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Abstract— We present a design of a predictive control scheme
for longitudinal beam dynamics in heavy ion synchrotrons.
Specifically, we consider a linear-quadratic model predictive
control (MPC) approach, whereby the quadratic program is
solved via a fast gradient method. Furthermore, we investi-
gate whether the fast gradient method allows for real-time
feasible implementation of the proposed approach on a field
programmable gate array (FPGA). Our results indicate that
sampling rates in the order of 1MHz are achievable.

Index Terms—model predictive control, heavy ion syn-
chrotrons, longitudinal beam control, fast gradient method, field
programmable gate array

I. INTRODUCTION

Particle accelerators such as synchrotrons are frequently
used for research purposes in particle physics and medical
applications. Due to their nonlinear and fast dynamics the
operation of synchrotrons poses interesting control-specific
challenges. For example, consider modelling the dynamic be-
havior of highly accelerated particle bunches in synchrotrons
or the task to control a particle bunch with respect to its shape
in the longitudinal phase space.

In this paper we investigate whether state-of-the-art model
predictive control (MPC) schemes can be applied to par-
ticle beam control problems in synchrotrons. Synchrotrons
are mostly located in research institutions and used for
scientific purposes. This implies that hardware used for
control purposes might differ significantly from synchrotron
to synchrotron. Here, we focus on the heavy-ion synchrotron
SIS18, which is used at the GSI Helmholtz Centre for Heavy
Ion Research in Darmstadt, Germany [6]. A main challenge
of applying MPC to synchrotrons is that the required sam-
ple rates are in the order of 100-1000kHz. While this is
quite fast for numerically intensive control schemes, such
as MPC, the control architecture of the SIS18 synchrotron
allows implementation of the control algorithms on a field
programmable gate array (FPGA).

Due to the very fast dynamics of beam oscillations in
hadron (i.e. proton and heavy-ion) synchrotrons, only analog
and digital filters or PI controllers have been used in these
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accelerators to date [2, 8, 10]. The main motivation to
consider MPC for longitudinal beam stabilization in hadron
synchrotron machines is twofold: (1) MPC is a structured
state-feedback control approach, which should allow to
further improve the control performance and therefore the
beam quality compared to existing designs, enabling better
experimental conditions; and (2) MPC allows to consider
input and state constraints. Due to several technical and
physical reasons such as limited power and bandwidth of
the RF cavities used to control the beam, input constraints
should be considered for longitudinal beam stabilization in
hadron synchrotrons. To the best of the authors’ knowledge,
modern model-based control techniques such as MPC have
never been used for longitudinal beam stabilization in any
hadron synchrotron machine.

For electron synchrotrons, which exhibit significantly dif-
ferent behavior, this observation seems to be equally true [1,
13, 22]. For the transverse orbit correction, the references [4,
17] present results on transverse orbit stabilization. The
sample rate time is given as 10kHz, which is considerably
slower than the sampling times considered in this paper.

In [3], for electron synchrotrons, it is stated that due to
the large dimension of the system and the fast sampling
rate, MPC is not feasible. For the heavy-ion synchrotron
SIS18 at GSI, the situation is different: the upgrade of
the digital feedback systems as part of the FAIR project
(cf. [24]) will include modern high speed FPGAs. The aim
of this paper is to show that MPC is feasible in principle for
SIS18, although the sample rate is about 375 kHz. In [5], the
SIS18 synchrotron serves as an example for a robust observer
based state feedback controller, but no implementation and
timing issues are discussed. In this work, we aim to make
a considerable step towards the implementation of MPC on
digital hardware for heavy-ion synchrotrons.

The implementation of MPC on FPGAs was previously
investigated in [7, 9, 16, 25]. While [7, 16] use interior point
algorithms, other results consider active set strategies [25] to
solve the arising quadratic program. Recently, the use of fast
gradient methods (FGM) for MPC on embedded platforms
[12, 21] and on FPGAs [9] has also been investigated. A
major advantage of the FGM compared to interior-point or
active set methods is that it does not involve the solution
of a linear system of equations. It merely requires vector-
matrix multiplications and additions. However, in the FGM
only input constraints with a rather simple geometry can
be considered and handling state constraints is in general
challenging.

While [9] focussed on the derivation of error bounds and



convergence guarantees for fixed-point implementations of
the FGM, our focus lies on assessing whether an FGM-
based MPC scheme can be used for control problems which
arise in synchrotron operation. Specifically, we consider the
problem of longitudinal beam feedback control in heavy
ion synchrotrons. In contrast to [9], which considers a
partially parallelized multi-cycle implementation, we focus
on a completely parallelized single-cycle design for the
implementation of the FGM on an FPGA. Furthermore, we
provide preliminary timing analysis results for a specific
FPGA technology, which indicates that particle beam control
problems can be tackled with FPGA-based MPC.

The remainder of the paper is structured as follows:
In Section II we will concisely present how the dynamic
behavior of particle bunches in synchrotrons can be modeled.
This modeling will lead to a formulation of the longitudinal
beam feedback control problem. Section III describes the
proposed MPC scheme and presents results obtained from
a simulation study. Section IV provides insight into the
sampling rates, which are achievable assuming the proposed
MPC controller is implemented on a high-end FPGA such
as a Stratix V from Altera.

II. PARTICLE BEAM DYNAMICS
A. Nonlinear Modeling

A hadron synchrotron is a ring accelerator with a closed
reference orbit that is used to accelerate protons and ions to
high energies [14]. A simplified scheme is shown in Fig. 1.
The magnetic fields of the dipole and quadrupole magnets are
used for the transverse focussing of the particle beam. The
beam consists of one or more particle bunches which move
inside the beampipe under vacuum conditions. One or more
so-called cavities are used to accelerate and focus the beam
in the longitudinal direction, i.e. in direction of motion. In
the following, only the longitudinal motion of the beam is
considered. In many cases, it is reasonable to assume that
the longitudinal dynamics are decoupled from the transverse
dynamics.

If the operation of the cavity is single harmonic and the
beam energy is kept constant (such as in the case of storage
rings), the dynamics of a particle in the longitudinal phase
plane (i, ¢) are determined by

(t) = —wiyno (L + ua(t)) sin(p; (1) — ua (1) + d2(t>)&1)

where j = 1,..., N, is the particle index and ¢; is the
phase deviation of the particle with respect to the so-called
reference R as shown in Fig. 1. This reference can be
considered an ideal moving reference trajectory on the orbit
with the exact position and velocity. The phase and amplitude
modulations u; and uy can be used as inputs to control the
beam shape. These inputs are subject to the constraint

Vit - (ul(t),u2(t))T eU = [—’L_Ll,ﬂl] X [—7._142,712}. (2)

The disturbance do in (1) will be used to excite the
beam to test the feedback. The resulting particle trajectories
in the phase plane (¢, ) are shown in Fig. 2 (left). The
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Fig. 1. Simplified setup of a synchrotron.
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Fig. 2. Particle trajectories (left) and definition of the emittance (right).

separatrix separates stable from unstable oscillations. Inside
the separatrix, the particle ensemble is usually called a
bunch. The longitudinal dynamics can be derived from a
Hamiltonian and the theorem of Liouville is valid, cf. [23].
One consequence is that the area occupied by the bunch in
phase space is a constant of motion.

The synchrotron frequency wsyno is the oscillation fre-
quency of particles near the origin (0,0). The principle of
filamentation is visualized in the right plot of Fig. 2. As
particles with large oscillation amplitudes have a frequency
smaller than wgyy o, the shape of the bunch may change.
Although the bunch area will remain constant in theory due
to Liouville’s theorem, the filamentation may be considerable
and it then will be difficult to identify the actual border of the
bunch shape. Thus, an effective bunch area is usually defined,
the so-called emittance, cf. Fig. 2 (right). This emittance will
increase in case of filamentation and one goal of the feedback
will be to damp bunch oscillations to prevent this emittance
blow-up as this deteriorates the beam quality. Therefore,
the emittance will also be a measure for the quality of the
feedback. We will formally define the emittance after the
definition of the bunch moments below.

The synchrotron frequency can be calculated as

hRhw” =Yl [ o
A (1+d)V, 3)

27
C Tw
is the revolution frequency of the beam in the synchrotron
ring. In this paper, the setup of the beam experiment de-
scribed in [15] and its corresponding parameter values will

Wsyn,0 = WR
where
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Fig. 3. Particle density for turns k = t/Tsamp (a) kK = 1, (b) k = 368,
(c) k=718, (d) kK = 1068, (e) k = 1750, (f) & = 2100.

be assumed for a simulation of the feedback. See [15] for
more details on the experimental setup. A revolution period
Tr = 4.6629 ps will be assumed in the following. The other
parameters and their values are the harmonic number h = 8§,
the ion charge Q = 2.8839-107!8 C, the relativistic Lorentz
factors yg = 1.0122 and g = 0.1550, the transition gamma
Ytr = 5.45, the reference ion energy Wi = 6.0349nJ and
the voltage amplitude V = 5000V. Again, d; denotes a
disturbance to excite beam oscillations.

As shown in [15], the bunch shape may be described by
its first-order moments (mean or bunch center)

1 1 &
Po =D i Pp =D P (&)
Np j=1 Np j=1

and second-order moments (variances and covariance)

N,

He = NLp Zj:Pl(Sﬁj - Psa)za
N, .

Bog = 221(95 = o) (@5 = pg), ©6)
Ny .

He = NLp Zj:l(@j - P@)Q'

A stationary or matched bunch has constant moments.
With the defined moments and assuming an ellipsoidal
shape, the emittance can be calculated as

Epup =\ Hollp = 13y 5 -

B. Open-loop Beam Dynamics

For the simulation of the feedback, a specific disturbance
sequence will be used to excite typical beam oscillations.
The sequence will be defined by

Gy (k) {3 o) = {0.8 if k€ [ky; ko)
@)

0 else
where k = t/Tsqmp is the sampling step, Tsqmp = 2.66 us
the sampling time of the digital hardware containing the
FPGA, and k1 = 368, ko = 718, and k3 = 1068. Disturbance
do will cause an excitation of the bunch center p,, at k = 368
and k = 718, whereas d; will excite the bunch length p., at
k = 1068. The initial distribution of the particles is assumed

if k> ks
else
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Fig. 5. Normalized emittance €, (k) /€, (0), open loop.

to be Gaussian and matched. An open-loop simulation using
these specific disturbances and with about 2.5 - 10° particles
is shown in Fig. 3 for different turns.

The resulting moments are given in Fig. 4. It is apparent
that the bunch is stationary until the first disturbance of
pp at k = 368. This disturbance has also an effect on
the bunch length, because the filamentation increases the
bunch size. Since this is a highly nonlinear effect, it is
practically impossible to obtain an analytical expression for
this increase. The disturbance at £ = 718 again excites the
mean and increases the bunch length. At £ = 1068, the
voltage amplitude V is increased using d; = 3. Due to (3),
the synchrotron frequency increases by a factor of /1 + d;
and the height of the separatrix changes by the same factor,
cf. Figs. 2 and 3. This excites large bunch length oscillations,
as can be seen in Fig. 4. In this figure, theoretical tangents
are depicted by dashed-blue lines. These tangents represent
the steady states of bunch length and bunch mean, if perfect
feedback would instantly damp the oscillations and hence no
filamentation would take place.

The (normalized) bunch emittance corresponding to the



disturbance sequence (7) is shown in Fig. 5. The blue dashed
line depicts again the theoretical tangent. It is apparent that
every excitation increases the emittance and thus deteriorates
the beam quality. At the end of the simulation, it has
increased by about 80%. Note that the disturbances on the
beam (7) were chosen rather large to evaluate worst-case
scenarios. In normal operation, the task of the feedback is to
avoid smaller beam oscillations that may grow if not damped.
However, also large oscillations may occur due to mismatch
of the beam and this will impose the highest requirements
on the feedback in terms of input constraints and possible
performance issues due to model mismatch.

The conclusion from these open-loop simulations is that
the ultimate goal of minimizing beam emittance can be refor-
mulated as the problem of stabilizing the bunch moments at
their setpoint. Subsequently, we consider the bunch moments
(6) as controlled variables and derive a control specific model
of the aggregated bunch dynamics.

C. Derivation of a Linearized Model

A simplified model to describe the moment dynamics has
been derived in [15]. For the model, a normalized coordinate

1

Wsyn,0

w = —

is used for convenience. The moments of the coordinates
(o, w) can be easily converted into the already defined
moments. The moments p, and p, remain the same, while
the other moments read
2
Pp = —Wsyn,0Pw, Mo, = ~Wsyn,0lp,w; Ko = Wsyn oHw-
The model derivation involves a linearization around the
setpoint
T
Te = (P«p Pw  Hep Hew ,uw)
_ _\T
=0 0 @, 0 7) (8)
T
Ue = (O 0) .
The state vector of the model is defined as

_ —_ \T
T = (pcp Pw Ho = Hy  How Hw — Mw)

and the dynamics are

. A 0 by O
T = Wsyn,0 < 01 AQ) T+ Wsyn,0 (01 bg) (z;) ) (9)

with

0 -2 0
Al = (C? (]j) y AQ = a9 0 -1
! 0 a 0

and

The model coefficients are functions of the setpoint 7

6 6
=", =D"(n+1)_,
a1:1+z nlon Hes a2:1+ZW“W
n=1

n=1

az =2a1, by =aif,,

and, for the equilibrium,

fy = b1 = a1fi, (10

holds. As a conclusion, for these parameters only one degree
of freedom remains and that is the bunch size setpoint 7z,,.

The longitudinal beam feedback control problem can be
summarized as follows: Stabilize the bunch moments (6),
which are the outputs of the nonlinear system (1), at the
steady state (8) subject to the input constraint (2).

III. PREDICTIVE PARTICLE BEAM CONTROL

In this paper we propose to solve the longitudinal beam
feedback control problem via MPC. MPC is based on the re-
peated solution of an optimal control problem. The problem
to be solved repeatedly is given by

1
min Za(NMTPx(N
{u(®)} 2 () ()
Nf

—

1 1
2 &~ 2

=0

+ ()T Qx(i) + %u(i)TRu(i) (11a)

subjectto Vi =1,...,N —1

x(i+1) = Az(i) + Bu(i), x(0) = meas(k) (11b)

and the input constraint (2). The prediction model (11b)
is obtained via a zero-order-hold discretization of (9) with
a sampling time Tsqmp = 2.66us. This sampling time is
chosen in order to compare the MPC controller with a
previously implemented FIR filter [15].

At each sampling step k& € N, measured or estimated
state information Z,,..s(k) is obtained, the optimal control
problem (11) is solved, and the first element of the optimal
input sequence {u(1)*,u(2)*,...,u(N — 1)*} is applied to
the simulated nonlinear bunch shape dynamics (1).!

It is well-known that the optimal control problem (11) can
easily be reformulated as a Quadratic Program (QP)

min 2T Hz + 2T Fapeqs (k) + ¢ (12a)

J(z)

subject to '
z € [~%, 7] ¢ R¥#mW)-N, (12b)

The input sequence {u(0),u(1),...,u(N — 1)} is rewrit-
ten as a vector z = (u(0)T, u()T,...;u(N — 1)1)T ¢
R%m(w)-N Ppositive definiteness of the penalty matrix R and
positive semi-definiteness of @ in (11) ensure strict convexity
of (12). The fast transients of the bunch shape dynamics,

'Note that the variables p,, and p,, can be computed in real-time from
available process measurements. Furthermore, it is easy to verify that the
linear system (9) is observable, provided that the states x1 = p, and
T3 = p, are available.
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however, require a short sampling time of Tsqmp = 2.661s
for the MPC controller. Thus we consider a variant of Nes-
terov’s Fast Gradient Method (FGM) [18], which provides a
computationally efficient method to solve (12), see [12, 21,
26]. A brief description of the FGM is provided in Section
Iv.

A. Simulation Results

In order to assess the applicability of MPC for longitu-
dinal beam feedback control in synchrotrons, we consider
the following simulation setup: The nonlinear model (1)
including the computation of the moments (6) serves as
simulated reality. The simulated moments are used to provide
the state feedback for the MPC. Note that there exists a
considerable mismatch between the simulated reality and
the linearized prediction model (11b). Thus we choose a
prediction horizon of N = 13. The control horizon, i.e. the
number of varying values for each element of the input vector
u € U C R2, equals the prediction horizon. This choice
gives a good compromise between the numerical efforts to

solve (12) and the closed-loop performance of the MPC. The
weight matrices () and R are specified as block diagonal
matrices @ = diag(Q1, Q2), R = diag(R1, R2). The blocks
are Q1 = diag(2,2), Q2 = diag(0,0,2), Ry = 0.01, Ry =
0.1.2 The terminal penalty matrix is chosen as P = Q. The
weight matrices ), R, P are chosen heuristically. The input
box constraints (2) are u; = 0.5, us = 0.15.

The plots in Fig. 6 show the simulation results for the
uncontrolled system and for a previously developed FIR
feedback filter, see [15] for details on the FIR feedback
design. The upper left part of the figure depicts the bunch
mean p,, over time. The upper right part shows bunch length
1, over time. The plots in the lower part of Fig. 6 show the
corresponding input signals. The grey lines in Fig. 6 show
the system response driven by the disturbance sequence (7)
without control (i.e., u1 (k) = ua(k) = 0 for all k£ € N), the
black dash-dot lines depict the result corresponding to the

2We merely penalize Iy Via Q2 since f1., and p, have linearly dependent
steady state values, see (10).



FIR filter. At time k = 368 the disturbance ds(k) (7) hits
the system. This leads to a jump of the bunch mean from a
value close to 0 to 0.7, see Fig. 6 upper left. Additionally,
this disturbance induces oscillations of the bunch length in
Fig. 6 upper right. Thus in the simulated reality, which is
a good approximation of the real particle bunch dynamics,
there exists a coupling between the dynamics of bunch
length and bunch mean. In the prediction model used for
the MPC controller (9) both dynamics are decoupled. Thus
the (simulated) MPC controller is subject to plant-model
mismatch.?

Fig. 7 shows the simulation results for the simulation MPC
controller. The upper left part of the figure depicts the bunch
mean p,, over time. The upper right part shows bunch length
i, over time. The plots in the lower part of Fig. 7 show the
corresponding input signals. The black dash-dot lines show
the results for the MPC scheme when the QP is solved up to a
truncation error of ¢ = 107, cf. (13). This means that in the
(cold-started) FGM we do as many iterations as given by the
upper bound presented below in (15). Considering the weight
matrices and constraints as listed above this bound gives a
maximum number of FGM iterations %,,,, = 33 required to
achieve the desired tolerance of ¢ = 10~°. Finally, the grey
lines in Fig. 7 correspond to the solutions obtained with 15
iterations of the (cold-started) FGM.

Comparing the uncontrolled solutions with the FIR filter
(Fig. 6) and the MPC schemes (Fig. 7) several observations
can be made. The MPC schemes reduce the disturbance-
induced oscillations more effectively than the FIR filter. Ad-
ditionally, none of the controllers achieve offset-free control,
since the setpoint j, = 1 is not attained. Finally, one should
note that the differences between the inputs obtained with
15 FGM iterations (MPC;_15) and the ones obtained with
33 iterations (MPC;—,;,_.) are hardly visible, cf. zoomed-
in plots in Fig. 7. This is in agreement with previous
observations that the theoretical maximum iteration bound
below in (15) is conservative, see [26].

B. Performance Comparison

As sketched in Section II-B the primary feedback goal
is to keep the emittance small, i.e. the area occupied by
the particle bunch in phase space. As the emittance itself
cannot be measured in real-time directly, the oscillations
of the bunch center p, and length u, are considered as
controlled variables to indirectly decrease the emittance. For
a performance comparison however, the emittance itself has
to be evaluated after the simulation or the measurement.

The emittance increase of the open and closed loop is
shown in Fig. 8. This clearly demonstrates that the MPC
scheme performs better than the FIR filter. For the open
loop, the emittance increases by about 80%, the FIR filter
reduces this to about 50% and the MPC scheme to about
40%. In particular, the MPC scheme drastically reduces the

3Obviously, the MPC could be reformulated as an offset-free design,
cf. [20]. However, here we are interested in investigating the principle
applicability of MPC to the longitudinal beam control problem. Thus offset-
free MPC is beyond the scope of this paper.
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Fig. 8. Normalized emittance increase for the open loop (black), the FIR
filter (red), and the MPC (i = 15) (blue).

emittance increase due to the disturbance di: at k& = 1068,
the emittance increase for the MPC is roughly 10%, whereas
it is about 30% and 40% for the FIR and the open-loop case,
respectively.

At this point it is fair to ask the following questions:
(a) Can we achieve the envisioned control performance of
MPC in practice? (b) Can the required state information be
reconstructed sufficiently accurately from real measurement
data? And (c), is it possible to solve the QP (12) sufficiently
quickly such that a sampling rate of 375kHz is feasible?
While issues a) and b) are beyond the scope of this paper,
we will sketch a preliminary answer to c¢) next.

IV. REAL-TIME FEASIBLE FPGA IMPLEMENTATION

The FGM is a gradient method which is efficiently appli-
cable to convex nonlinear programming problems provided
that the considered constraints have a rather simple geometry
[18]. In practice, one can perform only a finite number of
iterations of any optimization algorithm. This means that the
iterate z' obtained at the final iteration i = 4,,q, is only

suboptimal; i.e.,
€ > J(zimaer) — J(2%), (13)

where € > 0 is the truncation error.
Denote by L, > 0 the largest and the smallest eigenvalue
of the Hessian matrix of (12) and let

VIV
VLV

The FGM can be summarized as follows:

(14)

Algorithm 1 Fast Gradient Method
0

Require: state ,,.q5(k), initial guess 2,
and the scalar constants ¢,,,z, L, ¢, and the constant
matrices H, F.
set 2t =29, w =20
for i =0 — 4,00 — 1 do
compute v(w) = (I — 1 H) w+ 7 FTmeqs (k)
compute 2Tt = Py (v(w))
compute w = 21 4 (2 — 2%)
set z¥ = 21

end for

return z*




The function Py : v € RN 1/ xtf x - xU C
R%m(w)'N denotes the projection onto the feasible set. This
projection is extremely simple (element-wise saturation) in
the case of box constraints, cf. [12, 21].

In addition to its low computational burden, only vector
matrix multiplications and additions have to be performed
online, the FGM admits an upper bound on the required
number of iterations %,,,, In order to achieve a truncation
error €, [19]. In the case of cold-starting ,,,4, iS given by

Ty )

(15)

In2¢ — In(L+1)d?

In(1—4/+)

Tmar = MiN

where [-] denotes rounding up to the next integer and the
cold start initial guess is u® = (0,0,...,0)T € R¥#m(w)-N,
For the symmetric box constraints from (2) the constant d is
given by

dim(u)
d=N Y u.
i=1

The remaining question is whether or not Algorithm 1
can be computed sufficiently quickly to meet the required
sampling period of 2.66ps. The FIR filter currently used
to control the SIS18 synchrotron [15] is implemented on a
digital signal processor (DSP) on a custom-designed board
described in [11]. The FIR filter already stretches the capa-
bilities of the DSP and so we do not anticipate that the DSP
will be an appropriate implementation technology for the
FGM. However, the hardware described in [11] also includes
a high-end FPGA, allowing the possibility of a custom
hardware implementation of Algorithm 1. Consequently, we
implemented the FGM of Algorithm 1 in a hardware descrip-
tion language, VHDL, and performed timing simulations
using the TimeQuest Timing Analyzer that is provided as
part of the Altera suite of FPGA design tools.

A fixed point arithmetic implementation of the FGM was
developed based on the need for fast and simple arithmetic
operations. An analysis as in [9, Proposition 1] was per-
formed given the problem data to arrive at the need for three
integral bits plus a sign bit.

A detailed analysis of the numerical requirements for the
FGM was performed in [9], in particular with regards to the
number of fractional bits required for a given set of problem
data. In [9], several conditions on the fixed point problem
were provided which must be checked after the design. These
conditions on the fixed point data ensure the applicability of
the FGM (by guaranteeing strong convexity of the objective
function), ensuring numerical stability of Algorithm 1 in the
presence of round-off errors, and guaranteeing the validity
of the bound (15). Using 16 fractional bits with the problem
data of the previous section satisfies all the conditions
presented in [9].

The circuit diagram of our VHDL implementation is
as shown in Figure 9. This single-cycle design requires
significant on-chip resources due to the large number of arith-
metic operations inherent in the matrix and constant mul-
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Fig. 9. VHDL Circuit Diagram.

tiplications, which necessitates implementation on a high-
end FPGA such as the Stratix V from Altera. Using the
timing information for the Stratix V provided by Altera,
the TimeQuest Timing Analyzer was used to determine a
maximum allowable clock frequency of 29.9MHz. Noting
that in the circuit of Figure 9 one FGM iteration is performed
per clock cycle, we see that the proposed 15 FGM iterations
described in the previous section require 0.5us, placing the
implementation well under the 2.66us sampling constraint.
Furthermore, with a maximum number of FGM iterations
of 33 taking 1.09us, performing the maximum number of
iterations is possible in the event that this is required.

We emphasize that this is an initial hardware design for
the purpose of demonstrating feasibility of implementing
a model predictive controller for the SIS18 synchrotron.
As such, many refinements of the design are possible in
order to decrease latency and improve on-chip resource
utilization by tuning the optimization settings within the
Altera Quartus software, by performing a lower-level design
on key components, and by exploiting available structure
with the Hessian matrix.

Finally, we note that the main computational burden does
not come from the number of states in the system model,
n, but rather from the number of inputs, m and the horizon
length, N, of the optimization problem. This follows from
the fact that in each FGM iteration it is necessary to perform
the N-m by N -m matrix-vector multiplication. On the other
hand, an increase in the state dimension has the effect of
increasing the size of the matrix F, but it is only necessary to
compute the product F'z once. Additionally, as is clear from
Figure 9, in the first iteration the product %Fa: is computed
in parallel with (I — + H)w, which implies that as long as
n < N -m it is the computation of the latter that is the
critical element, even for the initial iteration. Consequently,
we observe that the limiting factor in this design is the 26 x 26
matrix-vector multiplication.



V. CONCLUSIONS

In this paper we presented a predictive control approach to
longitudinal beam feedback control in hadron synchrotrons.
We applied an MPC scheme whereby the quadratic problem
is solved via a fast gradient method. Preliminary results
indicate that the FGM is well-suited for implementation
on an FPGA and sampling rates in the order of 1 MHz
are achievable. Future work will consider the effect of
warmstarting the FGM on the FPGA, the implementation of
a coupled observer-MPC scheme on the FPGA, hardware-
specific algorithm optimizations, and implementation on the
real system.
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