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Introduction

With the invention of single-molecule localization micros-
copy (SMLM) techniques (Betzig et  al. 2006; Hess et  al. 
2006; Rust et  al. 2006), it has become possible to image 
intracellular proteins with high contrast at a hitherto 
unprecedented resolution in conditions that resemble their 
natural environment. Nowadays, SMLM is starting to be 
used routinely for imaging of biological samples in 2D and 
3D, in fixed and live cells, and in multiple colors (Klein 
et al. 2014; Oddone et al. 2014).

SMLM techniques can be used for quantitative studies, 
e.g., counting proteins in a single cell, analyzing the spa-
tial organization of proteins, or estimating co-localization 
between organelles that are smaller than the optical dif-
fraction limit or even between single molecules. SMLM 
can also be used for other types of quantitative measure-
ments, for instance in single-particle tracking (SPT) mode 
(Manley et al. 2008; Persson et al. 2013). The high labeling 
specificity offered by fusion proteins, and the relatively low 
chance of overcounting caused by repeated imaging of the 
same fluorophore due to the phenomenon of photoblinking, 
makes photoactivated localization microscopy (PALM), 
among the different SMLM techniques, a relatively better 
choice for quantitative imaging.

Abstract W ith the advent of single-molecule localization 
microscopy (SMLM) techniques, intracellular proteins can 
be imaged at unprecedented resolution with high specificity 
and contrast. These techniques can lead to a better under-
standing of cell functioning, as they allow, among other 
applications, counting the number of molecules of a pro-
tein specie in a single cell, studying the heterogeneity in 
protein spatial organization, and probing the spatial inter-
actions between different protein species. However, the 
use of these techniques for accurate quantitative measure-
ments requires corrections for multiple inherent sources of 
error, including: overcounting due to multiple localizations 
of a single fluorophore (i.e., photoblinking), undercount-
ing caused by incomplete photoconversion, uncertainty in 
the localization of single molecules, sample drift during 
the long imaging time, and inaccurate image registration 
in the case of dual-color imaging. In this paper, we review 
recent efforts that address some of these sources of error 
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However, to use SMLM/PALM for quantitative meas-
urements, a number of issues have to be overcome. Since 
these techniques provide localizations of individual fluo-
rescent molecules rather than a single image, the tools 
required for quantitative analysis are often different from 
these in conventional fluorescence microscopy. Also, imag-
ing with PALM involves multiple sources of errors, such as: 
overcounting of commonly used fluorescent proteins in the 
range of 100 % due to photoblinking (Annibale et al. 2010; 
Lee et al. 2012); limited detection efficiency in the range of 
40–60 % related to incomplete photoconversion (Annibale 
et al. 2012; Durisic et al. 2014); uncertainty in  the locali-
zation of molecules in the order of 15–50  nm caused by, 
among other factors, a limited number of detected photons 
(Mortensen et al. 2010; Thompson et al. 2002); and sample 
drift during the long imaging time in the order of 50  nm 
(Betzig et al. 2006). In the case of co-localization analysis 
using PALM, additional challenges exist in the form of the 
limited number of available spectrally separate fluorescent 
proteins for multi-color imaging, and that of accurately 
overlaying the images from the two-color channels (Anni-
bale 2012). It must also be mentioned that the computa-
tional methods used in SMLM, i.e., the image processing 
and localization algorithms, can be another source of error 
in quantification (Deschout et al. 2014; Small and Stahlhe-
ber 2014).

Here, we review the recently reported efforts toward 
solving some of the problems that affect quantitative 
SMLM measurements. In particular, we focus on PALM 
and its commonly reported applications: counting single 
molecules, analyzing protein organization, and measuring 
co-localization on the single-molecule level.

Single‑molecule counting with PALM

Several important cellular functions involve low-copy num-
ber proteins that are not detectable by conventional meas-
urement techniques (Ghaemmaghami et  al. 2003). Also, 
studies dealing with the stochastic nature of gene expres-
sion and its importance in biology (Elowitz et al. 2002; Raj 
and van Oudenaarden 2008) require accurate and precise 
single-molecule counting. While omics-scale abundance 
data with single-molecule sensitivity can be obtained from 
conventional fluorescence microscopy (Taniguchi et  al. 
2010), the spatial resolution is limited due to the diffraction 
of light. PALM, with the possibility of single-molecule res-
olution counting in sub-diffraction limit voxels, therefore 
clearly offers interesting prospects in this field.

In order to use PALM for counting, the ideal scenario 
would be that each fluorescent protein present is counted 
once and only once. However, there are at least two critical 
issues that result in counting errors—undercounting due to 

a limited detection efficiency and overcounting due to mul-
tiple appearances of the same fluorophore. Due to the lim-
ited detection efficiency inherent to fluorescence micros-
copy, resulting from misfolding and incomplete maturation 
of the fluorescent proteins, only a fraction of the molecules 
can be imaged. In conventional fluorescence microscopy, 
this fraction is about 80  % for GFP (Ulbrich and Isa-
coff 2007). In PALM, even lower fractions are observed, 
because of the limited photoconversion efficiency. A frac-
tion of 53–60 % has been reported for the relatively bright 
mEos2 (Annibale et  al. 2012; Durisic et  al. 2014), and 
many other fluorescent proteins perform even worse.

Various methods have been developed to work around 
this obvious limitation. Diffraction-limited protein subunit 
stoichiometry estimation can be performed by observing 
the bleaching steps of individual fluorophores  attached to 
the subunit molecules. This method was used to estimate 
the subunit stoichiometry of membrane proteins (specifi-
cally, NMDA receptors) in live cells, composed of two dif-
ferent subunits, by means of labeling with GFP (Ulbrich 
and Isacoff 2007). The detection efficiency of GFP was 
estimated by fitting the observed number of bleaching steps 
to a binomial model for detection. A similar approach was 
used to estimate the subunit stoichiometry of heteromeric 
glycine-gated channels (GlyRs) (Durisic et  al. 2012). In 
the context of SMLM, the stoichiometry of the asialogly-
coprotein receptor complex in rat hepatic lectin 1 (RHL1) 
and rat hepatic lectin 2 (RHL2) was estimated by single-
molecule counting (Renz et  al. 2012). The problem of 
limited detection efficiency was avoided by focusing on 
the ratio of detected molecules. First, the relative detec-
tion efficiency of paGFP/paCherry was characterized, by 
performing dual-color PALM on a 1:1 fusion construct. 
Subsequently, dual-color PALM was used to investigate 
the homo/hetero-association, by determining the ratio 
between the counts of paGFP-RHL1/paCherry-RHL1 pairs 
and paGFP-RHL1/paCherry-RHL2 pairs, respectively. In 
another work, the expected ratio between monomers and 
dimers of pamCherry1 for a given detection efficiency was 
modeled, and was fit to data to estimate the detection effi-
ciency (Li et al. 2013).

Another phenomenon that critically affects counting in 
SMLM is that of overcounting due to photoblinking. In one 
of the first quantitative studies involving PALM, the photo-
blinking behavior of the fluorophore (i.e., tdEos) was not 
taken into account (Greenfield et al. 2009). In the case of its 
monomeric form mEos2, the phenomenon of photoblink-
ing was investigated by systematic inspection of the fluo-
rophore traces of immobilized molecules in polymer gels 
(Annibale et al. 2010). Similar to the long-lived dark state 
of GFP (Dickson et  al. 1997), it was found that the acti-
vated and excited mEos2 (i.e., on-state) might reversibly go 
to a long-lived dark state instead of getting photobleached, 
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and later come back to the bright state, as illustrated in 
Fig. 1a–c. This means that, due to this “blinking” phenom-
enon, the same molecule might be counted multiple times 
by a localization algorithm that does not correct for it. In 
vitro experiments on gels showed that roughly half of the 
mEos2 molecules  are reactivated at least once (Fig.  1d), 
making it possible that the molecules are overcounted by 
a factor of 2. In the case of paGFP, the number of reactiva-
tions is lower, and for a photoswitchable fluorescent protein 
such as Dronpa, the number is higher, as shown in Fig. 3b 
(Annibale et al. 2010). Similar photophysical behavior has 
been reported for the photoconvertible fluorescent protein 
mMaple (McEvoy et al. 2012). Since the time spent in the 
dark state (toff) is orders of magnitude lower than the dura-
tion of the experiment, photoblinking will form small clus-
ters in a time series plot of the localizations for the whole 
duration of the experiment, as illustrated Fig. 2. This imme-
diately suggests a method to account for photoblinking: by 
using a threshold in time (td) and in space, it is possible to 
partition these traces in spatial–temporal clusters, and to 
assign each cluster to one molecule. This apparently simple 
method was found to be highly effective in correcting for 
photoblinking (Fig. 2) (Annibale et al. 2011). 

How to select the optimal td? By  collecting the locali-
zations within a set spatial radius that depends on labeling 
density and localization uncertainty, and within a time 
interval td, and counting them as one localization after 
performing weighted averaging,  it is possible to compute 
the number of molecules N(td) counted for different values 
of td. It was found that the empirical N(td) curve obtained 
in this way fits well to a negative exponential function, 

as shown in Fig.  3a. That is, for larger values of td, the 
improvement in counting accuracy becomes asymptoti-
cally lower. Also, setting a too high value for this parameter 
might result in missed localizations, i.e., localizations cor-
responding to different molecules getting grouped together 
as one. Therefore, depending on the nature of the applica-
tion, the value of td should be selected so as to minimize the 
errors coming from both the multiple counting of a photo-
blinking molecule and the missed localizations, or a con-
servative value of td should be chosen so that the observed 
count is a lower bound, see Fig. 3a (Annibale et al. 2011).

Lee et  al. introduced a more detailed model for N(td), 
and, based on its photobleaching and blinking behavior, 
proposed Dendra2 as a better alternative to mEos2 for 
counting purposes (Lee et al. 2012). Additionally, an imag-
ing strategy called Fermi photoactivation was proposed, 
which improves the temporal separation in the activation 
of different molecules, thus helping to overcome under-
counting due to the overlapping of molecules in the initial 
frames of imaging, which might occur when using a fixed 
activation power during the whole imaging time (Lee et al. 
2012). On the other hand, by assuming that the probabil-
ity of activating a molecule remains constant over time, a 
relationship between the cumulative number of localiza-
tions and the imaging time was found (Gunzenhäuser et al. 
2012). Such a relationship can provide a stopping crite-
rion for imaging, given a target accuracy in counting. The 
method was applied to imaging the HIV structural protein 
Gag labeled with tdEos and also with mEos2.

Alternatively, a method based on Kalman filtering has 
been proposed, in order to scan and group photoblinking 
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Fig. 1   a A single-molecule kymograph of an individual mEos2 mole-
cule, upon pulsed 405 nm irradiation (blue vertical lines). Taken from 
Annibale 2012. b The spectral evolution of partially photoconverted 
mEos2 upon 561  nm irradiation, displaying an increase in 405  nm 
absorbance, corresponding to the protonated form of the red fluores-
cent state. Taken from Annibale 2012. c The photoblinking phenom-
enon exists even at continuous activation. A typical kymograph of an 
mEos2 molecule embedded in a polymer gel, upon continous 405 nm 

irradiation at low intensity. Taken from Annibale et al. 2011. d A his-
togram of the number of times  a single mEos2 molecule undergoes 
photoblinking (nblink) before definitive photobleaching. Experimental 
values based on a single exponential best fit are shown, the 1/e decay 
values indicate a mean of nblink = 1.05 ± 0.11. Taken from Annibale 
et  al. 2011. e A histogram of the measured dark times showing  a 
mean of toff = 0.10 ± 0.01 s. Taken from Annibale et al. 2011
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molecules (Lando et al. 2012). A very different approach, 
based on the spatial pair correlation function (PCF), was 
inspired by the special case of spatial cluster analysis of 
membrane proteins and utilizes the difference between the 
spatial signature of the multiple appearances of the same 
molecule due to photoblinking and that of the true pro-
tein clusters (Sengupta et  al. 2011). Another method was 
proposed to estimate the average number of localizations 
per molecule in samples that form definite spatial struc-
tures  (e.g., microtubules or actin filaments), mainly in the 
context of stochastic optical reconstruction microscopy 
(STORM) (Nieuwenhuizen et  al. 2013). This approach, 
based on Fourier ring correlation analysis, can also be 
used to estimate the resolution obtained in SMLM images, 
although only samples with definite spatial structures were 

investigated. Others have reported a similar measure to 
estimate the resolution in SMLM (Banterle et al. 2013).

Quantitative analysis of heterogeneity in protein spatial 
organization

One of the niche areas in cell imaging that SMLM appeals 
to is the study of spatial heterogeneity in protein organiza-
tion; e.g., that of membrane proteins appearing as micro- 
or nanodomains rather than individual molecules diffus-
ing freely along the membrane, and its function in, for 
instance, signaling. In addition to membrane proteins, other 
systems with spatial heterogeneity can also be studied with 
SMLM. Indeed, SMLM has been used to study protein 
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fluorescence dark time td

b

Fig. 2   Snapshots of  clusters formed by localizations of membrane 
proteins in fixed HeLa cells. Markers represent single-molecule 
localizations and their  color represents the time of localization. a 
Representative images of three artifact spatial-temporal clusters of 
SrcN15-mEos2 (a negative control for clustering) and their evolution 
for increasing values of the allowed fluorescence dark time threshold 
td. b Representative images of two β2-mEos2 clusters and their evo-

lution with the fluorescence dark time threshold  td. A temporal arti-
fact component (red sub-cluster) is also visible in the second cluster. 
The estimated location of the molecules changes slightly from one 
td value to another since the number of collected photons and their 
spatial distribution attributed to each localized molecule changes. 
Scale 100 nm. Taken from Annibale et al. 2011
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spatial organization in various systems including signaling 
receptors in the Escherichia Coli chemotaxis signaling net-
work (Greenfield et al. 2009), signaling proteins in T-cells 
(Rossy et al. 2013; Williamson et al. 2011), GPI-anchored 
proteins (Sengupta et  al. 2011), G protein-coupled recep-
tors (GPCRs) (Scarselli et al. 2012, 2013), SNAP receptor 
(SNARE) complexes (Pertsinidis et  al. 2013), and RNAP 
in E. Coli (Endesfelder et  al. 2013). While most of these 
studies have focused on the characterization of heterogene-
ity in spatial organization and its dependence on different 
conditions, some have even used the estimated parameters 
to fit biophysical models (Greenfield et al. 2009; Hess et al. 
2007). A brief discussion of some of the questions and 
studies in this field can be found elsewhere (Lang and Riz-
zoli 2010; Owen and Gaus 2013).

Various clustering and cluster analysis techniques have 
been used for the analysis of spatial heterogeneity in 
SMLM images, in particular the quantification  of nano-
domain properties and  their comparison at different con-
ditions. These approaches can be divided into two broad 
categories: (1) exploratory analysis tools from spatial sta-
tistics that have been used for similar problems in elec-
tron microscopy (Parton and Hancock 2004; Zhang et  al. 
2006), such as PCF and Ripley’s L(r)-r function, or the 

nearest neighbor distance distribution (Endesfelder et  al. 
2013) and (2) clustering by means of algorithms such as 
density-based spatial clustering of applications with noise 
(DBSCAN) (Ester et al. 1996), followed by analysis of the 
obtained clusters by various methods to estimate cluster 
parameters, e.g., by averaging or by fitting each cluster to a 
normal distribution to estimate the cluster radius.

An introduction to the first approach can be found 
elsewhere (Diggle 2003; Gould et al. 2012). Briefly, the 
Ripley’s  K(r) function is the ratio of the average num-
ber of extra localizations within distance r of a randomly 
chosen point and the density of localization in the area 
of analysis, and L(r) is the transformation 

√

K(r)
π

 with 
certain convenient properties. For instance, L(r)-r, by 
definition, is equal to zero for a point pattern that is dis-
tributed completely at random, i.e., complete spatial ran-
domness (CSR). L(r)-r is greater than zero if the points 
are clustered and is less than zero if the point pattern 
shows regularity. The magnitude of L(r)-r is a measure 
for the degree of clustering and can be used for compari-
son between different conditions. The value of r corre-
sponding to the maximum of L(r)-r gives an estimate of 
the average cluster radius in the point pattern. The PCF 
g(r) is a closely related measure, K(r) being the integral 
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Fig. 3   a The experimental (markers) and simulated (blue curve) 
counts of mEos2 molecules localized as a function of the dark 
time  threshold td, together with the simulated counts ascribed to 
missed counts (green), multiple counts (violet), and noise (black). For 
all samples, the duration of the acquisition is 20,000 frames × 50 ms. 
The red curve shows the best fit to the data for td values between 
0.05 and 2 s. If no missed counts were to occur, the asymptote of the 
decaying curve of the observed counts would converge to the effec-
tive number of molecules present in the sample. Fitting to a nega-

tive exponential model yielded a mean of toff = 0.260 s and a mean 
of nblink =  0.760, consistent with what was shown in Fig.  1d  and e 
respectively. The fit yielded N = 121 ± 6 molecules/µm2, whereas the 
total density of the simulated sample was 135 molecules/µm2 includ-
ing noise counts, resulting in a 10 % error. Taken from Annibale et al. 
2011. b Comparison of the normalized estimates for counts of local-
ized molecules as a function of td, for three different fluorescent pro-
teins: paGFP, Dronpa and mEos2. Taken from Annibale et al. 2011



10	 Histochem Cell Biol (2014) 142:5–17

1 3

of 2πrg(r), and it can also provide estimates of param-
eters like the ones mentioned above. These measures can 
also be used to estimate other parameters such as the 
number of localizations per cluster (Parton and Hancock 
2004; Sengupta et  al. 2011; Zhang et  al. 2006), and the 
effective potential of the mean force between the local-
ized molecules (Veatch et al. 2012). The L(r)-r function 
has an advantage when compared to the PCF in that, 
since L(r)-r is based on an integration over the radius r, 
it is less influenced by noise. On the other hand, this also 
means it is less sensitive and that systematic errors such 
as overcounting due to photoblinking are accumulated 
over r. Therefore, when this measure is used, photoblink-
ing artifacts must be accounted for by one of the methods 
mentioned in the section on counting.

The first approach, i.e., exploratory tools such as PCF or 
Ripley’s function, has been extended to account for some 
error sources inherent to SMLM. In a technique called 
pair correlation PALM (PC-PALM), the PCF approach 
is extended by means of a model to differentiate the arti-
fact clusters due to fluorophore photoblinking from true 
proteins clusters (Sengupta et  al. 2011). Modifications 
of the L(r)-r function have been suggested to incorporate 
membrane curvature characteristics, since 2D imaging 
of proteins in undulating membranes can cause cluster-
ing artifacts (Owen et al. 2013). This work also shows the 
applicability of Ripley’s function in the case of 3D locali-
zation data. While this approach is promising, it uses L(r)-r 
only to identify clusters (Owen et al. 2010), rather than as 
an exploratory statistical tool to be used for inference and 
comparison (Hess et al. 2007; Lillemeier et al. 2010; Scar-
selli et al. 2012).

The nearest neighbor approach as an exploratory tool 
involves finding the nearest neighbor distance distribution 
within a point pattern and comparing it to one that corre-
sponds to a point pattern distributed by CSR. The contrast 
between the nearest neighbor distance method and correla-
tion methods such as L(r)-r or PCF is that, since the former 
looks at nearest neighbors only, it focuses on information 
on the short scale, whereas the latter gives information on a 
variety of scales.

It should be noted that Ripley’s function and PCF are 
defined for a stationary, spatially homogeneous point pro-
cess only, i.e., the average density within the point pattern 
is assumed to be independent of the spatial location. If the 
point process is spatially inhomogeneous, e.g., due to a 
spatial gradient in protein locations, other extensions must 
be used in order to be statistically more accurate (Badde-
ley et al. 2000). Also, the inevitable choice of limiting the 
analysis to a window results in the exclusion of the points 
near the borders, often  resulting in  a significantly  biased 
estimation. Various edge correction methods are available 
to correct for this bias (Haase 1996).

In the case of the second approach, i.e., clustering fol-
lowed by parameter inference, various algorithms are used 
for the clustering part. The DBSCAN algorithm is the most 
popular one (Annibale 2012; Endesfelder et  al. 2013; Li 
et al. 2013; Pertsinidis et al. 2013), although other methods 
have also been used (Gunzenhäuser et al. 2012; Lelek et al. 
2012; Owen et  al. 2010). DBSCAN works by exploiting 
the density difference between clusters and the background, 
i.e., the density in the neighborhood of a point must exceed 
a threshold in order to be identified as part of a cluster. This 
method has several advantages over other commonly avail-
able clustering algorithms, including that it does not need 
an a priori number of clusters to be provided as input, that 
it can identify clusters of arbitrary shapes, and that it can 
account for background noise (and for a monomer fraction). 
An algorithm based on DBSCAN to account for errors in 
clustering due to the presence of localization uncertainty 
in PALM was used to study RAF multimer formation and 
signaling (Li et al. 2013). However, identifying the param-
eters required by DBSCAN is another problem, which is 
often solved empirically (Annibale 2012; Endesfelder et al. 
2013; Pertsinidis et al. 2013), even though some have used 
the heuristic suggestions of the original DBSCAN paper on 
how to set the parameters (Bar-On et al. 2012). Extensions 
such as OPTICS that do not need these parameters as input 
might also be useful (Ankerst et al. 1999).

The choice between the two above-mentioned 
approaches depends on the problem at hand. In general, 
the first approach (i.e., exploratory tools such as PCF or 
L(r)-r) is less arbitrary than the second one (i.e., clustering 
followed by characterization). However, since PCF or Rip-
ley’s function estimate an ensemble parameter, e.g., cluster 
radius, for the whole area of analysis rather than for indi-
vidual clusters, they may not be the ideal tool if the param-
eters show significant variation between clusters. Similar 
problems might arise if the cluster shapes are elliptical or 
asymmetric and the study of the shape parameters is impor-
tant. In such cases, the approach of clustering followed by 
parameter estimation for individual clusters might be more 
suitable.

Protein assemblies such as nuclear pore complexes 
(NPCs) are ideal systems for the application of SMLM, due 
to their fixed protein stoichiometry and structure. System-
atic labeling of different NPC components combined with 
averaging of thousands of corresponding SMLM images 
allowed the creation of a human NPC scaffold structure 
model with a localization uncertainty well below 1  nm 
(Szymborska et al. 2013). In this study, imaging with both 
immunolabeling as well as fusion protein/nanobody labe-
ling were done separately, and in the case of many proteins, 
the former was found to systematically overestimate the 
NPC radius by around 7 nm (about 15 %), possibly due to 
the larger size of primary and secondary antibodies. Prior 
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work on NPCs with a similar averaging approach had also 
achieved major improvements in resolution (Loschberger 
et  al. 2012). Integrated targeted proteomics and PALM 
were used by Ori et al. to determine the absolute stoichiom-
etry of the NPC, which was found to vary across different 
human cell lines (Ori et al. 2013).

Toward quantitative co‑localization with dual‑color 
SMLM

Having reviewed in the previous two sections the SMLM-
based methods for counting single molecules and investi-
gating protein spatial heterogeneity, we will now discuss 
the ability of dual-color SMLM to measure co-localization 
on the single-molecule level. Fluorescence microscopy in 
general is an excellent tool to probe potential  interactions 
between cellular objects by measuring their co-localiza-
tion. This requires labeling of the different objects with 
spectrally separate fluorophores and subsequent recording 
of an image in each of the corresponding color channels. 
The co-localization between the objects can then be visu-
alized by simply overlaying the images. Quantification is 
also possible, for instance, by estimating the correlation 
between the pixel values in the overlaid images (Bolte and 
Cordelieres 2006; Dunn et al. 2011; Zinchuk et al. 2007). 
While the resolution in diffraction-limited microscopy 
usually restricts the interpretation of co-localization to the 
level of organelles or other objects of similar size, far more 
detailed information is offered by SMLM. In theory, these 
techniques even allow to investigate the co-localization 
between individual molecules. As a consequence, SMLM 
techniques are already being embraced by biologists that 
aim to unravel the mechanisms that govern protein–protein 
interactions (Lehmann et  al. 2011; Lubeck and Cai 2012; 
Sherman et al. 2011; Winckler et al. 2013). In the follow-
ing sections, we will review the practical problems that are 
present in using dual-color SMLM for quantitative experi-
ments and discuss the recent approaches to solve those 
problems.

Image registration

One key requirement for co-localization analysis is a suf-
ficiently precise overlay of the images in the different color 
channels. This is especially challenging for SMLM-based 
co-localization, since the images are rendered from sin-
gle fluorophore locations that are usually determined with 
an uncertainty in the order of 15–50 nm (Mortensen et al. 
2010; Thompson et  al. 2002). The procedure for aligning 
the images, i.e., the image registration, starts with localiz-
ing fiducials that are visible in the different color channels. 
This results in a list of positions for each color channel 

that should be identical after alignment, allowing to esti-
mate a function that maps one channel onto another one 
(Goshtasby 1988). Different types of fiducials have been 
reported, such as a lattice that contains optical holes in a 
grid with known spacing (Koyama-Honda et al. 2005; Pert-
sinidis et  al. 2013) or a geometrical structure inside the 
sample itself, such as the center of the ring-shaped nuclear 
pore complex (Loschberger et  al. 2012). A more popular 
type of fiducials that do not require special manufacturing 
or prior knowledge of the sample are beads that are fluo-
rescent in both color channels (Baddeley et al. 2011; Bates 
et al. 2012; Churchman et al. 2005; Lehmann et al. 2011). 
In order to illustrate the importance of image registration, 
dual-color PALM was performed on a fusion construct of 
psCFP2 and mEos2 attached to the cell membrane pro-
tein SrcN (Annibale 2012). An isolated bead was used as a 
fiducial, and it was moved in the field of view along a grid 
pattern, using a piezo stage, and at each grid position an 
image was recorded in both color channels, as illustrated in 
Fig. 4a. It is clear that a correct overlay was obtained only 
after image registration, as can be seen in Fig. 4b and c.

In order to properly interpret the measured co-localiza-
tion, it is necessary to quantify the precision of the image 
registration procedure. One often used measure for this 
precision is the target registration error (TRE), which can 
be interpreted as the mean offset between the positions 
of the fiducials in both color channels after image regis-
tration (Churchman et  al. 2005; Cohen and Ober 2013). 
TRE values below 10 nm are typically reported (Annibale 
et al. 2012; Bates et al. 2012; Churchman et al. 2005; Mal-
kusch et  al. 2012; Pertsinidis et  al. 2013), and one study 
even achieved a TRE below 1  nm within a single pixel, 
by accounting for pixel response non-uniformities and 
mechanically stabilizing the microscope with an active 
feedback system (Pertsinidis et al. 2010). The evolution of 
the image registration precision over time was investigated 
by recording a time lapse movie of a bead, while using an 
axial stability feedback system (Annibale et al. 2012). Dur-
ing acquisition, the bead followed a trajectory determined 
by the lateral drift of the setup. While the TRE was 4.5 nm, 
the mean of the differences between the positions of the 
bead between both color channels after registration had a 
larger value of 6.7 nm, possibly due to long-term mechani-
cal instabilities, as shown in Fig. 4d.

Fluorescent protein pairs

If the detection efficiency for the label in one channel is x, 
and that in the other channel is y, then the estimated co-local-
ization underestimates the true co-localization by a factor 
xy, assuming a linear relation to the co-localization meas-
ure used. In other words, the correct estimation of co-local-
ization in dual-color PALM experiments is possible only  if 
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the fraction of fluorescent proteins that did not photoconvert 
to the on-state is accounted for. Several investigations have 
been undertaken to measure the photoconversion efficiency 
of different fluorescent proteins, for instance, by monitoring 
the change in the absorbance spectrum of a solution upon 
irradiation with 405 nm light (Annibale et al. 2012; Wieden-
mann et al. 2004). However, the photoconversion efficiency 
of a fluorescent protein in this in vitro environment might 
be altered with respect to the cellular environment. One 
recent study has, therefore, attempted to measure the pho-
toconversion efficiency inside cells, by counting either the 
photoconversion or the photobleaching events correspond-
ing to individual fluorescent proteins that are attached to the 
subunits of the cell membrane receptor GlyR (Durisic et al. 
2014). Among several other fluorophores, they found a pho-
toconversion efficiency of ~60 % for mEos2 and ~50 % for 
pamCherry. Multiplication of these values can be used as 
an estimate of the efficiency with which the co-localization 
between the corresponding fluorophores can be observed.

However, such an estimate might not reflect the true co-
localization efficiency, as it is determined from single-color 

PALM experiments, while the illumination procedure in 
a dual-color PALM experiment can increase the rate at 
which fluorescent proteins photobleach before being pho-
toconverted to the on-state. Dual-color PALM experiments 
performed on 1:1 fusion constructs of both fluorescent 
proteins, for instance inside a polymer gel or attached to 
a membrane protein, provide a solution (Annibale et  al. 
2012; Renz et al. 2012). Since one observes the same fluo-
rophore pattern in both color channels, the measured frac-
tion of co-localized fluorophores provides an alternative 
estimate of the co-localization efficiency. This fraction 
was measured for fusion constructs of three pairs, namely: 
psCFP2-pamCherry, Dronpa-mEos2 and psCFP2-mEos2 
(Annibale et al. 2012). For the latter pair, virtually no co-
localization was found, probably due to photobleaching of 
psCFP2 during activation of mEos2. The other two pairs 
gave rise to a ~15  % co-localization fraction, which can 
partially be explained by the photoconversion efficiencies 
of the fluorophores. Although mEos2 has a superior pho-
ton yield, psCFP2 and pamCherry are arguably the most 
suitable pair for dual-color PALM, since pamCherry is not 
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Fig. 4   An illustration of the image registration procedure to align 
images from different color channels. a An image obtained by 
integrating the images  in the green and red channel of a fiducial 
scanned across a square grid with a size of ~10  µm. b An overlay 
of the red and green PALM images of a membrane patch of a cell 
that expressed the protein SrcN labeled with a fusion construct of 
psCFP2 and mEos2, prior to image registration and c  after image 
registration. d A scatter plot of the residual offset xg − xr and yg − yr, 
with xg and xr being the x-coordinates in the green and red channel 

respectively, and yg and yr being  the y-coordinates in the green and 
red channel respectively. The blue circle has a radius of 10 nm, the 

red circle has a radius given by 
√

σ 2
g + σ 2

r + TRE, with σg and σr 

being the localization precisions in the green and red channel respec-
tively. The residuals were extracted from the trajectory of a fluores-
cent bead with 100 nm diameter, immobilized on the coverslip and 
imaged during a time lapse movie. Adapted from Annibale 2012 and 
Annibale et al. 2012
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fluorescent in the off-state and therefore allows simultane-
ous image acquisition in both color channels.

Co‑localization analysis

The output of an SMLM experiment can be represented 
as a pixelated image, for instance, by giving each pixel a 
value that scales linearly with the number of localized 
fluorophores inside the area that corresponds to that pixel. 
This means that intensity-based co-localization methods 
that rely on quantifying the correlation between the pixel 
values of images in different color channels (Bolte and 
Cordelieres 2006; Dunn et  al. 2011; Zinchuk et  al. 2007) 
can in principle be applied. However, such correlations are 
challenging to interpret, as they are highly susceptible to 
overestimation caused by noise and bleed-through (Bolte 
and Cordelieres 2006). One recent study reports a method 
that allows correcting for bleed-through in the context of 
SMLM (Kim et al. 2013).

Since raw SMLM data consist of locations of individual 
fluorophores, object-based co-localization methods (Bolte 
and Cordelieres 2006) can be used without any prior data 

processing. Usually, co-localization between objects in 
different color channels is investigated by calculating the 
distance between their positions and comparing it to a pre-
defined threshold. However, it is challenging to define an 
optimal value for this threshold, and  sometimes a rather 
arbitrary value of ~200 nm based on the diffraction-limited 
resolution is used. An object-based method was, therefore, 
recently developed that can estimate the threshold value 
from the data, by modeling the nearest neighbor distance 
distribution in a spatial statistics framework that esti-
mates a spatial interaction potential between the objects 
in the different color channels (Helmuth et  al. 2010). In 
addition to this feature, the method also extends the clas-
sical  threshold-based co-localization by providing other 
interaction “potentials” apart from the threshold function, 
and also incorporates  in the model the spatial distribution 
of objects within a point pattern. The latter corrects for the 
fact that estimates of spatial interaction, e.g., co-localiza-
tion, depend on the intra-object spatial distribution. This 
method was found to be robust against errors in the iden-
tification of the objects by image processing. In the con-
text of PALM, this method was applied to investigate the 
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Gibbs statistics, which characterizes an interaction by means of a 
potential (Helmuth et al. 2010). a Dual-color PALM data represented 
as probability maps. The green channel shows the GPCR protein β2-
adrenergic receptor labeled with psCFP2, and the red channel shows 
clathrin light chain labeled with pamCherry (Annibale 2012; Anni-
bale et al. 2012). b Results of interaction analysis: the observed near-

est neighbor distance distribution between the two channels (blue); 
the result of fitting the spatial interaction model with a linear L1 
potential to this distribution (green); the curve corresponding to the 
null hypothesis of “no interaction”, estimated by accounting for the 
intra-point pattern distance distribution (red). The method also returns 
the inferred parameters (i.e., strength and scale) that can be used for 
comparison. c The inferred interaction potential. Adapted from Shi-
vanandan et al. 2013
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co-localization between pamCherry-labeled clathrin-coated 
vesicles and psCFP2-labeled GPCRs during internalization 
(Shivanandan et al. 2013), as illustrated in Fig. 5. Another 
solution for the dependency of co-localization on the intra-
object distribution has recently been reported by taking into 
account the spatial distribution of the objects (Malkusch 
et al. 2012). This object-based method has the extra advan-
tage that it corrects for photoblinking. Another approach 
that is frequently reported in the context of SMLM-based 
co-localization is the  spatial cross-correlation analysis 
which uses the bivariate version of the PCF, called the 
cross-correlation function (CCF) (Gunewardene et  al. 
2011; Pertsinidis et al. 2013; Sengupta et al. 2011; Veatch 
et al. 2012).

Conclusion and outlook

We have reviewed recent developments in SMLM for 
counting single molecules, analyzing the heterogeneity of 
the spatial distribution of proteins and measuring co-locali-
zation on the single-molecule level. As quantitative SMLM-
based methods for these purposes have only recently been 
reported, there are still several problems and difficulties 
that need to be addressed. For instance, any study that uses 
SMLM for quantitative analysis must have stringent nega-
tive and positive controls, since artifacts in the imaging or 
analysis methods can give rise to wrong inferences. Also, 
the data must be corrected for sample drift by means of 
fiducial markers, or by correlative or statistical approaches 
based on the data itself (Geisler et al. 2012; Mlodzianoski 
et al. 2011). Working with the localizations directly rather 
than image representations such as histograms or prob-
ability maps is better for quantitative analysis, as the latter 
involves a loss of information. A challenge remains in iden-
tifying well-accepted standard methods for the quantitative 
analysis of SMLM, which would allow researchers to per-
form the correct comparison between reported results.

An important issue, especially in analyzing the spatial 
heterogeneity or co-localization of proteins, is the effect of 
localization uncertainty (Deschout et  al. 2014; Mortensen 
et al. 2010; Thompson et al. 2002). Not incorporating this 
effect into the analysis might result in incorrect estimates. 
For instance, in the case of cluster analysis, the presence of 
localization uncertainty, equivalent to sampling from a cir-
cular or elliptical Gaussian distribution (Thompson et  al. 
2002), will result in deformed if not enlarged clusters being 
imaged. Also, the uncertainty in position estimates results in 
an uncertainty in distances computed from them and hence 
affects object-based co-localization (Ruprecht et  al. 2010). 
Measures that do not account for the localization uncer-
tainty might result in a wrong interpretation in both cases. 
The PC-PALM technique that accounts for photoblinking 

artifacts also incorporates a localization uncertainty model 
in the analysis, but only through the average uncertainty 
of all molecule localizations, and its effect was not stud-
ied systematically. Defining a cutoff value for the localiza-
tion uncertainty distribution to select only the more precise 
molecular localizations can result in artifacts, especially if 
the localization uncertainty is not homogeneously distrib-
uted in space. This problem was investigated in the case of 
the CCF, which is used to study inter-protein interactions in 
dual-color PALM, from a purely empirical perspective, with 
rather mixed results (Sherman et al. 2013).

Besides accounting for the localization uncertainty, pro-
gress is required on other issues as well in order to achieve 
quantitative co-localization on the single-molecule level. 
The community would benefit from a uniform measure of 
the registration error, allowing comparison between co-
localization results from different studies. An important 
limitation toward single-molecule level co-localization in 
the context of PALM is the low co-localization efficiency of 
current fluorescent protein pairs, necessitating the search for 
more promising candidates (Bourgeois and Adam 2012).

Artifacts in the sample can also pose challenges to quan-
titative SMLM. Many of the studies reported in this review 
were done on fixed samples, although it has been observed 
that fixation can introduce artifacts in the protein spatial 
configuration (Annibale et al. 2012; Tanaka et al. 2010). A 
rigorous investigation of different fixation techniques will 
therefore be helpful. Also, it has been noticed that SMLM 
images of organelles such as mitochondria (Betzig et  al. 
2006), microtubules, or clathrin-coated pits have localiza-
tion densities that are spatially inhomogeneous, often result-
ing in spurious structures, e.g., clathrin-coated pits with 
poor symmetry (Lang and Rizzoli 2010). It will be useful 
to study this phenomenon in more detail, perhaps by means 
of correlative microscopy, i.e., by imaging the same struc-
ture with other high-resolution imaging techniques such as 
transmission electron microscopy (TEM) or atomic force 
microscopy (AFM). Such studies might also provide valida-
tions about localization uncertainty and detection efficiency.
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