advance. JIT access paths eliminate the need for a po-
sitional map in such cases. Instead, a function is created in the
generated code that resolves the byte position of the data element
directly by computing its location. For instance, for a binary file
format where every tuple is of size tupleSize and every data ele-
ment within it is of size dataSize, the location of the 3rd column of
row 15 can be computed as 15*tupleSize + 2*dataSize. The
result of this formula is directly included in the generated code.
Different file formats may also benefit from different implementa-
tions of the positional map; an example is presented in Section 6.

4.2 Evaluating raw data access strategies
File formats vary widely, and each format benefits differently

from JIT access paths. We examine two file formats that are rep-
resentative of two “extreme” cases. The first is CSV, a text-based
format where attributes are separated by delimiters, i.e., the loca-
tion of column N varies for each row and therefore cannot be de-
termined in advance. The second is a custom binary format where

each attribute is serialized from its corresponding C representation.
For this specific custom format, we exploit the fact that the loca-
tion of every data element is known in advance because every field
is stored in a fixed-size number of bytes. The plug-in for this for-
mat includes methods to either i) read specific datatypes from a file,
without having to convert this data, or ii) skip a binary offset in a
file. The same dataset is used to generate the CSV and the binary
file, corresponding to a table with 30 columns of type integer and
100 million rows. Its values are distributed randomly between 0
and 109. Being integers, the length of each field varies in the CSV
representation, while it is fixed-size in the binary format.

The sizes of the raw CSV and binary files are 28GB and 12GB
respectively. The experiments are run on a dual socket Intel Xeon,
described in the first row of Table 1. The operating system is Red
Hat Enterprise Linux Server 6.3 with kernel version 2.6.32. The
compiler used is GCC 4.4.7 (with flags -msse4 -O3 -ftree-vectorize
-march=native -mtune=native). The files are memory-mapped. The
first query runs over cold caches. Intermediate query results are
cached and available for re-use by subsequent queries.

Machine Description
Xeon Dual-Socket 2 x Intel Xeon CPU E5-2660 @ 2.20GHz, 8 cores/CPU

128GB RAM
RAID-0 of 7 250 GB 7500 RPM SATA
64KB L1 cache (32KB L1d, 32KB L1i) per core
256KB L2 cache per core; 20MB L3 shared cache

Xeon Octo-Socket 8 x Intel Xeon CPU E7-28867 @ 2.13GHz, 10 cores/CPU
192GB RAM
1TB 7200 RPM SAS HDD
64KB L1 cache (32KB L1d, 32KB L1i) per core
256KB L2 cache per core; 30MB L3 shared cache

Table 1: Hardware Setup for experiments

We run the microbenchmarks in RAW. The code generation is
done by issuing C++ code through a layer of C++ macros.

Data Loading vs. In Situ Query Processing. The follow-
ing experiment compares different techniques, all implemented in
RAW, for querying raw data to establish the trade-off between in
situ query processing and traditional data loading. “DBMS” cor-
responds to the behavior of a column-store DBMS, where all raw
data is loaded before submitting the first query. The data loading
time of the DBMS is included as part of the first query. “External
Tables” queries the raw file from scratch for every query. “In Situ”
is our implementation of NoDB [5] over RAW, where access paths
are not code-generated. “JIT” corresponds to JIT access paths.

The workload comprises two queries submitted in sequence. The
first is SELECT MAX(col1) WHERE col1 < [X], followed by
SELECT MAX(col11) WHERE col1 < [X]. We report results for
different selectivities by changing the value of X.

The first experiment queries a CSV file. “In Situ” and “JIT”
both utilize positional maps, which are built during the execution
of the first query and used in the second query to locate any missing
columns. Because different policies for building positional maps
are known to affect query performance [5], we test two different
heuristics. The first populates the positional map every 10 columns;
i.e., it tracks positions of columns 1, 11, 21, etc. The second popu-
lates the positional map every 7 columns.

Figure 1a depicts the results for the first query (cold file sys-
tem caches). The response time is approximately 220 seconds for
“DBMS” and “External Tables” and 170 seconds for “In Situ” and
“JIT”. “DBMS” and “External Tables” do the same amount of work
for the first query, building an in-memory table with all data in the
file before executing the query. “In Situ” and “JIT” do fewer data
conversions and populate fewer columns (only those actually used
by the query), which reduces the execution time. In the case of JIT
access paths, the time to generate and compile the access path code



0

1

2

3

4

5

6

7

8

9

10

DBMS In Situ JIT In Situ
Col.7

JIT
Col.7

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
Execution Type

CSV file: Comparing Access Paths
Warm Run

SELECT MAX(col11) WHERE col1 < [X]

0

50

100

150

200

250

DBMS Ext.
Tables

In Situ JIT In Situ
Col.7

JIT
 Col.7

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Execution Type

CSV file: Comparing Access Paths
Cold Run

SELECT MAX(col1) WHERE col1 < [X]

(a)

0

1

2

3

4

5

6

7

8

9

10

DBMS In Situ JIT In Situ
Col.7

JIT
Col.7

Ex
e

cu
ti

o
n

 T
im

e
 (

s)
Execution Type

CSV file: Comparing Access Paths
Warm Run

SELECT MAX(col11) WHERE col1 < [X]

0

50

100

150

200

250

DBMS Ext.
Tables

In Situ JIT In Situ
Col.7

JIT
 Col.7

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Execution Type

CSV file: Comparing Access Paths
Cold Run

SELECT MAX(col1) WHERE col1 < [X]

(b)

Figure 1: a) Raw data access is faster than loading (I/O masks part
of the difference). b) “DBMS” is faster, as all needed data is already
loaded. JIT access paths are faster than general-purpose in situ.

is included in the execution time of the first query, contributing ap-
proximately 2 seconds.In both cases, however, I/O dominates the
response time and the benefit of JIT access paths is not particularly
visible (except that the compilation time is amortized).

For the second query, the results are depicted in Figure 1b. We
vary selectivity from 1% to 100% and depict the average response
time, as well as deltas for lowest and highest response time. The ex-
ecution time for “External Tables” is an order of magnitude slower,
thus it is not shown. The “In Situ” and “JIT” cases use the po-
sitional map to jump to the data in column 11. The variations “In
Situ - Column 7” and “JIT - Column 7” need to parse incrementally
from the nearest known position (column 7) to the desired column
(column 11). In all cases, a custom version of atoi(), the function
used to convert strings to integers, is used as the length of the string
is stored in the positional map. Despite these features, “DBMS” is
faster, since data is already loaded into the columnar structures used
by the query engine, whereas the “JIT” case spends approximately
80% of its execution on accessing raw data. It is important to note,
however, that the extra loading time incurred by the “DBMS” dur-
ing the first query may not be amortized by fast upcoming queries;
these results corroborate the observations of the NoDB paper [5].

Comparing “In Situ” with “JIT”, we observe that the code gen-
eration version is approximately 2× faster. This difference stems
from the simpler code path in the generated code. The “In Situ -
Column 7” and “JIT - Column 7” techniques are slower as expected
compared to their counterparts that query the mapped column 11
directly, due to the incremental parsing that needs to take place.

We now turn to the binary file. No positional map is necessary
now. The “In Situ” version computes the positions of data elements
during query execution. The “JIT” version hard-codes the positions
of data elements into the generated code. For the first query, both
“In Situ” and “JIT” take 70 seconds. The “DBMS” case takes 98
seconds. I/O again masks the differences between the three cases.
The results for the second query are shown in Figure 2. The trends
of all cases are similar to the CSV experiment. The performance
gaps are smaller because no data conversions take place.

JIT access paths breakdown. To confirm the root cause of
speedup in the “JIT” case, we profile the system using VTune2.
We use the same CSV dataset as before, and ask the query SELECT
MAX(col1) WHERE col1 <[X] on a warm system. Figure 3 shows
the comparison of the “JIT” and “In Situ” cases for a case with 40%
selectivity. Unrolling the main loop, simplifying the parsing code
and the data type conversion reduces the costs of accessing raw
data. Populating columns and parsing the file remain expensive

2http://software.intel.com/en-us/intel-vtune-amplifier-xe

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity

Binary file: Comparing Access Paths
SELECT MAX(col11) WHERE col1 < [X]

In Situ JIT DBMS

Figure 2: For binary files, JIT access paths are also faster for the
2nd query than traditional in situ query processing.

0g

10g

20g

30g

40g

50g

60g

70g

80g

90g

100g

In Situ JIT
To

ta
l C

o
st

BreakdowncofcQuerycExecutioncCosts

MaincLoop

Parsing

DatacType

BuildcColumns

Figure 3: Unrolling the main loop, simplifying parsing and data
type conversions reduce the time spent “preparing” raw data.

though. In the next section we introduce column shreds to reduce
these costs.

Discussion. JIT access paths significantly reduce the overhead
of in situ query processing. For CSV files and for a custom-made
binary format, JIT access paths are up to 2× faster than traditional
in situ query processing techniques. Traditional in situ query pro-
cessing, adapted to columnar execution, is affected by the general-
purpose and query-agnostic nature of the scan operators that ac-
cess raw data. Just-In-Time code generation, however, introduces
a compilation overhead, incurred the first time a specific query
is asked. Two methods to address this issue are i) maintaining a
“cache” of libraries generated as a side-effect of previous queries,
and re-using when applicable (RAW follows such an approach),
and ii) using a JIT compiler framework, such as LLVM [24], which
can reduce compilation times [30].

As we see in the next section, the flexibility and efficiency of-
fered by JIT access paths combined with column shreds will enable
us to further increase the performance of RAW.

5. WHEN TO LOAD DATA
JIT access paths reduce the cost of accessing raw data. There

are, however, inherent costs with raw data access that cannot be
removed despite the use of JIT access paths. These costs include
i) multiple accesses to the raw files, ii) converting data from the
file format (e.g., text) to the database format (e.g., C types), and
iii) creating data structures to place the converted data.

Use of column shreds is a novel approach that further reduces
the cost of accessing raw data. So far, we have been considering
the traditional scenario in which we have a scan operator per file,
reading the fields required to answer a query and building columns
of values. Column shreds build upon the flexibility offered by JIT
scan operators. Specifically, we can generate multiple operators for



Scan CSV
Columns 

1,2

Filter

Tuple Construction

Col1 Col2

Col1

FULL COLUMNS COLUMN SHREDS

Scan CSV
Column 1

Filter

Scan CSV
Column 2

Tuple Construction

Col1 Col2

Col1

Col2

Col1

[1,3,4]

Col1 Col2

Figure 4: “Full columns”: all columns are pre-loaded into the
database system’s columnar structure. “Column shreds”: column
pieces are only built as needed: in the example, Col2 is only loaded
with the rows that passed the filter condition on Col1.

a single data source, each reading an arbitrary subset of fields in a
row-wise manner from the file. Our aim is to have each operator
read the minimum amount of data required at the time. To achieve
this, based on when a field is used by a query operator (e.g., it is
used in a join predicate), we place the scan operator reading the
field values higher in the query plan, in hope that many results will
have been filtered out by the time the operator is launched. As a
result, instead of creating columns containing all the values of a raw
file’s requested fields, we end up creating shreds of the columns.

In the rest of this section, we present column shreds and eval-
uate their behavior. We consider the applicability of using col-
umn shreds in different scenarios, gauge their effects and isolate
the criteria indicating when they should be applied.

5.1 Shredding Columns
Creating entire columns at startup is a conceptually simple ap-

proach. A small experiment, however, illustrates the potential over-
head it carries. Assume a query such as SELECT MAX(col2) FROM
table WHERE col1 < N. The number of entries from col2 that
need to be processed to compute the MAX depend on the selectiv-
ity of the predicate on col1. If columns 1 and 2 are entirely loaded,
in what we now call “full columns”, then some elements of column
2 will be loaded but never used. If the selectivity of the predicate
is 5%, then 95% of the entries read from column 2 will be unnec-
essary for the query. This is an undesirable situation, as time is
spent on creating data structures and loading them with data that is
potentially never needed but still expensive to load.

The “column shreds” approach dictates creating and populating
columns with data only when that data is strictly needed. In the
previous example, we load only the entries of column 2 that qualify,
i.e., if the selectivity of the predicate is 5%, then only 5% of the
entries for column 2 are loaded, greatly reducing raw data accesses.

Figure 4 illustrates the difference between the two column cre-
ation strategies. In the case of full columns, a single scan operator
populates all required columns. For this example, column shreds
are implemented by generating a columnar scan operator for col-
umn 2 and pushing it up the query plan. In addition, the (Just-In-
Time) scan operators are modified to take as input the identifiers of
qualifying rows from which values should be read. In Figure 4 this
is the set of rows that pass the filter condition. For CSV files, this
selection vector [9] actually contains the closest known binary po-
sition for each value needed, as obtained from the positional map.
The remaining query plan and operators are not modified.

It is important for the multiple scan operators accessing a file to
work in unison. For the majority of file formats, reading a field’s
values from a file requires reading a file page containing unneeded
data. Therefore, when a page of the raw file is brought in memory
due to an operator’s request, we want to extract all necessary infor-
mation from it and avoid having to re-fetch it later. Our operators
accept and produce vectors of values as input and output respec-
tively. After a scan operator has fetched a page and filled a vector
with some of the page’s contents, it forwards the vector higher in
the query tree. Generally, at the time a subsequent scan operator
requests the same file page to fill additional vectors, the page is still
“hot” in memory, so we do not incur I/O again. If we had opted for
operators accepting full columns, we would not avoid duplicate I/O
requests for pages of very large files.

RAW maintains a pool of previously created column shreds. A
shred is used by an upcoming query if the values it contains sub-
sume the values requested. The replacement policy we use for this
cache is LRU. Handling the increasing number of varying-length
shreds after a large number of queries and fully integrating their
use can introduce bookkeeping overheads. Efficient techniques to
handle this can be derived by considering query recycling of inter-
mediate results, as applied in column stores [18, 29].

5.2 Full Columns vs. Column Shreds
To evaluate the behavior of column shreds, we compare them

with the traditional “full columns” approach. The hardware and
workload used are the same as in Section 4. We use simple an-
alytical queries of varying selectivity so that the effect of full vs
shredded columns is easily quantifiable, instead of being mixed
with other effects in the query execution time. All cases use JIT
access paths. For CSV files, a positional map is built while running
the first query and used for the second query. As in Section 4 we
include two variations of the positional map: one where the posi-
tional map tracks the position of a column requested by the second
query, and one where the positional map tracks a nearby position.

The execution time of the first query is not shown because there
is no difference between full and shredded columns: in both cases,
every element of column 1 has to be read. Figure 5 shows the ex-
ecution time for the second query over the CSV file of 30 columns
and 100 million rows. For lower selectivities, column shreds are
significantly faster (∼ 6×) than full columns, because only the el-
ements of column 11 that pass the predicate on column 1 are read
from the raw file. Compared to the traditional in situ approach
evaluated in Section 4, the improvement reaches ∼ 12×. As the
selectivity increases, the behavior of column shreds converges to
that of full columns. Column shreds are always better than full
columns, or exactly the same for 100% selectivity. When incre-
mental parsing is needed, then data is uniformly more expensive
to access. In all cases, the extra work in the aggregator operator,
which has more data to aggregate as the selectivity increases, con-
tributes to the gradual increase in execution time. Compared to the
DBMS case, however, the increase for full and shredded columns is
steeper. The reason is that reading the file and aggregating data are
done at the same time and both actions interfere with each other.

For binary files, the same behavior is observed (Figure 6). Al-
though no data conversion takes place, the other loading-related
costs, e.g., populating columns, still affect the “full columns” case.

The next set of experiments uses files with wider tables (more
columns) and more data types, including floating-point numbers.
There are now 120 columns in each file and 30 million rows. The
sizes of the CSV and binary files are 45GB and 14GB respectively.

In the traditional DBMS case, all columns in the file are created
before launching queries. In the “full columns” case, all columns



0

1

2

3

4

5

6

7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity

Full vs Shredded Columns
CSV file; SELECT MAX(col11) WHERE col1 < [X]

Full Shreds Full - Column 7 Shreds - Column 7 DBMS

Figure 5: For the 2nd query over a CSV file, column shreds are
always faster or exactly the same as full columns, as only elements
of column 11 that pass the predicate are loaded from the file.

0

0.5

1

1.5

2

2.5

3

3.5

4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity

Full vs Shredded Columns
Binary file; SELECT MAX(col11) WHERE col1 < [X]

Full Shreds

Figure 6: For the 2nd query over a binary file, we see the same
behavior as for CSV: use of column shreds is always faster than
use of full columns or exactly the same for 100% selectivity.

0

2

4

6

8

10

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity

Full vs Shredded Columns
CSV file with 120 columns, Floating-Point

DBMS Full Columns Column Shreds

Figure 7: CSV files with floating-point numbers carry a higher data
type conversion cost. The DBMS case is significantly faster.

0

0.05

0.1

0.15

0.2

0.25

0.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Ex

e
cu

ti
o

n
 T

im
e

 (
s)

Selectivity

Full vs Shredded Columns
Binary file with 120 columns, Floating-Point

DBMS Full Columns Column Shreds

Figure 8: The binary format requires no conversions, so the abso-
lute difference between DBMS and column shreds is very small.

needed by the query are created as the first step of a query. In the
“column shreds” case, columns are only created when needed by
some operator. In the “DBMS” case, the loading time is included in
the execution time of the first query. Column 1, with the predicate
condition, is an integer as before. The column being aggregated
is now a floating-point number, which carries a greater data type
conversion cost. The queries and remaining experimental setup are
the same as before.

System File Format Execution Time (s)
DBMS CSV 380 s
Full Columns CSV 216 s
Column Shreds CSV 216 s

DBMS Binary 42 s
Full Columns Binary 22 s
Column Shreds Binary 22 s

Table 2: Execution time of the 1st query over a table with 120
columns of integers and floating-point numbers. A traditional
DBMS is significantly slower in the 1st query due to data loading.

Table 2 shows the execution times for the first query. For CSV
files, although I/O masks a significant part of the cost, the DBMS
is 164 seconds slower, as it loads (and converts) all columns in ad-
vance, even those not part of subsequent queries. Full and shredded
columns are the same for the first query, as the entire column must
be read to answer it. For binary files, the first query is nearly 2×
slower for the DBMS. Interestingly, we may also compare the CSV
and binary file formats directly. Both hold the same data, just in dif-
ferent representations. Querying CSV is significantly slower due to

the higher cost of converting raw data into floating-point numbers
and the larger file size.

The execution times for the second query in the case of the CSV
file are shown in Figure 7. Using column shreds is competitive with
“DBMS” only for lower selectivities. The curve gets steeper due to
the higher cost of converting raw data into floating-point numbers.

In the binary case (Figure 8) there is no need for data type con-
versions. Therefore, use of column shreds is competitive with the
DBMS case for a wider range of selectivities. It is approximately
2× slower for 100% selectivities, yet the absolute time differences
are small. The slowdown is due to building the in-memory colum-
nar structures, and could only be resolved if the entire set of database
operators could operate directly over raw data.

5.3 Column Shreds Tradeoffs
So far we examined simple analytical queries with the goal of

isolating the effects of shredding columns of raw data. Intuitively,
postponing work as long as possible in the hope that it can be
avoided appears to be always of benefit. In this section, we ex-
amine whether this assumption is true for other types of queries.

5.3.1 Speculative Column Shreds
For some file formats, the strict form of using scan operators

to create column shreds for a single field each time may not be
desirable. For example, when reading a field from a file, it may be
comparatively cheap to read nearby fields. If these nearby fields are
also needed by the query - e.g., they are part of a predicate selection
to be executed upstream - then it may be preferable to speculatively
read them to reduce access costs (e.g., parsing).

In the next experiment we ask the query SELECT MAX(col6)
FROM file1 WHERE file1.col1 <[X] AND file1.col5 <[X]



0

2

4

6

8

10

12

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity

Full vs Shreds vs Multi-column Shreds
SELECT MAX(col6) WHERE col1 < [X] AND col5 < [X]

Full Shreds Multi-column Shreds

Figure 9: Creating shreds of requested nearby columns in one step
is beneficial when accessing raw data in multiple steps is costly.

over a CSV file. A positional map already exists (for columns 1
and 10), and the data for column 1 has been cached by a previous
query. We compare three cases:

• full columns for fields 5 and 6 (column 1 is already cached)

• a column shred for field 5 (after predicate on field 1) and a col-
umn shred for field 6 (after predicate on field 5)

• column shreds for fields 5 and 6 after predicate on column 1 (i.e.,
“multi-column shreds”) using a single operator

As depicted in Figure 9, for selectivities up to 40%, creating one
column shred each time is faster because we process less data. Af-
ter this point, the parsing costs begin to dominate and override any
benefit. The intermediate case, however, provides the best of both
cases: if we speculatively create the column shred for field 6 at the
same time as the one for field 5, the tokenizing/parsing cost is very
small. Pushing the scan operator for field 6 higher means that the
system loses “locality” while reading raw data.

5.3.2 Column Shreds and Joins
For queries with joins, column shreds can also be beneficial. For

some file formats, however, we must carefully consider where to
place the scan operator. Intuitively, columns to be projected after
the join operator should be created on demand as well. That is, the
join condition would filter some elements and the new columns to
be projected would only be populated with those elements of inter-
est that passed the join condition. In practice, there is an additional
effect to consider, and in certain scenarios it is advantageous to cre-
ate such a column before the join operator.

When considering hash joins, the right-hand side of the join is
used to build a hashtable. The left-hand side probes this hashtable
in a pipelined fashion. The materialized result of the join includes
the qualifying probe-side tuples in their original order, along with
the matches in the hashtable.

Let us consider the query SELECT MAX(col11) FROM file1,
file2 WHERE file1.col1=file2.col1 AND file2.col2<[X]
over two CSV files. Both file1 and file2 contain the same data, but
file2 has been shuffled. We examine the cases in which an addi-
tional column to be projected belongs to file1 (left-hand side of the
join) or to file2 (right-hand side of the join). We assume that col-
umn 1 of file1 and columns 1 and 2 of file2 have been loaded by
previous queries, to isolate the direct cost of each case. We change
X to alter the number of rows from file2 participating in the join.

Both cases are shown in Figure 10. The “Pipelined” case corre-
sponds to retrieving the projected column from file1 and the “Pipe-
line Breaking” to retrieving it from file2. Both cases have two

Scan File1
Column 1

Scan File2
Columns 

1,2

File1.Col1 ⨝ File2.Col1

Col2

Col1

File1.Col11

PIPELINED PIPELINE-BREAKING

Filter 
Column 2

Col1

File2

File1

Col1 Col2

Scan File1 
Column 11

Late

Scan File1
Column 1

Scan File2
Columns 

1,2

File1.Col1 ⨝ File2.Col1

Col2

Col1

File2.Col11

Filter 
Column 2

Col1

File2

File1

Col1 Col2

Scan File2 
Column 11

Late

Figure 10: Possible points of column creation based on join side.

0

5

10

15

20

25

30

35

40

1% 10% 20% 40% 60% 80% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity 

Join w/ projected column on the 
left-hand side (pipelined)

Early

Late

DBMS

0

5

10

15

20

25

30

35

40

45

50

55

1% 10% 20% 40% 60% 80% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity 

Join w/ projected column on the 
right-hand side (pipeline-breaking)

Early

Late

Intermediate

DBMS

Figure 11: If the column to be
projected is on the “pipelined”
side of the join, then delaying its
creation is a better option.

0

5

10

15

20

25

30

35

40

1% 10% 20% 40% 60% 80% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity 

Join w/ projected column on the 
left-hand side (pipelined)

Early

Late

DBMS

0

5

10

15

20

25

30

35

40

45

50

55

1% 10% 20% 40% 60% 80% 100%

Ex
e

cu
ti

o
n

 T
im

e
 (

s)

Selectivity 

Join w/ projected column on the 
right-hand side (pipeline-breaking)

Early

Late

Intermediate

DBMS

Figure 12: If the projected col-
umn is on the “breaking” side,
picking its point of creation de-
pends on the join selectivity.

common points in the query plan where the column to be pro-
jected can be created; these are called “Early” and “Late” in Fig-
ure 10. The “Early” case is before the join operator (i.e., full
columns); the “Late” case is after (i.e., column shreds). In the
“Pipeline-Breaking” scenario, we also identify the “Intermediate”
case, where we push the scan of the projected column after having
applied all selection predicates, yet before applying the join. The
result is creating shreds which may carry some redundant values.

The first experiment examines the “Pipelined” case. Two copies
of the original CSV dataset with 100 million rows are used. The
second copy is shuffled. The results are shown in Figure 11, also in-
cluding the default “DBMS” execution for reference. The behavior
is similar to that of full vs. shredded columns for selection queries:
column shreds outperform full columns when selectivity is low, and
the two approaches converge as selectivity increases. The reason is
that the ordering of the output tuples of the join operator follows
the order of entries in file1. The pipeline is not broken: therefore,
the scan operator for column 11, which is executed (pipelined) af-
ter the join operator, reads the qualifying entries via the positional
map in sequential order from file1. We also notice that for complex
operations such as joins, the fact that we access raw data is almost
entirely masked due to the cost of the operation itself and the use of
column shreds. For small selectivities we observe little difference.

The second experiment examines the remaining case, which we
call “Pipeline-breaking”. The column to be projected is now from
file2. The results are shown in Figure 12. DBMS, full and shred-
ded columns perform worse than their pipelining counterparts. As
the selectivity of the query increases, the performance of column
shreds deteriorates, eventually becoming worse than full columns.



The intermediate case exhibits similar behavior, but is not as heav-
ily penalized for high selectivities as the late case. The reason for
this behavior are non-sequential memory accesses when reading
the data. In the “DBMS” and “full columns” cases, column values
are not retrieved in order, as they have been shuffled by the join
operation. Even worse, in the case of column shreds it is the byte
positions of the raw values stored in the positional map that have
been shuffled. This leads to random accesses to the file (or to the
memory-mapped region of the file). Pages loaded from the file, that
already contain lots of data not needed for the query (as opposed to
tight columns in the case of “full columns”), may have to be read
multiple times during the query to retrieve all relevant values. This
sub-optimal access pattern ends up overriding any benefits obtained
from accessing a subset of column 11 in the case of column shreds.

To confirm this behavior, we use the perf 3 performance analyz-
ing tool to measure the number of DTLB misses in the “pipeline-
breaking” scenario. We examine the two “extreme” cases for an in-
stance of the query with 60% selectivity. Indeed, the “full columns”
case has 900 million DTLB misses and 1 billion LLC misses, while
the “column shreds” case has 1.1 billion DTLB misses and 1.1 bil-
lion LLC misses due to the random accesses to the raw data.

Discussion. The use of column shreds is an intuitive strategy that
can provide performance gains for both selection queries and joins,
where the gains are a function of query selectivity. Column shreds,
however, cannot be applied naively, as loading data without con-
sidering locality effects can increase the per-attribute reading cost.
In such cases of higher selectivity, multi-column shreds for selec-
tions, and full creation of newly projected columns that break the
join pipeline for joins, provide the best behavior in our experiments.

6. USE CASE: THE HIGGS BOSON
The benchmarks presented in the previous sections demonstrate

that JIT access paths combined with column shreds can reduce the
costs of querying raw data. In practice, however, the impact of
these methods depends on the specificities of each file format. Be-
cause we cannot possibly evaluate our techniques with the multi-
tude of file formats and workloads in widespread use, we instead
identify one challenging real-world scenario where data is stored in
raw files and where DBMS-like query capabilities are desirable.

The ATLAS experiment [1] at CERN manages over 140 PB of
data. ATLAS is not using a DBMS because of two non-functional
requirements, namely i) the lifetime of the experiment: data should
remain accessible for many decades; therefore, vendor lock-in is
a problem, and ii) the dataset size and its associated cost: storing
over 140 PB in a DBMS is a non-trivial, expensive task.

The ATLAS experiment built a custom data analysis infrastruc-
ture instead of using a traditional DBMS. At its core is the ROOT
framework[10], widely used in high-energy physics, which includes
its own file format and provides a rich data model with support for
table-like structures, arrays or trees. ROOT stores data in a variety
of layouts, including a columnar layout with optional use of com-
pression. The framework also includes libraries to serialize C++
objects to disk, handles I/O operations transparently and imple-
ments an in-memory “buffer pool” of commonly-accessed objects.

To analyze data, ATLAS physicists write custom C++ programs,
extensively using ROOT libraries. Each such program “implements”
a query, which typically consists of reading C++ objects stored in
a ROOT file, filtering its attributes, reading and filtering nested ob-
jects, projecting attributes of interest and usually aggregating the
final results into a histogram. ROOT does not provide declarative

3https://perf.wiki.kernel.org

Jet

eventID INT

eta FLOAT

pt FLOAT

Event

eventID INT

runNumber INT

Electron

eventID INT

eta FLOAT

pt FLOAT

Muon

eventID INT

eta FLOAT

pt FLOAT

class Event {
class Muon {

float pt;
float eta;
…

}
class Electron {

float pt;
float eta;
…

}
class Jet {

float pt;
float eta;
…

}
int runNumber;
vector<Muon> muons;
vector<Electron> electrons;
vector<Jet> jets;

}

ROOT - C++ RAW

Figure 13: Data representation in ROOT and RAW. RAW represen-
tation allows vectorized processing.

querying capabilities; instead, users code directly in C++, using
ROOT to manage a buffer pool of C++ objects transparently.

In an ideal scenario, physicists would write queries in a declara-
tive query language such as SQL. Queries are easier to express in
a declarative query language for the average user. Query optimiza-
tion also becomes possible, with the query engine determining the
most appropriate way to execute the query.

To test the real-world applicability of querying raw data based on
JIT access paths and column shreds, we implement a query of the
ATLAS experiment (“Find the Higgs Boson”) in RAW. The JIT ac-
cess paths in RAW emit code that calls the ROOT I/O API, instead
of emitting code that directly interprets the bytes of the ROOT for-
mat on disk. The emitted code calls ROOT’s getEntry() method
to read a field instead of parsing the raw bytes, as the ROOT for-
mat is complex and creating a general-purpose code generator for
ROOT would have been time-consuming. At the same time, code
generation does allow us to plug existing libraries easily.

Because ROOT is a binary format where the location of every
attribute is known or can be computed in advance, a positional map
is not required. Instead, the code generation step queries the ROOT
library for internal ROOT-specific identifiers that uniquely identify
each attribute. These identifiers are placed into the generated code.
In practice, the JIT access path knows the location and can access
each data element directly. We utilize the ROOT I/O API to gen-
erate scan operators that are performing identifier-based accesses
(e.g., leading to a call of readROOTField(name,10) for a field’s en-
try with ID equal to 10), thus pushing some filtering downwards,
avoiding full scans and touching less data.

For this experiment, each ATLAS ROOT file contains informa-
tion for a set of events, where an event is an observation of a col-
lision of two highly energized particles. The Higgs query filters
events where the muons, jets and electrons in each event pass a set
of conditions, and where each event contains a given number of
muons/jets/electrons. In the hand-written version, an event, muon,
jet or electron is represented as a C++ class. A ROOT file contains a
list of events, i.e., a list of C++ objects of type event, each contain-
ing within a list of C++ objects for its corresponding muons, jets,
electrons. In RAW, these are modelled as the tables depicted in Fig-
ure 13. Therefore, the query in RAW filters the event table, each of
the muons/jets/electrons satellite tables, joins them, performs ag-
gregations in each and filters the results of the aggregations. The
events that pass all conditions are the Higgs candidates.

The dataset used is stored in 127 ROOT files, totaling 900 GB of
data. Additionally, there is a CSV file representing a table, which
contains the numbers of the “good runs”, i.e., the events detected by
the ATLAS detector that were later determined to be valid. Tradi-



First Query (Cold Caches) Execution Time (s)
Hand-written C++ 1499 s
RAW 1431 s
Second Query (Warm Caches) Execution Time (s)
Hand-written C++ 52 s
RAW 0.575 s

Table 3: Comparison of a hand-written C++ Higgs Analysis with
the RAW version. RAW outperforms the hand-written C++.

tionally, a separate DBMS would maintain this list of “good runs”.
RAW, however, transparently queries and joins data in different file
formats, so the CSV file with “good runs” is queried directly and
joined with the ROOT files. The experiments are run on an octo
socket Intel Xeon (Table 1) using the same operating system and
compiler as before. We use a single core as each event is processed
independently. The number of cores does not change the behavior
of either system. In practice, events would be partitioned and as-
signed to different cores, but the dataset would also be significantly
larger. We run the same query twice with cold and warm caches.

As shown in Table 3, we compare the execution time of the Higgs
query in RAW with that of the existing hand-written C++ code. In
the first query, the execution time of RAW and of the C++ program
are in the same order of magnitude. I/O is the bottleneck in both
cases. RAW, however, utilizes JIT access paths to generate code
similar to the hand-written C++. The important observation is that
no performance is lost when querying raw data. In fact, RAW is
slightly faster than the hand-written C++ due to its columnar execu-
tion model. The hand-written C++ code does not employ columnar
execution; writing vectorized code by hand is difficult in practice
and more so for the average user. Instead, the C++ code processes
one event at a time followed by its jets/electrons/muons. This pro-
cessing method also leads to increased branches in the code.

After the first query, both RAW and the hand-written C++ have
populated an in-memory cache with the events of interest. In the
hand-written case, this cache is ROOT’s internal buffer pool, which
stores previously loaded, i.e., hot, objects. In the case of RAW,
the in-memory cache is built as a side effect of the column shreds
strategy. Therefore, the in-memory tables of RAW are not fully
populated. Instead, only attributes requested by the query exist in
each table. Moreover, for a given attribute, data is only available for
those rows that were actually needed during the query execution;
the remaining rows that were not read - because a previous filter
condition in a different attribute failed - are marked as not loaded.

In the second query, RAW is two orders of magnitude faster than
the hand-written C++ code. The reason is that all data of interest
is cached in-memory in columns, which achieve better cacheline
utilization and allow for vectorized operators that have code paths
with fewer branches. More interesting, however, is the aggregate
behavior for both queries. In the first query, RAW loses no perfor-
mance even though it queries data directly from the raw files. In
the second query, RAW performs as if the data had been loaded in
advance, but without any added cost to actually load the data.

Discussion. The results show how adapting a query engine to
the underlying raw file formats, realized using JIT access paths and
column shreds, is feasible in practice and performs well in a sce-
nario where using a relational database, which requires data load-
ing, would be cumbersome. Besides duplicating a great amount
of data in a vendor-specific format, the restrictions that relational
DBMS place on a table’s number of columns hinder loading data
files that potentially include tens of thousands of attributes, and in-
troduce non-trivial decisions on table partitioning. With RAW, data
does not have to be loaded. In addition, RAW’s performance actu-
ally outperforms that of existing hand-written analysis algorithms.

7. RELATED WORK
Our work towards a data-adaptive query engine is related to var-

ious research topics. Here, we discuss related work and show how
our work pushes the state of the art further.

In situ query processing. The implementation of NoDB [5],
PostgresRaw, is a DBMS that implements techniques specifically
designed to operate over raw data. During query execution, Post-
gresRaw incrementally builds auxiliary indexing structures called
“positional maps”, which store the position of frequently-accessed
fields. RAW uses positional maps as well, yet in a constrained man-
ner, focusing more on ways to reduce costs that positional maps do
not handle and to propose alternatives for formats other than CSV.

Recent work in HyPer [27] also considers querying CSV data.
Parallelizing the phases of loading and utilizing vectorization prim-
itives enables HyPer to bulk load data at wire speed. RAW differs
from main-memory, loading approaches, as it focuses on efficient
multi-format support and adaptive, judicious data loading.

In the cloud and Hadoop ecosystems, practitioners use frame-
works such as Hive [38] and Pig [31] to access in situ data at scale.
Google Dremel [25] also queries data in situ, with data stored in
various storage layers. Our work is based on finer-grained analysis
of raw data access costs, and also has a more specific focus, i.e.,
the realization of a “backend-agnostic” adaptive query engine and
the creation of database query processing techniques to support it.

An alternative to in situ processing is invisible loading, devel-
oped for MapReduce [4] by piggybacking on MapReduce jobs. Tu-
ples are incrementally loaded and organized into a database while
data is being processed. In a related approach, Polybase [13] treats
data in Hadoop clusters as external tables to a DBMS.

Scientific data workloads. FastBit [40] is a collection of com-
pressed bitmap indexes that enable efficient exploration of read-
only scientific data. FastBit is used internally by FastQuery [12],
a framework for posing selection queries over datasets in formats
such as HDF5 and NetCDF [39] that has been shown to scale out.
We consider such indexing mechanisms as an orthogonal optimiza-
tion that would be useful for some of the cases handled by RAW,
similarly to the way we expose index-based access paths for ROOT.
For array data, Data Vaults [17] have been built on top of Mon-
etDB [8] and offer access to repositories of external files. They are
equipped with a cache manager and an optimizer for this data for-
mat, while enabling queries using SciQL, a domain specific query
language. Query languages to access heterogeneous, not necessar-
ily array-based, raw data is an area of future work for us.

Code Generation. Code generation techniques for DBMS go
back to System R [11]. Recently, code generation has been real-
ized using highly efficient code templates and dynamically instan-
tiating them to create query- and hardware-specific code [21]. Code
generation improves query performance by translating queries into
compact and efficient machine code maximizing locality [30, 34].
It also reduces interpretation overheads stemming from the general-
ity of the Volcano operators [16] and the tuple-at-a-time execution.
Hybrid storage layouts can also benefit by applying code gener-
ation to increase CPU efficiency [32] or to adapt the data layout
at runtime [6]. JIT compilers, such as the ones of the JVM [33]
and of the LLVM framework [24, 30], have been used to generate
code from SQL queries. Also, researchers have proposed “abstrac-
tion without regret” [19, 20], synthesizing efficient algorithms via
a compiler framework given a set of fundamental principles like
locality. JIT access paths deviate from these techniques in that we
focus on defining efficient access methods for diverse file formats.

Lazy Execution. The lazy execution principle [22] is based on
the idea that a system can defer work that may not be needed. Ide-



ally, this work can be avoided entirely, or re-ordered appropriately
to reduce the latency of the operation. Focusing in the area of
databases, a prominent example is the use of redo logs for durability
purposes [26]. Lazy execution has also been employed by column
stores in the form of late materialization [3], an efficient technique
that postpones tuple formation (“re-stitching” of columns) until the
tuples are actually needed, thus reducing tuple formation costs. In
our work, column shreds are created by determining the point in
the query plan where a column must be created and populated with
elements read from a raw file, reducing the processing costs, and
potentially I/O. Column shreds exploit that RAW builds its internal
data structures adaptively as a result of incoming queries.

8. CONCLUSION
Databases deliver impressive performance for large classes of

workloads, but require data to be loaded to operate efficiently. Data
loading, however, is a growing bottleneck as data volumes continue
to grow exponentially and data is becoming more varied with a
proliferation of new data formats. In an ideal scenario, the database
query engine would seamlessly adapt itself to the data and ensure
efficient query processing regardless of the input data formats.

This paper proposes the adaptation of a query engine to the un-
derlying data formats and incoming queries. We implement RAW,
a prototype query engine manifesting this design. RAW employs a
novel data access method, Just-In-Time access paths, enabling it to
adapt to data formats seamlessly. JIT access paths are faster than
traditional in situ query processing and competitive with DBMS for
some file formats, whilst having no data loading overhead.

There are inherent overheads to raw data access even with JIT
access paths, such as the cost of converting data between the raw
data representation and the query engine representation. RAW uses
columns shreds, a novel method that reduces these inherent over-
heads by pushing scan operations up in the query plan so that data
is only loaded when it is strictly needed.

RAW has been successfully applied to a real-world example for
which using a traditional DBMS is problematic, achieving a two-
order of magnitude speedup against the existing solution, which
is based on hand-written C++ code. Future work includes incor-
porating file formats adhering to non-relational data models, and
developing a comprehensive cost model for our methods to enable
their integration with existing query optimizers.

Acknowledgments. We would like to thank the reviewers for their
valuable comments and suggestions on how to improve the paper.
We also thank CERN/IT and the ATLAS Experiment for providing
us access to the data and workload used in the Higgs query. In par-
ticular, we thank Maaike Limper (CERN/IT) and Dario Barberis
(ATLAS) for their help. This work has been partially funded by the
Swiss National Science Foundation, project No. CRSII2 136318/1,
“Trustworthy Cloud Storage”, the EU FP7 project No. 317858
“BigFoot - Big Data Analytics of Digital Footprints”, and the EU
FP7 programme (ERC-2013-CoG), Grant No 617508 (ViDa).

9. REFERENCES
[1] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider.

Journal of Instrumentation, 3(8):1–438, 2008.
[2] D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The design and

implementation of modern column-oriented database systems. Foundations and
Trends in Databases, 5(3):197–280, 2013.

[3] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. Madden. Materialization
Strategies in a Column-Oriented DBMS. In ICDE, 2007.

[4] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible Loading:
Access-Driven Data Transfer from Raw Files into Database Systems. In EDBT,
2013.

[5] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB:
Efficient Query Execution on Raw Data Files. In SIGMOD, 2012.

[6] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A Hands-free Adaptive Store.
In SIGMOD, 2014.

[7] P. Boncz, M. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Commun. ACM, 51(12):77–85, 2008.

[8] P. Boncz, S. Manegold, and M. Kersten. Database Architecture Evolution:
Mammals Flourished long before Dinosaurs became Extinct. PVLDB,
2(2):1648–1653, 2009.

[9] P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining
Query Execution. In CIDR, 2005.

[10] R. Brun and F. Rademakers. ROOT - An Object Oriented Data Analysis
Framework. In AIHENP’96 Workshop, 1997.

[11] D. D. Chamberlin et al. A History and Evaluation of System R. Commun. ACM,
24(10):632–646, 1981.

[12] J. Chou, M. Howison, B. Austin, K. Wu, J. Qiang, E. W. Bethel, A. Shoshani,
O. Rübel, Prabhat, and R. D. Ryne. Parallel index and query for large scale data
analysis. In SC, 2011.

[13] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar, J. Aguilar-Saborit,
A. Avanes, M. Flasza, and J. Gramling. Split Query Processing in Polybase. In
SIGMOD, 2013.

[14] ESRI. Shapefile Technical Description.
http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf.

[15] Google. Supersonic Library. https://code.google.com/p/supersonic/.
[16] G. Graefe and W. McKenna. The Volcano optimizer generator: extensibility and

efficient search. In ICDE, 1993.
[17] M. Ivanova, M. Kersten, and S. Manegold. Data Vaults: A Symbiosis between

Database Technology and Scientific File Repositories. In SSDBM, 2012.
[18] M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. An architecture for

recycling intermediates in a column-store. In SIGMOD, 2009.
[19] Y. Klonatos, A. Nötzli, A. Spielmann, C. Koch, and V. Kuncak. Automatic

synthesis of out-of-core algorithms. In SIGMOD, 2013.
[20] C. Koch. Abstraction without regret in data management systems. In CIDR,

2013.
[21] K. Krikellas, S. Viglas, and M. Cintra. Generating code for holistic query

evaluation. In ICDE, 2010.
[22] B. W. Lampson. Lazy and Speculative Execution in Computer Systems. In

OPODIS, 2006.
[23] D. Laney. 3D Data Management: Controlling Data Volume, Velocity, and

Variety. Technical report, META Group, February 2001.
[24] C. Lattner and V. S. Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In CGO, 2004.
[25] S. Melnik et al. Dremel: Interactive Analysis of Web-Scale Datasets. PVLDB,

3(1):330–339, 2010.
[26] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz. Aries: A

transaction recovery method supporting fine-granularity locking and partial
rollbacks using write-ahead logging. TODS, 17:94–162, 1992.

[27] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper, and T. Neumann.
Instant Loading for Main Memory Databases. PVLDB, 6(14):1702–1713, 2013.

[28] MySQL. Chapter 24. Writing a Custom Storage Engine.
http://dev.mysql.com/doc/internals/en/custom-engine.html.

[29] F. Nagel, P. A. Boncz, and S. Viglas. Recycling in pipelined query evaluation.
In ICDE, 2013.

[30] T. Neumann. Efficiently Compiling Efficient Query Plans for Modern
Hardware. PVLDB, 4(9):539–550, 2011.

[31] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin: A
Not-So-Foreign Language for Data Processing. In SIGMOD, 2008.

[32] H. Pirk, F. Funke, M. Grund, T. Neumann, U. Leser, S. Manegold, A. Kemper,
and M. Kersten. CPU and Cache Efficient Management of Memory-Resident
Databases. In ICDE, 2013.

[33] J. Rao, H. Pirahesh, C. Mohan, and G. M. Lohman. Compiled Query Execution
Engine using JVM. In ICDE, 2006.

[34] J. Sompolski, M. Zukowski, and P. A. Boncz. Vectorization vs. compilation in
query execution. In DaMoN, 2011.

[35] M. Stonebraker. Technical perspective - One size fits all: an idea whose time
has come and gone. Commun. ACM, 51(12), 2008.

[36] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,
E. Lau, A. Lin, S. Madden, E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-Store: A Column-oriented DBMS. In VLDB, 2005.

[37] The HDF Group. HDF5. http://www.hdfgroup.org/HDF5.
[38] A. Thusoo et al. Hive - A Warehousing Solution Over a Map-Reduce

Framework. PVLDB, 2(2):1626–1629, 2009.
[39] Unidata. NetCDF. http://www.unidata.ucar.edu/software/netcdf/.
[40] K. Wu et al. Fastbit: interactively searching massive data. SciDAC, 2009.


