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CONFORMAL INVARIANCE OF SPIN PATTERN PROBABILITIES IN THE PLANAR
ISING MODEL

REZA GHEISSARI, CLEMENT HONGLER, AND SUNGCHUL PARK

ABsTRACT. We study the 2-dimensional Ising model at critical temperature on a smooth simply-connected graph
Q5. We rigorously prove the conformal invariance of arbitrary spin-pattern probabilities centered at a point a
and derive formulas to compute the probabilities as functions of the conformal map from Q to the unit disk.
Our methods extend those of [Honl0] and [CHI13] which proved conformal invariance of energy densities and
spin correlations for points fixed far apart from each other. We use discrete complex analysis techniques and
construct a discrete multipoint fermionic observable that takes values related to pattern probabilities in the planar
Ising model. Refined analysis of the convergence of the discrete observable to a continuous, conformally covariant
function completes the result.
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1. INTRODUCTION

The 2D Ising model is one of the most studied models of equilibrium statistical mechanics. It consists of a
random assignment of +1 spins o, to the faces of (subgraphs of) the square grid Z? ; the spins tend to align with
their neighbors; the probability of a configuration is proportional to e ## where the energy H is D i j (—0i0j),
summing over pairs of adjacent faces ; alignment strength is controlled by the parameter g > 0, usually identified
with the inverse of the temperature. See Section 1.1 for a more rigorous definition.

The 2D Ising model has found applications in many areas of science, from description of magnets to ecology
and image processing. Due to its simplicity and emergent features, it is interesting both as a discrete probability
and statistical field theory model. Of particular physical interest is the phase transition at critical value . such
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A possible Ising model configuration at critical temperature along with the interfaces between plus and minus
spins.

that for § < B. the system is disordered at large scales while for 8 > . a long-range ferromagnetic order arises.
In classical discrete probability, the phase transition can be described in terms of the infinite-volume limits: in
the disordered phase § < (. only one Gibbs probability measure exists, while for 5 > ., measures are convex
combinations of two pure measures. It has a continuous phase transition since only one Gibbs measure exists at
B = Be.

Critical lattice models at continuous phase transitions are expected to have universal scaling limits (independent
of the choice of lattice and other details), as (non-rigorously) suggested by the Renormalization Group. The scaling
limits of (a large class of) critical 2D models are expected to exhibit conformal symmetry. This can loosely be
formulated as follows: for a conformal mapping ¢ acting on the domain 2 C C, we have

© (scaling limit of M on Q) = scaling limit of M on ¢ ().

There are two points of view describing the scaling limits of planar lattice models: curves and fields. The
curves that arise in conformally invariant setups are Schramm-Loewner Evolution (SLE) curves: they describe the
scaling limit of the interfaces between opposite spins. The fields on a discrete level, such as the t1-valued spin
field formed by the spin values, can be described by Conformal Field Theory (CFT): their correlations in principle
can be computed (non-rigorously), using representation-theoretic methods. For the 2D Ising model, most of the
above program can be implemented rigorously: the interfaces of £1 spins can be shown to converge to SLE curves,
and the correlations of the most natural fields can be shown to converge to the formulae predicted by CFT.

What makes it possible to mathematically analyze the model with great precision is its exactly solvable structure,
revealed by Onsager [Ons44|. The exact solvability can be formulated in many different ways; in the recent years,
the formulation in terms of discrete complex analysis has emerged as one the most powerful ways to understand
rigorously the scaling limit of the model. Specifically the model’s conformal symmetry becomes much more
transparent in this context.

The results of [Honl0] and [CHI13] concerning the (asymptotic) conformal invariance of lattice fields can be
formulated, in their simplest instance, as follows: consider the critical Ising model on discretization 4 of a simply-
connected domain by a square grid of mesh size § > 0; put +1 spins on the boundary, take a point a € €,
identify it to the closest face of €25 and let a + § be the face adjacent to that face. Then, as § — 0

[spin field] Eq,[04] = 0+ C, ¢ (a)|7 6% +0 (5%)

V2
2

where C,,, C. > 0 are explicit nonuniversal constants and ¢ is a conformal map from €2 to the unit disk D, mapping a

[energy field] Eq;sl0a0ats] = + Cel¢' (a)|d+0(5),

to the origin. The 0 and % on the right hand side are the infinite-volume limits (i.e. values on graphs approaching
the full square grid Z?) of the quantities of the left hand side. The above results illustrate the relation between



CONFORMAL INVARIANCE OF SPIN PATTERN PROBABILITIES IN THE PLANAR ISING MODEL 3

the infinite-volume limit description and the field-theoretic description: for a given local field, its correlations are
described at first order by the infinite-volume limit, and the corrections are described by Conformal Field Theory
quantities. The purpose of this paper is to study more general fields, to compute the infinite-volume limits, and
to describe the CFT corrections.

More precisely, we look at local pattern probabilities (e.g. the chance that three adjacent spins are the same,
the chance that a given spin is + and that its neighbor is —, etc). In the case of the dimer model, similar results,
connecting pattern probabilities with conformal invariance, were obtained by Boutillier in [Bo07]. We give a way to
compute the infinite-volume limit of such probabilities for the planar Ising model, and we describe the conformally
covariant corrections induced by the geometry of the domain up to order J:

Pq, {pattern} = P¢, {pattern} + §° - geometric correction + o (6%),

where « is 1 for spin-symmetric patterns and % for spin-sensitive patterns.

Another way to formulate our result is the following. The Ising CFT, conjectured to describe the scaling limit
of the critical Ising model, contains three primary (conformally covariant) fields: the identity (dimension 0 — a
constant field), the spin (dimension %) and the energy (dimension 1). We formulate pattern probabilities up to
order ¢ in terms of these three operators (corresponding to the three terms in the above formula).

Our proof relies mainly on discrete complex analysis methods: we use lattice observables, in the form introduced
in [Honl0], to connect pattern probabilities with solutions to discrete boundary value problems. We then study
the scaling limits of such solutions using discrete complex analysis techniques. The new techniques introduced for
this purpose, are: refined discrete analysis of multipoint observables, constructions of lattice spinor observables on

the full plane, and refined analysis of convergence of observables.

Applications and Perspectives. Besides giving a general connection between pattern probabilities, Gibbs
measures and conformal covariance, our results can be useful in shedding light on specific questions. One such
question of Benjamini that served as one of the motivations for this work arises in the context of Ising Glauber
dynamics. These dynamics are Markov chains on the space of 1 spin assignements, their equilibrium measures
are the Ising measure. They pick a spin (uniformly at random), flip it with a certain probability, according to the
state of the four neighbors, and then repeat this procedure.

A natural field, associated with these dynamics is the flip rate of a spin at a given location. It is tempting to
relate it to the energy, as it is intuitively related to the thermal disorder of the system (the more the spin flips, the
higher the disorder). Hence, at critical temperature, one would like to relate this flip rate (after correction) to the
conformal invariance results of the energy density [CHI13]. This paper makes this precise: the flip rate at x € Qs
depends on the frequency of occurence of the various configurations (patterns) at the five spins z, z + 6,z +id (in
a spin-symmetric fashion). Hence the flip rate (at equilibrium) can be described by Theorem 1.1.

The methods introduced in this article pave the way for additional development, to appear in subsequent
papers. Those will include probabilities of occurrence of multiple patterns at macroscopic distance from each
other, eventually leading to a full connection between the scaling Iimits of the critical Ising model fields and the
content of the corresponding minimal model of Conformal Field Theory [DMS97]. The methods of [ChSm11] can
also be used to generalize these results to two-dimensional isoradial lattices.
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1106588, and the Minerva Foundation for financial support.

1.1. Notation. Our graph notation is largely consistent with that in [CHI13]; caution is needed since our function
notation is distinct from the notation there, mixing in features from [Hon10].

1.1.1. Graph Notation. The Ising model is a model of spin behavior which assigns spins of value £1 to sites of
given arrangement. In this paper, we consider spins on the faces of the discretizations s (or Cs) of a given
bounded simply connected domain with smooth boundary Q (or C) via a rotated square graph of mesh size v/24.
More specifically (the notations for Q5 are also used for Cs by putting C in place of 2 in the definitions):
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FIGURE 1.2.
Vq, are denoted by e with the solid lines connecting them being the edges in £qo,; V() are denoted by o; Vg~ are
denoted by [].

e The set of vertices Vo, := (1+14)Z25 N(Y; the edges £g, consist of unordered pairs of vertices that are v/2§
apart from each other; the faces Fq, are the square regions enclosed by four edges, the edges to which

they are incident, the midpoints of the faces being located on (1 +1) |Z2 + % + %z} 0 N Q. Two vertices

or faces are adjacent if they have an edge between them.

e Frequently we represent edges and faces by their midpoints. In particular, the set of medial vertices Vg,
is defined as the set of edge midpoints; given an edge e € €, m(e) € Vg is its midpoint, and vice versa
for m € V! and e(m) € &g, -

e Furthermore, we collect the corners, which are points §/2 off from the vertices in each of the four cardinal
directions. Defining Vsl‘z5 = Vo, + %, V}zé = VQi - 37 Vé(s = Vo, + %, and Vaé = Vo, — %, the set of
corners is denoted as Vg 1= Vslzé Uy V}zé Uy VS[; U Véé. Note that for a 7 € {1,i,\, A} V4, is a rotated square
lattice, with nearest pairs of corners v/28 apart; in this lattice those corners are adjacent.

e Given an edge e = {a, b} € g, C Vo, an orientation on the edge is a choice of a unit vector o in the edge

direction between ﬁ and ﬁ. In most cases, we also arbitrarily choose one of its two square roots
to get a double orientation, denoted (1/0)2 in case of ambiguity. We denote an oriented edge (midpoint),
meaning a pair of an edge midpoint m = m(e) and a double orientation o thereon, by m°® = mvVo® . We
collect oriented edge midpoints in the set Vg . Similarly we define (double) orientations of corners, which
is fixed by their type, as the unit vector in the direction to the nearest vertex and its square root.

e The domain of choice for the discrete functions in the following sections is the set of both corners and
medial vertices, or V5" := V3 UV§ . A medial vertex and a corner are adjacent if they are % apart from
each other.

e The boundary faces OFq,, boundary medial vertices OV{' , boundary edges in OEq; are those faces, medial
vertices, and edges that are incident but not in Fo,, V() and Eq, respectively. Given a boundary edge,
we define the unit normal outward vector vyt as the unit vector in the direction of the vertex in C\ Q
viewed from the vertex inside Q.

For the discrete functions with monodromy which will be introduced in Section 3, we work with graphs lifted
to the double cover [, a] of Q\ {a} (or [C,a] of C\ {a}) for a given fixed point a € Q (or C). We assume a
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FIGURE 1.3.
The double cover of the complex plane is a Riemann surface with ramification at a point of monodromy a. Here
the ramification is at the origin.

is a midpoint of a face; if not we can move the grid by less than v/26 so that it is the midpoint of a face. The
convergence results we quote require Hausdorff convergence of the discrete domains to the continuous one—thus
they hold regardless since as § — 0 the shifted grid still converges to the continuous domain in the Hausdorff
sense.

e To identify the branches of the double cover [C,a] we use the function v/z — a which is naturally defined
on it; the left-slit plane X := C\ (a + R_) lifts to two branches, X* and X~, the former where Re /z — a
is positive and the latter where it is negative. Similarly, the right-slit plane Y := C\ (a + R.) lifts to Y
and Y, the superscripts noting the sign of Im+/z — a. On the discrete level, define the lift of V(125 to X+
as Xf;t, and the lift of V}zé to Y* as Y(;i.

e Our functions of interest on the double cover will be spinors, or functions with monodromy —1 around a;
that is, we want functions that switch sign when one goes from a point on the double cover to the other
point on the double cover that maps to the same point under the covering map.

e [Q5,a] is the double cover of Q5 with ramification at point a; in other words, the vertices, medial vertices,
and corners get lifted to give the lifted vertex, edge and corner sets.

e We use similar notations for the lifted vertex, edge, and corner sets as above by replacing 5 with [Qs, a].

[Qs,a] can be naturally viewed as a subgraph of [Cy, a] in view of the natural inclusion [, a] C [C, a].

1.1.2. Ising Model. We consider the Ising model on the faces of Qs: a configuration o assigns %1 spins to each
face in Fq;.

e og; € {1} is the spin assigned to the face i € Fq,.

e Each configuration o has energy associated with it, defined as E(o) = =3, | ;0i0j, with i ~ j denotes
that ¢ and j are adjacent. The Ising model declares the probability of o, P(c), as being proportional to
e BE() at the inverse temperature 3 > 0.

e We only consider the critical model at inverse temperature 5, = % In(v/2 4+ 1).

e If an edge e is incident to the faces ¢ and j, define the renormalized energy density field at e as e(e) :=

i — 0,05, where y = 727 the infinite-volume limit, is defined so that the expectation of the full-plane

energy density goes to 0 as 6 — 0 ([HoSm10]).
e Given a set of edges B (in particular, a spin-symmetric pattern defined in 1.13), we define the energy
density of B as €(B) := [[.cp €(e)-

1.1.3. Pattern Notation. A base diagram B is a collection of edges in the graph on the square grid (1 + )Z2.
Denote by F(B) the set of faces incident to edges in B and let ag be a marked midpoint of a face in F(B). Given
a graph 5 and a face at a € Q5 we associate with any b € BU F'(B) the corresponding a + §(b — ag) € Eq,; U Fo,:
call this embedded diagram centered at a, Bs C Qs (omit the § subscript when clear from context).

A spin-sensitive pattern is an assignment of spins +1 to the faces F(B); in other words, the pattern is an
element of the set {—1,1}7B). A corresponding spin-symmetric pattern is the union of the spin-sensitive pattern
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FIGURE 1.4.
Pattern Notation. The set of four edges surrounding o, are the elements of the base diagram B centered at a.
The spin-symmetric pattern is defined by the presence of the edge e, . so B = {e, .} separating opposite spins.
The spin-sensitive pattern associated with o, = 0y = 0, = 0, = +, 0, = — is defined by Blo, = +

and its exact negative (i.e. the spin at every face is flipped). The simplest example of a spin-sensitive pattern is
the event {0, = +} while the simplest example of a spin-symmetric pattern is the event {o, = 0414}

We consider the probability of such patterns occuring at a. In order to exploit the existing tools that compute
the expectation of various energy densities, defined on edges, we prefer a notation based on the presence of edges.
Using the low-temperature expansion, we identify each spin-symmetric pattern with an edge subset B C B by
letting e € B if and only if e separates faces whose spins are different; this will be our notation for a spin-
symmetric pattern from now on, with Pg, (B) denoting the probability that the spin-symmetric pattern B appears
on F(Bs) C Fas,-

Since F'(B) is connected, taking a spin-symmetric pattern given by B and fixing the spin at a to be £1 specifies
a spin-sensitive pattern. As such we define a spin-sensitive pattern by [B, o,] with B defined as before and o, the
spin at a.

1.1.4. Convergence. A family of functions {Fs : QF" — C}s50 converges on compact subsets to the continuous
function f: © — C if given any compact subset K C 2 in the continuous domain for all € > 0, there exists a § > 0
such that if 0 < § <0, z € KNVG = |F5(2) — f(2)] <e

1.2. Main Results. In this section we present our main results regarding conformal invariance results of spin-
symmetric and spin-sensitive patterns.

We first present the conformal invariance result on spin-symmetric spin pattern probabilities, a result that
follows from the generalization of [Honl0] to edges O(d) apart from each other.

Theorem 1.1 (Conformal Invariance of Spin-Symmetric Pattern Probabilities). Given a base diagram Bs in Qs
centered about a, and a spin-symmetric pattern B C Bg,
1
0

where the convergence is uniform for B away from 9Q. ({(a, B))q is an explicitly defined function such that given
a conformal map ¢ : Q — o(Q),

(Pq,[B] — Pz2[B]) E}““’ B))a

{{a, B))a = l¢'(a)[{{p(a), B))y(e)-
Here Pz2[B] is the infinite-volume limit defined as

Pzz[B] = lim ]P)QO[B]

Q(; —>C5
Remark. Since we are at critical temperature the limit exists and is unique.

We have a similar formulation of our main result for spin-sensitive pattern probabilities.
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Theorem 1.2 (Conformal Invariance of Spin-Sensitive Pattern Probabilities). Given B, a spin-symmetric pattern
on the base diagram Bs centered about point a in ), and a designated spin o, = £1,

= (Po,[B.0,] ~ Pa[B0u]) 5 (e (B

where the convergence is uniform away from 0Q. ((a,[B,04]))q s a function such that given a conformal map
0 : = (Q) we have

({0, [B,oa)) = | (@)] 3 {((0), [B, 0(a)]) e

Pz2[B,0,] is defined as before as the infinite volume limit,

]Pzz) [B, O'a] = Q?HE(;]PQ‘S [B Ua,]-

Remark 1.3. By taking ¢ : D — Q to be the conformal map from the unit disk to our domain with ¢(0) = a, we
have the following formula for the renormalized spin-sensitive pattern probability:
1
5T
where C|p ) is an explicit lattice and pattern dependent constant, and rad(a, Q) is the conformal radius of Q as
seen from a. That is, rad(a, Q) = |¢’'(0)].

sVal — 1127 s Va 0 ] ) )
(Po,[B,04] —Pz2[B,04]) — CiB,0,) - Tad” % (a,Q)
6—0 ’

1.3. Proof Strategy. In this section we outline the strategy for proving our main results, Theorems 1.1 and 1.2.
We follow the proof structure of [Honl0]. That is, we introduce functions (discrete fermionic observables) defined
on the discretized domain that take specific values related to the probability of the presence or absence of an edge
in the graph. We then associate the presence or absence of edges with spin patterns on the graph and examine
the continuous limits of the discrete observables. The limits, defined on the continuum obey conformal covariance
properties and thus yield conformal invariance results on spin-pattern probabilities.

Specifically, we begin, in Section 2, with an overview of important definitions and results of discrete complex
analysis: we construct discrete observables that satisfy certain Riemann boundary conditions with continuous
counterparts. In this section, we also define the full plane discrete observables that are discrete holomorphic with
a singularity and vanishing at co. We do so for both the complex plane, C, and its double cover with ramification
at a point @ € C. In particular the construction of the full plane observable on the double cover with ramification
at a and singularity at b is crucial to our result and relies on the explicit construction of the discrete harmonic
measure on the slit plane, done in Appendix A. In constructing the full plane spinor we first argue there exists an
infinite-volume limit of the fermionic spinors defined on {25, then that they converge to a continuous function in
the scaling limit. The full plane fermionic observables allow us to cancel out the singularities of the functions we
construct in Section 3 and prove their convergence to continuous conformally covariant functions.

In Section 3, we first define the fermionic observable on Qs as first introduced in [Hon10]. Specifically we show
that the results of [Hon10] extend to adjacent source points and thus the multipoint discrete fermionic observable
Fq, can be expressed in terms of the energy density Ele;...e,,] for adjacent edges. This allows us to relate the
discrete fermionic observable to the spin-symmetric pattern probability Pq,[B]. In order to extend this to spin-
sensitive patterns we construct a multipoint version of the fermionic spinor of [CHI13|, Fiq, 4 living on the double
cover of 5 with monodromy around a. Unlike the function of [CHI13| the function we construct has points of
singularity away from a point of monodromy so that we can consider a collection of edges as our pattern. We follow
the same procedure as for Fq, to relate this discrete spinor to the spin-sensitive pattern probability Pq,[B, 04].
This section concludes with a Pfaffian relation that defines the multipoint fermionic observables in terms of their
two point counterparts.

Section 4 is the core of the paper in which we prove convergence, as the mesh size § goes to zero, of 532 (Fios,a —
Fic,,q)) to a conformally covariant function. In [CHI13] such convergence was proven for a spinor with singularity
located at the point of monodromy a. However, the multipoint spinors we introduce have points of singularity at
all their source points, possibly all away from the point of monodromy. After expressing them using the Pfaffian
relation from Section 3 in terms of two-point functions, the points of singularity approach the point of mondromy
as § — 0. We then prove convergence of these two-point functions to conformally covariant continuous functions
up to higher orders of .

Finally in Section 5, we combine the results from Section 3 and Section 4 to prove the main results of the
paper, Theorems 1.1 and 1.2. Using the Pfaffian relations from Section 3 and the relation between the discrete
observables and edge pattern energy densities, we express the energy density of an arbitrary spin-symmetric
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pattern in terms of two-point fermionic observables. Then using the convergence results of [Hon10] and Section 4
to conformally covariant functions, we deduce that the energy densities of spin patterns converge to conformally
covariant quantities. We use Appendix C to deduce conformal invariance of spin pattern probabilities in Theorems
1.1 and 1.2.

2. DISCRETE COMPLEX ANALYSIS AND FULL-PLANE OBSERVABLES

2.1. Discrete Complex Analysis. We introduce here basic notions of discrete complex analysis on the square
lattice and introduce useful full-plane auxiliary functions Hc,, Hic;,q)- Note that we denote discrete functions by
upper-case alphabet letters; the continuous counterparts will be denoted by the same lower-case alphabet letters.

Definition 2.1 (s-holomorphicity,[Smi07]). A function K : V§" — Cis said to be s-holomorphic at x € Vi C V§,
with 7 € {1,4, A\, A} if for adjacent z € Vi, we have
K(r) = Pos (K(2)) 1= 5 (K(2) + 7K (2))

where P;r denotes projection onto the line 7R. K is s-holomorphic on €25 if it is s-holomorphic at each x € Vg, .

For a function K defined on the double cover [Qs, a], choose an open ball V' C Q\ {a} around z, whose preimage
by the covering map will give two disjoint copies V1, V2 C [Q5,a]; we can get two bijective maps, with ¢ = 1,2 in
T 1.V = Vi. K is s-holomorphic if K o m; vgr is s-holomorphic for any such x, V', and i. This way of defining
complex analysis notions on double covers will be frequently implied, with a point in the planar domain being
identified with one of the corresponding points in the double cover.

Remark 2.2. A more obvious candidate for the discrete notion of holomorphicity, called discrete holomorphicity,
is implied by the stronger notion of s-holomorphicity. Specifically, it is easily seen that an s-holomorphic function
K satisfies K(z + i) — K(z 4+ 0) = i(K(x + (1 +¢)0) — K(z)) for all z € Vé; where the expression makes sense.
The values on Vg)’; in fact determine an s-holomorphic function uniquely: given a function K defined on Vgll; such
that the above discrete holomorphicity relations hold.

We note that a family of s-holomorphic function {Fs : Vg — CHV{{; converges on compact subsets to the
continuous function f if and only if the restrictions F(;|V517 . and F5|Vg125 converge on compact subsets respectively

to Re f and Im f, where the notion of convergence on (a fixed single type of) corners is defined analogously to
that on medial points.

Definition 2.3 (Discrete Harmonicity). For a fixed 7 € {1,i} a function L : V. — C is discrete harmonic at
x € V¢, if we have

Lxz+ (1+14)0)+ Lx+(1—14)d)+ L(x — (1 +4)0) + L(z — (1 —)d) = 4L(x).
The function L is discrete harmonic if it is discrete harmonic at every point.

Remark 2.4. We only introduce the harmonicity notion on Cy, but it easily generalizes to {25 with some modification
of the definition in case of boundary points; see [ChSm11] for details. Discrete holomorphicity implies discrete
harmonicity of restrictions-the following can be checked straightforwardly:

Proposition 2.5 (Proposition 3.6, [ChSm12|). The restriction of an s-holomorphic function on V& to V&, for

some T € {1,i}, is discrete harmonic. The restriction of an s-holomorphic function on V[C&‘Aa] to V[TC5 al for some

T € {1,i} is discrete harmonic at every point except at a + %.

Remark 2.6. As seen in Remark 2.2, an s-holomorphic function is defined by its discrete holomorphic restriction
to Vglz’;. In fact, the full restriction to Vé; can be recovered by the restriction on just one type of the corner up to
a constant. If one has a harmonic function on V{, and a fixed value on any one point in V¢, (or vice versa), there
is a unique harmonic function on V¢, s (or V} s ), called the harmonic conjugate, which has the specified value at the
point and forms a discrete holomorphic function together with the prescribed values on Véd (or Véd). Harmonicity

of the prescribed function ensures that the values defined by sums along different lines are well-defined (see Lemma
2.15 of [ChSm11]).

Discrete harmonic functions on a domain, like their continuous counterparts, are unique given a certain set of
boundary conditions. Here, we present a discrete complex analysis version of such a result concerning s-holomorphic
functions.

Proposition 2.7 (Corollary 29, [Honl0]). A solution K5 of the discrete Riemann boundary value problem on
Qs with boundary data L : OV — C, which is a discrete function defined on VG satisfying the conditions
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e Ky is s-holomorphic in [Qs, al
* For each z € Vg, 1, [Ks(z) — L(2)] /vour(z) €R

1S unique.

Proposition 2.8. A solution Ks of the discrete Riemann-Hilbert boundary value problem on Qs with boundary
data L : 81}[9 o C with monodromy -1 at a € §, which is a discrete function defined on V[Q a] satisfying the
conditions

e Ky is s-holomorphic in [Qs,a].
e For each x € Vg, 1. [Ks(x) = L(x)] \/vout(x) € R

s unique.

Proof. In applying the proof of Proposition 28 in [Hon10] (which estimates the “area integral” of K2, which is the
sum of all medial values, by the “line integral” of L2, or the sum thereof along the boundary), the only tool needed
is the superharmonic antiderivative of K?; its existence is shown in Remark 3.8 of [ChSm12]. 0

2.2. Full-plane Observables. We now present full-plane versions of various observables constructed in Section
3. These functions encode the infinite-volume limits that the model converges to when the domain approaches Cg;
from a functional point of view, they have discrete singularities, which are used to cancel out the same singularity
types in the domain-dependent observables when applying uniqueness and convergence results (examples of which
we saw above in Propositions 2.7, 2.8) concerning everywhere s-holomorphic functions.

To use procedures outlined in Remarks 2.4 and 2.6, we define an important harmonic function which can be
defined on most discrete domains:

Definition 2.9. Given medial vertices a;,as and an orientation o € O2 on a1, we define the full-plane fermionic
observable Hc, (a3, as) by

o1 " m a1 01\/5@ @_7102\/5%
Hcé(al,ag)—\/acos(8)(G<5+ 5 ’6)+G<5 ALK

g (T a_ov2 a o V2 6
’mm“(s)(G(a > ’5>+G<5+ > 5))

where G(a1,a2) = G(0,a2 — a1) and G(0,w(1 + 7)) := 2C(0, 2w), and where Cj is the coupling function defined

in Section 5 of [Ken00|. 6! Hc, (a3*, a2) 220, he(alt, az) == /\‘\/f% a;al on compact subsets of Q x Q away from

the diagonal.

Remark 2. 10 By Thoerem 87 of [Hon10], the full-plane fermionic observable is the unique s-holomorphic function
on V& x VEM\ A, A ={(b°,b) € Vg, x VEI'} such that for all b € Vi He, (b%,-) has a discrete simple pole at b
(in other Words every projection-based s-holomorphicity relation holds except for those involving Hc, (b°, b)) with

residue \/% at b: for b+ 1?05 and b — 21\1/0(5 corners adjacent to b, and A, h~ Values of Hc,(b°,b) that makes

Hig; ) (b°,-) s-holomorphic on {b+ 5 1L 05} and {b— 1?06} respectively, h™ —h™ =
s-holomorphic function that is p0851bly singular at an edge is in fact s-holomorphic there if and only if the residue

at that edge is zero.

01 . Note that an otherwise

On [Qs, a], [CHI13] gives a formulation of an analogous function on the double cover based on harmonic measure
and its various estimates. For a discrete domain A and A C dA, the harmonic measure of A as seen from z hm’ (z)
is the probability that a random walk starting at z hits A before hitting JA\ A, which, across all z € A, happens
to be the unique harmonic function on A with boundary value 1 on A and 0 elsewhere. We explicitly compute the
version we will use (our needed harmonic measures are on graphs isomorphic to Cs \ R,):

Theorem 2.11. The discrete harmonic measure on the slit complex plane Cs\Ry is given by

“ (K|
Cs\RL ) . oy L C™(0) i
hm G ((s + 1k)6) == Ho(s + ik) = Y cp= —57° de,
cos 6 L . Cs\Ry
where C(0) := ———— and the square root takes the principal value. In particular, hm gy (2(s+1)0) =

14 |sind)
“:ri hm?g;m (280), which asymptotically gives hmgg;RJf (256) ~ \/%

Proof. See Appendix A.1. [
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Theorem 2.12 (Theorem 2.15, [CHIL3|). There is a unique s-holomorphic spinor Hic, o on [Cs,a] \ {a + $}
such that Hcs q)(a + 3—25) =1 and Hic,q(2) — 0 uniformly as z — oo. Then ﬂ(é)_lH[Cs,a] converges on compact
subsets to spinor hic q)(2) = \/% defined on [C,a]. Here 9(3) is the normalization factor defined by 9¥(9) :=

Hicsa (a+ % +20|55]) = /%

Proof. [CHI13] defines the value of Hc, ,) on V[léi,a] by Hicsa) == % hm’s on Xf{ and Hic; o) := Fi hm

{a+%} {a+3}
on Ygﬂ and zero on corners missed by either Xf;t or Ysi. The two functions respectively converge to Re \/Zlfa and

iIm \/zl_ﬁ uniformly on compact sets, and extend s-holomorphically to V[CC"Z o) ber our Remark 2.2. Theorem 2.11

provides the asymptotic estimate. Note it is impossible to extend the function s-holomorphically to a + g; the
projections from the two adjacent midpoints have opposite signs. 0

Now we define the two-point versions of the spinors; they are spinors with discrete singularities which can be
moved to points other than a + g. Analogous to Hg,, our goal is to provide functions with singularities at edge
midpoints which have the same behavior as Hq; 4], to be defined in the next section. We overload the notation
Hic,,q) in order to refer to the above defined spinor and the various two-point functions below; the definitions
are clearly distinguishiable once one identifies whether the argument(s) are corners or edge midpoints. Write
[A,a] ={(b°,0) € Vig, o] X V{& oy} Where the function is not defined:

Theorem 2.13. There is a unique function Hic, ) : Vigs.a) X Vich.al \ [A,a] = C such that for all b € Vies.al
Hic,.a)(b°,-) satisfy properties 1,2,8 (or 1,2,4) of A.4. Then for v{ € V["C& a distance O (0) from a as § — 0, we
have, uniformly over z on compact subsets away from a,

1 o o CUO
WH[cé,a] (v, 2) = Coohic,q) (a°, 2) =

al

for some Cye € C.

Proof. The proof proceeds in two steps done in Appendix A. We first prove the existence and uniqueness of such
a function defined on b € V[OCJ, al with the above properties in A.4. Then we prove convergence to Cv?ﬁ in
A8. 0

Theorem 2.14. There are s-holomorphic spinors {G|c;.q] }, {G[Cg,a]} on [Cs, a] such that 9(0) ' Gc, a, 19(5)_1@[(;57&]
converge on compact subsets respectively to spinors gic.q) = vz — a,g[c,q) = V2 — a defined on [C, a].

Proof. Theorem 2.16 of [CHI13| proves this for {G|c, 4} by defining G[c; 4)(2) := 52;’;0 Hicy,a)(z —2j0) on th,
zero elsewhere; [CHIL3|’s objective is just to get the real corner harmonic restriction of the full s-holomorphic
function. We refer to its proofs regarding convergence and harmonicity of the series; but for the limiting function

we note that the sum is close to the Riemann sum of Re 2\/% that approaches Re /2 — a, identifying the sum.

For the imaginary part, we define Gic, q)(2) := =072, Hic;.a(2 + 2j0) on Yi (use Hic, q)(a + $) = i
respectively), zero elsewhere. The proofs for convergence to Im y/z — a and harmonicity are exactly analogous; to

get an s-holomorphic extension to V[CC’? oy We need to check discrete holomorphicity. We use the explicit formula

for the harmonic measure for this, and we do it in the appendix, Corollary A.3. R
For GG, we analogously define G[C&a](z) = —i0 )2 Hics.a) (2 + 0 + 276) on Y+ N V[lcé,a] and Gic;,q(2) =
63272 Hics.a) (2 — 0 — 2j0) on Xt N Vic;.ap> the properties are checked exactly analogously. 0

3. DISCRETE HOLOMORPHIC OBSERVABLES

In this section, we define discrete holomorphic observables Fo,, Fia;.q) on €5 and [Q25,a] and prove the rela-
tions linking them to various energy densities which form the pattern expectation vector. For the rest of the
paper, as hinted at in the introduction we will refer to the discrete observable Fq, defined on 5 as the discrete
fermionic observable. We will refer to the discrete observable Fiq, , defined on [Qs,a], the double cover of
with monodromy at point a, as the discrete fermionic spinor.

3.1. Discrete Fermionic Observable with no Monodromy. We first reintroduce the discrete fermionic ob-
servable with no point of monodromy that was presented in [Honl0]. We generalize the observable and the most
relevant results from [Honl0] to the case when source points are adjacent. This allows us to compute expectations
of energy densities of edges even when the edges are O(d) apart from each other. Then the observable can be
related to probabilities of arbitrary spin-symmetric patterns.
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FIGURE 3.1.
An example of a two walks between by and b3 and by and by. The winding of 7 : by — b3 is 27 while the winding

Of’72b2—>b4 is —g.

Remark 3.1. Here we introduce some definitions that are borrowed from [Honl0] and [CHI13] useful for defining
the discrete fermionic observables on €25 and [(s,a]. A point b; on Vg, are medial vertices on the graph s, each
assigned a double orientation in Q% 0 € {#1 4, F1 4 i} with a fixed square root branch. A walk w between two
points b; and b; is a collection of edges and half edges such that there is exactly one edge at each of b; and b; and
every other vertex in 25 has an even number of incident edges. For well-definedness, we follow the conventions of
[Hon10] and force the walk to go right any time it intersects itself.

The winding number W (w) represents the number of loops around a point the path w makes, as is typical of
CFT partition functions. c¢(v1,...,v,) is the crossing signature induced by the walks v;: if we link 1,...,2n on R
by simple paths in the upper half plane that connect the endpoints of each of the n ~;, the number is well defined
modulo 2 and is what we define to be ¢(y1,...,7,) . For more rigorous definitions of the winding number and
crossing signature see 5.2.1 of [Hon10|.

Definition 3.2. Given a domain Qs and 2n Qs-distinct medial vertices by, bo, ..., bo, in Vo and their double
orientations (1/01)?, (1/02)?, ..., (1/02n)?. Define the real fermionic observable Fg,:
1 n
Fo, (b7, ...,092") = 7 Z a7 (=1)°0m) H &(vi), where
B eowen,... b2 i=1
C(b7,...,b32") = {edges and half-edges that form walks between b7"’s and loops}

\/J _in(m)

o(w:a® 0 Bo):iﬁe

{(V1,--.,7n): admissible choice of walks from ~in C
c(V1,...,7vn): crossing signature of b;’s with respect to v1,..., v,
20, - Yo
yel

It has been proven that []}_; ¢(v;) is well-defined for various admissible choices of walks and thus Fq,(---) is
well defined.
Definition 3.3 (J[Honl0]). Given a collection of doubly oriented points (- - - ), a collection of signed edges e1, ..., e,

.51 Sm
disjoint from (---), define the restricted real fermionic observable Fs{zzl o }(' -+ ) as

n
Y o) = 5 > a#7(=1)039) TT o(30).
s yeCtert et (b21,...,b32n) i=1
Further, given a collection of doubly oriented points (...), a collection of signed edges {...} disjoint from (...)
and edges ey, ..., &, define the fused real fermionic observable Fg[;;’”"e’"]{”'}(...) inductively as
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Fg[ze;’ eml{ }() = Fg[ze;' em=1l{ e’”}(...) — 7Fg&1 em-1l{ }()
Remark 3.4. As has been shown in [Honl0|, a fused observable Ff[f;’”"e'”] (b3, ..., b32™) corresponds to a 2n + 2m
unfused observable where the 2m points are merged pairwise together at the edges ey, ..., €p,.

Definition 3.5. For a collection b7, ...,b5: | be doubly oriented medial vertices, a medial vertex bs, and a
bo2n— 1

configuration v € C(b7*, ..., b5 1 , by ), let us denote by W g(s (7,01, ..., 02n—1) the complex weight of -y, defined as

. n
(3
W, (7,01, 02n-1) = ﬁa#’y H (i)
n i=1

for any branch choice of 0g,,. From here we can define the complex fermionic observable

o O2n- 1 1
Hg{z'é“}(bll,...;bzn_lben) = Zi Z Wgé(’y,oh...,OQn,l).

* yECt T (631, 52, o)
Proposition 3.6. Let ey, ...,e,, be a set of possibly adjacent interior edges. Then we have
Eq,[e(e1) - o - elem)] = (~1)m2mF o),

Proof. This is proven for general boundary conditions, not just plus boundary conditions in [Hon10] 5.3. O

Proposition 3.7. Let e}, ...,eSm be distinct (though possibly adjacent) signed edges and bS*, ..., by be distinct,
though possibly adjacent, doubly oriented medial vertices. Then the function

bon v HE (B, b3 b2)

whose domain is Vor \ {m(e1), ..., m(em), b1, ..., ban} is s-holomorphic. Moreover, it obeys boundary conditions

m[HS (03, oo, 092 02) \/Vout (b2n)] = O for all by, € OV
where Voyt(ban) s defined as the outer normal to the boundary at bay,.

Proof. See Appendix B.1 for a complete proof of s-holomorphicity even in the case of adjacent edges and vertices
by defining the function on corners. [
Proposition 3.8. Let ej',....,eSm be distinct signed edges and bS*,...,bor"\" be distinct doubly oriented medial
vertices. For each j € {1,...,2n — 1} such that by € Vi3 \ Vg the function

b v HE (091 092 1 by
has a discrete simple pole at bj, with front and rear values given by:

—1)i+1 s sm_o(p. )t )

Hj+ _ ( \/2)7 FS‘%jll"”’eW Le(bs) }(lew“’b;jLTillvan)

j

—1)7 s S fn -

Hj_ _ (\/Ol Fgg?l’m}em ,e(bj) }(b(1)17"'7b(2)31n__117b2n)

j
where e(b;) denotes the edge whose midpoint is b;.
Further, the function

b > HE (050 52 o)
can be extended to an s-holomorphic function

1 s1 S . ;
+ {61 N Skl } 01 0j-1 70541 02n- 1
Ht = 7F25 (bl 7...bj71 7bj+1 7-~~7b2n—1 )

Proof. This proof follows immediately from its proof where the edges and points are not allowed to be adjacent in
Prop. 76 of [Hon10] and Prop 3.7 which generalizes the projection relations to the case when they are adjacent. [J
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Proposition 3.9. For distinct edges eq, ..., ey, and distinct doubly oriented medial vertices bi*,...,b32", for each
choice of orientations ¢; € O(e;) : 1 <i < m we have that

2 2 . 2 . 9
Flyreml (59,092 ) = Plaff(A g, (V™) L ely™) elyam)™ L e0VA por L bgen)

where we associate with e; the medial vertexr on the edge and where the 2p X 2p matriz, p = m + n, is defined for

(not necessarily distinct) doubly oriented vertices x%l, . 52” by
. . FQé ( :rg’) ifr,=x;and& # &
(Aﬂé(xll""’wQ;p))jk = Fﬂs(xz 7,1:_] ) if x; # xj
0 else

Proof. Since everything else has been generalized from [Honl0] to the case when points are adjacent and the
proof of the Pfaffian relation for fused fermionic observables only relies on previously generalized Lemmas and
Propositions due to the corner formulation of the projection relations, we have the same proof as in section 6.6 of
[Hon10]. Thus we have reduced all problems for the real multipoint fermionic observable with points of possibly
adjacent singularity to computations of two point fermionic observables. 0

Remark 3.10. From the above Pfaffian relation on the fused fermionic observable we can relate the expectation of
energy density of edges to Pfaff(A ;) as

Eq,le(er) - ... - €(em)] = (—1)™2™ Plaff (Aq, (egm)z, ey 65,}/‘7”)2, e%M)Q, ...,egi‘/ﬁ)z).

3.2. Discrete Fermionic Spinor with Monodromy. We now construct a multipoint fermionic spinor with a
point of monodromy around a €  building off the single point spinor introduced in [CHI13] on the double cover of
the complex plane. Our extension of the single-point spinor to its multipoint equivalent is based on the extension
of [HoSm10] to [Honl0]. We move the source points away from the point of monodromy and allow for multiple
source points and multiple end points. This allows us to compute expectations of energy densities of arbitrary
edge collections while preserving information about o, obtained by setting the point of monodromy at a. We will
eventually use convergence results on this fermionic spinor with monodromy to get expectations of spin-sensitive
patterns.

Remark 3.11. Since we are now working on the double cover of the complex plane, [Cj, a] there is some additional
notation to introduce, borrowed from [CHI13]. We define the double cover of a domain s C Cs with point of
monodromy around a € €5 as in the introduction. We then define the loop number #L(w,a) as the number of
loops around a (i.e. the number of loops such that a is a face contained in the interior of the loop in 5 where
the loops are viewed not on the double cover but on the principal domain). The sheet number is a multiplicative
factor of +1 indicating whether a walk ends on the same sheet as it began or on a different sheet. It is defined
such that one full loop around a ends on the lift of the starting point to a different sheet and is thus responsible
for the spinor property of the fermionic observable with monodromy. For a more rigorous definition of the loop
number and the sheet number Sheet(w) refer to [CHI13].

Definition 3.12. Given a domain 5 and its double cover [Qs,a] ramified at a € Fq,, we pick 2n s-distinct
medial vertices by, bs,...,ba, in [Qs,a] and their double orientations (1/01)2, (,/02)%, ..., (/02,)?). Define the
multi-point real function Fg;

O 1 i, a C =
Flaga) (b, ... b92) = o Z o (—1)#LO\WYa) (_1)e(nem) Hw(’yi)where
Z(0;,a)[00] OB e =1

C(d7,...,b32") = {edges and half-edges that form walks between b7*’s and loops}

Yw:a® ) B°%) = i\\geiwéw) Sheet(w) = ¢(w) Sheet(w)

(71,-.-,7Yn): admissible choice of walks from yin C
#L(w,a): number of loops (a loop has to be connected and without crossings) in w around a
Sheet(w): 1if w: a® [ 3 lifted to the double cover starting at awends at 3, —1 otherwise

c(71,-..,vn): crossing signature of b;’s with respect to v1,...,vx
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FIGURE 3.2.
An admissible collection of walks and loops, with a walk from b; to b;. As before the winding of the walk is 27.
The loop number of the above collection of walks and loops is 1 since there is precisely one loop with a in its
interior.

Here, we define the partition functions

Zo, = Z a?

yeC
Zi;.a)l0a] = Z a#W(_l)#L(%a)

yeC
= Eq, [Oa]zﬂa

ng'jja][aa]: Z a'y(—1)#L(%a)_

~yect -}

It has been proven in [CHIL3] that (—1)¢Ot7) [T | ¢(v;) is well-defined for various admissible choices of
walks.

Proposition 3.13. For any two admissible choice of walks {(y1,...,7n) and (V1,...,Vn) from 7, we have

(=1)#FLON i7i.0) H Sheet(v;) = (—1)#FON +70) H Sheet ()

i=1 i=1
and thus Flo, 4] is well-defined.
Proof. The proof of this theorem is a lengthy set-theoretic proof that we relegate to the Appendix. See Appendix

B.2 for the proof of well-definedness of the multi-point fermionic spinor. 0
Definition 3.14. Given a collection of doubly oriented points (b7*,...,b32"), a collection of signed edges es, ..., e,
disjoint from (bf*,...,052"), define the restricted real fermionic spinor as
n
{eitoenm} . 1 (V1o .
Fiaga 00 ) = g > a#I (=) FEOND (1)) [T (),
, i=1

yectert ey (o1 po2n

025
Further, given a collection of doubly oriented points (...), a collection of signed edges {...} disjoint from (...)
inductively as

lexyem]{...} letsenem- 1]{ e} Boler,em- 1]}
F[Qfm] () =Fo. (...)— §F[Q;»“] R W

where i = —z'(H[a?a] (b;'j,bj) +He, 4 (b;j,bj)).

Remark 3.15. As has been shown in [Hon10], a fused observable F[[;;vé]-,em] (b3, ..., b2") corresponds to a 2n + 2m
unfused observable where the 2m points are merged pairwise together at the edges e, ..., ep,.
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Proposition 3.16. Consider the critical Ising model with plus boundary conditions. Let e, ...,e, be a set of
possibly adjacent interior edges. Then we have
Eq,[oa - €(er) - ... - e(em)]
Eq,[oa]

Proof. We leave the proof of this to Appendix B.2 as it is simply a generalization of [Honl0] to the multipoint
spinor. O

_ meom [817~~7e7n]
= (=1)"2" Fg, o

oy . O - . . . .
Definition 3.17. For a collection b7',...,b52"";' be doubly oriented medial vertices, a medial vertex bs, and a
02n- 1

configuration v € C(by", ..., by, ', bay ), let us denote by W (g, 41(7, 01, ..., 02,—1) the complex weight of v, defined
as

1

W ias,a(7, 015 0y 020 1) = a7 (= 1)) (1)etnan) H¢(%)

O
2n i—1

for any branch choice of 0g,. From here we can define the complex fermionic observable
{} 01 O2n- 1 1
H[Q5,a]( 1 ,..-,bgn_lal)Zn) = m Z W[Qé,a](%01,---,02n—1)-
[3,0] e FECT-} (b7 ,..,bg2 7 b bay)

Proposition 3.18. Let ef',...,esm be distinct signed edges and bS*, ..., bo2"" ' be distinct doubly oriented medial

s Cmy

vertices, again possibly adjacent. Then the function
bon = HE (B9, 0321 ban)

whose domain is V["QLJ al \ {m(e1),....,m(em),b1,...,ban} has an s-holomorphic extension to corners adjacent to two
edge midpoints in the domain. It has monodromy -1 around ramification point a and obeys boundary conditions

I [HG ) (09, 652 ban) v/ out (ban)] = 0 for all bay € OV
where Voyt(ban) s defined as the outer normal to the boundary at bay,.

Proof. We leave the proof to the Appendix B.2. [

Proposition 3.19. Let ef',...,e5m be distinct signed edges and bS*, ..., o2\ be distinct doubly oriented medial

vertices. For each j € {1,...,2n — 1} such that b; € Var \ OVar the function

b v S 00 B35 )

has a discrete simple pole at b;, with front and rear values given by:
e _ CDH
J /Oj [le,a]
_ (S et e ety
Hj - \/07 F[Ele;ya] et e0s) }(b?la"'vbg;—llib2n)~
j

Further, for each j € {1,...,2n — 1} such that a; € OV{.,, the function

sm e(b; + O
O or b2 o)

b2n = H[{Qé} (bglu ceey b;f{:llben)

,al

can be extended to an s-holomorphic function at b; by setting the value at b; to

1 s1 Sm )
+ _ {e1t,-em™} p01 0j-1 70541 02n- 1
Hj = o7, b b L b2

/0; [Q5,a] ~Yi—15Y%41 5 Y%p-1)-
Proof. We leave the proof to Appendix B.2. [
Proposition 3.20. For distinct edges ey, ..., e, and distinct doubly oriented medial vertices b{*, ...,b52", for each

choice of orientations ¢; € Q(e;) 1 < i < m we have that

Fleioml o9 bgar) = Phaff(A g, o (Y™ e ™) el ™) VI e bge)
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where we associate with e; the medial vertexr on the edge and where the 2p X 2p matriz, p = m + n, is defined for
(not necessarily distinct) doubly oriented vertices :v'%l, ...,x?pp by
Cs, A . .
3 13 F[[Q;,Z]] (:cf ,x?) ife; =x;and&; #§;
(A0 (1 s 237)) ik = | Fray,q (2, 25) if m; # x;
0 else

Proof. We leave the detailed proof of several propositions that lead to this and this proposition to Appendix B.2.
This reduces all values of the multipoint fermionic spinor to a Pfaffian of values of the two-point fermionic spinor

for which we have a full plane counterpart Fic, 4 (ac?, fo ) with the same singularity as Fig, q) (xf , fo ). 0

Remark 3.21. From the above Pfaffian relation on the fused fermionic spinor we can relate the expectation of
energy density of edges to Pfaff(A g, q)) as

E -~ celem . _ e .
;1o IEE(81E ] e(em)] = (=1)m2™ Pfaﬂ‘(A[Qé,a] (egx/q*)z’ » egn\/q7)2’ egn\/q—)z7 . e(l \/q—)z).
Qs Oq

4. CONVERGENCE OF OBSERVABLES

We apply discrete complex analysis results mainly cited from [HoSm10, Hon10, CHI13] in this section in order
to prove convergence on the discrete fermionic spinors.

4.1. Riemann Boundary Value Problems.

Proposition 4.1 ([Honl0], Proposition 48; [CHI13|, Remark 2.9). Given Q (|Q,a]), there is at most one solution
ka, (kiq,q)) for each of our continuous Riemann boundary value problems, which look for functions respectively
satisfying given boundary data l: 0Q — C (ljqq) : [0, a] — C with monodromy -1):

o ko is holomorphic in Q; Vo € 0Q, [ka(x) — I(x)] \/Vout () € R.
o ki q) s a holomorphic spinor in [Q, a]; Va € 0Q, [kig,q)(2) —lj0,q)] v/ Vout () € R; lim, 4 ko, (2)Vz —a =
0.

Definition 4.2. The continuous fermionic observable and spinor on 1, respectively denoted hq and hjq 4, are
functions with the property that
) hg := hq — hc solves the above continuous Riemann boundary value problem on 2, with the boundary
data given as —hclaq.

° h{gz]] := h[g,a] — hic.q) solves the above continuous Riemann boundary value problem on [, a] with the

boundary data given as —h(c q) ‘ [09,a]"

These sets of boundary conditions, being analogous to the discrete boundary value problems, specify a unique

limit for our observables, which solve the discrete problems. This is also where the conformal invariance arises; if
¢ is an injective conformal map on €2, it is easy to see that hyo) = ha o ¢~ and hig(0),e(a) = hia,a © ¢~ "
Proposition 4.3 ([Honl0], Theorem 91). 6*1H8§ (al*, a2) o0, hS(ag*, az) on compact subsets of Q x Q.
4.2. Analysis near the singularity. In this section we analyze the convergence of our s-holomorphic spinors at
points order ¢ away from the point of monodromy a. Much of the notation used in this Section is from Section 2
where we constructed the full plane fermionic spinor Hc, ,) and introduced Gic; 4)(2) := 0 Z;io Hicy q)(z —256)
on Xf;t, zero everywhere else, and similarly on ch. For details of the definitions of these full plane spinors, refer
to Section 2. The s-holomorphic fermionic spinor H{g; 4 is defined as in Section 3 of the paper.

Theorem 4.4. For v’ € V@, Hiq; 4)((a — 3§ +0v0)°,-) = Cyohiq, 4 uniformly on compact subsets away from a.

Proof. We note that the proof of Proposition 3.9 from [CHI13] can be applied without a problem, since a — § 4 v
scales with 0 and thus for any € > 0 can be included in the e-ball around a if § is small enough; a tool we possibly
not have is the integral Is := I;(Hs) of the square of Hs := Hq; q((a — 64 v0)°, -) defined as in Proposition 3.6 in
the same paper. Is is well-defined locally, but global well-definedness is a priori a problem because of the simple
pole at a — § + vd and we have to define I away from it, thus creating a possible monodromy around the pole.
However, we note that the monodromy of I5 along 9€)s is zero because the increment along the boundary involves
precisely adding over Im(HZv,,;) = 0. Since € is simply connected, the only nontrivial loops when going around
the pole are those homotopic to 9§25, and since those do not contribute any monodromy, I is globally well-defined
on any compact subset away from a.



CONFORMAL INVARIANCE OF SPIN PATTERN PROBABILITIES IN THE PLANAR ISING MODEL 17

The other potential problem in applying the technique in the proof is the following: as noted in Remark 3.8 in the
same paper, subharmonicity of the integral of the square of H;r = Hiq;,a)((a—04+v6)°,-) — Hics ) ((a—0+05)°, ),
crucial in uniformly bounding the integral near a, fails at a because the spinor branches at the point. The
subharmonicity at a is used twice in the proof: in extending the uniform boundedness apart from a to a, and in
the proof of Lemma 3.10 in the same paper. Lemma 3.10 is easy; they already prove the Lemma for Hs near a
branch point without singularity. We can utilize the same technique for H g and deduce the result for Hs (for small
enough 0, zma, (for Hs) satisfies Hg(zmaz) > %Mg(e), since Ms(e) — oo and 19(5)_1H[C5,a] converges as § — 0
(Theorem 2.13), and the argument of the proof goes through).

To show Hg is bounded near a, we use a simple generalization of Theorem 2.17 in [CHI13]; the proof is exactly
the same as our Theorem 4.6, but it only depends on the convergence result for the one-point Hic; o from the
same paper. The result we need states that

I:H[Qé’a] — H[C(;,(l]:l (a — 0+ ’05) = Z(ReAG[Ca,a] + IInAé[Cé,a])(a -0+ ’l)5) + 0(5) = 0(5)

where Hjg; q)(-) is a one-point spinor, defined the same to our two-point spinor but with a different choice of
normalization and only with paths originating from a + g and culminating at another, A (to be defined in Remark

4.5) is a [, al-dependent constant, and the second equality comes from the fact that Gc; q(a—0+vd), G[C5,a] (a—
0 4+ vd) = O(9) by definition. It is obvious from the defintion of the one- and two-point spinors that
d, icos(m/8)

Hi(a+ 5) =

\ﬁ Pf’% I:H[Qé’a] — H[Cg,a]] (CL -0 +U(5) = O((S)

then H(;”L = H:;r — H;f(a + g) vanishes at a + g and thus ]Ls(HgT) is subharmonic everywhere including at a by

Remark 3.8 in [CHI13]. In addition, its uniform boundedness near a (which now can be proved with the technique

in [CHI13|, Proposition 3.9) is equivalent to uniform boundedness of ]L;(Hg)7 since ¥(6) " H] (a + 9) 220 0. 0

Remark 4.5. As in Definition 2.11 of [CHIL3], we expand hjq 4 = ﬁ +2A10,V7 —a+ O(|]z — a*/?). As in

|CHI13], A[q,q is defined to be the coefficient of the (z—a)% in the expansion of hg 4 about z = a. Ajq 4 depends
on the domain [, a]. However, for ease of notation, we drop the [2,a] and just note that the constant depends
on the domain.

Theorem 4.6. For v; € V¢ ,v2 € V¢,
(H[Qd’a} - H[cé,a]) ((a—d+v10)° a— 08+ v20)
— Cyo (2 ReA-Gicya) +2ImA- G[Céﬂ]) (a — & + v20)
=o(9)

where A is defined as in Remark 4.5 and Cyer is a nonuniversal constant.

Proof. We closely follow the strategy in the Section 3.5 of [CHI13]. Note, since the spinor (H [2s,a] — Hic ,57(1}) ((a—
0+ v10)°%+) — Cye (2 Re A Gic;.a + QImA'@[C{;,a]) is s-holomorphic, by Remark 2.2 it suffices to show the
asymptotic behavior not directly at a —d +v20 on 1, i-corners a — 0 +vd for v € V§ . Write R for reflection across
a + R; there is a small neighborhood A around a in Q@ NR(2). When a is the midpoint of a face, R(Cs) = Cj,
and thus A; = AN C; is naturally a subgraph of both Q5 and R(€s). Since for small enough § we can assume
a—08+wv;6,R(a—0+wv;0) € V[, we restrict our attention to As, where Hs := Hiq; o)((a — 6 +v16)°,+), Hicy,a] ==
Hic,a((a—0+010)%,-), HE ) = Hir(c,).a)(R(a—d+018)%, ), and Hy™ = Hip(o,).a)(R(a— 5 +v16)°,). Now
define functions s-holomorphic everywhere on [As, a]:

S5 = 9(6) L {(Hé +HR) - - (H[Céva] + H[(é?]) —2Cy Re A G[CM]]
. L[t 1 _
Sy = 0(5)~! { (s = H§V) = 5 (Hicpu = HE,) =2 Im A- G[Cé,a]] .

By construction, we have, on a — Ry, Hs = —H(gR), and on a + Ry, Hs = H(ER) (the conjugation comes
from the winding angles being negated, while the additional negative sign across the monodromy comes from

the sheet factor). This, as well as the construction of functions Hic; a], Gic;,qa], Glcs,a)» Shows that Ss vanishes
on (a+Ry) NV, (@ —R)NVy o, while Ss vanishes on (a — Ry) N Virsap (@ +R) NV, . Now we
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estimate harmonic functions S§ := S5|x5+mv1 LSk = 55|Y5+m,i St = 55|Y5+r1v1 Sk = 55|X5+m,1- near
[45,4] [46:0] [45,4] [As,a]

a (combined with spinor property, estimating those restrictions will estimate the magnitude of the function on the
double cover): without loss of generality we show the o(5) estimate for 9(8)S3, since all the restricted harmonic
functions are defined on a slitted planar square lattice which are isomorphic locally around a, and all the estimates
go through in the other lattices exactly the same way.

Define the discrete circle w(r) := {z € Domain(S}) : r < [z —a| < r + 56}. A similar twist of the discrete

+
Beurling estimate (Theorem 1, [LaLi04]) as Lemma 3.3, [CHI13] gives hm){(g_6+v5}(z) < C6Y?|z—a|~1/?, reversing
+

time on which gives hm);‘s(r) (a—6&+v8) < C8/2r=1/2 an estimate at a — § + v of a harmonic function identically
1 on w(r). Comparing with S} on w(r) and applying maximum principle in the interior gives

|55 (a— 6 +vd)| < C67r ™7 sup EHE
w(r)
Now,

1 1 1
1 (R) _ —
Ss — Re i(h[gﬂ] + i) — i(cvf + ) T 2ReARevz —a

=0(lz - a|*?)
where we use the fact that hfg L] = W since the right hand side solves the boundary value problem. So we
have (knowing 9¥(0) ~ 6'/2 when § is small)
9(8)|S5(a— 6 +vd)| < C5O(r)

and since 7 is arbitrary we have 9(8)S§(a — § + vd) = o(d) as § — 0. O
Corollary 4.7. For vy € Vg ,v2 € V',

(Fias.a] = Fics.a) (@ = 6 +v16)7, (a = 6 + 020)*)

~ O (2 ReA- Ggya) +2Tm A- é[cé,a]) (a — & + v20)

=o(d)

where Cv;1 is a nonuniversal constant that depends on v{* and A is defined as before.

Proof. Note by definition of Fiq; 4 for a two point function it is only a multiple of —i,/02 of Hg; . We simply
absorb this constant into C o1 so that Corollary 4.7 follows immediately from Theorem 4.6. This will be the
convergence result we use in Section 5 to prove Theorems 1.1 and 1.2. O

5. PROOF OF THEOREMS 1.1 AND 1.2

5.1. Proof of Theorem 1.1: Spin-Symmetric Pattern Probabilities. In this section we complete the proof
of our main results beginning with Theorem 1.1 on conformal invariance of spin-symmetric pattern probabilities.
We use Pfaffian relations on our discrete holomorphic obsevables from Section 3 and the convergence results from
[Hon10].

In order to do this we first introduce some simple notation for the Pfaffian of a 2m x 2m matrix.

Remark 5.1 (Pfaffian Notation). Call the partition of {1,...,2m} into pairs {ix, jx }x, 7 € II where II is the set of
all (2m — 1)!! partitions. sgn(w) will be the sign of the associated permutation mapping 1 to i1, 2 to ji, 3 to ig, 4
to jo and so on. Then the definition of the Pfaffian is given as

Plaff(A) = > sgn(r) [ ] aij,
k=1

well

fk’” , ;vfl:" ). Call TI° C T the subset of permutations where for all k,

x;, # x5, and T C TI the subset of permutations with exactly one k such that x;, = Ty -

Each of the a;, j, is a function of the pair (z

Proposition 5.2. Given a collection of edges ey, ..., e, with double orientations qi, ..., Gm,

Eq, [e(e1) - ... - e(em)] = (—=1)™2™ Plaff(A g, (VT ..., el T elva) (VD))
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with the matriz A o, defined as before

0 e o CD) ifz; = xj andg; # &
(A 25 (xll’ ” LQ;p))ivj = bij = FC& (x§l7 .l’jj) + FSCZ:: (xfi7 ?) ifz; 7é X
else
Proof. This follows immediately from Remark 3.10. 0

Proposition 5.3. For a given set of adjacent edges eq, ..., e,, centered about the face a, as before call

( &1 Ezm) _ (Zm) ) egz\/CTI) )

a q
3, ) = (et el ey

Then

mom 67 57
Eo,[e(er) - elem)] 5 (-1)™2 gosgnw)HFCﬁ o),

1 ¢ 2 & &5
SEGle(er) o elem)] —— (-1)"2" > sen(m) Z £S(a®, aliVor) 11 Foy(z; %, a,"),
weIIOUII! k=1 kte{l,...n}\{k}
where Eg‘; [...] =Eq,le(er)-...-e(em)] —Ec,le(er) - ... €(em,)] mirroring earlier notation on our fermionic observables.

Proof. We prove these relations by expanding the Pfaffian of the matrix A q;.
Pfaff(Aq,(...)) = Z SEN(T) @iy jy * e * Gy

well
m m

= > sen(m) [[ans+ D sen(m) [] au

w€ello k=1 T ET\II0 k=1

&, &

= Z sgn(mw HFQ z e )+

mello

FC(s 5% §Jk F 5% gjk

+ Z Sgn Z QJ 7/lc ’ Jk ) H Cs (:Eik ,l']-k )

7 eIIOUIT! k'e{1,...n}\{k}

The first convergence is immediate by taking 25 — Cs so terms of Fg 2 vanish. Now to get the second statement,
we notice that

3 sgn(n) H Fo, (25, 25*) = Pfaff(Ac, (...))

mello
and thus

m
Sip, &
(=12 Y sen(m) [ Fe, (a5 a5%) = Ec,le(er) - .- elem)].
Tell0 k=1
We then subtract this term, the infinite-volume limit, from both sides and renormalize by dividing by 6. Taking
0 — 0, gives x;,,2;, — a and %FS; (xi’“ E““) oo 1S (ac, alive)? ). The sum over all partitions times the sign of

the partition is independent of the choice of orlentatlon at a. O

Proposition 5.4. Let B be a base diagram centered about point a in ). Here we use the notation e(B) to denote
the product of energy densities of edges in the base diagram B centered about a. Then

Eq, [E(B)] Q5 Cs EC&[ (B)}
5 (Ba [ ((B)]  Eo,[e(B)) —a", Bla,

where given a conformal map ¢ : Q@ — ©(Q), (a°, B)q defined as

o o i\/o 2 51 5]
(@.Bja= Y sga(m) Y f§(a%ad™) T Fela 2yt
mEIOUIT! 1 kie{l1,...n\{k}

NE

e
Il
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satisfies
(a®, B)a = |¢'(a)[{¢(a)’, B)yo),

where 6, = (1/¢'(a) - \/0q)?

Proof. The first convergence result was shown in the proof of the previous proposition.

For the second convergence result, we note that Fc, (i, ,z;, ) is a full plane fermionic observable and thus only
depends on the relative positions of the edges, or the base diagram B we are examining. Hence (a, B) is solely a
function of the location of a and the base diagram B centered at a.

The conformal invariance follows directly from the fact that

S s f§@a™?y [ Fealt i)

rETOUIT! k=1 ke{1,...n\{k}

o iy/0)? < i iy
= f§(a®,a™7) N sen(m) Y 1T Fos(zi x5 ")

weIIOUIT! k=1k"e{1,....n}\{k}
o iV5)? - &i &;
= l¢' @)/ (p(@) 0@ ™) 37 sammd>S [ Fo et )
rellOUIT! k=1ke{l, ..n}\{k}
which is a result of the conformal covariance relation on f§, Proposition 92 in [Hon10]. 0

Theorem (Restatement of Theorem 1.1). Given B, a connected spin-symmetric pattern on the base diagram B
centered about point a in 2,

]P)Qa [B] —>]PC3 [B]

—)05
1
S(PQS [B] — Pc;, [BD —({a, B))a,
§—0
on- 1
where {{a, B)) is a linear combination Z Di(a, B;)o where By, ..., Ban-1 are 21 subdiagrams of B (n := | F(B)|).
i=1

Given a conformal map ¢ : Q@ — ¢©(Q), {{a, B)) satisfies
({a; B))a = |¢'(a)l{{¢(a), B)) ()

Proof. We have a matrix M that when multiplied by a matrix of normalized energy densities of subdiagrams of
B, Bi,...,Byn-1 denoted here by {Eq;|a,e(B;)]}, gives probabilites of all 2"~! possible spin-symmetric diagrams
B on base diagram B. The choice of what subdiagrams, of the 2™ possible subdiagrams to use is defined along
with an explicit construction of the matrix M in Appendix C.

For the statement, multiply the matrix M by both sides of the first convergence result of the previous propo-
sition.

For the second convergence result we multiply M by the difference of the domain expectation matrix and the
full plane expectation matrix. Denote this matrix by {ES? >la,e(B;)]}. Since all the subdiagrams of B are also
centered about a as § — 0, we have that for some k, !

(Po,[B] — Pc,[B]) —*(M{Em [a, (Bi)]} )

on- 1

577 (22 Dila,Bi)a) = {{a, B)a

on- 1

¢'(a)[( ZD i) o(2)
=y (a)|<< () B))eo.

SR

O

This completes the proof of the first part of our main result, the conformal invariance of probabilities of spin-
symmetric patterns in the planar Ising model.
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5.2. Proof of Theorem 1.2: Spin-Sensitive Pattern Probabilities. We now proceed to the proof of the
general case of spin-sensitive patterns in the planar Ising model. The proof of Theorem 1.2 will be similar to the
proof of Theorem 1.1 except it will use results on the discrete fermionic spinor with monodromy at a and new
convergence results from Section 4.

Proposition 5.5. Given a collection of edges ey, ...,em and double orientations qi,...,qm € O and a face a in
Qs, we have

E a TR m 2 2 i Ja)? i 2
§s [U EI(EGI)[ ] 6(6 )} = (71)m2m Pfaff(A [Qg,a](eg\/qT) ) 761(71\/(177”) 761(71\/(17) ) "'765 v )7
ﬂé Ua

where the matriz A (o q s defined as before as

Cs,a .
5 . F[[Q;; olaf ,g?) ifz;=xjand§&; # &
(A [ﬂwl](xll’ ""m2pp))’i’j = aij = F[Q; a]( 57 ) + F[[Q§ :]]( z;, ?) if xy #
0 else
Proof. This follows immediately from Remark 3.21. 0

Proposition 5.6. For a given set of adjacent edges eq, ..., ey, centered about the face a in Qs, as before call

) 2
( &1 §2m) (\/qim) ) eglx/‘i) ).

— (p11 q
3, war) = (ef', .., edm ey,

m

Then
_1 Sip, &
673 (Bay o - e(e1) - .- ele)]) = (oa)a - (~1)"2™ Y sgn H Fies o) (@ %),
meIl®
where (0,)q = 23 rad(a, Q) ~5. Furthermore, we have the higher order convergence result

Eq,loa - €(er) - ... - e(em)])
]EQ(S [o’a] 5—0

5_%(1[‘:95 [04 - €(e1)... - €(em)] — (0a)a (1213%

— (o (-)m2" Y seu(m) Gy ReA+ CoydmA [[ Fepalant 2.

§—0
wellOUIT! k=1 ke{1,...,n}\{k}

Proof. Just as in the spin-symmetric case, we expand the Pfaffian to find the delta dependence of the expectation
of the energy density.

Pfaff(A o, q)(..)) = Z SEN(T) @iy jy * e * Gy

well
m
= Z sgn(m) Hawk+ Z sgn(m H Qi in
wello melI\I10 k=1
gl 5
= Z sgn(m) HF[Céa T3 T )+
Telll k=1
F 05 a Eqk 571@ F f‘i gjk
+ Z sgu W)Z [Qaa Ly, Jk) H [C‘S’a](xik: 1L, )
rEMOUII! k'e{l,...n\{k}
First we take Qs — Cs to get
Eq,loa - €(er) - ... - €(em)] , Mk & &
-1 QO . F _%7 ik .
EQJ[O_a] QJHC(;( ) ﬂ—;o Sgn(ﬂ')];l;[l [Céva](xlk x]k)

From [CHI13] we have that
6_%IEQ(; [0a] — {00} = 2% rad(a, Q) 5.
6—0
This implies

EQ5[0a ~e(er) - ... ee m)] Qs —Cs

574 (Baylou - eler) - elem)]) —)a(~1)"2" 3 sen(r HF[CS,GM a5,

mell0
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For the higher order convergence result, first note from Corrolary 4.7 that asé — 0, x; — a, F; [[Sif:;l]] (xfi, x? ) =

Cij(2ReAGc;,q) + ImAé[CdAa})(xfi). Then by definition of Gic; q)(:) = 0C;,; where the indices 4, j indicate
’ —

that the constant depends on the location of x; and x;. We have a similar formulation for the scaling limit of

Gcs,a)- We absorbed the full plane observables from Gc;,q, Gc;,q) into the constants since we focus on how they

scale as § — 0. Then subtracting the equation for the 5§—dependence of the expectation from both sides and

dividing by § yields the higher order convergence result. [
Proposition 5.7. Consider the base diagram B centered about a face a in Q2. Given a conformal map ¢ : Q —
©(92),
Eq;loq - €(B)] T A . Eo@);[06(a) - €(B)]
07 (B, [0 - €(B)]) ——=C1(a. By
60—0 8
=C ¢’ (a)|5 (p(a), B)
where

om - G &
(a,B)g := (0a)a(—1)"2 Z sgn(m) H Flesa (@ 25k).

Tell0 k=1

Proof. The first statement follows immediately from the previous proposition.
The next order conformal covariance result follows from the conformal covariance relation on (o,)q from [CHI13]:

(Fa)a = 1£'(@)]® (0p(a)p()-
O

Theorem (Restatement of Theorem 1.2). Given B, a spin-symmetric pattern on the base diagram B centered
about point a in Q and a spin o, € {£1} at a,

]P)Q(g [B7 Ua] m]?c(s [B7 O'a}

5%(]}»95 [B,O'a] — Pc, [B7Ua]) m“av [Bvo'a]»/(lv

where {{a,[B,0.])) is a linear combination of spin-symmetric and spin-sensitive expectations of energy densities
on subdiagrams of B such that given a conformal map ¢ : Q — p(),

({a, [B, a]))e, = ¢/ ()] * ({£(a), [B, 0p(a)])) iy

Proof. We have a matrix M that acts on a matrix of 2"~! spin-sensitive energy densities and 2"~! spin-symmetric
energy densities of subdiagrams of B, By, ..., Baa- 1 denoted here by {Eq,[a, 04 -€(B;), e(B;)]} and gives probabilites
of all 2™ possible spin-sensitive diagrams B on base diagram B. Note again that n := |F(B)|. A proof of this and
an explicit construction of the matrix can be found in Appendix C.

For the first convergence result multiply the matrix by the first convergence result of the combination of the
previous proposition and the first convergence result of Theorem 1.1. Since the spin-sensitive probability is a
linear combination of spin-symmetric and spin-sensitive expectations both of which converge to their full plane
counterparts, the spin-sensitive probability also converges to its full plane counterpart, Pc,[B, o,].

For the second convergence result we multiply it by the difference of the domain expectation matrix and the full
plane expectation matrix (infinite-volume limit). Denote new this matrix by {Eg‘; [a,04 - €(B;),e(B;)]}. Since all
the subdiagrams of B are also centered about a as & — 0, we have that for any spin-sensitive pattern [o, = +, B]
for some k, 1

5 R (PS [0 =+, B]) =675 (M{ES [a, 04 - (B), €(B:)]

—— > Dia,Bi)o = ((a, B))q
6—0 =

= |¥"(@)]* ((¥(a), B)) (e
for any conformal map ¢ : Q — ().
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The convergence on the second line follows from the fact that for any spin-symmetric pattern, Eg‘; [a, B] W 0
—

and its lowest order convergence term is ¢ so even after normalization by §% all higher order terms vanish. We are
only left with contributions from spin-sensitive energy densities which have the same conformal covariance relation
(multiplication by |g0'(a)\% which yields conformal invariance of spin-sensitive pattern probabilities. O

APPENDIX A. FULL PLANE FERMIONIC SPINOR AND HARMONIC MEASURE

We now explicitly construct the discrete harmonic measure in the slit plane, using Fourier analysis analysis
techniques (see also [CHI14]):

Proposition A.1. The harmonic measure Hy, defined explicitly by

, TOCOM@G)
Ho(z:s+zk):2— _ﬂme db
cos 6 L . . . .
where C(0) == ———— and the square root takes the principal value, is the unique harmonic function on the
1+ |sind)

discrete diagonal slit plane Cs—1 \ Zy with boundary values 1 at the origin and 0 elsewhere on the cut and oo.

Proof. Since the solution to the Dirichlet problem for the discrete Laplacian is unique, it suffices to check the
boundary values and check that the given function is harmonic. On the real axis, we have k = 0, and by the
generalized binomial theorem

1 , 1 ) 3 ) 5 ,
2 —2ni0 _ 1 -, —2i0 © —4i0 —6i0
< > + 26 + 86 + 166 + ...

Wz

so the s-th Fourier coefficient, which is precisely Hy(—s), vanishes for odd and positive even s, and Hy(0) = 1.
For the boundary estimates at infinity, we want to show Hy — 0 uniformly in s as |k| — oo, and vice versa.
For the former, we use dominated convergence:

I (el ()] k|00
|Ho(s +ik)| < — — df 0
o2 . /|1 _ e—219|
. |C1* () L |c1* (0) 1 1 Co
since ———== |, 0 pointwise a.e. and < — = which is integrable. For the s — oo
VIl—e 20| VIl—e 2] = (/l1—e 20| /2[sing|’
x  Cl¥l (0)

estimate, without loss of generality we show that Ho(s +ik) = e 5049 =% 0 uniformly in k. Note,

0 1—e- 2i6
if g is any smooth function on [0, 7], we can integrate by parts and get

~ ™ 1 ) eisG’ ™ /eiSG
) — - 1kl ()50 Ik _ clklgy]
Ao ik) = (g —90)) MO+ g0 OS]~ T [oorco)] S
N m 1 2 1
‘Ho(s—l—ik)’S Wi 9)‘d0+ S‘UI‘DQ H g/(g)c\k|(9)+|k|g(0)c\k|—1(9)c/(9)‘d9
~0 — et
B 1 2supg wsupg'  supg kl-1 ,
— —g(0)|do+ + + kC*I=Y(0)C"(0) | df.
[ o0+ TR TR ok 00

Since smooth functions are dense in L', we can choose a g such that the first term becomes less than ¢/2 for a
given € > 0. In controlling the remaining terms with s, the only dependence on k is in the last term; we show it
is in fact uniformly bounded:

T k|—1 , ™| cosf |IMT1 T N
v — < — _ =
. kC (0)C'(0)|do < |k| . ‘1+sin9 do = |k| , tan(4 2) dé
1
=4lk|  (tan¢)*"'dg
.0
% us
< 4|k| (tan ¢)/*1=1 sec? pdg = 4 [tan'k‘ qﬁ}; =4,
0
where we make the substitution ¢ := 7 — g.
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Harmonicity is easy to prove at points with & # 0 once we notice that for those points

E ' H(s+m+i(/€+n))—i WCW(@*(@)Jrl) (=% + ¢ db
m,ne{l,—1} ’ 2m —n V1= e 7 0(0)
4 ™ C|k|(9)eisa
= — _— = 4H K 3
o et (s k).

but for k = 0 it reduces down to
s 150

Z Hy(s+m+in) = 1 ¢
0 T orn V1 e2i0
m,ne{l,—1} 2n —r V1—e®

(2C(0)) (e7 + ') ap

7" 156 T 180 |3
_ 4 e (17|sin6|)d9:4H0(5)72 €"? |sin 4|

S 2m 120 T A1 — e 20

24

where the last term vanishes for positive s, in other words, the following function has no negative Fourier modes:

|sin 0| sin® 0 1 — 1< L .
= == — 1— 210 — — -1 nf 2 2n29.
1_o 20 1— 20 D) Vi-et 5 nz;;( ) o€

O

Remark A.2. The harmonic measure on the slit plane with boundary value 1 at m € Z™ and 0 elsewhere, denoted
H,,, can be obtained by the recursion relation H,,(z) = H,,—1(2 — 1) — H,,—1(—1)Hg(z2), since the right hand side

is again harmonic and satisfies the desired boundary conditions.

Corollary A.3. Gic;.q), as defined in Theorem 2.14, is discrete holomorphic.

Proof. Without loss of generality, show discrete holomorphicity at z = a + 2 + (s +ik)J € X N YT (k > 0)

1 .
S(G[C&a](z + 25) — G[C(57a] (Z + 5))

=— Z [H[Cd7a](z + 10 + 2J6) — H[Cd7a](z + 0+ 2]5)]

j=1
A oo
&) —i Y [Hicya(z+ (141)6 +248) — Hic, (= + 240)]
j=1
=—1) [Ho((s+1)+i(k+1)+2j) — Ho(s+ ik + 2j)]
=1
1T R 0 12000
=— —  ————(C(0)e" —1)e¥"dh
Do T O e
) T ik is6 i0 2i0(1 _ ,2Nif
i lm 1 C*(0)e?(C(0)e 1) e*(1-e )d9

N—oo 2w _ 1 — ¢—2i0 1 — 29

(B)i " CHOEI(COR-1) 1

2r . J1—e 20 1 — 20 d9
7 k() pish 0 _ _ _—2Nif
(E)Z lim 1 Ct(0)e (C(@)é 1) 1-—e 10
N—oo 27 - V1 — 20 1 — 210
=iy [Hicy.a)(z + (14 )8 — 2j8) — Hic, q (2 — 26)]

Jj=0

:% [Gles.al(z+ (1+1)8) — Giey.a)(2)]

where we use discrete holomorphicity of Hc; 4 at (A), and Riemann-Lebesgue Lemma at (B).

O

We proceed to construct and prove convergence results on the full plane spinor H,(z) := Hic;,q(2°¢,2) for x
off the slit a + R4. Recall that we denote by R, the orthogonal reflection with respect to the axis {a + ¢ : ¢t € R}.
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First note using oriented corners ci*,c3? € V[CQS, ] We can define spinors H [95,(1](0(1)1702) = T%F [(25,(1](0(171?632) in

the manner analogous to the case where the arguments are oriented edges.
Proposition A.4. Let a € F¢; be a face of Cs. Forx € Vigh 1,y € V&, , \{=}, we have that if Qf;l) C fo) C -
is a sequence of domains with R, [ng)} = flgk) and with an) — Cs, the limit

n—oo

F[Cé,a] (mOw’yoy) = hm F—‘ (n),au (fo"n,yoy)

exists and is independent of the sequence (Qg"))

n

The function Fic, o) (x°7,y°) satisfies the following antisymmetry properties:

. 2 . 2
—Fics,a) (2°,9%) = Flics,q) (1(1‘/@ 7y0y> = Fic;,a) (Iowyy(z‘/@) ) = Flcs,a (¥, 2°%).

For z € V[L’Cma], define Hicy q) (2°%, 2) := ﬁF[C“L] (z°=,2°%) (independent of o, choice) and extend in the usual
manner to z € V[&,a]' Then Hy(-) := Hic, q (x°%,) satisfies the following:
(1) H, (-) has monodromy —1 around a, is s-holomorphic on [Cs,a] except at x, where it has the following
discrete singularity:

5i
P.r |:H[C(5,a] (l‘%,l‘ + ;)] = ﬂ:T\/O:

(2) Hy(z) = 0 as |z| = oo.

(8) For x € V[ico,ﬂ] and T = Reqr(z) € V[iC<57a] chosen on the same sheet above C\ {a —t:t >0} (or on
different sheets if both are above {a —t:t>0}), set Hz := Hc, 4) (2°7,-). Then, we have the following
cancellations on {a+t:t € R} (except at x if x = &):

o Hy+H;=0o0nV, sN{a+t:t>0} and Vig, yN{a—t:t>0}
e H.—H; =0 onV[lcs’a]ﬂ{a—t:t>0} andV[iC§7a]ﬂ{a+t:t>0}
(4) For x € V[lcé,

Furthermore, Fic; o) is uniquely determined by the antisymmetry properties and the fact that (x°+, z) — Hic, o) (2°7, 2)
satisfies the properties 1,2,3 (or equivalently 1,2,4).

a] and T as in 3., we have the same cancellations as in 3, if we replace t > 0 by t < 0.

Proof. To prove this proposition, we will follow the following strategy, centered around Hic; o (which is equivalent
to constructing and studying Fic; )

o We first prove the uniqueness statement (Lemma A.5).

e We then prove (Lemma A.6) that <H UQ(m Y] is uniformly bounded and that
s @

n

=0

lim limsup [H" ., (27, 2)
Z—00 n_soo Q5 ha

e By symmetry arguments we check 1,2,3 for H Jﬂgn) MU (for z, z within Qg")). We obtain that any subsequence

limit of (H UQW au) as n — oo satisfies 1,2,3 ; by uniqueness this concludes the convergence.
5

e The properties for F?C s,a] are immediate for Fig, ) and hence are obtained by passing to the limit.

U

Lemma A.5. With the notation of Proposition A.4, the function Fic; q) is uniquely determined by the antisym-
metry properties and the fact that (x°,y) — Hy (2) := Hic;.q) (2°7, 2) satisfies Properties 1,2,3.
Proof. By linearity, it is enough to show that if Fie, a8 the difference of two functions Fic; ) satisfying the above
properties, then F[Eg,a] is zero. Denote by H, [?:5, al the difference of the two corresponding functions Hc, 4): we
have that H Es)a] satisfies properties 1,2,3, except that it is s-holomorphic everywhere, including if z = x. Set
Hj () :== Hig, , (2, 2) (the choice of o, is irrelevant: we want to show Hj (z) = 0 for all z, 2).

First suppose x € V[icéﬁa] N{a+t:t>0}. We have that H* =0 on V[icm] N{a+t:t> 0}, by Property 3 (since
x is its own symmetric). Hence by harmonicity of the imaginary part and assumption about the decay at infinity,
we obtain that H = 0 (first the imaginary part is 0, but the real part also by discrete Cauchy-Riemann equations
and monodromy). Now suppose z € V[ico-,a] N{a—t:t>0} . By Property 3 again, we have that H; vanishes on
V[icé’a] N{a—t:t>0}. Notice that we cannot conclude H} = 0 using maximum principle directly because there
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could be a failure of harmonicity at a + . However, by the antisymmetry of F* (we can swap the role of z and z)
and the result when z € {a +1:t > 0}, we can deduce that Hy =0on Vi, ,N{a+1t:t> 0} Similar arguments

give us that H =0 for x € V[ng,a] N{a+t:teR}
Now, for general x € V[léz o e obtain that H} = 0 on V[léi o {a +t:t € R}, by antisymmetry of F* and the

discussion above. Hence, by harmonicity (remember that H} does not have singularities) and decay at infinity,
H} = 0 and we get the result. O

Lemma A.6. With the notation of Proposition A.4, we have that <HLQ(,L> aL> is uniformly bounded (in both x
5
and z) and that !

lim li H" .y (a7, =0.
At (g, (@7 2)| =0
Proof. For x € Vi, ., set H" o= H o (%,). Let Q5" be the discrete analogue of the antiderivative
. ’ 5 0

Re (Hg’m)z, normalized to be 0 at z as in earlier in the paper; it is single-valued. On Vﬂgn), the function Q5" is
2
subharmonic, with discrete Laplacian [v/20;Hs|™ ([HoSm10]), except at the vertex v that is adjacent to « ([CHI13]),
where we can bound it from below by 1 + |H{"™" (y)\2 where y is the corner opposite to x (e.g. y = = + ¢ with

m

T € VECd’a]). Moreover, its outer normal derivatives on 8)29?) are negative, proportional to — |HZ;’3”|2 (|CHI13]).

Summing the Laplacian of Q" over Vg, ), we obtain the inequalities

S 10 HPT (w) < cst-(1+|H§’””(y)I2)‘

wEVan)

ST < st (14 EPE ()F).
weavn‘(")
25
Hence, to prove the boundedness and decay at infinity, thanks to the monodromy, it is enough to bound |H;"* (y) |2.
For z € {a+ 3, }, Hi"" (y) has a probabilistic interpretation as the ratio B [0ax25] /Eqe [0a] (|CHIL3]), which

5 5
is uniformly bounded (it converges actually to 1) by finite-energy property of the Ising model. Hence the result
holds for such .

For x,z € OV™ = O we have that |H5"" (2)| <
Qg") a g

E' (04
Qf; ) [ ]

/E;w [0a] <1 ([Chlz13]) from high-temperature
8

expansion, where the numerator is taken with + boundary conditions on the arc [2z] and — boundary conditions
on the arc [zz]. For z € V™ = “and z € {a* 3}, we have that |Hj"" (2)| is uniformly bounded by the
Q57 a

antisymmetry of F' Y with respect to variable swap and the previous paragraph. By the maximum principle,

an),a
H;"" (z) is uniformly bounded for all z € 01/5;2 m “and z € V[‘g; o’ Again, by variable swap, we have boundedness
5 @ ’

for any x € Vias,m) and any z € 8])[‘;2(”) au. But then if z € VBQ(n) o the ImH;"" (z) is bounded at z = z (by 1
5 s

in modulus, by construction), at z = a £ g and for z € GV%(M U. Hence we can apply the maximum principle to
a

5

bound H{"* (z) with respect to all z, and the same argument applies if z € Vﬁg(n) aL and finally (swapping again

5

the variables) to any x, z € Vo aL.
s
By the first paragraph, it is enough to show boundedness to obtain decay at infinity, so this concludes the
proof. [

Proposition A.7. If z € V[léi,a] N{a+t:teR}, then Hic,q can be constructed as a linear combination of
translation of harmonic measure of the tip of the slit plane Véé \{a+t:t<0}.
Proof. We use induction; note Hc, q)(a + $.2) = —Hic,q(2). Itz € V¢, N{a+1t:t> 0}, define Hy, 4 (z,2) =
+i hmé}(z) for z € Y5. By Remark A.2,

30 Yi

. Y . Yi . Y
zhm{;}(z):zhm{;_%}(z—Z(S)—zhm{;_%}(a—?)hm{a_,_%}(z)
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and thus

% 30 )
(Al) H[Cg,a] (.7}, Z) = H[Cg,a] (7, — 25, z — 2(5) — hIIl{;_26}(CL — E)H[Cé’a] (a + 5, Z)

is discrete holomorphic on Y*; extend s-holomorphically to Vit Tt is easy to check that this still vanishes at oo
and takes the appropriate values on the boundary.

There is a subtle problem because of the presence of a possible "hidden singularity’ at a + %: we must make sure
that we have the right value at this point. Let us explain the case z = a — 37‘3, the induction is then identical to the
the first case. We construct the imaginary part of H, as £ the harmonic measure of z in Vic,; \{a—t:t>0}. The
difference of this harmonic measure and H, is hence 0 on {a — ¢ :¢ > 0} and harmonic on Vg, \ {a —t:t >0},
except possibly at a + % (there could be a hidden singularity there, due to the monodromy). Hence, we must
make sure the value of this difference there is 0 (we can then pretend there is no monodromy at a + g) But this
follows from the antisymmetry of Fic; o, which is precisely matched by the symmetry of this harmonic measure
construction and the one of the following paragraph.

For z € V&, N{a+1t:t <0}, we define Hic, q(7,2) = +hm,,, [G5:c] (z) for z € YEN V[105 o) and extend
XE vy,

analogously. Note Hig, j(a+%,2) = +i hm{aJr%}EC“} (2—26) for z € Xiﬂv[lcﬁ’a]. In addition, we set Hic, q)(a—3, )

X* mv[ics)a]

(a+2} on

to be an everywhere s-holomorphic function which extends this definition: Hic, 4 (a — g, ) := xhm

+

. Y* Ny}
X*n V[IC(; a] and Hic; q(a — %) = 43 hm{ 5}EC5’Q] on Y+ N V[lcé o]’ This is the only spinor in the family of spinors
) a-g 3
)

defined in this proposition which neither vanishes nor has a singularity at a — 3.
The case x € V[1C{; o N{a+1t:t <0} is symmetric to the first one, while the case x € V[icﬁ oN{a+t:t>0}is
symmetric to the second one. 0

i

Proposition A.8. With the notation of Proposition A.4, assuming that x € V[lc’é a] is at distance O (9) to a as
6 — 0, we have, uniformly over z on compact subsets away from a,

L 0 o Crou
WH[C&Q] (27, 2) m Cyos hic,q) (0%, 2) =

Proof. As before, set H, (2) := Hig, q (2°%, 2). We proceed as follows:

e We first prove the result for  on V[icé,a] N{a+t:t >0} and on V[lcg,a] N{a+t:t < 0}. We have that in
this case, the function H, can be constructed as a finite real linear combination of harmonic measures, as
given by Proposition A.7. By the convergence of the harmonic measure, we obtain the desired result.

e We then extend the result for x off the real axis. Assume z € V[iC(s,a] and that x is below the axis
{a+1t:t € R} (the other cases are similar). Now use the antisymmetry property of Fic; o) With respect
to z and z. Since H, (z) is harmonic with respect to = € V[icé’a] away from z, if Im (z) < Im(a) and
Im (2) > Im (a), we can represent, H,, (z) as an infinite convolution of H,, (z) for w € V[ic&a]ﬂ{a +t:teR}
with the discrete Poisson kernel P (w,z) of the lower half-plane V¢, N {z : Im(z) < 0} (using in addition
that H,, () — 0 as ¢ — 00). Since z is at distance O (§) to {a + ¢ : t € R}, we have that P (w,x) ~ ﬁ
(by Poisson excursion kernel estimates) as w — oo (which is summable on Vi, N{a+1t:t € R}) and
since H, (z) is uniformly bounded with respect to z and z (Lemma A.6) we obtain the convergence result
for z above the real axis, away from a. It is easy then to extend the convergence to any z away from a:
we must have boundedness, otherwise this would imply a blow-up for z above the real axis, and hence we
have precompactness, and the limits must be analytic and hence are determined by their values above the
axis {a+t:t € R}.

0

APPENDIX B. PROPERTIES OF DISCRETE FERMIONIC OBSERVABLES

In this section of the appendix we prove most of the results that were left unproven in Section 3. Most of the
proofs are very similar to those given in [Hon10] for the discrete fermionic observable, and [CHI13]| for the discrete
fermionic spinor. Thus we have relegated them to the appendix and will frequently refer to both papers in the
proofs.
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B.1. Discrete Fermionic Observable.

Definition B.1 (Restatement of Defintion of Discrete Fermionic Observable). Given a domain 5 we pick 2n
Q;-distinct medial vertices by, by, . .., by, in Vi3 and their double orientations (y/01)?, (v/02)?, . .., (y/02,)?. Define
the real fermionic observable Fq;:

1 n
Fo (b7, b3) = 5 — > a#7(=1)°0n ) TT ¢(;), where
N i=1
C(b7,...,b32") = {edges and half-edges that form walks between b7"’s and loops}

I iww
d(w:a’ Bo)zi£67 e

Jo

(71, ,79n): admissible choice of walks from ~in C
e(V1,...,7vn): crossing signature of b;’s with respect to v1,...,vx
Zo, = Z ot
yel

Given a collection of doubly oriented points (...), a collection of signed edges ey, ..., e,, disjoint from (...), define
51 Sm
the restricted real fermionic observable Fsgzl e om }() as

n
{emenm} . 1 o
Fop! (b b)) = 5 > a# (1)) TT o).
s 51 eSmy o o i=1
VEC(EI ----- em )(b117_._’b2in)

Further, given a collection of doubly oriented points (...), a collection of signed edges {...} disjoint from (...)

and edges ey, ..., &, define the fused real fermionic observable Fg[;;""’e’"]{”'}(...) inductively as

e1,..em]{... €1,eeesCmm ...,e% \/§ €1, e sEm—
F§[25 H }() :F[ 1 1 }( )77}7[ Tyeeos 1{ }( )

Qs 2 Qs
O02n- 1

For a collection b7',...,b5"" be doubly oriented medial vertices, a medial vertex b, and a configuration
v € C(bT, ., b3" | bay), let us denote by W gg (7,01, ..., 00n—1) the complex weight of 7, defined as

i n
W, (7,01, ..., 02n-1) = \/704#7 [1¢(0)
i=1

02,
for any branch choice of 0g,. From here we can define the complex fermionic observable

{--} 30 02n- 1 1 H
HQ (bllv"'vb2nf]_ 7b2n) = WQ5('77017"'70271—1)
s Zo
P €O (01 b5, b

Proposition B.2. Let ej',...,esm be distinct (though possibly adjacent) signed edges and b3, ..., bg.'"} be distinct,
though possibly adjacent, doubly oriented medial vertices. Then the function

bon > HE (05, b3 b2)

whose domain is Vor \ {m(e1), ..., m(em), b1, ..., ban} is s-holomorphic. Moreover, it obeys boundary conditions

m[HS (03, oo, 052 02) \/Vout (b2n )] = O for all by, € OVE:
where Voyt(ban) 1s defined as the outer normal to the boundary at bay,.

Lemma B.3. Let b3, ..., b5\ be distinct (possibly adjacent) doubly oriented medial vertices and let bg>", 5‘2331" be
two adjacent simply oriented medial vertices distinct from by, ...,ban—1 and denote by e the medial edge {bay, Bgn) €
&G Let v € C(b7*, ey bgi L bay) and 7 € C (BT, .‘.,bgfﬁf,ggn) be two configurations such that v @ c(e) = 7.
Then we have

Pl(e) [W Qs (77013 ---70271—1) = Pl(e)[W Qs (’73017 ---70271—1)]-

Proof. This has already been proven in the case that by, ..., b, are at least 20 apart from each other in [Honl0].
Thus we only need to show for the case where some of the b; are adjacent medial vertices. We define the complex
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weight of v for paths ending at corners (for instance ba, + id) instead of at medial edges. Call €’ the half medial
edge (ban, ban, + %5) and c(e’) = (ban, ban + %) U (b, + @, bon + %5) The complex weight at the corner is

T
cos(g)W as (7B c(€), 01, ..., 09n—1)

where the partial edge from the vertex to the corner counts as a half edge towards the length of o and the winding
is calculated with a contribution half of a right or left turn coming at the turn into the corner.
Suppose without loss of generality, ba,, = ba,, + 6 such that by, + 50 lies on the line /(e). We claim that

™ ~
Pl(e) [W Qs (’77 01y ey 0271—1) = COS(g)W Qs (7 b C(e/), 01y eeny 02n—1) = Pl(e) [W Qs (’77 01y «eny 0271—1)]-

Note that proving the first part of the identity proves that the corner complex weight takes the value of the
projection of the medial edge complex weight onto the line connecting the two points in all orientations and is
thus enough to prove the second part and complete the proof of the lemma. There are two cases to consder when
proving the claim: the case when (bay,, by, + @> € v @ c(€’) and the case when (bay,, bap, + %) ¢ v®c().
For ease of notation, set W 55 =W Hg(-,ol, ey 02— 1). [

o When (b, 62"—0—%> € y@c(€') the winding of the path W(y@c(e')) = W(y)+2F so W o, (y®c(e')) =
37i

ae” s W g, (7). Thus

37i

w Qs (,y & C(e/)) =ae =W Qs (7)7

which given the required orientation implies
™
Py (W, (7)) = cos(g)W o; (7 @ e(e”)).
e Likewise when (bay,, bap, + g) ¢ v @ c(e), o2, = 1 we have that

PiioW 0, (7) = cos(5)W a, (7 @ c(e').

Proof of Proposition B.7. The proof of s-holomorphicity follows immediately now since Lemma 7 has been proven
for the case where the points are not necessarily 20 apart from each other. The boundary conditions have already
been proven in chapter 6 of [Honl10]. 0

Remark B.4. This completes the proof of the s-holomorphicity relation even in the case of adjacent edges and
source points. The rest of the propositions in Section 3 follow immediately.

B.2. Discrete Fermionic Spinor.

Definition B.5 (Restatement of Definition.). Given a domain €25 and its double cover [Qs, a] ramified at a € Fgq,
we pick 2n Qs-distinct medial vertices by, ba, . . . , bay, in [Qs, a] and their double orientations (1/01)?2, (1/02)%, . .., (v/021)?)-
Define the multi-point real function Fig; q):

1 n
Flopa (B, 05 = 5—— > a®(=)FOmal () TT(y,) where
[Qs,a] [Ua] YEC(IT... b3 i=1
C(b7,...,b32") = {edges and half-edges that form walks between b;"’s and loops}
/ .
Yw:a® ) B°%) = i\ﬁe e Sheet(w) = ¢(w) Sheet(w)
o

(71,-.-,7Yn): admissible choice of walks from yin C
#L(w,a): number of loops (a loop has to be connected and without crossings) in w around a
Sheet(w): 1if w: a® [ 3 lifted to the double cover starting at awends at 3, —1 otherwise

c(71,-..,vn): crossing signature of b;’s with respect to v1,...,vx
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Here, we define the partition functions

Zo, = Z ot

yel
Zigsalloa] = Y a#7(~1)#EO)
yeC
= Eq, [Ua]zﬂa
zlid o = Y ad(-1)FEoe),
~yecCt -}

It has been proven in [CHIL3] that (—1)¢07) [T | ¢(v;) is well-defined for various admissible choices of
walks.

Proposition B.6 (Well-definedness of Discrete Fermionic Spinor. ). For two admissible choice of walks (71, ..., Vn)
and {(Yi,...,Yn) from v, we have

‘ - o n
(_1)#“7\ i 76:@) H Sheet(y;) = (_1)#L(7\ ; ¥iha) H Sheet(5;)

i=1 i=1
and thus Fio, 4 is well-defined.
Lemma B.7. If A, B are unions of disjoint loops, #L(A® B,a) = #L(A,a) + #L(B,a) mod 2.

Proof. Interpret A and B as two collections of loops on €2s. Then fill in the faces of the lattice with spins, beginning
with plus boundary conditions, such that there is an edge between two faces if and only if they differ in sign. That
is, A and B define two different spin configurations on the domain. Then #L(A,a) mod 2 is 0 if 0, = 4+ and 1 if
oy = — and likewise for B. So ¢ = (—1)#E(Aa),

Moreover, A® B is precisely the spin configuration constructed by multiplying the spins of configuration A and
B pointwise. Thus

L(A®B A®B A_B
(_1)# ( @ ’G)ZO—(J;@ :Jaaa,

_ (,1)#L(A,a)(,1)#L(Bﬂ)
(_1)#L(A,a)+#L(B,a)

which proves the lemma. 0

Lemma B.8. For two admissible choice of walks (1, ..., vn) and (Y1, ..., Vn) from «y, with ~; : af — B2 there exists
permutations 5,5 : {1,..n} — {1,...,n} such that fori=1,...,n Vs and F5@) share one of their endpoints.

Proof. Since any admissible choices of walks have to either start or end at each of the b;’s, i € {1,...,2n} we can
begin by choosing 71 and 71 to have an endpoint at by. Call by, and by ~the other endpoints of the two walks
respectively. Then we are left with a collection of walks (72, ...,7,) and likewise for the other choice of walks such
that the lemma does not necessarily hold.

Now there are two cases to consider. If k; = k; then naturally we do the same with 72 and 2 so they both
share endpoint b, where m = min({2,...,2n} \ {k1}. Clearly we can continue in this manner until we reach two
walks for which k; # l~cz So suppose k; # l~€L Then choose b,, to be the other endpoint of the walk ~; with bfw as
one of its endpoints. Choose the permutation such that both v, and 5 share endpoint b,,.

It is obvious that we are again in a situation where the other endpoints of v and 45 are different. Call the
indices of the new endpoints k;11 = l;l and l;:iH and continue in this manner. If at any point, kl- = k; for some
Jj < i then we restart the process with the remaining walks and choose m = min({i +1,...,2n} \ U, <, k;). Then
it is easy to continue as before and we will never run into the possibility of not having a possible choice of shared
endpoint for v or 7. 0

Proof of Proposition B.6. We begin by noting that the value of our function Fig; 4)(...) is completely independent
of the order of the walks so we can choose any permutation of the choices of walks ; and «; that we desire. Hence
we choose the one we proved to exist in Lemma B.8 where ~; shares an endpoint with ; for all 7.

It follows that ~y; @ ; is a collection of loops and possibly a path from an endpoint of +; to an endpoint of ;.
Call the path +; and call the collection of loops 7i, © i, \ 7;,. Note that if both endpoints are shared then ; = (.
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We have that Sheet(v;) # Sheet(§;) <= (—1)#L(i®7\74) Sheet(v/) = —1. Suppose that there is an
odd number of i’s such that (—ﬁl)%L(W@%a) Sheet(y;) = —1, so that [], Sheet(vy;) = —]], Sheet(¥;). Then if
(=1)#LON ivi0) — —(—1)#LON 9:9) the identity is satisfied and the multi-point real fermionic spinor is well-
defined:

(C1)FEON 0 (L) RO\ Fiva) DAL 308N, 7))

=(=1)
= (- 1)#L( vi®i,a)
= (= 1)#“‘ Y @TN ) HELC )
=(=1) ¢

) L HL( @7 \vsa) HSheet v

- H(_l )#L(i©71:0) Sheet (1)) = —1,
i

where we exploit Lemma B.7 twice and make use of the following elementary identity:
NP e \P7) =0 @) e (@)
=90 [ e @]
=0 (@@ D]
= @ Vi @ Vi
and the following lemma. [

Lemma B.9. Given two admissible choice of walks (;) and (%;) such that ~v; and ¥; share an endpoint for each i,

0
(71)#L( Vi) — HSheet(%)»

where 7y} is defined as before.

Proof. We first note that by construction, each b, ..., ba, is an endpoint of either zero or two ~;’s. Thus @,
is a collection of disjoint loops. Call the loops {A;}. We can break each A; up into its constituent components
Aj; = Aj N~} For any two paths v; and 72 s.t. y1 @ 72 is connected, we have that

Sheet(y1 @ v2) = Sheet(y1) Sheet(2).

where the sheet number is defined by choosing one endpoint and choosing one of the sheets to fix it on.
Thus Sheet();), which is by definition 1 if A\; doesn’t contain a and -1 if it does, is the product of the sheet
number of the Aj,’s:

(—1)#LO) = H Sheet(};,),

and

Sheet(v;) H Sheet(A;,) H Sheet(y; N ~y,).
k

Now taking the product over all 4/ we have

H Sheet(v]) = H(H Sheet(A;,) H Sheet(y; N ;)
= HHSheet(A = (- 1)#L(

- (_1)#12( ")

because sheet numbers of the intersections all occur even number of times. The choice of sheet that we fix the
chosen endpoint on does not matter because every endpoint is shared by an even number of constituent loop
components. 0

This completes the proof that the multipoint fermionic spinor is well-defined.
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Definition B.10. Given a collection of doubly oriented points (b7*,. .., b52"), a collection of signed edges eq, ..., e,
disjoint from (b]*,...,052"), define the restricted real fermionic spinor as
81

e ..., e;m 0 Oon 1 i\a c(v1,--- =
Fie i g, g = Z o] > a7 (1) #EON D (1)t TTp ().
5,a ’YEC{ cil,..qcf,{"') (b{l)l,. po2n

20

i=1

Further, given a collection of doubly oriented points (...), a collection of signed edges {...} disjoint from (...)

and edges ey, ..., &, define the fused real fermionic spinor F[[S;’;]"em}{”'}(...) inductively as

lerreml{d \ _ pletem-1{meh} Boleneem-11{..}
F, () =Fgl () = S Fen (..))

where i = fi(F[Jg&a](b;j,bj) + Fe, a) (b;J ,0i)).
Proposition B.11. Consider the critical Ising model with plus boundary conditions. Let eq,...,em be a set of

possibly adjacent interior edges and a € Flaz,q- Then we have

Eq,[0a - €(e1) - ... - €(em)]
Eq, [0a]

Proof. We begin by defining the fused partition function by the recursion relation

_ maom [817~-~7em]
= ()" g

2[617-4-]76,”]{---}[

_ lersem-1l{.eh} T4+ b e, em]{.}
Q5.0 =7 [0a] — 72[

74) [Qs,a] D) Qs.a] [0a]

with i = fi(F[Jéé a (057, b)+ F, Cs.a] (b57,b;)) defined as before in terms of the full plane fermionic observable. Then
it is easy to note that

{e1,mem} {e1,vem}
Flenem} _ [©25,d] [7a] _ Z[Qa»a] [7a] —
[©25,a] Z[sta] [O’a] E?&Z&a] [Ua] . ZQ5
[e1,--sem] [e1,--sem]
ermen] _ Zlopal " 1%al - Zig " ol
[925,a] Z19,,q)l0a] Ef, oloa] - Za,
Then all that remains is for us to show that we have
[617-“75m][0. ]
Eq,[0a - €(e1) - ... - €(em)] = (—1)mom —Leal 700
Zq,
By the definition of energy density €5 we have that
(€1, em)
@] - 1%a]

Eq,[oa - €(eq) - ... - €(ep)] = (=)™

where Zf&i‘éj’e’” is defined inductively as
zf5;7;j7em>{~-<}[ga] _ 7{et,em- 1>{~',efn}[aa] _ 7 (et em- 1>{~-~,e;n}[ga] _ /’}/Z<elv"')em— 1>[Ua]-

We now proceed with the proof by induction on m where when m = 0, it is trivial that Z[%S o = ZPQ sl

Assume for the case m — 1 that

(€15 s€m- 1> m—1 [61 44444 €m~ 1]
Ziosa la] =272} [7a]

Then contracting notation by not writing |...], we have that

(e1rmeem) _ {errme (R} o{erreme 1){€n}  nop(e1rmeme 1)
Zi g = e = 2 T g

ometyglereme al{eh)  leneme 1) opletsem 1]
=2" g = 20, —iZig ")

— 2m—1(22 [t s€m- 1]{‘3;} _ Z[elemv@m— 1] ﬂz[elw-:em— 1])

[2,5,a] [Qs,a] [92,5,a]

— 2m (Z {;1,;.7.;]6711])

which completes the proof. 0
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Definition B.12. For a collection bJ',...,b5>"",' be doubly oriented medial vertices, a medial vertex b, and a
O2n- 1

configuration v € C(by", ..., by, ', bay ), let us denote by W (g, 4)(7, 01, ..., 02,—1) the complex weight of v, defined
as

{

W (0,01 (701, -+ 02n-1) = a7 ()N ()G ) T ()
i=1

02,

for any branch choice of 0g,,. From here we can define the complex fermionic observable

01 O2n- 1 L
Hf{ﬂs,}a](bl ,...,bQiL—l yban) = m Z W[(25,(1]('7,017"'702"_1)'
(©25,a]l%a yeCT- (b9 ,..,b32" L bay)

Lemma B.13. Let b{*,...,b5>" ' be doubly oriented medial vertices and let b3 € V&,Bgf{‘ € Vg, be a simply
oriented medial vertex and a simply oriented corner distinct from by, ...,ba,—1 and denote by e the half-medial
edge (ban,ban). Note it suffices to check the case that by, = ba, + %5. Let v € O(bJ", ..., b5 bay,) and 7 €
C(b‘l’l, oy D32 boy ) be two configurations such that v ® c(e) = 7 where c(e) = (ban, bay + LH§) U by + 126, bo +
50). Then we have

™
Pie)[W (05,41 (75 01, -1, 02-1) = COS(g)W [Q5,0](Y @ c(€),01, ..., 02,1).

Proof. For ease of notation, set W (g, 41(-) = W ;.41 (, 01, ..., 02n—1). The lemma has already been shown for the
case in which n = 1 with source point taken at the monodromy. We show this holds in general. As before, there
are two cases to consider: either (bay,, bay, + 1'{’6) € ~y or it isn’t.

First we show that in both cases,

(_1)#L(7\U%7@) (_1)6(71,~-~,%) H Sheet(v;) = (_1)#L(&\U%a) (_1)c(~71,-.-,%) H Sheet (5;)

K3 7

but only the ~, is affected by the XOR operation so the crossing signature is the same on both sides. If c(e)
destroys a loop in v that changed the sheet of [Q5,a] then the loop becomes a part of 4, so the loop number
changes on the right hand side but the sheet factor also changes on the right hand side. Thus we only need to be
concerned about changes to the winding factor and the number of edges in the configuration. As shown before,

e In the former case, we have

3mi

8 W [Q(;,a] (fY)

™ _
Wig;.q(y @ cle)) = cos(g)ae

e In the latter case, we have

T, im
W 5,01 (7 @ c(€)) = cos(g)e™ Wig;,a)(7)
This completes the proof of the proposition.
0
Proposition B.14. Let e}',...,e3m be distinct signed edges and bJ*, ..., by be distinct doubly oriented medial

vertices, again possibly adjacent. Then the function
bon = HY D (B9, 032 bon)

whose domain is Vi, \{m(e1),...,m(em), b1, ..., ban} has an s-holomorphic extension to corners adjacent to two
edge midpoints in the domain.. It has monodromy -1 around ramification point a and obeys boundary conditions

I [HG ) (07, 652 ban) v/ out (ban)] = 0 for all bam € OV
where vyt (bay) s defined as the outer normal to the boundary at bay,.

Proof. The s-holomorphicity follows immediately from Lemma 13 and the definition of H, [{Qs}a]() in terms of the
complex weights. The monodromy -1 around ramification point a is a direct result of the multiplicative factor
11, Sheet(v;).

To show that the boundary condition holds, it suffices to recognize that any point on the boundary of the

: _iW(yn)
L_¢ T = Voyt(ban) mod 2. O

domain can only be reached from one direction and thus Jon
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O2n- 1

Proposition B.15. Let e]',...,eSm be distinct signed edges and bi*,...,by"1 be distinct doubly oriented medial
vertices. For each j € {1,...,2n — 1} such that b; € Vo \ Vo the function

ban = HE (001 b3 o)

has a discrete simple pole at b;, with front and rear values given by:
J \/07 [Qs,a]
_ (_1)3 ert,...,eim e(b;)” n-
Hj = \/0> F[E);,a] ©) }(b(l)l”"7bg721—1lib2n)
J

where e(b;) denotes the edge whose midpoint is b;.
Further, for each j € {1,...,2n — 1} such that a; € OV, the function

cesm,e(0i)TY 10y 02n- 1
(bl [ARAS) b2n—1 7b2n)

bon = HY D (097, 032 bon)
can be extended to an s-holomorphic function at b; by setting the value at b; to

1 s1 sm )

+ {ext,..enm} 0q 0j-1 70j+1 O2n- 1

H = — RT s g b0 b, b5,
VOj

Proof. The proof follows exactly the methods of the analogous proposition in [Hon10] except with the multipoint
fermionic spinor. 0

Proposition B.16. For each medial vertex b; not on the boundary of the domain, the function, call it u(bay)
ban HH[{Q;,}a] (07", ., bgfzn—_ll s bon )+
(=TS 00 b P b ) Hig, o (b ban)

extends s-holomorphically to b; where it takes the value

(17 e a—
NG Fi WO g bbb,
Proof. This follows immediately from the previous proposition and the analogous proof in [Honl0]. O

Proposition B.17. Let b7',...,b52" be distinct doubly oriented medial vertices. Define a 2n x 2n matriz A [2s,a]

o1 o2 Fig, a7, b05) if j#k
(A a0, ..., b2 ))jk_{ [95’]0J g ifji=k

Then we have
F[Q(S,a] (b(l)l yens bgM) = Pfaff(A [Qs,a] (b(fl, ey bgf{‘))

n

Lemma B.18. The function

b =Gy (071 B2 o) +

2n
- Z(—l)JF[g;L] (B9 b2y BV e 032 ) iy ) (07, b2
j=1

extends to an s-holomorphic function V[g(s o C, and is in fact identically zero. Further, we can immediately
see that we have the following recursion relation on the real fermionic observable:

2n
Flag o) (b5, -, 052) = Flag o) (B, ., b33 ) Flay ) (0, b327).-
j=1

Proof. Following the same approach used in [Hon10] we see that this relation holds for the multipoint real fermionic
observable with monodromy just as it does without monodromy. At this point, the proof of Proposition B.17 is
immediate from the Lemma and from the recursion formula for the Pfaffian. 0

We follow this proposition with an important generalization providing an equivalent Pfaffian for the fused
fermionic observable.
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Proposition B.19. For distinct edges ey, ..., ey, and distinct doubly oriented medial vertices bi*, ..., b52", for each
choice of orientations ¢; € Q(e;) 1 < i < m we have that

2 i o 2
ool (91, bg2n) = Sheet(A o, a6V ™y e ™ Y™ L VI b b
where we associate with e; the medial vertexr on the edge and where the 2p X 2p matriz, p = m + n, is defined for
(not necessarily distinct) doubly oriented vertices x?, . 52” by

. . F[[gj’s]](?;fi,z?) if v =xjand&; # &
(A [Qg,a](xlla"'vxZ;p))jk = F[Qg,a](a1 5 5’) Yf’LZ 75.7)]'
0 else

Proof. The proof of this is exactly as in the proof of the Pfaffian relation in [Honl0] except with the fermionic
observable with a monodromy point and on the double cover. This difference, however affects none of the steps
since projection relations and Lemma B.18 are the same in this case as in the real fermionic observable with no
monodromy. 0

APPENDIX C. MAPPING BETWEEN ENERGY DENSITIES AND PROBABILITIES

A spin-symmetric pattern on a base diagram B is a member of Sp(B) := {—1,1}78) /{—1,1}. Given B € Sp(B),
and an edge i € B, whether i separates two faces with different spins is a well-defined property, invariant after
flipping all spins in the pattern: let B; = —1 if i separate spins, B; = 1 if not.

Given a subset B of edges in B, E(B) := E([[,cp€i) = 2 pespi) [Llicn(n — Bi)P(B'). So the idea is to
invert the matrix EPgp = [[;c (1 — B;j). There is a potential complication: when we write the expectation and
probability vectors of a base diagram B, whose components have the edge expectation and probability of a given
spin-symmetric pattern, as Eg := (E(B))pcs, Ps := (P(B))pesp(s), the dimension of the former, 2B in general is
different from that of the latter, 27 (B)~1 However, we note that there exists a set B of interior edges, which are
any edges separating faces in F(B), of size F(B) — 1 such that F(B') = F(B) (or, B’ spans F(B)) and there exists
a path between any two faces in F(B) given by crossing only the edges in B’: indeed, start from a face Fy € F(B)
and for each of the neighboring faces, if there is not an acceptable path yet thereto, add the edge crossed between
Fy and that face. Since F(B) is connected, inductively we can get all faces in at most F(B) — 1 steps. So we
restrict the collection of edges as members of P := {—1,1}% < {—1,1}% (the inclusion comes by fixing the non-B’
components as 1), which has the same cardinality as Sp(B), and define E := (E(B))gep = E([];.5,—_, &) and
we invert the matrix EPpp = [[;.5.__, (1 — B}).

Define for D € P the matrix

:D;=1

We claim EP x PE = (u+ 1 — (g — 1))"Idrgp = 2"Idrgp, where n = #B’. When D = B

> EPgp PEBB_Z( 1#EBBE=" T (1 + B B))
B 1EB

_Z #{zBB:—l}(N+1)#{7.BB_1}

—Z( ) b D)™ (= )] = (41— (p— 1)

m=0

where we convert the sum over B’ € Sp(8) to a sum over natural numbers by weighting the respective summands.
The weight turns out to be the binomial coefficient, because of the following fact: given a subset of B’, there is
precisely one pattern B’ € Sp(B) such that B = 1 on that subset and B, = —1 on its complement in B’. Indeed,
one can start off from a face, declare a spin there, and go to any other face along the path through B’ discussed
above to define a spin on that face, which will define uniquely the wanted spin pattern if there is any. Existence
comes from the fact that there are 2™ spin patterns and 2" choice of subsets. So given 0 < m < n there are exactly

(::L) spin patterns with #{i : B; B, = —1} = m, since there are (Z) choices of subsets in B’ of size m.



CONFORMAL INVARIANCE OF SPIN PATTERN PROBABILITIES IN THE PLANAR ISING MODEL 36

Now for D # B
Y EPgp PEpp =Y (-)*PE= TT (u+D;B) [[ (u—B)p+B)
B B i:Bi=D; i:Bi=—D;=—1
DLt | (VRSO N | (VT
B i:Bi=D; i:Bi=—D;=—1

note that, if ig € B’ is such that B;, # D;,, we can pair any B’ with B’ obtained by flipping the sign of B;,
(which uniquely exists by above argument). In that case only the power of (—1) in front of the product would
switch sign; in other words,

(—)#EPE= T (et DiBY) + (~)#EP B =0 T (u+ DiBl) =0
1:B;=D; :B;=D,
or

I w-0> (—p#ePB=—" 1] (u+D:B)=0.
#:B;=—D;=1 B #:B;=D;
So, in conclusion we have

pp-1_ PE
27L
1 P
P(B') = 5 > [(-1#ePB== T (u+ B)IE(D).
D ’iZDiil

In addition, if we define P**(X) := P(X|o, = +1), P*T and P4~ are new probability measures, with expectation
operations E**(X) := E(X|o, = £1). We have, meaning that we have the same EP and PE matrices. We get
E%* by combining the following two equations:

E(0,X) = E“H(X)P(0, = 1) — E“~ (X)P(0, = —1)
E(X) = E“(X)P(o, = 1) + E* (X)P(0, = —1)

thus
Eaﬁ:(X) _ ]E(X) + ]E(UaX) _ E(X) + E(UaX)
- 2P(o,=+£1) 1+ E(o,)
It gives a way to calculate the probability vector with the spin at a fixed:
1
Psax) = P(o, = £1)PE* = P(0, = £1)PE(EL) = 5 PE(Es + Eap).
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