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Quantitative SMLM
Single molecule localization microscopy (SMLM), which can provide up to an order of magnitude
improvement in spatial resolution over conventional fluorescence microscopy, has the potential
to be a highly useful tool for quantitative biological experiments. It has already been used for this
purpose in varied fields in biology, ranging from molecular biology to neuroscience. In this review
article, we briefly review the applications of SMLM in quantitative biology, and also the challenges
involved and some of the solutions that have been proposed. Due to its advantages in labeling spec-
ificity and the relatively low overcounting caused by photoblinking when photo-activable fluores-
cent proteins (PA-FPs) are used as labels, we focus specifically on Photo-Activated Localization
Microscopy (PALM), even though the ideas presented might be applicable to SMLM in general. Also,
we focus on the following three quantitative measurements: single molecule counting, analysis of
protein spatial distribution heterogeneity and co-localization analysis.
� 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction (STORM). The former uses fluorescent proteins for labeling (called
With the invention of single molecule localization microscopy
(SMLM) [1–3], it has become possible to extend the advantages of
fluorescence microscopy beyond its diffraction limited spatial reso-
lution of about 200 nm. This provides the possibility of resolving
organelles or even single molecules with an order of magnitude bet-
ter resolution, in multiple color channels and in 2D as well as 3D.
Recent reviews on the updates on the technology and its uses can
be found in [4,5]. SMLM can potentially be used for quantitative
measurements [6,7], e.g., in counting the number of molecules of a
protein specie [8] and stoichiometry estimation of protein complexes
[9–11], characterizing the spatial distribution of a protein specie
[12–15], estimating the co-localization or co-clustering between
organelles and also single molecules (SM) [16–19], estimating the rel-
ative positions of various components in a protein complex with high
precision [20,21], and estimating the diffusion coefficients by means
of single particle tracking (SPT) in a dense sample [22,23]. Two basic
variants of SMLM are Photo-Activated Localization Microscopy
(PALM) and STochastic Optical Reconstruction Microscopy
photo-activable fluorescent proteins, PA-FPs), whereas the latter
uses organic dyes. Since the usage of fusion proteins used in PALM
provides comparatively high specificity labeling as against immu-
nolabeling (the typical labeling technique used for STORM), and
since the phenomenon of photoblinking for PA-FPs is minimal (as
against the photo-switchable organic dyes used in STORM, which
typically blink 10 times or more before irreversible photobleaching
[24]), PALM appears to be better suited for quantitative studies, and
for this reason forms the focus of this article even though many of the
ideas presented are applicable to SMLM in general. Yet, quantitative
analysis with PALM is plagued by several sources of errors [7,70],
including that of a limited detection efficiency of label molecules
in the range of 40–60% [16,25], a localization uncertainty in the
order of 20–50 nm [26,27], overcounting in the range of 100% due
to reappearance of label molecules due to photoblinking
[15,28–30], errors in labeling, a sample drift in the order of
50–100 nm [1,31] and in the case of multi-color imaging, registra-
tion errors [16].

This review is divided into two parts. The application of SMLM
has brought new discoveries in varied biological fields such as cell
biology, neuroscience, microbiology and molecular genetics. First,
we provide a bird’s eye view of the applications of quantitative
SMLM in these fields, focusing on the biological perspective. Then,
with the help of cartoon figures, we explore in detail the challenges
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that are present in the use of SMLM, and specifically PALM, for quan-
titative experiments. We focus specifically on three specific quanti-
tative applications of PALM: single molecule counting, analysis of
protein spatial distribution heterogeneity and co-localization analy-
sis. We also provide a brief summary of the methods that have been
presented in the field to resolve the challenges presented.

2. Quantitative SMLM and biology

The possibility to quantify the number of proteins within
biological assemblies and to characterize the protein spatial distri-
bution has permitted to determine protein stoichiometry and dis-
tribution in signaling complexes. As a demonstration of this aspect,
some groups, including ours, have analyzed the existence of
protein aggregates such as oligomers and clusters for signaling
receptors as G protein-coupled receptors (GPCRs), asialoglycopro-
tein receptors and RAS signaling molecules [9,10,32].

For the b2 adrenergic receptors, by means of quantitative clus-
ter analysis, we found that the receptors are partially organized in
mini-clusters only in the cardiomyocytes like-cells but not in other
cell lines, and these oligomers are not lipid raft related but depend
on actin cytoskeleton integrity (Fig. 1) [33]. Importantly, this con-
clusion was quite different from a similar report that was obtained
using a different method named near-field scanning optical
microscopy (NSOM) [71], as a demonstration of a better precision
of PALM over other techniques. Receptor oligomers were not
affected by the addition of different ligands, indicating that the
receptor is already pre-associated before activation and is not
related to receptor basal activity. In contrast, in a study by Renz
et al. that made use of quantitative single molecule counting, it
was shown that assembly of asialoglycoprotein receptors into
homo- and hetero-oligomeric structures is dictated by exogenous
ligands leading to the internalization of one receptor complex over
another complex [9]. In this case, the authors used quantitative
PALM together with ensemble Förster Resonance Energy Transfer
(FRET) imaging. This experimental strategy has demonstrated the
strong synergy that exists between these two different techniques
combining the powerful sensitivity of FRET to detect receptor prox-
imity with the capability to obtain direct visualization of receptor
oligomers with PALM. A similar approach was also successfully
applied to study another strategic protein in the RAS signaling,
named RAF [10]. By means of cluster analysis, the authors showed
how RAF exists between an inactive monomeric state in the cytosol
and a multimeric condition at the cell membrane when activated.
a b

Fig. 1. PALM images and cluster analysis of b2-mEos2 on the plasma membrane of H9C2
images in total internal reflection fluorescence geometry of b2-mEos2 on the plasma
disruption (b). (c) The degree of clustering for the experiments shown was determined b
deviations from a random distribution as positive y values (normalized to 99% confidenc
times. Cholesterol inactivation was obtained by preincubating cells with filipin for 30 m
concentration of 5 mM, while actin microfilaments disruption was performed by preinc
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Together, these results confirmed the importance of dimers and
oligomers formation in RAF signaling, even though the precise bio-
logical role of these different multimeric states is yet to be
determined.

Another relevant consequence of the introduction of SMLM has
been a better definition of biological structures in the nanometer
range. This has been particularly true in the neuroscience field
whereas the morphology of neurons composed by dendritic spines
and synapses is not perfectly suitable for confocal microscopy. For
example, imaging presynaptic and postsynaptic scaffolding pro-
teins in glomeruli of the mouse olfactory bulb using STORM, Dani
et al. showed distinct punctate patters that were not resolved by
conventional fluorescence image [34]. They quantified various
morphological parameters, and were able to distinguish the pre-
synaptic Bassoon and postsynaptic Homer1 clusters. In this line
of research, another group studied, by means of cluster analysis,
the postsynaptic density (PSD) organization in live rat hippocam-
pal neurons [35]. PALM was able to localize scaffolding nanodo-
mains of PSD-95 enriched preferentially of AMPA receptors
compared to NMDA receptors. This post-synaptic architecture
could be relevant for the amplitude of postsynaptic currents, sug-
gesting the mechanism of PSD in regulating the strength and plas-
ticity of the glutamatergic transmission. For the optimization of
cell morphology measurements in living cells using Single-Particle
Tracking PALM, it has been shown using Monte-Carlo simulations
how some technical parameters such as the length of the excitation
pulse can influence the imaging of spine and spine neck morphol-
ogy in living neurons, making them erroneously thinner when
imaged using a longer excitation pulse [36].

SMLM was also applied to study exocytosis in different cell
types, such as chromaffin cells. In PC12 cells, PALM was able to
determine the size of clathrin coated pits during reuptake of vesic-
ular acetylcholine transporters [37]. In contrast to what was found
with confocal microscopy, Bar-On et al. used PALM to demonstrate
that syntaxin1 and SNAP-25 clusters have a weak co-localization in
PC12 cells [38]. Additionally, PALM helped to establish that clus-
tered SNARE proteins are not involved in large dense core vesicles
(LDCV) in the fusion process [39].

Another field in biology that has received attention for SMLM is
microbiology, in particular for the study of bacteria and viruses.
Because of the size of these microorganisms, the super resolution
methods are suitable for revealing the details of their sub-cellular
structures. For example, Ptacin et al., studying the partitioning
(Par) apparatus that guides centromere segregation, were able to
c
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determine the ParA and ParB dynamics, suggesting that retracting
ParA fibers are critical for this phenomenon [40]. SMLM also has
shown its applicability in providing new details into viral infection.
Using dSTORM, Pereira et al. were able to visualize and quantify the
distribution of structural proteins of the human immunodeficiency
virus type 1 (HIV-1) before and after infection of lymphoid cells
[41]. Another work on the same theme was able to determine the
distribution of the integrase enzyme (IN) of HIV in infected cells
in the cytosol and in the nucleus, and to characterize its morphol-
ogy [42]. The authors used a different version of the PALM tech-
nique, called FlAsH-PALM, where proteins are tagged with small
tetracysteine motifs and the fluorescein arsenical helix binder.

Finally, super-resolution microscopies have opened a door in a
deeper understanding of the chromosome organization and gen-
ome mapping. Wang et al. determined nucleoid-associated pro-
teins distribution in live Escherichia coli cells [43], while another
group was able to label 91 out of a total of 107 reference sites on
a 180 kb human BAC gene with a 100 bp resolution [44]. DNA map-
ping with such resolution offers new potentials to uncover genetic
variance and to facilitate medical diagnosis in genetic diseases.

3. Challenges

In this section, we review the critical challenges that are present
in using SMLM, and specifically PALM, for quantitative measure-
ments. While the challenges presented might be applicable to dif-
ferent types of quantification measures, we focus specifically on
single molecule counting, analysis of protein spatial distribution
heterogeneity and co-localization analysis. Before proceeding fur-
ther, we note that it is possible that the image processing and
localization algorithms used can also introduce errors in quantifi-
cation, however this is treated in detail elsewhere [45,46]. A brief
introduction to the quantitative measures being mentioned can
be found in [7,47].

3.1. Labeling errors

In SMLM, typically, the label tag can either be a fluorescent pro-
tein (FP) or an organic dye. In the former case, the labeling is usu-
ally done by means of overexpression, i.e. introduction to the cell
of a plasmid with a vector consisting of the fusion of the sequences
corresponding to the protein of interest and that of the fluorescent
protein. In the latter case, the most typical labeling approach is
immunolabeling, i.e., the dye is attached to the protein by means
of antibodies. In this review we stick to PALM and hence labeling
with PA-FPs, while noting that it is well known that the immunola-
beling approach is more prone to labeling errors, including unspe-
cific labeling.

In the case of labeling by means of overexpression, the protein
expressed from the plasmid will exist in the cell along with those
expressed endogenously. Since the latter is not fluorescent, this
creates obvious limitations to quantification studies. One can get
around this limitation by means of either knocking out the corre-
sponding genes from the chromosome and thus making sure that
only the overexpressed protein is present, or by introducing the
fusion vector in the chromosome itself (‘‘knock in’’). In both cases,
and especially the former, the effect on cell functioning might be
profound.

It must be noted that it is the fluorescent tag that is imaged, and
not the protein of interest itself. If the tag is a PA-FP, it typically has
a size of about 4 nm, and is attached to the protein of interest by
means of an amino acid linker of length of up to �5 nm and hence
the imaged structure can be off from the true structure by the vec-
tor sum of these quantities, in general in a random direction. This
can introduce key errors in distance based studies, for example
Please cite this article in press as: Shivanandan, A., et al. Challenges in quant
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co-localization studies where the proteins of interest are physically
co-localizing, whereas the FPs that label them might appear further
apart, depending on their orientation within the labeled structure.
Similarly, protein clusters will appear enlarged. Steric hindrance
effects and label oligomerization can also complicate labeling accu-
racy. Also, in PALM experiments, typically a cell to be imaged is
selected based on certain criteria – e.g. if the labeling is done prop-
erly, is sufficiently bright, and displays the expected morphology.
This selection can be a source of sampling bias. High-throughput
PALM that can image hundreds of cells at the same time offers a
solution to this problem [72].

The impact of both incomplete labeling as well as the distance
between the protein molecule of interest and the FP molecule is
shown in Figs. 2a–b, 3a–b, and 4a–b for the three quantitative mea-
sures under discussion: counting, clustering and co-localization,
respectively.

3.2. Detection efficiency

Since using FPs as label involves the complications associated
with protein expression, errors in this step – misfolding, incomplete
maturation etc. – can lead to the production of label molecules that
are not fluorescent. Because of this reason, in the case of the con-
ventional GFP, typically only 80% of the molecules that are present
in the sample can be imaged [48]. In the case of PA-FPs, the fraction
is even lower, due to incomplete photo-conversion. In the case of
the relatively bright PA-FP mEOS2, this fraction is about 60%, and
for several other PA-FPs it can be as low as 40% [25,49].

This can directly affect counting studies, as the number of
counted molecules can be underestimated by the same fraction
(Fig. 2c). Other quantification measures might also be affected –
for example, in the case of SM co-localization, assuming that the
used co-localization measure is linearly related to the detection
efficiency, the co-localization will be underestimated by a fraction
xy, where x is the detection efficiency in one channel, and y in the
other, leading to an underestimate of as low as 20% for commonly
used PA-FP pairs (Fig. 4c) [49]. However, in practice, the effect of
limited detection efficiency on cluster (Fig. 3c) and co-localization
analysis is not well explored.

It is possible to use the obtained count as a lower bound (after
correcting for blinking artifacts) for the counting. In the specific
case of identifying protein complex stoichiometry by means of
counting the photobleaching steps, a model that accounted for
detection efficiency by a binomial model was found to provide
accurate results [9,48,50]. A similar approach, of incorporating the
detection efficiency in a model for the ratio between monomers
and dimers, has been reported [10]. Others have attempted to first
characterize the relative detection efficiency of fusion protein pairs,
and using it to estimate the stoichiometry for a target system [9].

3.3. Localization uncertainty

Each photon from the emitter molecule provides a sample of
the PSF from the molecule. Based on these samples, single mole-
cule localization algorithms provides an estimate for the position
of the fluorescent molecule. This estimate is prone to uncertainties
due to multiple reasons, predominated by limited sampling, i.e., by
the limited number of photons obtained from the molecule. The
resulting uncertainty in estimation can be quantified [26,27], and
assuming a Gaussian model for the uncertainty, is known to mainly
vary inversely proportional to the square root of photon count col-
lected (N), i.e., rloc / rPSFffiffiffi

N
p , where rloc is the standard deviation of the

Gaussian uncertainty model, and rPSF that of the Gaussian approx-
imation of the point spread function. Since the photon count
typically collected from a PA-FP molecule is less than 1000, the
itative single molecule localization microscopy. FEBS Lett. (2014), http://
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Illustration of the influence of several sources of error on cluster analysis with PALM. The green dots represent the positions of single protein molecules (a), the
positions of label molecules (b), and point localizations with step by step addition of different errors (c, d, e, f). The standard deviation of the position coordinates in each of
the 3 clusters is calculated, and the average value r over the 3 clusters is determined. (a) There are three normally distributed clusters that contain each 30 molecules
(r = 18.3 nm). (b) The fluorescent label is removed 5 nm from the molecule in a random direction and there is an 80% probability that a molecule is labeled (r = 18.5 nm). (c)
There is a 60% probability that a fluorescent label is activated and detected (r = 17.9 nm). (d) The localization uncertainty is equivalent with sampling from a normal
distribution with a standard deviation of 10 nm centered on the position of the fluorescent label (r = 21.2 nm). It may be noted that the observed variance of the cluster can
be estimated as the sum of the variance of the actual cluster and the localization uncertainty distribution, subject to sampling errors etc. (e) At a random time point within
10 s after deactivation, there is a 40% probability that the fluorescent label is again activated and localized with a 10 nm uncertainty (r = 21.6 nm). (f) There is a 0.05 nm/s
drift from left to right during an acquisition time that is 1000 s (r = 25.3 nm). The scale bars represent 100 nm.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of the influence of several sources of error on single molecule counting with PALM. The green dots represent the positions of single protein molecules (a),
the positions of label molecules (b), and point localizations with step by step addition of different errors (c, d, e, f). The number of positions nloc is determined for each case. (a)
There are 100 molecules that are spatially distributed at random (nloc = 100). (b) The fluorescent label is removed 5 nm from the molecule in a random direction and there is
an 80% probability that a molecule is labeled (nloc = 81). (c) There is a 60% probability that a fluorescent label is activated and detected (nloc = 40). (d) The localization
uncertainty is equivalent to sampling from a normal distribution with a standard deviation of 10 nm centered on the position of the fluorescent label (nloc = 40). (e) At a
random time point within 10 s after deactivation, there is a 40% probability that the fluorescent label is again activated and localized with a 10 nm uncertainty (nloc = 54). (f)
There is a 0.05 nm/s drift from left to right during an acquisition time that is 1000 s (nloc = 54). It should be noted that in certain situations it is possible that due to drift the
molecule count may be affected since the area of imaging changes over time. The scale bars represent 100 nm.
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(a) (b)

(d) (e) (f)

(c)

Fig. 4. Illustration of the influence of several sources of error on co-localization analysis with dual-color PALM. The green dots and red circles represent the positions of single
protein molecules (a), the positions of label molecules (b), and point localizations with step by step addition of different errors (c, d, e, f) in the green and red channel
respectively. The number of molecule pairs ncoloc that are within 10 nm distance from each other is determined for each case. (a) There are 50 pairs of green and red molecules
that are separated 1 nm from each other in a random direction (ncoloc = 50). (b) The fluorescent label is removed 5 nm from the molecule in a random direction and there is an
80% probability that a molecule is labeled (ncoloc = 28). (c) There is a 60% probability that a fluorescent label is activated and detected (ncoloc = 10). (d) The localization
uncertainty is equivalent with sampling from a normal distribution with a standard deviation of 10 nm centered on the position of the fluorescent label (ncoloc = 2). (e) At a
random time point within 10 s after deactivation, there is a 40% probability that the fluorescent label is again activated and localized with a 10 nm uncertainty (ncoloc = 9). (f)
There is a 0.05 nm/s drift from left to right during an acquisition time that is 1000 s (ncoloc = 9). It should be noted that drift might significantly affect the estimated co-
localization in many cases, unlike in this case. The scale bars represent 100 nm.
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precision rloc obtained is worse than 7 nm in the best cases, drop-
ping to as low as 20 nm in practice, depending on the FP used,
resulting in a full width half maximum (FWHM) resolution of
16–50 nm. Also, the assumption of isometric emitters is not neces-
sarily true in practice, and the errors resulting from dipole orienta-
tion can be up to 40 nm [45,51–53].

With careful imaging and analysis, i.e. by ensuring that the imaged
molecules within a frame are spatially separated enough so that the
localization algorithms can correctly identify them, it is possible to
minimize the effect of localization uncertainty on counting measures
(Fig. 2d). However, in the case of clustering and co-localization mea-
sures, this can cause a major impact (Figs. 3d and 4d). For example,
assuming that the localization estimation is approximately equiva-
lent to sampling from a Gaussian distribution as mentioned above,
centered at the true location of the emitter molecule, a cluster of
molecules imaged in this way will appear enlarged, and hence the
estimated cluster parameters will be affected (Fig. 3d).

If a Gaussian error model can describe the uncertainty in position
localization, the estimated distance between two point localizations
is described by a non-Gaussian distribution (specifically, a function
of modified Bessel functions of order zero) [54]. If the true distance
between two points is zero, and if the points are localized with an
uncertainty as described above, then the estimated distance from
the localizations will be greater than zero [55]. For example, if the
localization precision for both points is 40 nm each, the estimated
distance could be as high as 125 nm with a non-negligible probabil-
ity [55]. Therefore, it is important to consider the effect of localiza-
tion precision while performing quantitative analysis.

3.4. Blinking

The ideal fluorophore for counting will remain in the dark state
until it is activated, and then will remain in the bright state
Please cite this article in press as: Shivanandan, A., et al. Challenges in quant
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emitting a large enough number of photons before photobleaching
irreversibly, so that it does not reappear again in the bright state
during imaging, resulting in overcounting. However, it has been
observed that most available fluorescent proteins including GFP
[56], and the PA-FPs [28,57], reappear after going to a long lived
dark state from a bright state (called ‘‘blinking’’ behavior). Typical
average values of reappearance is close to 1 for the commonly used
fluorophore mEOS2, but it can be a few times higher for a signifi-
cant fraction of imaged molecules. In either case it will result in
overcounting (Fig. 3e), however if the molecule blinks multiple
times it can also result in apparent clustering, forming artifacts
amongst true physical clusters (Fig. 3e). Photoblinking artifacts
can also lead to false positives in the case of co-localization,
depending on the co-localization measure used (Fig. 4e).

It has been reported that the observed distribution for the time
between the multiple appearances of a fluorophore (off time, toff)
can be fit to a single or double exponential distribution
[28,58,59]. The average values of toff are comparatively on a much
smaller scale compared to the imaging time of a PALM experiment,
and hence on a spatial–temporal plot of the localizations, they
appear as clusters. Therefore, by grouping together localizations
that form these clusters, it is possible to correct for blinking arti-
facts [58–60]. Lando et al. used a Kalman filtering approach to cor-
rect for the artifacts [8], whereas Sengupta et al. have used a pair
correlation based approach that is focused on the specific case of
cluster analysis [15]. The latter approach works by separating the
artifact clusters due to blinking from the true protein clusters by
means of a model based on pair correlation function.

3.5. Drift

Since an SMLM experiment typically involves imaging 1000s of
frames, due to temperature changes, air currents, mechanical
itative single molecule localization microscopy. FEBS Lett. (2014), http://

http://dx.doi.org/10.1016/j.febslet.2014.06.014
http://dx.doi.org/10.1016/j.febslet.2014.06.014


6 A. Shivanandan et al. / FEBS Letters xxx (2014) xxx–xxx
vibrations etc., the sample might drift during the imaging time, in
both lateral and axial direction. Since different subsets of mole-
cules are imaged in different frames, drift can cause artifacts in
SMLM imaging (Figs. 2f, 3f, and 4f). Basic efforts to minimize
sources of drift, such as temperature stabilization and the use
vibration-damping optical tables, are essential. Drift in the axial
direction can be controlled by means of closed-loop feedback sys-
tem that moves the sample stage in order to counteract the motion
of sample [49,61]. Even then, lateral drift in the nanometer scale
seems to be difficult to avoid (Figs. 2f, 3f and 4f) [49,62].

A common method to correct for sample drift is to insert fidu-
cial markers in the sample, for example very bright fluorescent
beads of 100 nm diameter [1]. Assuming that the fiducial marker
does not move within the sample, and since the marker appears
in all frames, the drift of the marker can be estimated, and the pro-
tein localizations corrected accordingly. To make sure that the cor-
rect sample drift is estimated, it is better to use multiple fiducial
markers in the same sample, and the overall drift estimated from
their individual drifts. However: (1) having multiple fiducials too
close to the structure to be imaged will affect imaging and (2)
the multiple fiducials might show different drift patterns, either
due to movement within the sample or due to the variability of
drift within the sample, and the overall drift estimation from them
can be complicated.

In the case of imaging samples that have a clear structure, such
as actin filaments or microtubules (as opposed to say, a sample
with molecules distributed randomly in space), the subsets of
localizations from adjacent frames lumped together might be cor-
related to each other throughout the imaging time. In this case, the
information present in the correlation can be used to correct for
drift. Multiple methods have been suggested to perform this
correction [62,63].

3.6. Fixation artifacts

The long imaging time required for an SMLM experiment,
necessitated by the need of imaging 1000s of frames, makes the
use of SMLM for live cell imaging complicated. The use of fast
imaging [64], including that of sCMOS cameras [65], and deconvo-
lution based image processing algorithms [66] that allow higher
density of imaged molecules per frame, have resulted in major
improvements in this direction. However, the long imaging time
is not an issue in the case of fixed samples, and most of the
quantitative applications of PALM were done on them.

In the case of analysis that quantifies protein spatial distributions,
or co-localization, it is important that the fixation preserves the pro-
tein configuration at the time of fixation. However, it has been found
that after applying the fixative, different molecules get fixed at differ-
ent time [49,67]. This means that the protein configuration is affected
by fixation. Further studies are required to fully understand the effect
of fixation artifacts on such quantitative studies.

3.7. Representation

SMLM experiments, after processing the raw data, provide a set
of point localizations (estimates of the actual positions of the
fluorescent tags) along with the estimated localization precision.
Representing such information in an image format is a challenge,
as merely representing the estimated locations as points is akin
to overestimating the information available. Therefore the localiza-
tion precision has also to be taken into consideration.

In the initial PALM papers [1], the researchers represented the
data by means of a ‘probability map’, an image obtained by summing
together Gaussian distributions corresponding to the localization
uncertainty model estimated for each point localization, centered
at the estimated localization. Such a representation involves loss
Please cite this article in press as: Shivanandan, A., et al. Challenges in quant
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in information. If xA, xB, . . . are true point locations of imaged mole-
cules A, B, . . ., then SMLM provides estimates of these locations bxA, bxB,
. . . along with the error in estimation rA, rB, . . . In other words, prob-
abilistic information about locations of individual molecules – P(A),
P(B), . . . – is available. In the case of a probability map representation,
the available information is reduced to P(A + B + . . .), that is, there is
information loss. However, it is possible to use the probability map
as a worst case image.

Histogram based representation is another alternative that has
been suggested. In this method, the estimated localizations are
binned together. However, no information about estimation error
is provided in this representation, and hence the method overesti-
mates the available resolution. Additionally, binning can introduce
artifacts to the representation and analysis, therefore the binning
size must be carefully chosen.

Baddeley et al. have proposed alternative methods based on
quad-tree and Delaunay triangulations [68]. However, all such rep-
resentations also involve a loss of information compared to the raw
results provided by SMLM. By the same reasoning, for quantitative
analysis it is best to work with all the available information, i.e. the
estimated locations and localization precision.

For analysis, researchers often select the localizations with the
best precision for analysis, so as to obtain a more precisely local-
ized structure. Such techniques can provide significant improve-
ment in resolution [69]. However, since such a selection is a case
of spatial sampling, the effect of it on analysis techniques must
be addressed. The situation is more complicated if the distribution
of localization precision in space is not homogeneous, since the
selection then will be skewed. Such situations are possible due to
non-homogeneous illumination, local variations in pH and even
intermolecular interactions. Adequate precautions and controls
must be done so as to ensure that artifacts are not created due to
the use of a cut-off on localization precision.
4. Conclusion

In this article, we have presented a broad overview of the appli-
cations of SMLM in quantitative microscopy in varied fields of biol-
ogy. We have also reviewed the various challenges that are present
in using SMLM for quantitative measurements, with a focus on
PALM, along with a brief review of the solutions that have been
presented in the literature. Through cartoon figures, we have pre-
sented how the various errors that are present in the technique
affect the three main ways SMLM data have been quantified:
counting, cluster analysis and co-localization. We conclude that
there is a critical need for accounting for these sources of errors,
in order to achieve accurate and precise quantitative measure-
ments. Furthermore, some of the challenges remain unsolved,
and need novel solutions, both analytical and experimental.
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