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Transfer matrix approach.
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Discrete complex analysis approach.
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Discrete analytic continuation and Ising transfer matrix.
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Let be a complex-valued function. Then there is a unique
s-holomorphic extension of to 1

2
with Riemann boundary values on 1

2
.

∗ ∗

∗
1

The operator can be diagonalized and has a positive
spectrum, given by where are distinct for .

∗ ∗

2 I ∗
∗

Let be the exterior tensor algebra
∗

and let

be defined as
∗

. Let be the Ising model transfer
matrix at the critical point , restr icted to the subspace defined as
(see Section 1.2.1).
Then there is an isomorphism such that for some

.

Induced rotation and s-holomorphic propagation.

1
2

i 1
2
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Let be the induced rotation of at critical

point , and let
∗ ∗

be the complexified s-holomorphic propagation. Then

there is an isomorphism
∗

such that .

Fermion operators.

For , define the fermion operators
by i and . Define the operator-valued fermions on horizontal

edges i by i and i . At the critical point
, the pair has a unique operator-valued extension to the edges of , which satisfies

complexified s-holomorphic equations (see Section 4.2).

The correlation functions of the fermion
operators are linear combinations of s-holomorphic parafermionic observables. In particular, in the
box , in the setup of Section 1.2.2, we have

More generally, al l the multi-point correlation functions of and can be written in terms of
parafermionic observables.

Operators on Cauchy data spaces.
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For any b , there exists a unique b such that

has an s-holomorphic extension satisfying
1
2 on b. The mapping defines

a real-linear isomorphism b b b .

b



b b
b

i

The operator b is a convolution operator, whose
convolution kernel is the Ising parafermionic observable at the critical point . When

and b , then b is given in terms of the s-holomorphic propagator .

b

Let be two square grid domainswith disjoint interiors,
with edges , and let b . The inverse operator b

1

b
2

exists. For
any b and any , the critical Ising parafermionic observable in can be
written as

b
1 2

b
1

b
2

Away from critical temperature.
massive

∗

∗

Let . The massive propagator is diagonalizable, with distinct eigenvalues
with for .
Theorems of Sections 1.3.1, 1.3.2 and 1.3.3 hold true, if one considers the Ising transfer matrix at

temperature , massive holomorphicity equations, and themassive s-holomorphic propagation matrix
.
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Consider the box for an integer interval and let
be its dual.
Let be a complex-valued function and let . Then there is a unique massive

s-holomorphic extension of to 1
2

with Riemann boundary values on 1
2
.

Proof. 1
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Let and denote the left and right extremities by
and . Set i . The s-holomorphic propagator is given by

− 3 3

3

− 3

− 3

3

For , denote , . The massive s-holomorphic propagator is
given by
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The matrix is symmetric, with eigenvalues , where are distinct for
.

Proof.
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Cliff

Cliff
∗

We have
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2

i
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where is the dual inverse temperature given by and .
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Conjugation by is given by the following formulas on Cliff ord generators ( )
1
2

1
2

i
1
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Let and be the leftmost and rightmost points of . Conjugation by is
given by

i
for

i
for

and on the remaining generators by

R R L L

induced rotation

i i

i i

i

The maps and commute with , i.e. we have

For all we have

Proof.
1
2 �

The induced rotation is up to a change of basis equal to the complexi-
fication of , i.e. there exists a linear isomorphism

∗
such that .

Proof. ∗
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Cliff

polarization isotropic splitting
� �

� �

� � � � �

� � � � �

� �

� �

� �

�

�

∗

�

∗

�
∗

�
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1 2 n 1 2 n

1 2 n j 1 j − 1 j + 1 n

� �

�



Suppose that � � is a polarization. Any irreducible representation of Cliff
is isomorphic to the Fock representation �. I f a representation of Cliff contains a non-zero
vector satisfying � , then the Fock space � embeds in by the mapping

1 2 n 1 2 n

Proof. Cliff
∗

�

� �

�

�

� Cliff

2m

Let � � be a polarization, and consider the Fock
representation �. Let � � be the vacuum and � �

be the dual vacuum normalized by . Then for any we have

Proof.
�

The following formulas define a polarization

� i

� i

Proof. i i i i
i �

i i



As a representation of the Cliff ord algebra, is isomorphic to the Fock space

� , with vacuum vector , and is isomorphic to the direct sum of two copies of this
Fock space.

Let . The following formulas define a polarization

� i

� i

for all except possibly for isolated values. The space is isomorphic to a Fock representa-

tion � , with vacuum vector and dual vacuum vector

�
(+ )

N
( + )

.

Proof. i i

i i

i i
∗

i i i

i i
∗

� �

� i

� �

1 2 n

Let � be the subspace spanned by eigenvectors of with eigenvalues less
than one and � the subspace spanned by eigenvectors of with eigenvalues greater than
one. Then � � is a polarization. As a representation of Cliff, the space is isomorphic

to the Fock representation � .

Proof.



� � � �
�

∗

�
∗
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If is an eigenvector of with eigenvalue , then the vector is
either zero or an eigenvector with eigenvalue and is either zero or an eigenvector of
eigenvalue . In particular, if is the largest eigenvalue of and is the corresponding
eigenvector, then is a vacuum of the Fock space and the vectors 1 2 n form a
basis of consisting of eigenvectors with eigenvalues

s
.

Proof.

�
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Let
∗ ∗

be the complexified massive s-holomorphic row-to-row prop-

agation, and let
∗
be the subspace spanned by eigenvectors of with eigenvalues less

than one. On the exterior algebra
∗

define
∗

◦ . Then
there is a linear isomorphism such that

Proof. �

1 n
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I × J

∂ ( I × J )

I × J

∂ ( I × J )

�
v∼ w v w
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Let the fermion operators be defined by Equation (4.1) for horizontal edges
. Then there exists a unique extension of and to the set of vertical edges , such

that the following local relations hold. For any face, with the four edges around the face
as in Figure 2.1, we have

and on the left and right boundaries we have

i i i

i i i for any

Remark.

Proof.
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The two-point Ising parafermionic observables.

low temperature expansions

parafermionic
observables

↑
a

i
2

↓
a

i
2

i

i

i

i

i
2

∗ ∗

i discrete residue of at
i

i

i



az

Let . I f is not on the boundary, , then
the Ising parafermionic observables and are functions defined on edges such that

and are massive s-holomorphic

and satisfy RBVP: for a boundary edge of the rectangle
1
2 and

1
2

the discrete residue of at is i and the discrete residue of at is .

I f is on the bottom boundary, , then is zero and is a function defined on edges
such that

becomes s-holomorphic in the whole domain with the definition

and satisfies RBVP: for a boundary edge of the rectangle
1
2 .

I f is on the top boundary , , similar statements hold.

Fermion operator two-point correlation functions.

We have
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Proof.
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Let be orientations of edges and let
be such that . Let be the midpoints

of . For any midpoint of edge , let and be its two possible orientations,
let and be such that and , and let and

.
Then we have that

2m 2m
is independent of the choice

of and at criticality is s-holomorphic on , with
1
2

boundary conditions.

Define and i . Then we have

2m 1

where the arrows and the square roots of directions are chosen as follows

if

i f
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Let be dual edges with orientations and let be such
that . Then we have that

j k



b b

b
1
2 b b b

1
2 b

Let be a square grid domain with edges . I f is an s-holomorphic function

with
1
2 on , then .

Proof.
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For any b , there exists a unique b such that has an s-holomorphic

extension satisfying
1
2 on b.

Proof. b b
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With the notation of Lemma 28, we have that
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and the s-holomorphic extension is given by

b

Remark.

Proof.
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Let be a rectangular box , let b be the bottom side and

let
∗ ∗

be the s-holomorphic propagation as defined in Section 2.4. For ,
decompose the s-holomorphic propagation into four blocks

corresponding to the decomposition
∗ ∗

i
∗
into real and imaginary parts. Then have

b

Proof. b b b
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b b
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We have that and are isomorphisms.
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Let and . Then there exists a unique function such
that for , the function has an s-holomorphic extension to with boundary conditions

1
2 on . We have that , where and are given by
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With the notation of Section 5.2, set For any b,
we have
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For any b and , we have

2
b

1
b



Proof.
b

b 2 1
b

�

i i

�

i
�

For b and , we have
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