Conference paper

Discrete Holomorphicity and Ising Model Operator Formalism

We explore the connection between the transfer matrix formalism and discrete complex analysis approach to the two dimensional Ising model. We construct a discrete analytic continuation matrix, analyze its spectrum and establish a direct connection with the critical Ising transfer matrix. We show that the lattice fermion operators of the transfer matrix formalism satisfy, as operators, discrete holomorphicity, and we show that their correlation functions are Ising parafermionic observables. We extend these correspondences also to outside the critical point. We show that critical Ising correlations can be computed with operators on discrete Cauchy data spaces, which encode the geometry and operator insertions in a manner analogous to the quantum states in the transfer matrix formalism.


    • EPFL-CONF-200328

    Record created on 2014-07-21, modified on 2017-05-12

Related material


EPFL authors