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Abstract
Despite various advances in automatic speech recognition
(ASR) technology, recognition of speech uttered by non-native
speakers is still a challenging problem. In this paper, we in-
vestigate the role of different factors such as type of lexical
model and choice of acoustic units in recognition of speech ut-
tered by non-native speakers. More precisely, we investigate
the influence of the probabilistic lexical model in the frame-
work of Kullback-Leibler divergence based hidden Markov
model (KL-HMM) approach in handling pronunciation vari-
abilities by comparing it against hybrid HMM/artificial neural
network (ANN) approach where the lexical model is determin-
istic. Moreover, we study the effect of acoustic units (being
context-independent or clustered context-dependent phones) on
ASR performance in both KL-HMM and hybrid HMM/ANN
frameworks. Our experimental studies on French part of Me-
diaParl as a bilingual corpus indicate that the probabilistic lexi-
cal modeling approach in the KL-HMM framework can capture
the pronunciation variations present in non-native speech effec-
tively. More precisely, the experimental results show that the
KL-HMM system using context-dependent acoustic units and
trained solely on native speech data can lead to better ASR per-
formance than adaptation techniques such as maximum likeli-
hood linear regression.
Index Terms: Non-native speech recognition, Kullback-
Leibler divergence based hidden Markov model, Probabilistic
lexical modeling

1. Introduction
There is growing interest in the speech community to improve
the speech recognition for non-native speech as notable number
of people in today’s world using speech technology applications
are non-native speakers. Non-native speech recognition can be
a challenging problem due to existence of various accents [1]
while only small amount of non-native speech data is available.

Several adaptation methods have been proposed to improve
the automatic speech recognition (ASR) on non-native speech
data. A wide range of such techniques exploit acoustic model
adaptation. For example, in the framework of hidden Markov
model/Gaussian mixture model (HMM/GMM), Gaussian pa-
rameters are adapted using maximum likelihood linear regres-
sion (MLLR) or maximum a posteriori (MAP) estimation [2, 3].
On the other hand, in the framework of hybrid HMM/artificial
neural network (ANN), linear hidden network based adaptation
techniques have been applied [4]. Other approaches have also
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been proposed in which a multilingual acoustic model is ex-
ploited for the task of non-native speech recognition [5]. An-
other existing class of adaptation techniques is applied at the
pronunciation level. In [6], pronunciation model adapatation
using small amount of non-native speech data was explored.
Furthermore, approaches to adapt context-dependent state clus-
tering methods such as polyphone decision tree specialization
(PDTS) method for non-native speech recognition have been
proposed [7, 8].

All the adaptation methods discussed above have been pro-
posed within the framework of standard HMM-based ASR sys-
tems. In such systems, as explained in Section 2, the rela-
tionship between the acoustic/physical states and lexical/logical
states is deterministic (deterministic lexical model). An alter-
native approach which has been shown to be successful in im-
proving non-native speech recognition is a posterior-based ASR
approach called Kullback-Leibler divergence based HMM (KL-
HMM) [9, 10]. KL-HMM can be viewed as an ASR approach
where the relation between the acoustic units (modeled through
ANN) and lexical units (modeled through KL-HMM) is prob-
abilistic [11] (probabilistic lexical model). It has been shown
that exploiting resources from multiple auxiliary languages and
training the KL-HMM on small amount of adaptation data leads
to improvements in non-native speech recognition [12]. In a
more recent work, a speaker adaptation technique has been ap-
plied to the posterior features to improve the ASR performance
in the KL-HMM framework [13].

The existing approaches in the KL-HMM framework have
focused on improving the performance of the system through
use of small amount of non-native speech data. However, the
potential of KL-HMM as a probabilistic lexical modeling ap-
proach in handling pronunciation variations without using any
adaptation data has not been investigated yet. Such study can
be appealing as with growing applications in speech technol-
ogy, assuming the presence of adaptation data may not be fea-
sible. For example, call routing or tourism information systems
need to deal with a variety of pronunciations while there is no
adaptation data available.

In this paper, we study the role of probabilistic lexical
model in the KL-HMM framework in handling pronunciation
variations by comparing it against the deterministic lexical
model in the framework of hybrid HMM/ANN. Our experi-
mental studies on French part of MediParl corpus show that the
probabilistic lexical model in the KL-HMM framework trained
only on native speech data can result in significant improve-
ments compared to the deterministic lexical model in hybrid
HMM/ANN approach. Furthermore, our studies also show that
the KL-HMM system using context-dependent acoustic units
can yield better performance than systems based on speaker
adaptation.

The rest of this paper is structured as follows. Section 2



provides some background on different HMM-based ASR sys-
tems and explains our hypothesis in the present study. Section 3
describes the MediaParl corpus used for the experimental stud-
ies and the experimental setup. Sections 4 and 5 provide ex-
perimental results and comparison to previous work. Finally,
Section 6 brings the conclusion.

2. Background
In a recent study we elucidated that ASR can be viewed as a
matching process between acoustic information and lexical in-
formation via a latent symbol set [14] as illustrated in Figure 1.

Figure 1: Schematic view of HMM-based ASR approach

In that sense, four fundamental questions can arise:

1. What should the type of latent symbols (acoustic units) be?

2. How to model the relation between acoustic signal and
acoustic units (acoustic model)?

3. How to model the relation between the acoustic units and
lexical subword units (lexical model)?

4. What should the cost function to locally match the acoustic
evidence and lexical evidence be?

Based on the answers to these questions, different systems can
be developed. Language modeling and efficient search of out-
put word hypothesis using dynamic programming are common
aspects for all these systems. In this paper we are interested in
three systems, namely, HMM/GMM, hybrid HMM/ANN and
KL-HMM.

For the case of HMM/GMM systems, the aforementioned
questions are answered as follows [15]:

1. The acoustic units {ad}Dd=1 can be context-independent (CI)
or clustered context-dependent (cCD) phones.

2. The relation between the acoustic observation xt (e.g. cep-
stral features) and acoustic units {ad}Dd=1 is modeled though
GMMs which estimate a likelihood probability vector vt =
[v1t , . . . , v

d
t , . . . , v

D
t ]T with vdt = p(xt|ad).

3. The relation between the acoustic units {ad}Dd=1 and lexical
unit li, i ∈ {1, · · · I} is one-to-one deterministic map. i.e, if
the lexical unit li is deterministically mapped to the acoustic
unit ak, then the relation is modeled through a Kronecker
delta distribution yi = [y1i , . . . , y

d
i , . . . , y

D
i ]T = δd=k with

ydi = p(ad|li). The deterministic mapping is obtained either
through knowledge (for CI lexical units) or learned during
clustering and tying of states (for CD lexical units).

4. The cost function C is then the log of dot product between
acoustic model likelihood vector vt and lexical model pos-
terior probability vector yi, i.e. C = logyT

i vt.

In the hybrid HMM/ANN systems, on the other hand, some
of the questions are answered differently. More precisely,
the type of acoustic units and lexical modeling are similar to

HMM/GMM systems. However, an ANN is used as the acous-
tic model to estimate posterior probabilities {p(ad|xt)}Dd=1 and

then scale-likelihood vector vt with vdt = p(ad|xt)

p(ad)
is estimated.

The cost function C is then C = logyT
i vt.

In the case of KL-HMM, the main advantage results from
the different approach taken for lexical modeling. More pre-
cisely, in this framework the acoustic units and acoustic model
can be similar to the aforementioned approaches. However,
the relation between the acoustic units {ad}Dd=1 and lexical
unit li is modeled through a categorical distribution yi with
ydi = p(ad|li) as KL-HMM parameters. To learn the KL-
HMM parameters, a cost function C is defined based on the
KL-divergence between the acoustic unit posterior probability
vector zt = [z1t , . . . , z

d
t , . . . , z

D
t ]T with zdt = p(ad|xt) (esti-

mated using an ANN or GMM) as the feature observation and
the categorical distribution yi, i.e.

C = SKL(yi, zt) =

D∑
d=1

ydi log(
ydi
zdt

) (1)

As KL-divergence is not a symmetric measure, the local score
can be estimated in other ways such as

C = SRKL(yi, zt) =

D∑
d=1

zdt log(
zdt
ydi

) (2)

or
C = SSKL(yi, zt) =

1

2
(SKL + SRKL) (3)

The parameters {yi}Ii=1 are then estimated using the Viterbi
expectation-maximization algorithm which minimizes a cost
function based on KL-divergence scores.

These properties of different approaches are summarized
in Table 1. The deterministic lexical model in HMM/GMM

Systems Acoustic
unit

Lexical
unit

Acoustic
Model

Lexical
Model Cost function

HMM/GMM CI
cCD

CI
CD Generative Deterministic logyT

i vt

HMM/ANN CI
cCD

CI
CD Discriminative Deterministic logyT

i vt

KL-HMM CI/cCD CI/CD Discriminative Probabilistic SKL(yi, zt)

Table 1: Comparison of properties of different approaches.

and HMM/ANN systems imposes certain constraints. For ex-
ample, the acoustic and lexical units should be of the same
type. i.e., if the lexical units are context-independent or context-
dependent, then the acoustic units are also constrained to be
context-independent or context-dependent respectively. How-
ever the probabilistic lexical model in the KL-HMM framework
removes such constraints.

Our hypothesis in this paper is that the soft mapping be-
tween acoustic and lexical units provided by the probabilistic
lexical model, even though learned on native speech, can help
in modeling pronunciation variabilities present in non-native
speech. In the following sections, we validate our hypothesis
by comparing hybrid HMM/ANN as an instance of determin-
istic lexical modeling approach with KL-HMM as an example
of probabilistic lexical modeling approach in non-native speech
recognition task.

3. Experimental Setup
In this section, we first describe the MediaParl corpus used in
the experiments and then explain the setup of HMM/GMM, hy-



brid HMM/ANN and KL-HMM systems used for the experi-
mental studies.

3.1. Dataset

The experimental studies in this paper are conducted on Me-
diaParl corpus [16]. MediaParl is a bilingual corpus contain-
ing recordings of debates in Valais parliament in Switzerland
in both Swiss German and Swiss French. Valais is a state in
Switzerland including both French and German speakers with
variety of accents specially among German speakers. There-
fore, MediaParl provides a suitable framework for speech re-
lated studies in particular for non-native speech recognition.

In our experiments, the database is partitioned into training,
development and test sets according to the structure provided
in [16]. Table 2 provides the number of train, dev and test ut-
terances for both French and German along with information
about different speakers in the test set. All the speakers in the
training and development set are native speakers. In the test set,
four speakers are German native speakers and for three speak-
ers, French is the native language. Speakers 109 and 191 are
German native speakers who are also fluent in French.

Language Train
Utter.

Dev
Utter. Test Utter.

059
(DE-N)

079
(DE-N)

109
(DE-N)

191
(DE-N)

094
(FR-N)

096
(FR-N)

102
(FR-N)

French
(FR) 5471 646 31 22 233 165 313 89 72

German
(DE) 5955 879 195 698 402 310 72 8 7

Table 2: Data Partitioning in MediaParl Corpus. DE-N and FR-
N represent German and French native speakers respectively.

As it can be observed from Table 2, the number of non-
native utterances in German part of MediaParl is relatively small
(only 87 utterances). Therefore, in this study only French is
considered as the target language of interest.

The French dictionary of the MediaParl corpus is provided
in SAMPA format with a phone set of size 38 (including sil)
and contains all the words in the train, development and test set.
The dictionary includes the BDLex pronunciation lexicon1and
the vocabulary size is 12,362.

For the language model, a bigram model is trained on tran-
scriptions of the training set as well as EuroParl corpus (which
consists of about 50 million words for each language).

3.2. Systems

In our experiments, HMM/GMM, hybrid HMM/ANN and
KL-HMM systems were studied with the following setups:

HMM/GMM systems: We trained standard cross-word
context-dependent HMM/GMM systems with 39 dimensional
PLP cepstral features extracted using HTK toolkit [17]. The
number of Gaussians and number of clustered states were tuned
on the development set. The best performing system had 3928
clustered states with 16 Gaussians per clustered state which
was served as baseline for the studies in this paper.

Multilayer perceptrons (MLPs): For the hybrid HMM/ANN
and KL-HMM systems we studied two ANNs, more precisely,
MLPs to investigate the effect of acoustic units (being context-
independent or clustered context-dependent phones) on the
ASR performance. As the input to the MLP, PLP cepstral

1http://www.irit.fr/ Martine.deCalmes/IHMPT/ress ling.v1/rbdlex en.php

features (of dimension 39) with four frames preceding context
and four frames following context were used. The MLPs were
trained using Quicknet software [18] with output non-linearity
of softmax and minimum cross-entropy error criterion.

We exploited the following MLPs:

• MLP-CI-38: a 5-layer MLP classifying context-independent
phones as output units (with about 8.8M parameters).

• MLP-CD-N: a 5-layer MLP modeling N = 437 context-
dependent clustered phones as outputs. The acoustic units
were derived by clustering context-dependent phones in the
HMM/GMM framework using decision tree state tying. The
MLP had roughly the same number of parameters as MLP-
CI-38 (≈ 8.8M).

Hybrid HMM/ANN systems: As explained in section 2,
the scaled likelihoods vt in hybrid HMM/ANN system were
estimated by dividing the posterior probabilities P (ad|xt)
derived from MLP by the priori probability of acoustic unit
P (ad) estimated from relative frequencies in the training data.

KL-HMM systems: The KL-HMM systems used acous-
tic units posterior probabilities as feature observations and
modeled either context-independent or context-dependent (tri)
phones as lexical units. The KL-HMM parameters were trained
by minimizing the cost functions based on local scores KL,
SKL and RKL (as described in Section 2) and the local score
with minimum KL-divergence on training data was used. The
two KL-HMM systems using context-independent and clus-
tered context-dependent phones used SKL and RKL as the local
score respectively. In order to tie the KL-HMM (lexical) states
KL-divergence based decision tree state tying method proposed
in [19] was applied.

4. Results and Analysis
Table 3 presents the results in terms of word error rate (WER)
in hybrid HMM/ANN and KL-HMM systems using context-
independent acoustic units. It can be observed that the KL-

Native Non-native Overall Lexical units
Hyb-MLP-CI-38 26.7 40.0 33.1 CI
KL-HMM-MLP–CI-38 23.3 37.3 30.0 CI

Table 3: Experimental results in hybrid HMM/ANN and KL-
HMM using CI acoustic units

HMM system outperforms hybrid HMM/ANN for both native
and non-native speech. For the case of native speech, the prob-
abilistic lexical model can help in capturing the pronunciation
variations present in debates as type of spontaneous speech. In
addition, pronunciation variabilities can occur as a result of dif-
ferences between the Swiss French and French accent 2. The
soft mapping between acoustic and lexical units in the KL-
HMM framework can help in handling these pronunciation vari-
ations. For the case of non-native speech, as hypothesized, the
pronunciation variation information captured by the probabilis-
tic lexical model from the native speakers’ speech is helpful for
non-native speech recognition.

Table 4 presents the results using clustered context-
dependent acoustic units (of size 437)3. As in the KL-HMM

2For instance, the closed vowel /o/ in Valaisan accent is pronounced
as open vowel /O/ in words like ”eau” [20]

3HMM/GMM results are presented here as the baseline to which
other approaches are compared.



framework, the acoustic and lexical units do not require to be of
the same type (CI or CD), we have also presented the results us-
ing context-independent acoustic units and context-dependent
lexical units. Similar to the previous scenario using context-
independent acoustic units, it can be observed that the KL-
HMM approach outperforms the hybrid HMM/ANN system
which is indicative of the role of the probabilistic lexical model
in capturing pronunciation variabilities. Similar to our previous
work [14], it is interesting to note that KL-HMM-MLP-CI-38
system using context-dependent lexical units achieves compa-
rable results to the Hyb-MLP-CD-437 system.

System Native Non-native Overall Lexical units
HMM/GMM-CD-3928 19.8 34.4 26.8 CD
Hyb-MLP-CD-437 19.4 32.0 25.5 CD
KL-HMM-MLP-CI-38 20.0 32.3 25.9 CD
KL-HMM-MLP-CD-437 16.0 29.1 22.3 CD

Table 4: Experimental results in hybrid HMM/ANN and KL-
HMM using CD acoustic and lexical units

To further analyze the performance of hybrid HMM/ANN
and KL-HMM systems presented in Table 4, we have depicted
the results in terms of WER per speaker. It can be observed that
for almost all the speakers, the KL-HMM approach outperforms
the hybrid HMM/ANN approach. The results are consistent for
both native and non-native speakers.
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Figure 2: Comparison of hybrid HMM/ANN and KL-HMM
ASR performance per speaker

In our previous study [14], it was observed that the hybrid
HMM/ANN system requires slightly more number of acoustic
units than the KL-HMM system. So we conducted experiments
by increasing the number of acoustic units. More precisely, we
used MLP-CD-N with N ∈ {817, 1084} with roughly same
number of parameters as before (≈ 8.8M) to classify the acous-
tic units. The different number of acoustic units were derived by
adjusting the log-likelihood difference during the decision tree
state tying in the HMM/GMM framework. Figure 3 presents
the results in terms of WER with different number of acous-
tic units for both native and non-native speech. It can be ob-

38 (CI) 437 817 1084

20

30

40

26.7

19.4 19 19.3

40

32 32.4 32.2

Number of acoustic units

W
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R

Native Non-Native

Figure 3: Effect of number of acoustic units on native and non-
native speech recognition in hybrid HMM/ANN framework

served from Figure 3 that while increasing the number of clus-
tered context-dependent acoustic units (from 437 to 817) leads

to slight improvement in native speech recognition, it slightly
hurts the non-native speech recognition. This indicates that in-
creasing the number of acoustic units does not necessarily lead
to improvement in the overall results.

5. Comparison to Previous Work
In this study, we analyzed the potential of the KL-HMM ap-
proach in improving non-native speech recognition without us-
ing any adaptation data. In this section, we compare our results
with a previous study on the MediaParl corpus using speaker
adaptation techniques [13]. Figure 4 shows the results in terms
of WER, when using MLLR, speaker adaptive KL-HMM and
KL-HMM-MLP-CD-4374. It can be observed that KL-HMM-
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Figure 4: Comparison of different approaches

MLP-CD-437 system can perform better than both MLLR and
speaker adaptive KL-HMM approaches for both native and non-
native speech. While the speaker adaptive KL-HMM technique
leads to improvement in non-native speech recognition com-
pared to MLLR, it does not help in improving the recognition
performance for native speech. However, KL-HMM-MLP-CD-
437 is useful for both native and non-native speech without us-
ing any adaptation data. We should note that in [13], a 3-layer
MLP classifying context-independent phones was used as the
acoustic model. It would be interesting to see whether speaker
adaptive KL-HMM system yields any further improvement for
context-dependent acoustic units with the same amount of adap-
tation data.

6. Discussion and Conclusion
In this paper, we studied the role of the probabilistic lexical
model in the KL-HMM framework in improving non-native
speech recognition without using any adaptation data. Our
experimental studies showed that by moving from the deter-
ministic lexical modeling approach of hybrid HMM/ANN to
the probabilistic lexical modeling approach of KL-HMM, no-
table improvements in non-native speech recognition can be
achieved. The observations in this study are inline with the
studies such as probabilistic classification of HMM states (PC-
HMM) [21] which has shown to be successful in handling pro-
nunciation variations in spontaneous speech [22]. The PC-
HMM approach has been argued to be similar to the KL-HMM
approach in the sense that both can be viewed as probabilis-
tic lexical modeling approaches [23]. In the future work, we
aim to investigate the effect of cross-lingual knowledge transfer
(for example, by incorporation of acoustic information from the
native language of the speaker) on the non-native speech recog-
nition within the KL-HMM framework.

4In [13], speaker 059 was omitted due to lack of sufficient adaptation
data. Therefore, for the sake of comparability we also report the results
without speaker 059.



7. References
[1] D. Van Compernolle, “Recognizing speech of goats, wolves,

sheep and ... non-natives,” Speech Communication, vol. 35, no. 1,
pp. 71–79, 2001.

[2] J. Segura, T. Ehrette, A. Potamianos et al., “The HIWIRE
database, a noisy and non-native English speech corpus for cock-
pit communication,” Online. http://www. hiwire. org, 2007.

[3] G. Bouselmi, D. Fohr, I. Illina et al., “Multi-accent and accent-
independent non-native speech recognition.” in Proceedings of In-
terspeech, 2008, pp. 2703–2706.

[4] R. Gemello, F. Mana, and S. Scanzio, “Experiments on hiwire
database using denoising and adaptation with a hybrid HMM-
ANN model.” in Proceedings of Interspeech, 2007, pp. 2429–
2432.

[5] V. Fischer, E. Janke, and S. Kunzmann, “Likelihood combina-
tion and recognition output voting for the decoding of non-native
speech with multilingual HMMs.” in Proceedings of Interspeech,
2002.

[6] G. Bouselmi, D. Fohr, I. Illina, J.-P. Haton et al., “Multilingual
non-native speech recognition using phonetic confusion-based
acoustic model modification and graphemic constraints,” in Pro-
ceedings of ICSLP, 2006.

[7] Z. Wang, T. Schultz, and A. Waibel, “Comparison of acoustic
model adaptation techniques on non-native speech,” in in Pro-
ceedings of ICASSP, vol. 1. IEEE, 2003, pp. I–540.

[8] U. Nallasamy, F. Metze, and T. Schultz, “Enhanced polyphone
decision tree adaptation for accented speech recognition.”
ISCA, 2012. [Online]. Available: http://dblp.uni-trier.de/db/conf/
interspeech/interspeech2012.html#NallasamyMS12

[9] G. Aradilla, J. Vepa, and H. Bourlard, “An acoustic model based
on Kullback-Leibler divergence for posterior features,” in Pro-
ceedings of ICASSP, 2007, pp. IV–657 – IV–660.

[10] G. Aradilla, H. Bourlard, and M. M. Doss, “Using KL-based
acoustic models in a large vocabulary recognition task,” in Pro-
ceedings of Interspeech, 2008, pp. 928–931.

[11] R. Rasipuram and M. Magimai-Doss, “Improving grapheme-
based ASR by probabilistic lexical modeling approach,” in Pro-
ceedings of Interspeech, 2013.

[12] D. Imseng, R. Rasipuram, and M. Magimai-Doss, “Fast and flex-
ible kullback-leibler divergence based acoustic modeling for non-
native speech recognition,” in Proceedings of ASRU, Dec. 2011,
pp. 348–353.

[13] D. Imseng and H. Bourlard, “Speaker adaptive kullback-leibler
divergence based hidden markov models,” in Proceedings of
ICASSP, 2013.

[14] M. Razavi, R. Rasipuram, and M. Magimai-Doss, “On model-
ing context-dependent clustered states: Comparing HMM/GMM,
Hybrid HMM/ANN and KL-HMM Approaches,” To appear in
Proceedings of ICASSP, 2014.

[15] R. Rasipuram and M. Magimai.-Doss, “Acoustic and lexical
resource constrained ASR using language-independent acous-
tic model and language-dependent probabilistic lexical model,”
Idiap, Idiap-RR Idiap-RR-02-2014, 3 2014.

[16] D. Imseng et al., “Mediaparl: Bilingual mixed language accented
speech database,” in Proceedings of IEEE Workshop on SLT, Dec.
2012, pp. 263–268.

[17] S. Young et al., The HTK Book (for HTK Version 3.4). Cambridge
University Engineering Department, UK, 2006.

[18] D. Johnson et al., “ICSI Quicknet Software Package,”
http://www.icsi.berkeley.edu/Speech/qn.html, 2004.

[19] D. Imseng et al., “Comparing different acoustic modeling tech-
niques for multilingual boosting,” in Proceedings of Interspeech,
Sep. 2012.

[20] H. Caesar, “Integrating language identification to improve multi-
lingual speech recognition,” Idiap, Idiap-RR Idiap-RR-24-2012, 7
2012.

[21] X. Luo and F. Jelinek, “Probabilistic classification of hmm states
for large vocabulary continuous speech recognition,” in Proceed-
ings of ICASSP, vol. 1. IEEE, 1999, pp. 353–356.

[22] M. Saraclar, H. Nock, and S. Khudanpur, “Pronunciation model-
ing by sharing gaussian densities across phonetic models,” Com-
puter Speech & Language, vol. 14, no. 2, pp. 137–160, 2000.

[23] R. Rasipuram and M. Magimai-Doss, “Probabilistic lexical mod-
eling and grapheme-based automatic speech recognition,” Idiap,
Idiap-RR Idiap-RR-15-2013, 4 2013.

http://dblp.uni-trier.de/db/conf/interspeech/interspeech2012.html#NallasamyMS12
http://dblp.uni-trier.de/db/conf/interspeech/interspeech2012.html#NallasamyMS12

	 Introduction
	 Background
	 Experimental Setup
	 Dataset
	 Systems

	 Results and Analysis
	 Comparison to Previous Work
	  Discussion and Conclusion
	 References

