LATTICE REPRESENTATIONS OF THE VIRASORO ALGEBRA I:
DISCRETE GAUSSIAN FREE FIELD
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ABSTRACT. Most two-dimensional massless field theories carry representations of the
Virasoro algebra as consequences of their conformal symmetry. Recently, conformal
symmetry has been rigorously established for scaling limits of lattice models by means
of discrete complex analysis, which efficiently expresses the integrability of these mod-
els.

In this paper we study the discrete Gaussian free field on the square grid. We show
that the lattice integrability of this model gives explicit representations of the Virasoro
algebra acting on the Gibbs measures of the model. Thus, somewhat surprisingly, the
algebraic structure of Conformal Field Theory describing the scaling limit of the model
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is already present on lattice level.
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1. INTRODUCTION AND PRELIMINARIES

1.1. Statistical mechanics and Conformal Field Theory. Physical arguments sug-
gest that 2D lattice models at continuous phase transitions have conformally invariant
scaling limits that can be described by Conformal Field Theories (CFTs). The 2D CFTs
are exactly solvable: they can be studied in terms of representations of the Virasoro
algebra. One can in particular obtain exact formulae for the (conjectural) scaling limits
of correlations, partition functions, and critical exponents of a large family of 2D lattice
models. See, e.g., [BPZ84a, BPZ84b, DMS97| and the references in the latter.

While CFT has been tremendously successful and allowed for the derivation of deep
and spectacular conjectures about lattice models, it usually lends itself only to a non-
rigorous approach to statistical mechanics. Indeed, one needs to assume that the fields
of the models have conformally invariant scaling limits and that they can be described
within the framework of certain quantum field theories. In the special case of the Gauss-
ian free field, the field can be studied rigorously and representations can be found in the
continuum at the level of insertions [Gaw99, KaMall].

An alternative approach to conformal invariance was introduced by Schramm, with
his discovery of the SLE,; processes [Sch00]. The idea here is to consider random curves
that arise in the lattice models and to describe their scaling limits using Loewner’s
differential equation. This approach has been carried out rigorously for random curves in
the following models: critical percolation [Smi01], loop-erased random walk and uniform
spanning trees [LSW04], the FK-Ising model [Smil0], and the discrete Gaussian free field
[ScSh09]. Besides describing scaling limits of discrete interfaces (and so scaling limits
of many natural observables), the SLE process is amenable to calculations and SLE
techniques have been successfully applied to produce rigorous proofs of a number of
the conjectures of CFT. More systematic connections between SLE and CFT have been
studied by a number of authors, with various degrees of rigor, see, e.g., [BaBe03, FrWe03,
BaBe04, DRC06, Kyt07, KaMall].

Still, we are far from having a complete correspondence and, overall, it is fair to say
that the application of CFT to statistical mechanics remains somewhat mysterious from
a mathematical perspective. One of the difficulties is to pass to the scaling limits: one
has to identify fields on lattice level, and to assume (or prove) that they have conformally
invariant scaling limits described by a local action. Moreover, the fields do not always
admit a probabilistic interpretation. A natural approach to improve the understanding
is to try to find precursors of various CF'T objects on the lattice level, and to see what
relations they satisfy.
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1.2. Exactly solvable lattice models. A number of two-dimensional lattice models
are considered exactly solvable. Typically, this means that relations such as the Yang-
Baxter equations or discrete holomorphicity are present on the discrete level. This
implies in particular that the partition function or the correlation functions of these
models admit exact formulae. In fact, this is how most of the rigorous results about
lattice models were derived in the 20th century. See, e.g., [Bax89, JM94| and references
therein.

Recent mathematical progress has allowed for rigorous proofs that a number of exactly
solvable lattice models (in the discrete sense) have conformally invariant scaling limits,
and to rigorously derive exact formulae for their correlation functions (predicted by
exactly solved CFTs). The central tool to establish conformal invariance of these lattice
models is their discrete holomorphicity relations, allowing for the use of discrete complex
analysis techniques, see, e.g., [Ken00, Smi01, Smil0, CHI12].

Once the (lattice) exact solvability has been used to prove conformal invariance in
the limit, one can try to use conformal invariance to reveal the algebraic structure of the
Virasoro algebra, and in this way connect the lattice solvability with the CF'T solvability.
For this, one can either connect the model with SLE or the (continuum) Gaussian free
field and use the techniques described above, or try to find lattice precursors of CFT
objects [BeHo13, Dub13|. A natural question thus arises:

[ Is there a direct connection between the exact solvability on the discrete level
and the one on the continuum level?

We will show that, surprisingly, the answer is positive in two natural cases. On the
square lattice for the discrete Gaussian free field (discrete GFF) and the critical Ising
model, the same algebraic structures that arise in the continuum as consequences of the
conformal symmetry are already present on discrete level as consequences of discrete
holomorphicity. In this paper we will give the proofs for the discrete GFF and in a
companion paper those for the Ising model.

This question has been investigated in the physics literature in the case of the 8-vertex
model (using the Corner transfer matrix) and the Ising model, see [ItTh87, KoSa94]
and the references in the latter. However, our results are the first in which discrete
holomorphicity is connected with the Virasoro algebra and our approach gives the exact
Virasoro algebras (and not deformations thereof) with the right physical content, that
is, the correct central charge. Moreover, the action of the operators takes place on the
level of Gibbs measures, and this gives concrete insight into the role of CFT for the
description of probabilistic lattice models.

Our constructions can be modified to cover the case of the discrete GFF in a half
plane with Dirichlet boundary condition. This corresponds to boundary CFT (cf., e.g.,
|Car84]): besides the two commuting bulk representations, we recover in the vicinity
of the boundary a representation of the Virasoro algebra with correct central charge,
“mixing” the analytic and antianalytic sectors.

1.3. Measure-theoretic framework. An advantage of considering lattice models be-
fore the scaling limit is that measure-theoretic questions become much easier to deal
with.
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[1 We consider complex Gibbs measures on an infinite graph L (typicallg L is a
square grid), that is, assignments of a (finite) complex Borel measure [ gon RC
to the finite subgraphs G[J L satlsfylng the Ellowmg compatibility condition:
for G @ integrating [ & over RE™G gives [

[ If D and Hare complex Gibbs measures on L, we say that [lis a change of measure
of [1if [l is absolutely continuous with respect to [ for all finite G L.

[J For a linear space of complex Gibbs measures M , we call a linear operator
T:M ! M such Tlis a change of measure of [1a change of measure operator.

Our main results are constructions of explicit families of change of measure operators
acting on the Gibbs measures of the model while forming exact representations of the
Virasoro algebra that arises in CFT. In the statements of the results, we furthermore
use the following terminology:

[1 We call a complex %1bbs measuﬁs LI symmetric if for any G and any HBorel set
A 1 RC®, we have [ s (HA) = 5 (A). We call [ antisymmetric if [ (CA) =
G (A).

(1A change of measure operator T is said to be parity preserving (resp. parity
reversing) if it maps symmetric Gibbs measures to symmetric (resp. antisym-
metric) Gibbs measures and antisymmetric Gibbs measures to antisymmetric
(resp. symmetric) Gibbs measures.

[ The complex oonj gate %complex Gibbs measure []is the Gibbs measure T
determined by T A) for all Borel sets A [ RC.

[J The complex oonj ugate of a Change of measure operator T is the change of mea-
sure operator T'determined by T11= TT. Note that T'is still a C-linear operator.

1.4. Discrete GFF. The central object of this paper is the discrete Gaussian free field
(GFF) which we will consider on the square grid Z2. The discrete GFF on the infinite
square grid Z? is defined only up to an additive constant, see, e.g., [Fun05]. To resolve
this ambiguity we choose to consider the (whole-plane) discrete Gaussian free field pinned
at 0, that is, conditioned to vanish at the origin. An alternative essentially equivalent
approach would be to define a discrete gradient Gaussian field on the edges.

The discrete GFF on a finite connected graph G with Dirichlet boundary condition
on @ 6 ; is a collection of centered real Gaussian random variables (1(x)),,g With
covariances given by the Green’s kernel of G, that is, E[[(X)LI(y)] is the expected number
of visits to y of a simple random walk (X;)/=o on G started from x and stopped at the
time ] of hitting @5. See, for instance, [She05] or [Jan97, Chapter 9|. This definition
also works for some infinite graphs, including a case that we will also treat explicitly:
the upper half plane square lattice H = Z [J N with boundary @1 = Z 1 f0g.

When G is a finite subgraph of Z2, the discrete GFF [ can equivalently be defined
asa Gaussian vector of R® with density proportional to exp [ %E(D) , where E (L) :=
% ey (H(X) T D(y))2 is the Dirichlet energy, the sum being over all pairs of adjacent
vertices X;y 2 G[ @3, and we set [1[] 0 on @b.

Simple random walk is recurrent on the infinite square grid Z2, and so the Green’s
function as defined above diverges; an “infra-red” regularization is needed. We will
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use the massive regularization: the discrete GFF on Z? with mass m > 0 is a collec-
tions of centered real Gaussian random variables (Lin(X)) 72 With covariagges given
by the following massive regularization of the Green’s kernel Gp(x;y) = 12=0(1 +
m?) 17 Pxo= o [X¢ = y], where (X¢)s2N is simple random walk on Z2.

[J The pinned discrete GFF on the in[hite square grid is a collection of centered
real Gaussian random variables ([(X)),, 72 obtained as the massless limit of the
pinned massive discrete GFFs as

0 |
0= lim [y [ 0) :
m& 0 m %( )

The pinned discrete GFF could also be defined as the infinite-volume limit of the
discrete GFFs conditioned to vanish at the origin, that is, the limit as N ! 1 of
discrete GFF on finite subgraphs [y [] Z? with boundary conditions 0 on @y [ fO0g,
such that the increasing sequence of finite subgraphs exhausts the whole lattice Z2.

71 We denote by [grr the Gibbs measure of the discrete GFF on Z2, pimyed %t &

For a finite G = fxq;:::;xxg ] Z2 and f : R® 1 C, we denote by f ()

consider a correlation function and take f = [J(x;,) [ITTI(X, ) for X, 5100 X5, 2

m

G notljlece@saély distinct.) Similarly, if [1is a change of measure of [IgfF, xﬁe
write f (L))

for the integral of f with respect to [ e (or with respect to [ @
v
for any G 1 G).

1.5. Main result. Our main result about the discrete Gaussian free field on the full
plane is the following, the more precise version of which will be stated as Theorem 4.2
in Section 4.

Theorem. Let "igrr be the Gibbs measure of the discrete Gaussian free [eld on Z2,
pinned at 0. There exists a space M of changes of measure of [lgrr and explicit parity
preserving change of measure operators L, : M ! M for n 2 Z such that (L,),,>
yields a representation of the Virasoro algebra of central charge c= 1:

l 0
[Loilnl= (MO0 Lypen* o5 M20M e pold:

°

12
. Ot :

Each operator L,, has a complex conjugate L, and (L), and L, . yield two com-

muting representations of the Virasoro algebra with central charge c= 1.

This result is an exact discrete analogue of the classical result that the Gaussian
free field is described by a CFT of central charge ¢ = 1, see for instance [Gaw99,
KaMall]. Through the CFT-SLE correspondence [BaBe03, KaMall|, the parameter
for the corresponding SLE, is [1= 4; and indeed, the level lines of a discrete GFF with
appropriate boundary conditions have been shown to converge to chordal SLE4 in the
lattice size scaling limit [ScSh09].

It is interesting and quite surprising that the central charge can already be seen on
lattice level.



VIRASORO ALGEBRA AND DISCRETE GFF 6

ol ool ol oo ool N &
Tolololololololol
DORSeSSEEReRS o Z2
0TS0 00 0000
DORSRSRORSRSRS )
00000 oo o -z

FIGURE 1.1. The Figure illustrates the square lattice Z2 and its dual Z2.
The medial lattice an consists of midpoints of edges, and the diamond
graph Z2 consists of points of the square lattice and its dual.

1.6. Further results. Similar ideas can be carried out in other settings, too.

In particular, we shall use a Coulomb gas construction to build representations of the
Virasoro algebra with other central charges, see Section 5.1 for precise statements. (We
remark, however, that only the representations with ¢= 1 preserve the symmetry of the
GFF with respect to multiplication by [11.)

We also construct representations for the discrete GFF in the upper half-plane with
Dirichlet boundary condition, see Theorem 5.2.

1.7. Overview of construction. Let us give an overview of the proof of Theorem 4.2
and reduce it to a number of statements to be proven in the rest of the paper:

"I We construct discrete current modes (Section 2), which are lattice analogs of
@(z)z"dz,n 2 Z.

[1 The discrete current modes act on field insertions by discrete contour integrals

(Lemma 3.2).

{1 We define a space of complex Gibbs measures M containing [lgrr (Definition
1.1).

[ The discrete current modes lift to change of measure operators (a, :M ! M), ,,

(Proposition 3.4).

] We show that the commutation relations of the (a,),,7 are those of the Heisen-
berg algebra (Theorem 3.5).

[ We define the Virasoro generators (L, :M ! M), ,, from the discrete current
mode operators using the Sugawara construction (Proposition 4.1).

[1 The construction extends to the antianalytic sector, yielding two commuting
representations of the Virasoro algebra (Proposition 3.6, Theorem 4.2).

Let us denote by Z? the dual of Z2, by Z2 the diamond graph Z?[ Z?, and by Z2, the
medial graph of Z? (the set of midedges of Z?), see Figure 1.1. The lattice representation
of Theorem 4.2 relies on the construction of discrete currents and monomials that live
on these graphs.
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Proposition (Sections 2 and 3). For k 2 Z, there exist natural discrete analogues
@]:2%! C, zM:z2[ z2 1 C, and bl [@](azlk]dz of the current @), the

monomial functions z ¥ z*, and the contour integrals W@(z)zkdz, respectively, such
that the following holds: If

J(2) = [@](2)
is the discrete current, then
2% (11 and h(2) (x)i = o Dz[j” 0 (z 0x)E
forz2 72;x 2 Z2. Moreoverj we have
2i [ [ ]hJ(w)J (2)i ZMdz = kwl
9

forallk 2 Z, w2 Z2,, whenever [[] isasul ciently large closed simple positively oriented
discrete contour.

Let us now define the space of Gibbs measures relevant to our framework.

Definition 1.1. We define M to be the vector space of complex Gibbs measures []such
that:

[ The Gibbs measure [12 M is a change of measure of [ggF;

U For eﬁery finite G (1 Z?, the Radon-Nikodym derivative of ]EG with respect to

GFF ', denoted by gg, lies in LP(LgFF o) for every p< 1.
We also define the subspaces S [ M and A [ M of symmetric and antisymmetric

measures in M | respectively. In other words, S and A consist of the measures in M
with even and odd Radon-Nikodym derivatives gg, respectively.

Remark 1.2. For each G, the linear span of polynomials in the Gaussian variables f [(2) :
z2 Gg; is dense in L? Tigrr'y forevery 06 p< 1, see, e.g., [Jan97, Theorem 2.11].

n 2 Z the discrete current mode a,, actin%on [eld insertions by the contour integral

1
e [ (x1) LLLL(Xim)i = = W (2) (x4) LLLL (X )i z"ldz
]
is independent of the choice of the contour [[] provided that [[] encircles a large enough
neighborhood of origin in the positive direction.
More generally, the product of discrete current modes acting on Celd insertions by
contour integrals

0 O
anj Dl:am [(%1) jDDED(Xm)

1 . ni
= op 0D hJ (w;) (L0 (W) (% 1) CEEE(X,)i W oWt dwy Caw

1 [71]

the contours encircle su_l ciently large neighborhoods of the origin and are radially or-
dered: for | < k the contour [L;] (corresponding to a,,) is contained in the set encircled
by the contour [[}] (corresponding to a,, ).
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U
Remark 1.3. For any given realization, the contour integral . J (z) zI"dz does depend

on the contour [_], but the expected value against any insertion [/(X4) [LLLI(X},) is the
same for all positively oriented discrete contours [[] enclosing a large enough neighbor-
hood of the origin.

0
By Lemma 3.2, the insertions of 0] J (z) zZ"ldz (and the corresponding products) into

correlation functions of the discrete GFF (and its changes of measure) are well-defined
provided we take a large enough contour [[] (or radially ordered sequence of contours).
We show that the current modes (a,)n2z (and their products) lift to unique change
of measure operators (@), ,, which act on M and which can be though of as formal
adjoint operators to the a,,. (This point of view is behind the use of a;,, in the definition
of a, below.) These change of measure operators are the building blocks used in the
construction of the operators (L,,),,,, of Theorem 4.2.

Proposition (Proposition 3.4). For each n 2 Z, there exists a unique operator a ,, :
M ! M such that for any (12 M and any (not necessarily distinct) x1;:::;x; 2 Z?
and any [nite G [ Z? containing the points, we have

ho(xq) L (Xp)i L = I'an](ux1) CLI(XE)i,

= P R (2) D(xe) TID(xm) o( )i Zdz;
o

where g is the Radon-Nikodym derivative of [HG with respect to jGFFHG, and [[] is any
discrete contour that encircles a large enough neighborhood of the origin. The operator

ar, is parity reversing.

We then show that the operators (ay),,7 satisfy the commutation relations of the
Heisenberg algebra:

Theorem (Theorem 3.5). The operators (a,),,,, satisfy the commutation relations
[am; an] = Mg m,0 IdM

Finally, we can rely on the classical Sugawara construction [Sug68, Som68| to define
Virasoro operators L,. See [Mic89] for a nice textbook about the algebra of the current
modes. In the following statement and in the rest of the paper, a function f : RZ1 C
is said to be a cylinder function if it depends only on finitely many coordinates, called
its base.

Theorem (Theorem 4.2). For each n 2 Z, in the formally in[nite sum
1X 1X
Lni= 5 @@kt 5 @duik

2k>0 2k<0

only Chitely many terms are non-zero when acting on an insertion of a cylinder function.
Theaction of L ,, on insertions lifts to a well-de['ned parity preserving change of measure
operator L,: M ! M.

The (L), Yield a representation of the Virasoro algebra with central charge c= 1:

(Lo Ll = (M0 0) Loy 4 (0 1) o
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Remark 1.4. The above expression for Virasoro generators as a formally infinite sum of
quadratic polynomials in the currents is standard in Sugawara constructions. In usual
algebraic Sugawara constructions, the expression has well defined action in representa-
tions of an appropriate type, owing to its truncation to only finitely many terms when
applied to any particular vector — it is sufficient that the representation has a grad-
ing by Lg-eigenvalues that are bounded from below. Our action on insertions by L,
truncates in a similar manner, now because of the finite base of the inserted cylinder
function. We remark, however, that the action on interesting Gibbs measures by L,, can
not be recovered as a finite linear combination of quadratic expressions in (@,;)m2z-

The operators above build a discrete version of the analytic sector of the CFT of the
free field. (One could perhaps call it a discrete analytic sector.) As in the continuum
case, we can also build the antianalytic sector in the same manner, and we thus obtain
two commuting representations of the Virasoro algebra.

Proposition (Proposition 3.6, Theorem 4.2). For n 2 Z, let a,: M ! M be the
complex oonjugate of the change of measure operator a,. For all n;m 2 Z; we have
[@ln;a,] = 0 and [a},; a,] = M+ poidm . Demin%nmas in Proposition 4.2 and L), as
its complex conjugate, we have that (L,),,, and L, .oz Yield two commuting repre-
sentations of the Virasoro algebra with central charge c= 1:

[Lailod = (00 M) L (M ) s G
N 0 1 4 .
I—Dn;I—Dm = (n O m) I—Dn+m + 7(m U m)DﬁmldM
0 0 12

L;L, = 0

Both representations oconsist of parity preserving change of measure operators.

Finally, we can use the background charge idea in the Coulomb gas construction to
yield representations of the Virasoro algebra at arbitrary central charges. When c 6 1,
however, the operators LZ; L@L are not parity preserving, and thus one loses a symmetry
of the original problem.

q
Proposition (Proposition 5.1). Let c6 1 and let b= [ % If we de[ne the change
of measure operatorsd.f;ﬂ?;t M 15 M by LY = L, + b(n + 1)a,, with L,, and a, as
above, we have that L% ., and L) . yield two commuting representations of the
Virasoro algebra with central charge c.

1.8. General remarks. In conformal field theory, the basis (L,),2z that spans the
Virasoro algebra is given by modes of the (analytic component of the) stress-energy
tensor T(z). By comparing with the continuum GFF one might therefore attempt to
define discrete L,, modes as discrete modes of (a constant times) [T(z)] = [J(2)]%.
However, there seems to be no natural way to do this so that one has independence on
the choice of integration contour. Instead, the Sugawara construction of the L, modes
from the discrete current modes can be viewed as taking place directly in “Fourier space”
on the level of operator valued Laurent modes. Our constructions give concrete meaning
to these objects.
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FI1GURE 2.1. Illustrations of the weights in the finite difference operators
@and @and [| = @®@on particular sublattices. The weights of other
sublattices are translations of the ones shown.
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2. DISCRETE CURRENTS, POLYNOMIALS, AND CONTOUR INTEGRALS

We now describe in detail the basic building blocks in our construction.

2.1. Finite difference operators. Recall the definitions of the square grid Z? with
vertices fm + in :m;n 2 Zg, its dual Z2 with vertices fm + % +i(n+ %) :m;n 2 Zg,
the diamond graph with vertices 22u =72 Zzu, and the medial graph an with a vertex
at the midpoint of every edge of Z2. We will sometimes identify an edge of a graph with
its midpoint.

For f:Z% 1 C (and f:2Z2 ! C, respectively), we define [@]:Z2, ! C (and
[@]: Z2! C, respectively) by X

@](2) = af(z+ a):

a2f 1,059
Similarly, we define [@] by X
[@](2) = af(z+ a):

a2f 13,059
We say that f : Z2! C (or f: Z2,! C) is discrete holomorphic at z if [@](z) = O.
For a function f defined on the square grid Z2 (more generally, on a shifted square
grid, e.g., the dual Z?), the discrete Laplacian [[1f ]: Z2! C is defined by

1 X
[Ufl(z) = f(z+ 1) 0f(2);

= |
£2f111,0ig

where the latter sum is over the four nearest neighbors w of z. Note that for f defined on

Za (or on an), the composition @@= @@= [ is the above Laplacian, which in particular

splits to two blocks corresponding to Z2 and Z2 (on Z2, the two blocks correspond to

midpoints of horizontal and vertical edges).
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We record a property that is used in some calculations below.

Lemma 2.1. The transposes of the [nite dilJerence operators @are J@(the operator
CZh | CZ has transpose CZ° | CZh and vice versa). In particular, if f: 22 1 C
and g: Z2! C are functi)o(ns, at least one of wl)f](ich has [nite support, then

f(2)@l(z) =1 [@)(2)9(2):

2272, 2272
Similarly, the transposes of @are L@

2.2. Potential kernel and discrete Cauchy kernel. In the full plane, the expected
number of visits to a point by simple random walk (X¢);2N is infinite, and for this reason
a naive definition of the (massless) discrete Gaussian free field will not work and one
needs to consider a regularized version instead.

We shall use the massive regularization based on the massive Green’s function Gp: Z2 !
R, m> 0, which is the function decaying at infinity that satisfies M?Gm U [ Gm] = Lo.
If we subtract a suitable diverging constant, for example the value at the origin, the
massless limit m & O can be taken. We define the potential kernel a: Z2! R by

a(z) = (Gm(0) L Gm(2)):

lim
m& 0
It is a function satisfying [[1@](z) = [¢(z) and having logarithmic growth at infinity, and
it is determined up to an additive constant by these conditions. In fact we have

2 .. 200+ log8 -

a(z)= logjz+ =07 + O(jzj ?)

U U
asz! 1, see, e.g., |LaLil0, Sections 4 and 6|. For convenience, we extend the potential
kernel to the diamond lattice Z2 = Z?[ Z2 by setting the values on Z? to zero. With
this extension, we can consider the function

[@]: Z22,! C;
which is purely real on the horizontal edges and purely imaginary on the vertical edges
of Z2.

See [Hon10, Ken00] for discussion and references to the following result.

Lemma 2.2. The function K = [@)] is the unique function K : Z2 | C satisfying
z) = [p(z) and K(z) ! Oasjzj! 1. We call K the discrete Cauchy kernel with

@& (2) = "o(2) iz g

pole at 0.

Proof. Clearly K = [@] satisfies [@] = [@&)] = ['a] = [, and K decays at infinity.

To show uniqueness, consider the difference of two functions satisfying the properties.
The difference is a function on 22L = 72] sz which is annihilated by @and in particular
its restrictions to Z2 and 22D are harmonic and decaying at infinity, thus zero. O

2.3. Discrete Laurent monomials. We next define discrete Laurent monomial func-
tions on both Z2 and Z2,. The appropriate neighborhoods of origin are measured in the

norm Kx + iykq = jxj + jyj, and we denote these neighborhoods on the two lattices by
n (o}

B ym(r)= 222%, :kzki6 1
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Lemma 2.3. There exist unique functions z ¥ zI¥1, k 2 Z, de‘ned for z 2 Z2[ Z2,
such that:

[ The functions z 7 zI*] for k 2 f(11;0; 1g are given by

2% ) 1: 2=z
and 8
< 211K(2) for z2 72,
2=z K(zila) forz2Zz2:
a2f 50k
[ For all k 2 Z we have
(2.1) (@] = kz*'1I;
"I For k > 0 the function z 7 z!*] is discrete holomorphic in the sense that
[@"* o o:
[J For all k > 0 we have the vanishing at origin conditions
I, 0w P D0 U P
o+l = o; -+ = =0 -+ = =0
2 2 2 2
o 14 iD[’“]+ E Di[[’“l+ S iD[k]+ Torei W o
2 2 2 2 ’

The functions z ¥ z[*! are called the Laurent monomials, and they have the following
further properties:

[ Forallk2Zandz2 Z2[ Z2, we have zlF] = Z[H.

IFor all k2 Z and z 2 Z?[ Z2, we have (iz)Fl = i*z[*,

[ For k > 0 the function z 7 z*! vanishes for z 2 B ,,,(£51).

"I For k 6 (11 the function z¥7 z*! is discrete holomorphic outside a neighborhood
of the origin in the sense that [@*] = 0 for z2 B ,,,('3).

In the proof below we use discrete integrations that differ slightly from the important
integrals later (for the attentive reader there should be no confusion, however, as later
we will use integration contours on a different lattice, and we will integrate products of
two functions). Below, for a function f defined at the midpoints of edges of Z2 (i.e., on
Z2)), we define the integral along the oriented edge 2w (z;w 2 Z2, jz 0 wj = 1) by the
evident expression (W [ z) [0 f (35%). The integral along an oriented path is the sum
of the integrals along the oriented edges of the path. Note that the positively oriented
integral around a plaquette surrounding z 2 Z2 of f : Z2, ! C is just 2i[@](z). The set
of horizontal edges (Z + %) 1 Z 11 Z2,, the set of vertical edges Z [1 (Z + %) 1 Z2, and
the dual Z2 = (Z + %)2 are all translates of the standard square grid Z2, and we define
integrals on these with obvious modifications.

Proof of Lemma 2.3. The case of negative k is obvious once zI'' 1l has been defined by
the formula given above. Indeed, to have the correct derivatives of Equation 2.1, we
need to set (1

Z[D1Dm] - - [@12[]1]]:
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It follows from the property [@! "] = 201p(z) + %P o« La(z) and the definition of the
difference operator @ that [@!""'™] vanishes outside the neighborhood B -,,,( Tem) of
the origin. The symmetry (iz)[" 177 = " 1/mzlE19m] fo]lows from the symmetry a(iz) =
a(z) of the potential kernel, and the expression for @ The symmetry z[ /177 = Z[015m]
similarly follows from a(z) = a(z) and the expression for @

For positive k, we proceed recursively. We first define z[% and zI"l by the given
formulas (they obviously satisfy the stated properties). Then for k > 2 we define zI* by
integrating kz!*" 1. For z 2 Z? the path of integration is any path from 02 Z? to z. The
result is independent of the choice of such path because [@*" 1] 1 0. For z (a midpoint
of) a horizontal edge the path of integration is any path from % 2 (Z+ %) [1Z to z (we

could alternatively take the starting point D% without any change, since 0“1 = 0),
and for z (a midpoint of) a vertical edge the path of integration is any path from
22Z0(Z+ %) to z (we could alternatively take (15 as the starting point). For z 2 z?

the path of integration is ary path from % 2 22J to z, and we include an additive

constant so as to guarantee al*l = 0 (in fact, this additive constant is

a2fC B 0lig
zero except when k = 2, in which case we have to set (%)[2] = 5).
To calculate [@*], write it as
" # " #
0 Pw o fwT T T T

[k]zf + — — + _
[@]222DZD2 D222D2D2

and note that the two terms are both equal to %kz[km] by the construction of zI¥! as an
integral. Similarly, in the calculation of [@[*)] the two contributions cancel. We have
thus constructed Laurent monomials with the desired defining properties, and uniqueness
is clear since only constant functions are annihilated by both @and @

The fact that z[*! is 0 in gu/m(%) follows inductively: the vanishing of z[*" " in a
neighborhood of origin makes its integral z!*] constant in a slightly bigger neighborhood,
and this constant is fixed by the vanishing at origin conditions. The symmetries (iz)¥l =

i*2lk] and zI¥ = ZIM are clear by the construction. (]

2.4. Discrete contour integrals of products of two functions. We now define the
important notion of discrete contour integral of a product of two functions. The contour
of integration will be a path on the shifted half-mesh square lattice (%Z + ‘11)2. Note that
any edge of this lattice is between a point of an and a point of Z2, both at distance ‘1—1
of the edge. Let f : Z2/ 1 Cand g: Z3! C be two functions. We define the integral of
the product of f and g along an oriented edge [@V] (u;v 2 (%Z + %)2, jullvj= %) as
U
f(z)9(z)dz := (v iu) Uf(zn)9(z);

[uv]

where z,, 2 Z2, and z;- 2 Z? are the points at distance % of [Ek/] The integral along an

oriented path [[] on (%Z-D'- %)2 is the sum of the integrals along the oriented edges of the
path, and is denoted by ['y]f (z)g(z)dz (by convention, we write the function defined on

Z2 first, and the function defined on Z?2 second).
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- <‘p|»'_—<‘p———<‘p— —o-fol-off}e-1-o-1-- 1 oriented edge of (3Z + ;)2
oS ol o loute ol
N e e e e e + deneion
--t-0-140-4-0-4-0-1-0-1-0f-0-1-0-1--
DAY —6|»' ofTo ——_5}——6———6———6— - ¢ gdened on z2
Celdelde def e o e

FIGURE 2.2. A discrete contour is a closed counterclockwise oriented
path on the shifted half-mesh square lattice (%Z2 + }1)2.

By discrete contour we mean a positively oriented (i.e. counterclockwise) closed simple
path [C] on (%Z + %)2. We denote by

int [[]012Z2  (respectively int,,[[] [ Z2))

the set of points of the diamond lattice (respect_ively the medial lattice) encircled by [[].
The discrete closure int [[] [] Z2 (respectively int,,[[] [T Z2,) is the union of int [[] [1 Z?

(respectively int ] 0 Z2) and the set of points of Z? (respectively Z2,) at distance %

from [C]. The integrals over such closed discrete contours are denoted by
U

f(z)g(z)dz

M1
and they can be evaluated with the help of the following combination of discrete Leibnitz
rule and Stokes’ formula.

Lemma 2.4.DLet f:Z2 ! Candg:Z2! Cand][]a discrete contour. Then we have

X X
f(z)9(z)dz = i f(z) [@](z) + i [@](2) 9(2)

(] 22intm 4] 22int []

Proof. Decompose the integral to a sum of integrals around elementary plaquettes of
the shifted half-mesh square lattice ( Z+ 1) , and notice that the integral around a

plaquette that surrounds z 2 Z2 is If [@] and the integral around a plaquette
that surrounds z 2 Z2 is i[@](z) 9(z). 0

2.5. Discrete residue calculus. As a consequence of the above simple lemma, we have
the following discrete analog of a standard residue calculation.

Lemma 2.5. Let m;n 2 Z, let r = maxf0; [17; 159, and let [[] be a discrete contour
that separates the neighborhood §r/m(r) of the origin from inCnity. Then we have
0

1
2.2 —  ZzimlZnlgz = :
( ) 20 . 1n+ n,[1
where zI"™! and z[" are discrete Laurent monomial functions restricted to Z2, and Z?,

respectively.
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Proof. By Lemma 2.4 we have
U

1 X X
(] 22intm ] 22int - [7]

and we note that by the assumption on [C], the sets int,,[[] and int[[] contain the
supports of [@"] and [@™], respectively. Also note that if m;n > 0, then (2.2)
follows immediately from (2.3), since z[™ and zI™ are discrete holomorphic.

Suppose n > 0;m 6 [11. Then only the second sum on the right hand side of (2.3)
remains. Using @ = [/ @repeatedly we get that

(D»])umL1 X

X
(2.4) (@™ zl" = Cm ) (@™ 'zl 1z

22int; [4] " z2intr[4]

1 X [@[[ 1]] [@mD'lZ[n]]

(0m 0 1)!

- n! X (@01 Zl e
(Om O (n+ m+ 1)! ’

where the sums in the last two expressions are over z 2 Z2 or z 2 Z2,, according to
whether [Jm g 1 is even or odd, respectively. In the two cases, we have that [@""] is
2009(z) or 5 of; 1oig [.(z), respectively, and in either case the result of the whole
expression evaluates to [j,+.,+1. The case n 6 [11;m > 0 is similar.

Finally, in the case m;n 6 (11 rewrite both sums on the right hand side of (2.3) as
above. If n and m have the same parity, then each of the rewritten sums vanishes sepa-
rately because the summands are odd: [@](0z) U (Dz)"* ™ 1= g[@](z) o z»* m+ 1.
If n and m are of different parities, then both rewritten sums are sums over the same
sublattice — they are otherwise identical, but they come with opposite signs and cancel
each other. N

Remark 2.6. Discrete holomorphic monomials and related constructions have been con-
sidered by several authors, apparently beginning with the work of Duffin [Duf56]. We
mention also the more recent work of Mercat [Mer01] which was also in part motivated
by applications to statistical mechanics models.

3. DISCRETE CURRENT MODES

3.1. The discrete Gaussian free field pinned at the origin. While the (massless)
discrete Gaussian free field can not directly be defined in the full plane, the massive
Green’s function Gy, introduced in Section 2 is the covariance of the well-defined massive
discrete Gaussian free field (Uim(z)) .72,

h m(z) Ln(w)i = Gm(z L w):

In the massless limit m & 0, differences of values of the field remain well-behaved. The
pinned discrete Gaussian free field [1is the limit as m & 0 of the field [, [ [ip(0).
We can write its correlation functions in terms of the potential kernel a introduced in
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Section 2,

N(2) Wi = 1im A2 © Cn(0) (Crn(w) T O))

a(z) + a(w) L a(z L w):

3.2. The discrete current. Let [ be the discrete GFF on Z?, pinned at 0. To define
the current

J@) = @) (z22Z%);
we first extend the definition of [1to Z2 = Z?[ Z2 by setting the value of [Ito zero on
Z2. By differentiating the two point correlation function
h(z)[(w)i = a(z) + a(w) [ a(z [ w)

we can now conveniently write the correlations of the current in terms of K = [@)]. For
example: (

K(z) 1K(z[1x) ifx22Z% z22Z2;

0 ifx22% 2222 °
[@](w [ 2):

3.3. Wick’s formula. Let [1be the discrete GFF on Z%, pinned at 0. We have given
the two-point correlations for its current J = [@] in terms of [@X]. Wick’s formula lets
us compute higher order correlations of a Gaussian field from its two-point correlations;
see [Jan97, Chapter 1] for a proof.

hJ (z) ()i

hJ (2)J (w)i

Lemma 3.1 (Bosonic Wick’s formula). Suppose that (X;);2; is a [hite collection of
centered Gaussian random Variabl&e+ Then we have

Y X Y
(31) X, = thXbi X
21 P fabg2 P

where the sum is over all pair partitions P of |, i.e. over collections P of % mutually
disjoint two element subsets of | (the sum is empty if jlj is odd).

We will make calculations involving correlations of the discrete current J(z) and the

field [(x). In particular, the V\E)ick expansion of E

J(2)J (W) (x1) CTTTAX)

contains terms of two types: those in which the two currents are paired together
U 0 0 0

(3.2) J(2)J(w) (Xa) HA(Xp)

fa,bg2 P

(P a pair partition of f1;2;:::;kg)
and those in which both are paired with something else

0 BN oY 0O 0
(3.3) J(2)(xi)  J(w)LAx;) (Xa) AXs)
fa,bg2 PO
(i 8 j and P%a pair partition of f1;2;:::;kgnfi;jg):
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3.4. Discrete current modes acting on insertions. Suppose that G [1 Z2 is finite.

For any (12 M and any n 2 Z we define discrete current modes a@ acting by discrete

contour integrals on insertions of functions f : R®! C in LP(Igrr ) for some p > 1:
D H E 1 D H H E

(3.4) a,f (0 = p= J@)f (TYg(y) z"dz

FG
o)

where [[] is any discrete contour separ@ting Gl §U/m(maxf 0; 2 2g) from 1 , and g = gg
is the Radon-Nikodym derivative of [] e with respect to [ Gpp S

More generally, we define the iterated action (or “product”) of multiple discrete current
modes on field insertions by contour integrals

D - E
ay, [la,,f (1)
1 o * 0 D H H E
— n [nj] .
= =5 mmm] J(w;) LI (wa)F (U Q)a( ) wh rrow! dwy (rdwy;

where the contours are radially ordered: the contour [[4] of integration of wq separates
G[ B n(maxf0; [14-g) from 1 , and for k = 2;3;:::;], the contour [[};] of integration
of wy, separates int, [ 1][ int [ 1][ Bym(maxf0; 5g) from 1 0 .

It follows from Hélder’s inequality that the integrals ha,f (Ljg)i , and  ay (118, f (CLje) p
make sense for any given choice of contours, but we need to verify that the definition is
independent of the choices of contours.

Lemma 3.2. Suppose that G| Z? is [niteand that f : R®! Cisin LP({ grF HG) for
some p> 1. Then,
U U D E
[ ]mm . J(w;) (T (wy)f ([HG) wh! ! s Cdw;;
Vi il

radially ordered as above.

Proof. We consider the case of one contour first, and we assume G6 ;. By the domain
Markov property of [Junder [ggF, if we condition on the values of [1on G, the conditional
distribution of [1outside of Gis that of a Gaussian free field with Dirichlet zero boundary
conditions plus a discrete harmorﬁc function h: Z2nG! C with boundary values on
@Z2nG) given @y the values of LI, Consequently, by conditioning inside the expected

) is measurable with respect to the values of [Jon G, we have
D H E D H E
(3.5) J@f (T = [@2f () 3 z27Z5:

value, since f (T

Now suppose [ is another positively oriented closed discrete contour that also separates
Gl By (maxf0; [15g) from infinity, and which we may for simplicity assume to encircle
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at least the same set as [[]. The identity (3.5) now shows that
| |
0 "D E [ D E
O J(2)f (DEG) z"ldz O [@](z)f ([EG) z"ldz
S 7] L, DI M

o o +
= f([HG)[ O [@](z)z"dz = O
Q& v

Indeed, the last equality follows since zI™ is discrete holomorphic outside of gu/m([ 3);
and so for any discrete harmonic function h as above, the formula of Lemma 2.4 gives

o o!
- O [@](z)z"dz
[

1 X
[@](2) @[Z’i]}] + [E_ ?E rallk
=0

22int[y9nint [4] =0

22intm [y9nintm [+]

It remains to check the case with several radially ordered contours. By conditioning
on the values of [1on G and on the contours [[ 1] and [[}+ 1] (more precisely, on the
vertices of Z2 at distance 41—1 from these contours), a similar argument as the one just

given implies that we can move [[}] as long as it is between [[} 1] and [[j+1]. O

3.5. Current modes as change of measure operators. Each discrete current mode
a, induces a change of measure operator acting on M , denoted by a ,,.

We first state an auxiliary result on the reconstruction of the change of measure
operator from a Consis?nt family of operators acting on insertions. Below we denote
briefly L = LP(LgFr ¢)- Note that a Gibbs measure (12 M is determined by the

collection of Radon-Nikodym derivatives (96)g 72 finite:

o
9 = 4% ;
dDGFFG p<1 G

which satisfy the consistency conditions that for any G [ G®we have
h @] i
ge(le) = E geo(tie) Tia ;

where the right hand side is the conditional expected value over the discrete GFF [Jgiven
its values on G. Conversely, any collection (96)g 72 finite ©f functions gg 2~ ,_4 L
satisfying the above consistency condition determines a Gibbs measure [12 M .

Lemma 3.3. Suppose that (Ag)g 72 nite 1S @ family of linear functionals

[
Ac: LI C

p>1
such that

_Ifor any p> 1, the functional Ag restricted to L% is a bounded operator
(foral Gl Gandf 2 L%, the consistency Aco(f ) = Ag(f ) holds.
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Then there exists a unique change of measure operator A: M | M such that for any
12M andGandanyf 2 L%, p> 1, we have

My, = Ac(f gb):

Proof. Fix a Gibbs measure [12 M . Uniqueness of the Gibbs measure Al with the above
correlation functions is clear, so it suffices to construct one and prove that A[12 M .
Fixing first also G, we note that the map

7 Ac(fgh)

is a bounded linear functional oxr- any L%, p> 1. It follows from LP-space duality, that
there is a unique function g2 4 Lg quch that we can write

|
Ag(f gg) = f 0f :

Consistency of the operators implies that for all f 2 L and for any G 1 G we have
|

[f o - Df 0g :
Thus the collection (Lig)g 72 finite 1S consistent and can be ﬁsed to define the Gibbs
measure Al such that the Radon-Nikodym derivative of (AL)
Al has the desired c%rrelatlon functions, the Radon-Nikodym derﬁative & is in L for
allp< 1, and (AL) ¢ Is absolutely continuous with respect to [/ — so we have that
All2 M is a change of measure of [, (]

is [g. By construction

Proposition 3.4. For each n 2 Z, there exists a unique operator a,: M ! M such
that for any (12 M and any x4;:::; X3 2 Z2,

ho(x4) LX), = PR T(X) CIET(XE)T,

The operator a,, is parity reversing. Moreover, for any n4;:::;n; 2 Z, the composition
of operators a,, [lay :M ! M is characterized by the formulas

g 0
Ay Llann, F(X1) CIT(X k)

ho(x1) CTTT(Xp)i )

an.]%n- 12 = ’
for all 12 M and x1;:::;x; 2 Z2, and we recall that the product of current modes

a, [1la-,, acting on insertions is taken radially ordered.

Proof. Since polynomials in ((X)),,g are dense in any L%, and the association f ¥
ha,fi is bounded in any L%, the existence and uniqueness of the change of mea-
sure operator a, follows from Lemma 3.3. The formula for the correlation functions
of a,, [11ap [1is obtained iteratively, and the uniqueness of the measure with these
correlation functions is again clear. To show that a, takes symmetric measures to an-
tisymmetric measures and vice versa, just note that the Radon-Nikodym derivatives
D’é for a,ll, as constructed in Lemma 3.3, have the opposite parity compared to the
Radon-Nikodym derivatives gg for [. a

Theorem 3.5. The change of measure operators (a,,); n 2 Z; form a representation of
the Heisenberg algebra:

[am;an] = mgn+n,0idM .



VIRASORO ALGEBRA AND DISCRETE GFF 20

[[2] encircles [(4]. We shall start by computing

(3.6) hapan(x1) DDD%(XICH L hepan, LX) LL(X)i

= 1 hJ (z)J (W) (x1) (X )i wiMzI™ldwdz
Y el bl
0 o
ol hJ (W)J (z) [(x1) LT (X )i ZMwl dzdw:
2l bl

A Wick expansion of the correlation function produces terms of the form (3.3) that
factor and thus cancel in (3.6), and one non-cancelling term of the form (3.2). By fixing
W 2 Z2 at distance % from [4] in each of the two integrals contributing to (3.6), and
rearranging the integrations with the help of Lemma 2.4, we see that the contribution
of the non-cancelling terms to (3.6) can be written as
0 pd 0
ho(x1) CLLL(X g )i O — hJ (z)J (w)i zZ'™ldz wi™ldw;
] [ow]
where [[},] is a positively oriented discrete closed contour encircling w. For each w, the

inner integral therefore becomes
N 0

hJ (z)J (w)i zZI™ldz = [@](z 0 w) z™dz
[ow] [Uv)&
i [@x(z ' w)z"™!

z2int [g{v]

i [@(z 0 w) (@]

22intm [ow]

= [ |mw[m7 1]’

where we used Lemma 2.4, the fact that [@] = 0 inside [[},] and the antisymmetry
of @stated in Lemma 2.1. We then integrate around [[ 4] and apply Lemma 2.5:
U pb 0 .
. Lim
h (z)J (w)i zZI™ldz wildw = ——
[v1] [ow] [v1]

wimwitldw = Cm e 0

Now, let 12 M and a finite G [1 Z2 be given. The computations above describe
the action of (a,a, [ @,a,,) on insertions of polynomials P in the Gaussian variables

(LX) 26
D B E D H E
(37) (aman U anam)P([ G) = mg}7m+n P(D G)
Since this holds for all polynomials P, we obtain
[aDn; a]m] 0= mLO,m+n L5

and so the proof is complete. O
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By a@alogous arguments we may construct antianalytic current modes a;, correspond-
ing to  JH{z)zI"ldz] where J{(z) := [@](z), and show that these operators also yield a
representation of the Heisenberg algebra.

Proposition 3.6. For each k 2 Z, there exists a unique operator a, : M ! M, with
a,S [ A and apA [ S such that for any (12 M and any (not necessarily distinct)

ho(x 1) LX) g, = PE(Xq) ELEE(X )i

ag p”
Moreover, the change of measure operators (a},),2z form a representation of the Heisen-
berg algebra:
(8 @,] = ML+ noidm
and they commute with the discrete analytic current modes

[a.;a,] = 0O

Proof. The construction of @}, and the calculation of their commutation relations is
identical to those of a,. To see that the two representations of Heisenberg algebra
commute, note that in a calculation like in the proof of Proposition 3.5, a Wick expansion
J(z)ﬂw)u(m) 211 (Xg) yields cancelling terms plus a term containing the factor
J(2)H{w) = [@](w L z). But this function of z is identically 0 on the contour [J,. [

4. SUGAWARA CONSTRUCTION OF VIRASORO MODES

We are now ready to construct the operators that span the commuting Virasoro
algebras.

4.1. Virasoro modes acting on insertions. For any n 2 Z, the action on insertions
of the formally infinite linear combinations

1X 1 X
(4.1) L,:= > a5t 5 a8 ;
j7>0 j6 111
1X 1 X
(42) I—Dn = é ﬁnLjﬁj + E ﬁjéﬂuj
>0 j6 01

of current modes are well defined, since only finitely many terms ever contribute when
we act on insertions of cylinder functions. Indeed, for fixed finite subgraph G [ Z2,
denote

Mg =1+ 20 maxfkzk, : z2 Gg:

the integration contour in the definition of @; can then be taken so that in the integration
the monomial zU! only ever gets evaluated in the set B’ J/m(]%), where it is zero. Thus
for f 2 Lg the action of L,, is actually defined as the finite sum

D E {XeD E , x! D E
Laf(lg) = > anogaf (Lg) + > ajan;f (1)
j=0 j=nllMg

and similarly for L,.
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4.2. Virasoro modes as change of measure operators. Like in Section 3 with
current modes, we can lift the action of L,, on insertions to an action on Gibbs measures.

Proposition 4.1. For each n 2 Z, there exists unique operators L,, and L;, on M such

h(x4) CLLL(Xg)i 7, = o (X ) CEEE(X)i
ho(xa) C(XR)i gy = Bhnl(x) L (XE)
The operators L ,,; L), are parity preserving.

Proof. For any n 2 Z, the operators L -, and L', form consistent families of operators
that are bounded on each L, p> 1, as follows immediately from the fact that for a fixed
Gand n 2 Z they coincide with finite linear combinations of products of current modes.

Thus by an earlier Lemma, they lift to change of measure operators L,,: M | M and
L,: M ! M, respectively, uniquely determined by the above formulas on the dense
subspace of polynomials. O

Keeping in mind that a,, is the change of measure operator obtained by lifting the
action on insertions of a-,, and that the lift of a composition is a composition of lifts
in the reverse order (the change of measure operator is a formal adjoint of the action on
insertions), we have a formal expression for the L,, as

1X 1 X 1 X 1X
L, = > ajaj+n t > aj+nan; = 5 ajan; t > an a5,
7>0 761 76711 j>0

and similarly for L,,. However, one would have to make sense of these infinite linear
combinations of (compositions of) change of measure operators. Our approach of lifting
the action could be thought of as considering the pointwise convergence of the above
series of change of measure operators when the underlying space of Gibbs measures is
equipped with an appropriate weak topology.

4.3. Virasoro commutation relations. To be self-contained, and to be explicit about
the well-definedness of the needed compositions of operators, we include here the well-
known calculation of the commutation relations of the operators L, obtained by a
Sugawara-type construction.

Theorem 4.2. The two families of change of measure operators (L,); (L,,); n 2 Z; yield
commuting representations of the Virasoro algebra of central charge c= 1:

ILyiLn]l = (M ON)Lpsen + 11—2(m3 M) e ol d;

[I—Dm; I—[n] (m U n)I—Dm+n + %(m3 U m)@rﬁ n,OId;
[Ln;Ly] = 0
We have [L,;am] = UMap+m, [Lh;@n] = Mag+m, and [L,;ah,] = 0= [L,:a,.].

Proof. By the remark at the end of Section 3 it is clear that [L,,;L,] = 0 for all m;n 2
Z. We will check the Virasoro relations for (L,) by first treating the actions (L,) on
insertions; the argument for (L,,) is identical. Using the commutation relations of the a,
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(see the proof of Theorem 3.5 and Proposition 3.4) and the simple commutator identity
[A;BC]= [A;B]C + B[A; C], we have
X X
2[Lm; an] = ([amuj; an]aj + amuj[aj; an]) + ([aj; an]amuj + a; [a/ij; an])
j>0 76101
= [ 2na,+n;
where at each step of the calculation the expression has a well-defined action on insertions

of polynomials P of ([(X)),,g due to a truncation to finitely many terms. Consequently,
again by Theorem 3.5, Proposition 3.4, and the same commutator identity, we have
X

AL msLnl = [Lmsansja]+ [Ln;aa,05]
)]{>0 76 01
= (D(n jj)a/nﬁnujaj Djaanam+j)
J>0
X . .
+ (D(n Dj)ajam+nDj DJam+jafn[j)
16 (11
X ] . X .
= (mOn+j Om)ay+,ja; L ( ©m)am+n ;8
P0 i>m X
+ (MmOn+j m)aamsn ;- (j Um)ajams noj
76 011 j6mi1
We can rewrite this last expression as
1 X 1 X
Lrmilal= 5 (MUM&Em a8+ 5 (M UN&8ns 50+ R
>0 76 01
= (m U n)l—m+n + Rm,n;
where 8 p
2 % ;T(f(m JiNajam+nrj [ an+nija;) ifm>0
Rm,n:=>0P ifm=0
T3 S UMY A ja;) i m< O

We then show that R, , = 11—2(m3 Um)Ly+pn,0. If m> 1 this is seen by the calculation

1%
Rinn = 2 (M U j)@jams g [ @menija;)
j=0
1 )1
2 (M 0])j Gn+no (by Proposition 1.7)
j=0

1
= E(mS g m)un"'n,o;

and if m 6 (1, the calculation is similar.

As in the proof of Theorem 3.5, the commutation relations for the actions on insertions
give the commutation relations for the change of measure operators, because L,a,, [
aL ., is the operator obtained by lifting the action of a,,L ., [l Lj,a,, in the sense
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of Lemma 3.3, and L,L,, [ L,,L, is the operator obtained by lifting the action of
LDmLDn ] LDnL[m etc. [l

5. FURTHER RESULTS

5.1. Coulomb gas. By adding a multiple of the current mode to each L,, one obtains
representations of the Virasoro algebra with other central charges. For b2 R we define
change of measure operators

(5.1) L := L, + b(n+ 1)ay; LY := L}, + b(n + 1)ay;

which will both satisfy the Virasoro commutation relations with central charge ¢ =
1 12t7. For b 6 0, these operators are not parity preserving (nor are they parity
reversing), as opposed to the L, corresponding to ¢ = 1, and they can therefore be
considered less natural.

Proposition 5.1. For c6 1 and n 2quwe delne the cBan%e of measDure operators
L5 :M I M by (5.1) withb= 1 1¢ wehavethat LY . and L} . vyied
two commuting representations of the Virasoro algebra with central charge c, that is
[Lo;Lh]=0,

n’

L LAT= (M O )Lh,+ (M 0 m) e oid

and similarly for (L?).

Proof. Starting from the observation [L’,’n; a,] = nap+, + bMLjy+, 0idy , the proof is
a straightforward modification of that of Theorem 4.2. O

5.2. Discrete GFF in a half plane. A similar construction based on current modes
can be carried out for the discrete GFF in the upper half-plane H = Z [N with Dirichlet
boundary condition on @1 = Z [ f0g. We sketch the construction.

In the half-plane H, the Green’s function GH(z;w) is well defined even without an
infrared regularization: for a fixed w 2 H it is determined by [[0GH](Gw) = [}, and
GM(z;w) = 0 for z 2 @. The discrete GFF in the upper half-plane is a collection

(1H(2)).2n of centered real Galrl]ssians with covariance given by the Green’s function
i

E Hz)yHw) = Gz w):

We note that since GH(z;w) = a(z/w) [1a(zw), the field [H can be constructed by
a reflection: if [1= ([((z)),p72 is the pinned discrete GFF on the infinite square lattice
Z2, then the field 0 0

H(z) = 91—2 (z) U (2)
is a discrete GFF in the upper half-plane. We define the current by
JM(2) = [@"1(2)

with (M extended to the dual as zero. With the reflection trick, the current makes
sense for all z 2 Z2,, its correlation functions are recovered by Wick’s formula from the
two-point functions D E

JH2)H(x) = Kz x) UKz X)
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for x 2 Z? (discrete holomorphic for z 2 fx;xg), and we can define the action on
insertions by integration
D ] E 1 D 0 0 E
allf (1 o) = oP= JH(@)f (T G)g(DH o) zZ" dz

!

where [[] is any sufficiently large simple closed discrete contour and g = gg is a Radon-
Nikodym derivative. If one prefers not to resort to the reflection trick, the above expres-
sion can be written entirely in terms of ([7(z)).2n by noting that the contour may be
assumed to be symmetric with respect to a reflection in the real axis, and then in the
integrand we may use zI"l = z["l and JH(z) = 0JH(2) to rewrite everything in terms of
only the part of the contour that is in the upper half plane.

From the two-point fuIBJtion of the cltzlrrent

I (w) = [@l(w 12) 0Ly
one recovers the Heisenberg commutation relations
alall 1 alla! = mij.,,0id

as before. The construction of the change of measure operators (al),,2z and the Virasoro
operators (L;')nzz is entirely parallel to the case treated earlier, and one obtains the
following result:

Theorem 5.2. Let M " be the vector space of complex Gibbs measures that are changes
of measure of law of the discrete GFF in H, and whose Radon-Nikodym derivatives with
respect to it arein L? for all p< 1 .

There exists a family of change of measure operators (al),.2z on M that are parity
reversing and that satisfy the Heisenberg algebra commutation relations and a family of
change of measure operators (LH),2z on M " that are parity preserving and that satisfy
the Virasoro algebra commutation relations with central charge ¢ = 1 and such that
[Ln; am] = Drnan+ m:+
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