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Abstract

We prove Russo-Seymour-Welsh-type uniform bounds on crossing probabilities
for the FK Ising (FK percolation with cluster weight ¢ = 2) model at criticality,
independent of the boundary conditions. Our proof relies mainly on Smirnov’s
fermionic observable for the FK Ising model [24], which allows us to get precise
estimates on boundary connection probabilities. We stay in a discrete setting;
in particular, we do not make use of any continuum limit, and our result can
be used to derive directly several noteworthy properties—including some new
ones—among which are the fact that there is no infinite cluster at criticality,
tightness properties for the interfaces, and the existence of several critical ex-
ponents, in particular the half-plane, one-arm exponent. Such crossing bounds
are also instrumental for important applications such as constructing the scaling
limit of the Ising spin field [6] and deriving polynomial bounds for the mixing
time of the Glauber dynamics at criticality [17]. © 2011 Wiley Periodicals, Inc.

1 Introduction

It is fair to say that the two-dimensional Ising model has a very particular his-
torical importance in statistical mechanics. This model of ferromagnetism is the
first natural model where the existence of a phase transition, a property common
to many statistical mechanics models, has been proved, in Peierls’ 1936 work [19].
In a series of seminal papers (particularly [18]), Onsager computed several macro-
scopic quantities associated with this model. Since then, the Ising model has at-
tracted a lot of attention, and it has probably been one of the most studied models,
giving birth to an extensive literature, both mathematical and physical.

A few decades later, in 1972, Fortuin and Kasteleyn introduced a dependent
percolation model for which the probability of a configuration is weighted by the
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number of clusters (connected components) that it contains. This percolation rep-
resentation turned out to be extremely powerful in studying the Ising model, and by
now it has become known as the random-cluster model or the Fortuin-Kasteleyn
percolation (FK percolation for short). Recall that on a finite graph G, the FK
percolation process with parameters p and ¢ is obtained by assigning to each con-
figuration w a probability proportional to

po(w)(l _ p)C(w)qk(w) ,

where o(w), c(w), and k(w) denote, respectively, the number of open edges, closed
edges, and connected components in . The definition of the model also involves
boundary conditions, encoding connections taking place outside G. The bound-
ary conditions can be seen as a set of additional edges between sites on the outer
boundary, and they will play a central role in this article. The precise setup that we
consider in this paper is presented in Section 2.

For the specific value ¢ = 2, FK percolation provides a geometric representa-
tion of the Ising model [9]: there exists a coupling between the two models, whose
general form is known as the Edwards-Sokal coupling [8]. In the present article, we
restrict ourselves to this value ¢ = 2, and we call this model the FK Ising model.
We also stick to the square lattice Z2, or subgraphs of it, though our arguments
could be carried out in the more general context of isoradial graphs, as in [7]. Note
that our results are stated for the FK representation, but that the aforementioned
coupling then allows one to translate them into results for the Ising model itself.
For instance, as first noticed in [9], two-point connection probabilities for the FK
Ising model correspond via this coupling to two-spin correlation functions for the
Ising model.

For the value ¢ = 2 and Z? as an underlying graph, the model features a phase
transition—in the infinite-volume limit—at the critical and self-dual point p, =
Psa = ~2/(1 + +/2): for p < pe, there is a.s. no infinite open cluster, while
for p > pc, there is a.s. a unique one. These two regimes, known as subcritical
and supercritical, have totally different macroscopic behaviors. Between them lies
a very interesting and rich regime, the critical regime, corresponding to the value
p = pc- Its behavior is intimately related to the behavior of the model through its
phase transition, as indicated in particular by the scaling theory.

In this paper, we prove lower and upper bounds for crossing probabilities in
rectangles of bounded aspect ratio. These bounds are uniform in the size of the
rectangles and in the boundary conditions, and they are analogues for the FK Ising
model to the celebrated Russo-Seymour-Welsh (RSW) bounds for percolation [21,
22]. Formally, we consider rectangles R of the form [0, n]] x [0, m] for n,m > 0
and translations of them. Here and in the following, [-,-] is the integer interval
between the two (real) endpoints, i.e., the interval -, -] N Z. We denote by Cy(R)
the event that there exists a vertical crossing in R, a path from the bottom side
[0, n] x {0} to the top side [0, n] x {m} that consists only of open edges. Our main
result is the following:
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THEOREM 1.1 (RSW-Type Crossing Bounds) Ler 0 < B1 < PBa. There exist
two constants 0 < ¢ < cp < 1 (depending only on 81 and B2) such that for
any rectangle R with side lengths n and m € [Bin, Ban] (i.e., with aspect ratio
bounded away from 0 and oo by B1 and 3), one has

€ = IEJ)Pég‘sd,Z,R(CU(R)) <cn

for any boundary conditions &, where p¢ 5 R denotes the FK measure on R with
Dsds 4,
parameters (p,q) = (psa, 2) and boundary conditions §.

These bounds are in some sense a first glimpse of scale invariance. It was widely
believed in the physics literature that the FK Ising model at criticality, i.e., for
P = pc, should possess a strong property of conformal invariance in the scal-
ing limit [4, 5, 20]. A precise mathematical meaning was recently established
by Smirnov in a groundbreaking paper [24]. One of the main tools there is the
so-called preholomorphic fermionic observable, a complex observable that makes
holomorphicity appear on the discrete level. This property can then be used to take
continuum limits and describe the scaling limits so obtained.

Our proof relies mostly on Smirnov’s observable. Specifically, it is based on
precise estimates on connection probabilities for boundary vertices that allow us to
use a second-moment method on the number of pairs of connected sites. For that,
we use Smirnov’s observable to reveal some harmonicity on the discrete level,
which enables us to express macroscopic quantities such as connection probabil-
ities in terms of discrete harmonic measures. Note in addition that other recent
works (e.g., [2]) also suggest that this complex observable is a relevant way to look
at FK percolation, both for ¢ = 2 and for other values of g. We would like to
stress that our argument stays completely in a discrete setting, using essentially el-
ementary combinatorial tools; in particular, we do not make use of any continuum
limits [25].

Crossing bounds turned out to be instrumental in studying the percolation model
at and near its phase transition—for instance, to derive Kesten’s scaling relations
[14] that link the main macroscopic observables, such as the density of the infinite
cluster and the characteristic length. These bounds are also useful to study varia-
tions of percolation—in particular, for models exhibiting a self-organized critical
behavior. We thus expect Theorem 1.1 to be of particular interest to study the FK
Ising model at and near criticality.

This theorem allows us to derive easily several noteworthy results. Among the
consequences that we state, let us mention power law bounds for magnetization at
criticality for the Ising model, first established by Onsager [18], tightness results for
the interfaces coming from the Aizenman-Burchard technology, and the value % of
the one-arm, half-plane exponent—the exponent that describes both the asymptotic
probability of large-distance connections starting from a boundary point for the
FK Ising model, and the decay of boundary magnetization in the Ising model.
Moreover, Theorem 1.1 is used in [17] to establish a polynomial upper bound on
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the mixing time of the Glauber dynamics at criticality, and in [6], such crossing
bounds allow the authors to construct subsequential scaling limits for the spin field
of the critical Ising model.

Theorem 1.1 also appears to be useful in enabling the transfer of properties of
the scaling limit objects back to the discrete models. It is therefore expected to
be helpful in proving the existence of critical exponents, in particular of the arm
exponents. Connections between discrete models and their continuum counterparts
usually involve decorrelation of different scales, and thus use spatial independence
between regions that are far enough from each other. In the random cluster model,
one usually addresses the lack of spatial independence by successive conditionings,
using repeatedly the spatial (or domain) Markov property of FK percolation, by
which what happens outside a given domain can be encoded by appropriate bound-
ary conditions. For this reason, proving bounds that are uniform in the boundary
conditions seems to be important. An example of the application of this technique
is given in Section 5.1.

We would also like to mention that other proofs of Russo-Seymour-Welsh-type
(RSW) bounds have already been proposed. In [7], Chelkak and Smirnov give
a direct and elegant argument to explicitly compute certain crossing probabilities
in the scaling limit, but their argument only applies for some specific boundary
conditions (alternately wired and free on the four sides). In [6] Camia and Newman
also propose to obtain RSW as a corollary of a recently announced result [7]: the
convergence of the full collection of interfaces for the Ising model to the conformal
loop ensemble CLE(3). The interpretation of CLE(3) in terms of the Brownian loop
soup [28] is also used. However, to the authors’ knowledge, the proofs of these
two results are quite involved, and moreover, the reasoning proposed only applies
for the infinite-volume measure. In these two cases, uniformity with respect to
the boundary conditions is not addressed, and there does not seem to be an easy
argument to avoid this difficulty. While weaker forms might be sufficient for some
applications, it seems that this stronger form is needed in many important cases,
and that it considerably shortens several existing arguments.

The paper is organized as follows. In Section 2, we first remind the reader of
the basic features of FK percolation, as well as properties of Smirnov’s fermionic
observable. In Section 3, we compare the observable to certain harmonic measures,
and we establish some estimates on the latter. These estimates are central in the
proof of Theorem 1.1, which we perform in Section 4. Then Section 5 is devoted
to presenting the consequences that we mentioned. In the last section, we state
conjectures on crossing probabilities for FK models with general values of ¢ > 1.

2 FK Percolation Background
2.1 Basic Features of the Model

In order to keep the present paper as self-contained as possible, we recall some
basic features of the random-cluster models. Some of these properties, like the
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Fortuin-Kasteleyn-Ginibre (FKG) inequality, are common to many statistical me-
chanics models. The reader can consult the reference book [10] for more details
and proofs of the results stated.

Definition of Random-Cluster Measure

We define the random-cluster (or FK percolation) measure on arbitrary finite
graphs, although in this paper, we will be mostly interested in finite subgraphs of
the square lattice Z2.

Let G = (V, E) be a finite graph. The boundary of G, denoted by dG, is a
given subset of the set of vertices V. A configuration w is a random subgraph of G
given by the vertices of G, together with some subset of edges between them. An
edge of G is called open if it belongs to @ and closed otherwise. Two sites x and y
are said to be connected if there is an open path—a path composed of open edges
only—connecting them, an event that is denoted by x [ y. Similarly, two sets
of vertices X and Y are said to be connected if there exist two sites x € X and
y € Y such that x (] y; we use the notation X [ Y. We also abbreviate {x} ] Y
as x [J Y. Sites can be grouped into (maximal) connected components, usually
called clusters.

Contrary to usual independent percolation, the edges in the FK percolation
model are dependent of each other, a fact that makes the notion of boundary con-
ditions important. Formally, a set £ of boundary conditions is a set of “abstract”
edges, each connecting two boundary vertices, that encodes how these vertices are
connected outside G. We denote by @ U § the graph obtained by adding the new
edges in £ to the configuration .

We are now in a position to define the FK percolation measure itself for any
parameters p € [0,1] and ¢ > 1. Denoting by o(w) (respectively, c¢(w)) the
number of open (respectively, closed) edges of w and by k(w, £) the number of
connected components in @ U &, we obtain the FK percolation process on G with
parameters p and g and boundary conditions & by taking

(@ (1 _ (o), k(w,E)
P (1= p)q
@.1) P; o) = :

p.4,G

as a probability for any configuration w, where Z;’:’ 0.G is an appropriate normaliz-
ing constant, called the partition function.

Among all the possible boundary conditions, two of them play a particular role.
On the one hand, the free boundary conditions correspond to the case when there
are no extra edges connecting boundary vertices; we denote by IP’I?’ 2.G the corre-
sponding measure. On the other hand, the wired boundary conditions correspond
to the case when all the boundary vertices are pairwise connected, and the corre-
sponding measure is denoted by IP’I}’ 2.G"

Remark 2.1. Note that for connections between sets (in particular for crossings and
the definition of C, (R)), edges of & are not allowed to be used. Hence, even for the
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measure with wired boundary conditions, two points x and y on the boundary are
not necessarily connected.

Domain Markov Property

The different edges of an FK percolation model being highly dependent, what
happens in a given domain depends on the configuration outside the domain. How-
ever, the FK percolation model possesses a very convenient property known as the
domain Markov property, which usually makes it possible to obtain some spatial
independence. This property is used repeatedly in our proofs.

Consider a finite graph G, with E its set of edges. For a subset F C FE, con-
sider the graph G 'having F as a set of edges and the endpoints of F as a set of

vertices. Then for any boundary conditions ¢, IP’I? 2.G conditioned to match some

configuration w on E \ F is equal to IP’Ii 2.G" where £ is the set of connections
inherited from @ (one connects in £ the boundary vertices that are connected in
G \ G"). In other words, one can encode, using appropriate boundary conditions £,
the influence of the configuration outside G .

Strong Positive Association and Infinite-Volume Measures

The random-cluster model with parameters p € [0,1] and ¢ > 1 on a finite
graph G has the strong positive association property. More precisely, it satisfies
the so-called Holley criterion [10], a fact that has two important consequences. The
first consequence is the well-known FKG inequality

3 3 3
]P’p,q’G(A NnB)> ]P’p,q,G(A) ]P’p,q’G(B)

for any pair of increasing events A and B (increasing events are defined in the
usual way [10]) and any boundary conditions &. This correlation inequality is fun-
damental to studying FK percolation, for instance, to combine several increasing
events such as the existence of crossings in various rectangles.

A second property implied by strong positive association is the following mono-
tonicity between boundary conditions, which is particularly useful when combined
with the domain Markov property. For any boundary conditions ¢ < & (all the
connections present in ¢ belong to £ as well), we have

2.2) P? (A <P (A4
for any increasing event A that depends only on G. We say that IF’; 7.G is stochas-

tically dominated by }P’If 2.G’ denoted by IF’; 2.G Sst }P’; 4.G" In particular, this
property directly implies that the free and wired boundary conditions are extremal
in the sense of stochastic ordering: for any set of boundary conditions &, one has

0 § 1
(2.3) Ppa6 = Ppq6 = Fpgc-
An infinite-volume measure can be constructed as the increasing limit of FK

percolation measures on the nested sequence of graphs ([—n,n]?), 1 with free
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boundary conditions. For any fixed ¢ > 1, classical arguments then show that
there must exist a critical point p. = p.(q) such that for any p < p, there is
almost surely no infinite cluster of sites, while for p > p,, there is almost surely
one (see [10], for example).

Planar Duality

In two dimensions, an FK measure on a subgraph G of Z? with free boundary
conditions can be associated with a dual measure in a natural way. First, define the
dual lattice (Z.?)", obtained by putting a vertex at the center of each face of Z? and
by putting edges between nearest neighbors. Next, the dual graph G of a finite
graph G is given by the sites of (Z?)" associated with the faces adjacent to an edge
of G. The edges of G are the edges of (Z?)" that connect two of its sites—note
that any edge of G'' corresponds to an edge of G.

A dual model can be constructed on the dual graph as follows: for a percolation
configuration w, each edge of G is dual-open (or simply open), respectively, dual-
closed, if the corresponding edge of G is closed, respectively, open. If the primal
model is an FK percolation with parameters (p, g), then it follows from Euler’s
formula (relating the number of vertices, edges, faces, and components of a plane
graph) that the dual model is again an FK percolation, with parameters (p—, ¢ ).
In general, one must be careful about the boundary conditions. For instance, on a
rectangle R, the FK percolation measure IP”?’ 4.R is dual to the measure IP’I} 4R
where (p', g") satisfies

pp-

(1-p)(A—-p")
The critical point p.(q) of the model is the self-dual point psq(q) for which p =
p' (this has recently been proved in [3]), whose value can be easily derived:

Vi
1+ q

In the following, we need to consider connections in the dual model. Two sites x
and y of G" are said to be dual-connected if there exists a connected path of open

dual-edges between them. Similarly to the primal model, we define dual-clusters
as maximal connected components for dual-connectivity.

=g and ¢~ =gq.

psa(q) =

FK Percolation with Parameter q D 2: FK Ising Model

For the value ¢ = 2 of the parameter, the FK percolation model is related to
the Ising model. More precisely, if starting from an FK percolation sample, one
assigns uniformly at random a spin 41 or —1 to each cluster as a whole (sites in the
same cluster get the same spin) independently, we get simply a sample of the Ising
model. Conversely, one can get an FK percolation sample from an Ising sample by
considering a percolation restricted to those edges that connect sites of the same
spin. This coupling is called the Edwards-Sokal coupling [8], and it provides a link
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between correlations for the Ising model and connection probabilities for the FK
Ising model.

In this case, the FK percolation model is now well understood. The value
De = Psd 18 implied by the computation by Kaufman and Onsager of the partition
function of the Ising model, and an alternative proof has been proposed recently
by Beffara and Duminil-Copin [2]. Moreover, in [24], Smirnov proved conformal
invariance of this model at the self-dual point pgq.

Theorem 1.1 can be applied to the Ising model by using the previous coupling.
For instance, one can directly deduce the following:

COROLLARY 2.2 Consider the Ising model with (+) or free boundary conditions
in a rectangle R with dimensions n and m < Bn. There exists a constant cg > 0
such that
free/ ]
P (Cy (R) = cp.

where C, denotes the existence of a vertical (+) crossing.

We could state this result for more general boundary conditions, for instance (+)
on one arc and free on the other arc. However, we have to be a little careful since
not all boundary conditions can “go through this coupling.” The corresponding
result for (—) boundary conditions is actually not expected to hold: one can no-
tice, for example, that in any given smooth domain, a CLE(3) process—the object
describing the scaling limit of cluster interfaces—a.s. does not touch the boundary.

In the following, we restrict ourselves to the FK percolation model with param-
eters g = 2 and p = pwa(2) = v2/(1 + +/2) (so that we forget the dependence
on p and ¢q), which is also known as the critical FK Ising model—we often call it
the FK Ising model for short.

2.2 Smirnov’s Fermionic Observable

In this part, we recall discrete analyticity and discrete harmonicity results for
the FK Ising model, established by Smirnov in [24]. We do not include any proof,
yet we remind the reader of the basic definitions and properties. These results
are crucial in our proofs since they allow us to compare connection probabilities
to harmonic measures. It should be noted that our proof only involves discrete
arguments; the convergence results of [24] are not used. Recall that from now,

q =2and p = ps(2).

Medial Lattice of 7 2

We first need to introduce the medial lattice associated with the square lattice
7.%. The medial lattice (Zz)m, used in Figure 2.1, has a site at the middle of each
edge of Z? and edges connecting nearest-neighbor sites. We obtain in this way a
rotated copy of the square lattice (scaled by a factor 1/ V2).

The faces of the medial lattice correspond to sites of the primal or the dual
lattice. We call a face black (respectively, white) if it is associated with a site of 7?2
(respectively, (Z2)"'). We use extensively in the proof this correspondence between
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FIGURE 2.1. A domain D with Dobrushin boundary conditions: the
vertices of the primal graph are black, the vertices of the dual graph D"
are white, and between them lies the medial lattice D. The arcs d,p
and 0p,, are the two outermost medial paths (with arrows) from e, to ep.
Note that d,; and dp, both have black faces to their left and white faces
to their right.

sites of the primal or dual lattices and faces of the medial lattice. For instance, we
say that two black faces are connected if the corresponding sites of the primal
lattice are connected.

In addition to this, we put an orientation on (Z?2): we orient the edges around
each black face in counterclockwise direction.

Dobrushin Domains and Medial Graphs

Informally speaking, a Dobrushin domain, as on Figure 2.1, is a domain with
two points a and b dividing the boundary into two arcs (ab) and (ba), called the
free and the wired arcs.

More precisely, let e, and ep, be two distinct edges of the medial lattice, @ and b
being their two adjacent black faces. Consider two self-avoiding paths d,5 and 95,
on the medial lattice, both starting at e, and ending at e, that follow the orientation
of the medial lattice and intersect only at e, and e;. We assume that the loop
obtained by following d,5 \ e; U ep (along its orientation) and then dp, \ €4 U ep,
(in the reverse direction) is oriented counterclockwise. The medial graph D, =
(Vo, En) associated with d,p and dp, consists of all the medial edges and vertices
that are surrounded by the two arcs, as on Figure 2.1. The boundary of V-, denoted
by a0V, is the set of vertices of V, that belong to one of the two paths d,p and dp,,.



1174 H. DUMINIL-COPIN, C. HONGLER, AND P. NOLIN

Every such medial graph is naturally associated with a subgraph D = (V, E) of
the primal lattice. The set VV is composed of the sites in Z?—black faces—adjacent
to a medial edge of E, and the set E consists of all the edges between sites of V'
that do not intersect d,;. We define the free arc (ab) (respectively, the wired arc
(ba)) to be the set of sites of Z2—black faces—adjacent to 9,4, (respectively, dpg).

In the same manner, we can also define the dual graph D" associated with D-.
We call the dual free arc the set of white faces, on 9D, adjacent to the arc 9.
Note that these faces are a set of dual sites, contrary to the free arc itself, made of
primal sites.

In most instances, the choice of arcs is natural and the correspondence between
Dy and D is straightforward. For this reason, we often specify Dobrushin domains
as subgraphs of Z? with two marked points a and b on the boundary. In this case,
we denote them by (D, a, b).

FK Ising Model and Loop Representation in Dobrushin Domains

Let (D, a,b) be a Dobrushin domain. We consider a random cluster mea-
sure with wired boundary conditions on the wired arc—all the edges are pair-
wise connected—and free boundary conditions on the free arc. These boundary
conditions are called the Dobrushin boundary conditions on (D,a,b). We de-
note by Py , 5 the associated random cluster measure with parameters ¢ = 2 and
P = psd(2).

For any FK percolation configuration in D, we can consider the associated mod-
els on D and D", The interfaces between the primal clusters and the dual clusters
(if we follow the edges of the medial lattice) then form a family of loops, together
with a path from e, to ep, called the exploration path, as shown in Figure 2.2.

Remark 2.3. The exploration path is the interface between the open cluster con-
nected to the wired arc and the dual-open cluster connected to the dual free arc.

A simple rearrangement of (2.1), by using the duality property, shows that the
probability of such a configuration is proportional to (+/2)*°°PS, taking into account
the fact that ¢ = 2 and p = ps(2) = p". The orientation of the medial lattice
naturally gives an orientation to the loops, so that we are now working with a model
of oriented curves on the medial lattice.

Remark 2.4. If we consider a Dobrushin domain (D, a, b), the slit domain created
by “removing” the first T" steps of the exploration path is again a Dobrushin domain
(i.e., we extend the arcs d,p and dp, by initially “bouncing” along the slit). We
denote the new domain by (D \ y[0,T], y(T), b), where, with a slight abuse of
notation, y(7) is used to denote the site of the primal lattice adjacent to the medial
edge y(T). Then conditioned on y, the law of the FK Ising model in this new
domain is exactly P, - (0,77,(T),5- This observation will be central in our proof.
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FIGURE 2.2. An FK percolation configuration in the Dobrushin domain
(D, a, b), together with the corresponding interfaces on the medial lat-
tice: the loops are in gray, and the exploration path y from e, to ep is in
black. Notice that the exploration path is the interface between the open
cluster connected to the wired arc and the dual-open cluster connected
to the dual free arc.

Fermionic Observable and Local Relations

Let (D, a, b) be a Dobrushin domain and y the exploration path from e, to ep.
The winding Wr(z,z") of a curve I" between two edges z and z" of the medial
lattice is the overall angle variation (in radians) of the curve from the center of the
edge 7 to the center of the edge z . The fermionic observable F can now be defined
by the formula (see [24, sec. 2])

(2.4) F(e) = Ep 4ple" "W a1, ],

for any edge e of the medial lattice D,. The constant o = % appearing in front of
the winding is called the spin (see [24, sec. 2]).

The quantity F(e) is a complexified version of the probability that e belongs to
the exploration path (note that it is defined on the medial graph D). The complex
weight makes the link between F and probabilistic properties less explicit. Nev-
ertheless, as we will see, the winding term can be controlled along the boundary.
The observable F also satisfies the following local relation, from which Proposi-
tions 2.6 and 2.7 follow.

LEMMA 2.5 ([24, lemma 4.5]) For any vertex v € V- \ dV, the relation

2.5) F(ey) + F(e3) = F(e2) + F(es)
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FIGURE 2.3. Indexation of the four medial edges around a vertex v.

is satisfied, where e1, e3, e3, and e4 are the four edges at v indexed in clockwise
order, as on Figure 2.3.

We refer to [24] or [2] for the proof of this result. The key ingredient is a bijec-
tion between configurations that contribute to the values of F at the edges around v.
Note that for other values of ¢, one can still define the fermionic observable in a
way similar to equation (2.4): for an appropriate value 0 = o (g) of the spin, the
previous relation equation (2.5) still holds; see [2, 24].

Complex Argument of the Fermionic Observable F and Definition of H

Due to the specific value of the spin o = % corresponding to the value ¢ = 2,
the complex argument modulo 7 of the fermionic observable F follows from its
definition, equation (2.4). For instance, if the edge e points in the same direction
as the starting edge e, then the winding is a multiple of 2z, so that the term
e (/D)W (er.e) jg equal to £1 and F(e) is purely real. The same reasoning can
be applied to any edge to show that F(e) belongs to the line ¢™/#R, e i7/4RR, or
iR, depending on the direction of e. Contrary to Lemma 2.5, this property is very
specific to the FK Ising model.

For a vertex v € V; \ dVp, if we keep the same notation as for Lemma 2.5,
F(ey) and F(e3) are always orthogonal (for the scalar product between complex
numbers (a,b) — Ne(ab)), as well as F(e) and F(es), so that equation (2.5)
gives

(2.6) |F(e1)? + |F(e3)|* = | F(e2)|* + |F(es)|?.

Consider now a vertex v € dV. It possesses two or four adjacent edges, de-
pending on whether the corresponding boundary arc passes once or twice through
this vertex. Assume that there are only two adjacent edges (the other case can be
treated similarly), and denote by es the “entering” edge and by e¢ the “exiting”
edge. For such a vertex on the boundary of the domain, e5 belongs to the inter-
face y if and only if eg belongs to y—indeed, by construction, the curve entering
through es must leave through e¢. Moreover, the windings of the curve W), (e,, e5)
and Wy (eq, es) are constant since y cannot wind around these edges. From these
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two facts, we deduce:
2 _ iﬂ—FﬂW e,e
|Fes)? = CeIP, 4ples € y3

=P, 4p(es € y)* = |F(eq)|*.

From equations (2.6) and (2.7), one can easily prove the following proposition:

2.7)

PROPOSITION 2.6 ([24, lemma 3.6]) There exists a unique function H defined on
the faces of Dy by the relation

(2.8) H(B)— H(W) = |F(e)|?

for any two neighboring faces B and W (respectively, black and white), separated
by the edge e, and by fixing the value 1 on the black face corresponding to a.
Moreover, H is then automatically equal to 1 on the black faces of the wired arc
and equal to 0 on the white faces of the dual free arc.

This function H is a discrete analogue of the antiderivative of F2, as explained
in remark 3.7 of [24].

Approximate Dirichlet Problem for H

Let us denote by Hand H the restrictions of H to the black and white faces,
respectively. At a black site u of D that is not on the boundary, we can consider
the usual discrete Laplacian A (on the graph D): for a function f, A f(u) is the
average of f on the four nearest black neighbors of u minus f(u). A similar
definition holds for white sites of the graph D"

The result below, proved in [24], is a key step in proving convergence of the
observable as one scales the domain, but we will not discuss this question here. Its
proof relies on an elementary yet quite lengthy computation.

PROPOSITION 2.7 ([24, lemma 3.8]) The function H (respectively, H ) is subhar-
monic (respectively, superharmonic) inside the domain for the discrete Laplacian.

Since we know that H is equal to 1 (respectively, 0) on the black faces of the
wired arc (respectively, on the white faces of the dual free arc), the previous propo-
sition can be seen as an approximate Dirichlet problem for the function H. In the
next section, we make this statement rigorous by comparing H to harmonic func-
tions corresponding to the same boundary problems (on the set of black faces or
on the set of white ones).

3 Comparison to Harmonic Measures

In this section, we obtain a comparison result for the boundary values of the
fermionic observable F introduced in the previous section in terms of discrete
harmonic measures. It will be used to obtain all the quantitative estimates on the
observable that we need for the proof of Theorem 1.1.
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3.1 Comparison Principle

As in the previous section, let (D, a, b) be a discrete Dobrushin domain, with
free boundary conditions on the arc d,; and wired boundary conditions on the
other arc dp,,.

For our estimates, we first extend the medial graph of our discrete domain by
adding two extra layers of faces: one layer of white faces adjacent to the black
faces of the wired arc, and one layer of black faces adjacent to the white faces of
the dual free arc. We denote by D, this extended domain.

Remark 3.1. Note that a small technicality arises when adding a new layer of faces:
some of these additional faces can overlap faces that were already present. For
instance, if the domain has a slit, the free and the wired arc are adjacent along this
slit, and the extra layer on the wired arc (respectively, on the dual free arc) overlaps
the dual free arc (respectively, the wired arc). As we will see, H;is equal to 1 on
the wired arc and to O on the additional layer along the dual free arc. One should
thus remember in the following that the added faces are considered as different
from the original ones—it will always be clear from the context which faces we
are considering.

For any given black face B, let us define (X 5 )¢0o to be the continuous-time
random walk on the black faces of 53, starting at B, that jumps with rate 1 on
adjacent black faces except for the black faces on the extra layer of black faces
adjacent to the dual free arc, onto which it jumps with rate p := 2/(~/2 + 1).
Similarly, we denote by (X JW)tj() the continuous-time random walk on the white
faces of D, starting at a white face W that jumps with rate 1 on adjacent white
faces except for the white faces on the extra layer of white faces adjacent to the
wired arc, onto which it jumps with the same rate p = 2/(+/2 + 1) as previously.

For a black face B, we denote by HM (B) the probability that the random walk
X g hits the wired arc from b to a before hitting the extra layer adjacent to the free
arc. Similarly, for W a white face, we denote by HM (/) the probability that the
random walk X S/ hits the additional layer adjacent to the wired arc before hitting
the free arc. Note that there is no extra difficulty in defining these quantities for
infinite discrete domains as well. We have the following result:

PROPOSITION 3.2 (Uniform Comparability) Let (D, a, b) be a discrete Dobrushin
domain, and let e be a medial edge of 0,4p (thus adjacent to the free arc). Let
B = B(e) be the black face bordered by e, and W = W(e) be a white face
adjacent to B that der not belong to the dual ﬁge arc. Then we have

(3.1 HM (W) = |F(e)| = HM(B).

PROOF. By (2.8) and the lines following (2.8), we have |F(e)|> = H(B) and
H(W) = |F(e)|?> — |F(e")|?> < |F(e)|?, where e"is the medial edge between B
and W. It is therefore sufficient to show that H(B) < HM(B) and H(W) >

HM (W). We only prove that H(B) < HM((B), since the other case can be
handled in the same way.
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FIGURE 3.1. We extend D, by adding two extra layers of medial faces,
and extend the functions H| and H| there. Here is represented the ex-
tension along the dual free arc.

For this, we use a variation of a trick introduced in [7] and extend the function H
to the extra layer of black faces—added as explained above—Dby setting H to be
equal to 0 there. It is then sufficient to show that the restriction H;of H to the black
faces of D, is subharmonic for the Laplacian that is the generator of the random
walk X, since it has the same boundary values as HM; (which is harmonic for
this Laplacian). Inside the domain, subharmonicity is given by Proposition 2.7,
since there the Laplacian of X is the usual discrete Laplacian (associated with it
is just a simple random walk). The only case to check is when a face involved in
the computation of the Laplacian belongs to one of the extra layers. For the sake
of simplicity, we study the case when only one face belongs to these extra layers.

Denote by By, By, Bg, and Bg the black faces adjacent to B, and assume that
By is on the extra layer (see Figure 3.1). The discrete Laplacian of X - at face B is
denoted by A-. We claim that

ArH(B) = 62_:_—5://_25[H7(BW) + H(Bn) + H(Bg)]

22
6+ 542

For that, let us denote by ey, e2, e3, and e4 the four medial edges at the bottom
vertex v between B and Bg, in clockwise order, with e; and e; along B, and e3
and e4 along Bg (see Figure 3.1); note that e3 and e4 are not edges of Dy, but of
(Z%)..

We extend F to e3 and e4 by requiring F(e3) and F(ey) to be orthogonal, as
well as F(eq4) and F(ez), and F(e1) + F(e3) = F(ez) + F(e4) to hold true. This
defines these two values uniquely: indeed, as noted before, we know that F(e;) =
¢"i"/4F(e1) on the boundary (since Wy (eq,e1) and Wy (eq,e2) are fixed, with
Wy (eq.e2) = Wy(eq, e1) + 7, and the curve cannot go through one of these edges

(3.2)

+ H(Bs)— H(B) = 0.
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without going through the other one), which implies, after a small calculation, that
2— 2-42
2+ 24+ V2
If we denote by FID the function defined by I:ID = Hon B, By, By, and Bg,
and by

0
|F(e3)|* = Ean% ei*F(ez)i = ://;F(ez)lz = H (B).

- 2-2
3.3) H(Bs) = |F(e3)|* =
1(Bs) = |F(e3)] r /3
then H- satisfies the same relation equation (2.8) (definition of H) for e3 and e4 as
inside the domain. Since the fermionic observable F verifies the same local equa-
tions, the computation performed in appendix C of [24] is valid, Proposition 2.7
applies at B (with H instead of H), and we deduce

H(B).

(4) AF(B) = L1 (Bw)+ A(Bx) + A(BE) + A (Bs)) ~ A (B) = 0.

Using the definition of H, this inequality can be rewritten as

1 6+ 52

(3.5) —[H(Bw) + H(Bny) + H(BE)]— —= H (B) > 0.
JUHBW) + HA(B) 4 HABE)] = E2 HA(B)

Now using that H(Bgs) = 0, we get the claim, equation (3.2). O

3.2 Estimates on Harmonic Measures

In the previous subsection, we gave a comparison principle between the values
of H near the boundary and the harmonic measures associated with two (almost
simple) random walks, on the two lattices composed of the black faces and the
white faces, respectively. In this subsection, we give estimates for these two har-
monic measures in different domains needed for the proof of Theorem 1.1. We
start by giving a lower bound that is useful in the proof of the one-point estimate.

LEMMA 3.3 For B > Oandn > 0, let RE be
RE = [—Bn. pn] x [0.2n].
Then there exists c1(B) > 0 such that for any n > 1,

(6) M (W) = L)
n

in the Dobrushin domain (Rg, u,u) (see Figure 3.2) for all x = (x1,0) and u =

(u1,2n) such that |xq|, |lu1| < Bn/2 (i.e., far enough from the corners), Wy being
any of the two white faces that are adjacent to x and not on the dual free arc.

PROOF. This proposition follows from standard results on simple random walks
(gambler’s-ruin-type estimates; see, e.g., [15, 27]). For the sake of conciseness, we
do not provide a detailed proof. O
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FIGURE 3.2. Estimate of Lemma 3.3: the dashed line corresponds to
the dual free arc.

In the remaining part of this section, we consider only Dobrushin domains
(D, a, b) that contain the origin on the free arc and are subsets of the medial lattice
H -, where H = {(x1,x2) € Z? : x, > 0} denotes the upper half-plane—in this
case, we say that D is a Dobrushin H-domain. For the following estimates on har-
monic measures, the Dobrushin domains that we consider can also be infinite. We
are interested in the harmonic measure of the wired arc seen from a given point:
without loss of generality, we can assume that this point is just the origin. Let Bg
be the corresponding black face of the medial lattice, and Wy be an adjacent white
face that is not on the free arc.

We first prove a lower bound on the harmonic measure. For that we introduce,
for k € Z and n > 0, the segments

In(k) = {k} x[0,n] (={(k,j):0=<j <n}).

LEMMA 3.4 There exists a constant ¢ > 0 such that for any Dobrushin H-domain
(D, a,b), we have

3.7) HM (Wp) > %

provided that, in D, the segment [ (—k) disconnects from the origin the intersec-
tion of the free arc with the upper half-plane (see Figure 3.3).

PROOF. We know that [; (—k) disconnects the origin from the part of the free arc
that lies in the upper half-plane; let us thus consider the connected component of
D\ I (—k) that contains the origin. In this new domain Dy, if we put free boundary
conditions along /i (—k), the harmonic measure of the wired arc is smaller than the
harmonic measure of the wired arc in the original domain D. On the other hand,
the harmonic measure of the wired arc in Dy is larger than the harmonic measure of
the wired arc in the slit domain (H \ /¢ (—k), (—k, k), 00), which has, respectively,
wired and free boundary conditions to the left and to the right of (—k,k) (see
Figure 3.3). Estimating this harmonic measure is straightforward by using the
same arguments as before. O

We now derive upper bounds on the harmonic measures. We will need estimates
of two different types. The first one takes into account the distance between the
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FIGURE 3.3. The two domains involved in the proof of Lemma 3.4.

origin and the wired arc, while the second one requires the existence of a segment
[, (k) disconnecting the wired arc from the origin (still inside the domain).

LEMMA 3.5 There exist constants c3,cq4 > 0 such that for any Dobrushin H-
domain (D, a, b),
(1) if d1(0) denotes the graph distance between the origin and the wired arc,

1
3.8 HM(By) <3 ——,
(3.8) “(Bo) < c¢3 210)
(ii) and if the segment 1, (k) disconnects the wired arc from the origin inside D,
n
39 HM (By) < c4——.
(3.9) (Bo) = ca TE

PROOF. Let us first consider item (i). For d = d1(0), define the Dobrushin
domain (B, (—d,0), (d,0)), where 3; is the set of sites in H at a graph distance
at most d from the origin (see Figure 3.4). The harmonic measure of the wired
arc in (D, a, b) is smaller than the harmonic measure of the wired arc in this new
domain By, and, as before, this harmonic measure is easy to estimate.

Let us now turn to item (ii). Since [/, (k) disconnects the wired arc from the
origin, the harmonic measure of the wired arc is smaller than the harmonic measure
of [,,(k) inside D, and this harmonic measure is smaller than it is in the domain
H \ I, (k) with wired boundary conditions on the left side of /,, (k) or the right side
if k < O (see Figure 3.4). Once again, the estimates are easy to perform in this
domain. 0

4 Proof of Theorem 1.1

We now prove our result, Theorem 1.1. The main step is to prove the uniform
lower bound for rectangles of bounded aspect ratio with free boundary conditions.
We then use monotonicity to compare boundary conditions and obtain the desired
result. In the case of free boundary conditions, the proof relies on a second moment
estimate on the number N of pairs of vertices (x, u) on the top and bottom sides of
the rectangle, respectively, that are connected by an open path.

The organization of this section follows the second-moment estimate strategy.
In Proposition 4.2, we first prove a lower bound on the probability of a connection
from a given site on the bottom side of a rectangle to a given site on the top side.



RSW BOUNDS FOR THE FK ISING MODEL 1183

N\

’ 0

NS

FIGURE 3.4. The two different upper bounds (i) and (ii) of Lemma 3.5.

This estimate gives a lower bound on the expectation of N. Then Proposition 4.3
provides an upper bound on the probability that two points on the bottom side
of a rectangle are connected to the top side. This proposition is the core of the
proof, and it provides the right bound for the second moment of N. It allows us to
conclude the section by using the second-moment estimate method, thus proving
Theorem 1.1.

In this section, we use two main tools: the domain Markov property and prob-
ability estimates for connections between the wired arc and sites on the free arc.
We first explain how the previous estimates on harmonic measures can be used to
derive estimates on connection probabilities. The following lemma is instrumental
in this approach.

LEMMA 4.1 Let (D,a,b) be a Dobrushin domain. For any site x on the free arc

of D, we have
o [
4.1) HM (Wyx) < Py 4 p(x [ wiredarc) < HM(By),

where By is the black face corresponding to x, and Wy is any closest white face
that is not on the free arc.

PROOF. Since x is on the free boundary of D, there exists a white face on the
free arc of Dy, that is adjacent to B, ; we denote by e the edge between these faces.
As noted before, since the edge e is along the free arc, the winding W) (e,, €) of
the exploration path y at e is constant and depends only on the direction of e. This
implies that

Ppaple €y) = |F(e)l.
In addition, e belongs to y if and only if x is connected to the wired arc, which

implies that | F'(e)| is exactly equal to P, , 5(x [ wired arc). Proposition 3.2 thus
implies the claim. U
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With this lemma at our disposal, we can prove the different estimates. Through-
out the proof, we use the notation ¢; (8) for constants that depend neither on n nor
on sites x and y nor on boundary conditions. When they do not depend on 8, we

denote them by c; (it is the case for the upper bounds). Recall the definition of Rg :
(4.2) RB = [—Bn. pn] x [0, 2n].

Let 07 R,ff (respectively, 0 RE ) be the top side [—fn, Bn] x {2n} (respectively,
bottom side [—pn, Bn] x {0}) of the rectangle Rg . We begin with a lower bound
on connection probabilities.

PROPOSITION 4.2 (Connection Probability for One Point on Bottom Side) Let
B > 0; there exists a constant c(f) > 0 such that for any n > 1,

(4.3) Pg (x u) > C;ﬂ

forall x = (x1,0) € ame and u = (u1,2n) € dp R,ff satisfying |x1|, [u1] <
Bn/2.

PROOF. The probability that x and u are connected in the rectangle with free
boundary conditions can be written as the probability that x is connected to the

wired arc in (R,e ,u,u) (where the wired arc consists of a single vertex). The
previous lemma, together with the estimate of Lemma 3.3, concludes the proof.
U

We now study the probability that two boundary points on the bottom edge of

R,’? are connected to the top edge, with boundary conditions wired on the top side
and free on the other sides.

PROPOSITION 4.3 (Connection Probability for Two Points on Bottom Side) There
exists a constant ¢ > 0 (uniform in B and n) such that for any rectangle R,’f and
any two points x and y on the bottom side 0 R,f ,

¢
4.4) IP’R b (x,y 0 wired arc) < H———,
o |x — yln
where a, and by, denote, respectively, the top left and top right corners of the
rectangle Rﬁ .

The proof is based on the following lemma, which is a strong form of the so-
called half-plane, one-arm probability estimate (see Section 5.1 for a further dis-
cussion of this result). For x on the bottom side of R,’f and k > 1, we denote by
By (x) the box centered at x with diameter k for the graph distance. We can now
state the lemma needed:
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Y

FIGURE 4.1. The Dobrushin domain (Rf , Cn» dp), together with the ex-
ploration path up to time 7.

LEMMA 4.4 There exists a constant ¢5 > 0 (uniform in n and B and in the choice
of x) such that for all k > 0,
0_—

k
4.5) Py @b (B (x) 0 wired arc) < cs g

PROOF. Consider n, k, 8 > 0 and the box R,‘? with one point x € dp R,’?. Equa-
tion (4.5) becomes trivial if k > n, so we can assume that k < n. For any choice
of B-'> B, the stochastic ordering between boundary conditions (2.3) implies that
the probability that By (x) is connected to the wired arc 9 R,g in (R,lf ,dn,by)
is smaller than the probability that By (x) is connected to the wired arc in the Do-
brushin domain (R,e ,Cn, dn), where ¢, and dj, are the bottom left and bottom right
corners of R,‘;} . From now on, we replace § by 8 + 1, and we work in the new
domain (R,’? ,Cn,dp). Notice that By, is then included in R,’? and that the rightmost
site of By, is at a distance at least n from the wired arc.

We denote by T the hitting time—for the exploration path naturally parametrized
by the number of steps—of the set of medial edges bordering (the black faces cor-
responding to) the sites of B (x); we set T = oo if the exploration path never
reaches this set, so that By, is connected to the wired arc if and only if 7 < oo.

Let z be the rightmost site of the box By (x). Consider now the event {z [
wired arc}. By conditioning on the curve up to time 7" (and on the event {8 (x)[]
wired arc}), we obtain

Py c.d (z O wired arc)
=L R

:ER

0 0
o.d [JlT<J P o.d (z O wired arc | y]0, T])D

o.d Ir<n IP’R 0Ty (T)d (z 0 wired arc) ,

where in the second inequality we have used the domain Markov property and the

fact that it is sufficient for z to be connected to the wired arc in the new domain

(since it is then automatically connected to the wired arc of the original domain).
On the one hand, since z is at a distance at least n from the wired arc (thanks to

the new choice of ), we can combine Lemma 4.1 with item (i) of Lemma 3.5 to
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FIGURE 4.2. This picture presents the different steps in the proof of
Proposition 4.3: we (1) condition on y[0, Ty] and use the uniform es-
timate (i) of Lemma 3.5, then (2) condition on y[0, Tk 1] and use the
estimate (ii) of Lemma 3.5 in order to (3) conclude with Lemma 4.4.

obtain

IP’R,

NG
On the other hand, if y(T') can be written as y(T) = z + (—r,r), with0 <r <k,
then the arc z + [, (—r) disconnects the free arc from z in the domain R,’? \y[0,T],
while if y(T) = z 4+ (—r,2k —r), with k + 1 < r < 2k, then the arc z + [, (—r)
still disconnects the free arc from z. Using once again Lemma 4.1, this time with
Lemma 3.4, we obtain that a.s.

o g (&L wiredarc) <

S e e
TV T V2

This estimate being uniform in the realization of y[0, T'], we obtain

>

P z [1 wired arc)

Ry y[0,T]y(T).d (

(T <o0) <Py . , (211 wiredarc) < %

C4
MPR ,co,d

which implies the desired claim equation (4.5). O

PROOF OF PROPOSITION 4.3. Let us take two sites x and y on dn Rg. As in
the previous proof, the larger the §, the larger the corresponding probability; we
can thus assume that 8 has been chosen in such a way that there are no boundary
effects. In order to prove the estimate, we express the event considered in terms
of the exploration path y. If x and y are connected to the wired arc, y must go
through two boundary edges that are adjacent to x and y, which we denote by ey
and ey,. Notice that e, has to be discovered by y before e, is.
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We now define T to be the hitting time of ey, and T} to be the hitting time of the
set of medial edges bordering (the black faces associated with) the sites of 5,1 (y),
for k < ko = |log, |x — y|] where |-] is the integer part of a real number. If the
exploration path does not cross this ball before hitting ey, we set T, = oo. With
these definitions, the probability that e, and ey, are both on y can be expressed as

P a b (x,y 0 wired arc) = P, @b (ex.ey €y)

L
= P @b (ey €y, Ty <00, Tg 1 < Ty = 00)
(4.6) k010
L 0 O
= ER a.b Ir . <r.0o0lr <o IP)R a.b (ey € y|y[0,Tx]) .
k00
where the third equality is obtained by conditioning on the exploration path up to
time Tx. Recall that ey, belongs to y if and only if y is connected to the wired
arc. Moreover, if {T} = oo}, y is at a distance at least 2k from the wired arc in
R,’? \ y[0, Tx]. Hence, the domain Markov property, item (i) of Lemma 3.5 and
Lemma 4.1, give that, on {7} = oo},

Pr ab (ey € y[y[0,Tx]) = P 0T 1 (y [ wired arc)

c3
<— as.

T VoK
By plugging this uniform estimate into (4.6) and removing the condition on 7} =
00, we obtain
PR aob (ex,ey €y) =<
Y a E 1
Jok Ro.avb T
where we conditioned on the path up to time 7y ;. Now, e, belongs to y if and

only if x is connected to the wired arc. Assuming {7} ; < oo}, the vertical seg-
ment connecting y(Tj 1) to Z—of length at most 2K~ ! —disconnects the wired

l
<[] ]P)R ,anb (Tx < OOl]/[O, Tle]) s
koo

arc from x in the domain R,f \ y[0, Ti.111]. For k + 1 < ko, this vertical segment
is at distance at least %|x — y| from x. Applying the domain Markov property and
item (ii) of Lemma 3.5, we deduce that, for k + 1 < kg, on {T; < oo},

Pr b (ex € Y|y[0. Tkr1]) = Py W0, 1y(T. )b (x ' wired arc)

,/2k[1
lx — yl

< 2c4 a.s.
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Making use of this uniform bound, we obtain

Pr ab (x,y 0 wired arc)

kob2 ok Pr o p (Tx <00)

< 2c3cq — P (Trerq < 00) + 2¢3
£00 ./2k|x_y| Rc.a0.b 2kl
< \/5636465 ](Uuz b 2_k + 2C365
Tlx=ylve Vn2k o1
E gc:,
nlx =yl
using also Lemma 4.4 (twice) for the second inequality. O

We are now in a position to prove our result.

PROOF OF THEOREM 1.1. Let 8 > 0,n > 0, and R,’? be defined as previously.

Step 1. Lower Bound for Free Boundary Conditions. Let N, be the number of
connected pairs (x, u), with x € dp, R,‘i andu € 0, R,’? . The expected value of this

quantity is equal to
O
0 _ 0
IER [Ny] = ]P’R (x0 u).
ul0, R
x0- R

Proposition 4.2 directly provides the following lower bound on the expectation,

IE(I)2 [Nu] = c6(B)n  for some ce(B) > O,

by summing on the (Bn)? pairs of points (x,u) far enough from the corners that
satisfy the condition of the proposition.

On the other hand, if x and u (respectively, y and v) are pairwise connected, then
they are also connected to the horizontal line Z x {n} that is (vertically) at the mid-
dle of Rg . Moreover, the domain Markov property implies that the probability—
in R,[z with free boundary conditions—that x and y are connected to this line is
smaller than the probability of this event in the rectangle of half height with wired
boundary conditions on the top side. In the following, we assume without loss of
generality that n is even and we set m = n/2, so that the previous rectangle is
ernﬁ , and we define a,, and b,, as before. Using the FKG inequality and also the
symmetry of the lattice, we get

IP’I(; x0 u,yd v) <

Pr a b (x,y [l wired arc) P a b (u,v 0O wired arc),
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where ¥ and v are the projections on the real axis of ¥ and v. Summing the bound
provided by Proposition 4.3 on all sites x, y € d R,’f and u,v € dp R,f , we obtain

E(I)e [an] < (:7m2 < C7n2

for some constant ¢7 > 0. Now, by the Cauchy-Schwarz inequality,

R
EO N T o

EC [Na?
PO (Cy(RE)) =P (N > 0) = E° [(Iy ~0)*] = _ coB?

since E(;e [Nn] = IE](I)2 [Nn1n >0]. We have thus reached the claim.

Step 2. Lower and Upper Bounds for General Boundary Conditions. By using
the ordering between boundary conditions (equation (2.3)), the lower bound that
we have just proved for free boundary conditions actually implies the lower bound
for any boundary conditions £.

For the upper bound, consider a rectangle R with dimensions n x m with m €
[Bin, B2n] and with boundary conditions &. Using once again equation (2.3), it
is sufficient to address the case of wired boundary conditions. In this case, the
probability that there exists a dual crossing from the left side to the right side is
at least c; = ¢ (1/B2,1/B1), since the dual model has free boundary conditions.
We deduce, using the self-duality property, that

47)  P5(Cy(R) <1—Px(C,(R) =1—P3 (Ch(R) <1—c,

where we use the notation C; for the existence of a horizontal dual crossing, and
R'is as usual the dual graph of R (note that we have implicitly used the invariance
by Z-rotations). This concludes the proof of Theorem 1.1. O

5 Consequences for the FK Ising and (Spin) Ising Models
5.1 Critical Exponents for the FK Ising and Ising Models

Power-Law Decay of Magnetization at Criticality

We start by stating an easy consequence of Theorem 1.1. We consider the box
Sy = [—n,n]?, its boundary being denoted as usual by 3S,,. We also introduce the
annulus Sy, n = Sn \ g'm of radii m < n centered at the origin, and we denote by
C(Sm,n) the event that there exists an open circuit surrounding S, in this annulus.

COROLLARY 5.1 (Circuits in Annuli) For every B < 1, there exists a constant
cg > 0 such that for all n and m, withm < fn,

Pg . (C(Smn)) = cp.

PROOF. This follows from Theorem 1.1 applied in the four rectangles Rp =
[-n,n] x [-n,—m], Ry = [-n,—m] x [-n,n], Rt = [-n,n] x [m,n], and
RR = [m,n]x[—n,n]. Indeed, if there exists a crossing in each of these rectangles
in the “hard” direction, one can construct from them a circuit in Sy, ;.
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Now, consider any of these rectangles, Rp for instance. Its aspect ratio is
bounded by 2/(1 — B), so that Theorem 1.1 implies that there is a horizontal cross-
ing with probability at least

Py (Cu(Rp)) > c > 0.

Combined with the FKG inequality, this allows us to conclude: the desired proba-
bility is at least cg = c* > 0. O

PROPOSITION 5.2 (Power-Law Decay of Magnetization) For p = pgq, there exists
a unique infinite-volume FK Ising measure P, . For this measure, there is a.s. no
infinite open cluster. Moreover, there exist constants o, ¢ > 0 such that for all
n=>0,

(5.1) P, (07 aS,,)gnia.

This result also applies to the Ising model: the magnetization at the origin decays
at least as a power law.

Remark 5.3. We would like to mention that an alternative proof of the fact that
there is no spontaneous magnetization at criticality can be found in [11, 29]. Also,
we actually know from Onsager’s work that the connection probability follows a
power law as n — oo, described by the one-arm plane exponent o; = %. It
should be possible to prove the existence and the value of this exponent using
conformal invariance, as well as the arm exponents for a larger number of arms.
More precisely, one would need to consider the probability of crossing an annulus
a certain (fixed) number of times in the scaling limit and analyze the asymptotic
behavior of this probability as the modulus tends to co. Theorem 1.1 then implies
the so-called quasi multiplicativity property, which allows one to deduce, using
concentric annuli, the existence and the value of the arm exponents for the discrete
model.

PROOF. We first note that it is classical that the nonexistence of infinite clusters
implies the uniqueness of the infinite-volume measure: it is thus sufficient to prove
(5.1). We consider the annuli A, = S, , forn > 1 and C"(4,), the event
that there is a dual circuit in 4,. We know from Corollary 5.1 that there exists a
constant ¢ > 0 such that

Py (C(An)) = ¢
for all n > 1. By successive conditionings, we then obtain
N1
P, (00 35 )< Pi (€ (An))=(-0o,

nil0

and the desired result follows. O
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n-Point Functions for the FK Ising and Ising Models

Since the work of Onsager [18], it has been known that for the Ising model
at criticality, the magnetization at the middle of a square of side length 2m with
(+) boundary conditions decays like m"'1/8. It is then tempting to say that the
correlation of two spins at distance m in the plane (in the infinite-volume limit,
say) decays like m - 174 and this is indeed what happens. To the knowledge of the
authors, there is no straightforward generalization of Onsager’s work that allows
the derivation of this without difficult computations. However, this result can be
made rigorous very easily with the help of Theorem 1.1. We give here only a
result for two-point correlation functions, but exponents for n-spin correlations,
for instance, can be obtained using exactly the same method.

Let us first use Theorem 1.1 to interpret Onsager’s result in terms of the FK rep-
resentation.

LEMMA 5.4 Let Sy, be the square [—m, m]]2 with arbitrary boundary conditions §.
Then there exist two constants ¢ and ¢y (independent of m and &) such that we
have
g § nd
cym - <Pg (00 08p) <com ©.

PROOF. This is a consequence of Onsager’s result for wired boundary condi-
tions (since it is derived in terms of the Ising model with (4) boundary condi-
tions), which provides the upper bound by monotonicity. Using Theorem 1.1, we
can obtain a lower bound independent of the boundary conditions by enforcing the
existence of a circuit in the annulus S, /> ,, and using the FKG inequality. For that
we just need to lower the constant, using monotonicity: the connection probability,
conditioned on the fact that there is a wired annulus around the origin, is indeed
larger than the connection probability with wired boundary conditions on 9Sy,. [

We can now state the result for two-point correlation functions in the infinite-
volume Ising model.

PROPOSITION 5.5 Consider the Ising model on Z? at critical temperature. There
exist two positive constants C1 and Cy such that we have

Cilx—y|' 7 < Eg [oxoy] < Calx—y| 7,

where for any x, y € Z?, we denote by o and oy the spins at x and y, and Pg_ is
the infinite-volume Ising measure at B..

PROOF. The two-spin correlation Eg [0x0y] can be expressed, in the corre-
sponding FK representation, as the probability of the event {x ] y}. Let now m be
the integer part of |x — y|/4. The upper bound is easy and does not rely on Theo-
rem 1.1: the event that x is connected to y implies that x is connected to x + 9.5,
and that y is connected to y + 9S,. It follows from the domain Markov property
that if we condition on the event that the boundaries of the boxes are open, these
two events are independent. Together with the previous lemma, this provides the
upper bound.
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Let us turn now to the lower bound. We can enforce the existence of a connected
“877 in
(X + Somi2) U+ Samu2)] \ (X + Sm) U (¥ + Sm)]

that surrounds both x and y and separates them: this costs only a positive con-
stant o, independent of m, using Theorem 1.1 in well-chosen rectangles and the
FKG inequality. Using once again the FKG inequality, we get that

Py,o(x y) > alP, (x [ x+aSZmD2)'PZ vy 4+ 0S2m02).

Combined with the previous lemma, this yields the desired result. O

Half-Plane, One-Arm Exponent for the FK Ising Model and Boundary Mag-
netization for the Ising Model

As a by-product of our proofs, in particular the estimates in Section 3, one can
also obtain the value of the critical exponent for the boundary magnetization in the
Ising model near a free boundary arc (assuming it is smooth), and the correspond-
ing one-arm, half-plane exponent for the FK Ising model.

Let us first consider the one-point magnetization Ey, , 5[ox] for the Ising model
at criticality in a discrete domain (D, a, b) with free boundary conditions on the
counterclockwise arc (ab) and (4) boundary conditions on the other arc (ba).

PROPOSITION 5.6 There exist positive constants c¢1 and ¢y such that for any dis-
crete domain (D, a,b) witha = (—n,0) and b = (n,0) (n > 0) containing the
rectangle R, = [—n,n] x [0, n] and such that its boundary contains the lower arc
[—n,n] x {0}, we have

cin T < Ep aploo] < con T,
uniformly in n.

PROOF. The magnetization at the origin can be expressed, in the correspond-
ing FK representation, as the probability that the origin is connected to the wired
counterclockwise arc (ba). By Lemma 4.1, we can compare this probability to the
harmonic measures HM - and HM, for which estimates similar to the estimates in
Lemmas 3.4 and 3.5 hold. O

This result can be equivalently stated for the one-arm, half-plane probability for
FK percolation:

PROPOSITION 5.7 Consider the rectangle R, = [—n,n] x [0,n]. There exist
positive constants c1 and ¢y such that for any boundary conditions & such that the
bottom side "' Ry, is free, one has

cn''T < ]P)Ii (0 3" Ry) <can" 7,

uniformly over all n.
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PROOF. We get the upper bound using monotonicity and the previous proposi-
tion, since (4) boundary conditions in the Ising model correspond to wired bound-
ary conditions in the corresponding FK representation. For the lower bound, by
Theorem 1.1 and the FKG inequality, we can enforce the existence of a crossing
in the half-annulus R, \ R,/ that disconnects 0 from dR, \ 8" R, to the price
of a constant independent of &. Using monotonicity and FKG, the probability that
0 is connected by an open path to this crossing (conditioned on its existence) is
larger than the probability that O is connected to the boundary with wired boundary
conditions on dR; \ 3~ R,, without conditioning. Hence the lower bound of the
previous proposition gives the desired result. O

Remark 5.8. Note that contrary to (most) power laws established using conver-
gence of interfaces to Schramm-Loewner evolution (SLE) processes (we think in
particular of standard percolation at criticality, see [16, 26]), there are no potential
logarithmic corrections here—as is the case with the “universal” arm exponents
for percolation (corresponding to two and three arms in the half-plane, and five
arms in the plane). Furthermore, one can follow the same standard reasoning as for
percolation, based on the RSW lower bound, to prove that the two- and three-arm
half-plane exponents, with alternating “types” (primal or dual), have values 1 and
2, respectively.

5.2 Regularity of Interfaces and Tightness

Theorem 1.1 can be used to apply the technology developed by Aizenman and
Burchard [1] to prove regularity of the collection of interfaces, which implies tight-
ness using a variant of the Arzela-Ascoli theorem.

This compactness property for the set of interfaces is important to construct the
scaling limits of discrete interfaces, once we have a way to identify their limit
uniquely (using, for instance, the so-called martingale technique, detailed in [23]).
Here the fermionic observable provides a conformally invariant martingale, and
its convergence to a holomorphic function has been proved in [24], leading to the
following important theorem:

THEOREM 5.9 (Smirnov [25]) For any Dobrushin domain (D, a, b) with discrete
lattice approximations (De, ae, be), the Py, p -law of the exploration path ye
from a¢ to be converges weakly to the law of a chordal SLE(16/3) path in D from
atob.

We briefly explain how one can use the crossing bounds to obtain the compact-
ness of the interfaces. Note that this result has also been proved, in a different way,
in [12] and in the forthcoming article [13].

As usual, curves are defined as continuous functions from [0, 1] into a bounded
domain D—more precisely, as equivalence classes up to strictly increasing repa-
rametrization. The curve distance is given by

(5.2) d(y1,y2) = inf sup [y1(u) —y2(¢p(w))l,
¢ uio,1]
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where the infimum is taken over all strictly increasing bijections ¢ : [0, 1] — [0, 1].

Let Sy n(x) = x + S, ny be the annulus of radii » < N centered at x. We
denote by Ay (x; r, R) the event that there are 2k pairwise disjoint crossings of the
curve in S, y (x) (from its inner boundary to its outer boundary).

THEOREM 5.10 (Aizenman-Burchard [1]) Let D be a compact domain and denote
by P the law of a random curve y¢ with short-distance cutoff € > 0. If for any
k > 0 there exists Cy, < 0o and Ay > 0 such that foralle <r < Rand x € D
0.0
r
Pe(Ax(x:r. R)) = G

and A — 00, then the curves (Ve¢) are precompact for the weak convergence
associated with the curve distance.

This theorem can be applied to the family () of exploration paths defined in
Theorem 5.9 by using the following argument. If Ay (x; r, R) holds, then there are
k open paths, alternating with k dual paths, connecting the inner boundary of the
annulus to its outer boundary. Moreover, one can decompose the annulus S, g (x)
into roughly log, (R /r) annuli of the form S, 2, (x), so that it is actually sufficient
to prove that

Py a b (Ax(xir2r) < c*
for some constant ¢ < 1. Since the paths are alternating, one can deduce that
there are k open crossings, each one surrounded by two dual paths. Hence, using
successive conditionings and the domain Markov property, the probability for each
crossing is smaller than the probability that there is a crossing in the annulus, which
is less than some constant ¢ < 1 by Corollary 5.1 (note that this reasoning also
holds on the boundary).

Hence Theorem 5.10 implies that the family (y¢) is precompact for the weak
convergence.

5.3 Spatial Mixing at Criticality

Theorem 1.1 also provides estimates on spatial mixing for both the FK Ising and
the Ising models. In the following proposition, we give an example of decorrelation
between events for the FK Ising model.

PROPOSITION 5.11 There exist c,a > 0 such that for any k < n,
(53) [P, (AN B) =P, (AP, (B)| < c(k/n)*P, (AP, (B)
for any event A (respectively, B) depending only on the edges in the box Sy (re-

spectively, outside Sy), the measure P, being the (unique) infinite-volume FK
percolation measure for g = 2 and p = pg.

PROOF. We start by noting that the family of increasing events depending only
on the edges in Sj generates the o-algebra spanned by the edges in Si. Therefore,
it is sufficient to prove equation (5.3) for an increasing event A. For such an A,

Pg (4) <P, (4|B) < Pg (A)
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so that it is sufficient to prove that the left- and the right-hand side terms are close
uniformly in A. For that, we use that

P (4) = Pg (AN E) = P§ (A|E)PY (E),

where E is the event that there is a circuit surrounding S in S ,. The IP’g -

probability of A knowing E is larger than the ]P’é -probability of A (we implic-
itly use the domain Markov property and the comparison between boundary con-
ditions). Moreover, Theorem 1.1 shows that the probability of E is larger than
1 —c(k/n)* for some ¢, @ > 0 that do not depend on A. Therefore,

Ps (4) = Pg (4) = (1 —c(k/m)*)Pg (A),
which implies the claim. O

More generally, Theorem 1.1 would lead to ratio mixing properties, with an ex-
plicit polynomial estimate. Away from criticality, estimates of this type can be
established by using the rate of spatial decay for the influence of a single site. At
criticality, the correlation between distant events does not boil down to correla-
tions between points, and a finer argument must be found. Crossing-probability
estimates that are uniform in boundary conditions are perfectly suited for these
problems.

Recently Lubetzky and Sly [17] used spatial mixing properties of the Ising
model in order to derive an important conjecture on the mixing time of the Glauber
dynamics of the Ising model at criticality. As a key step, they harness Theorem 1.1
in order to prove a suitable analogue of the previous proposition. Together with
tools from the analysis of Markov chains, the spatial mixing property provides
polynomial upper bounds on the inverse spectral gap of the Glauber dynamics (and
also on the total variation mixing time).

6 Conjecture for General Values of

We conclude this article by stating a conjecture on FK models for other val-
ues ¢ > 1. As we have seen, crossing estimates at criticality are useful for
many purposes, proving such bounds should thus be fundamental for studying two-
dimensional FK percolation models.

For 1 < g < 4, the FK model at p = ps4(q) is conjectured to be conformally in-
variant in the scaling limit. More precisely, the collection of interfaces in a domain
with free boundary conditions should converge to the so-called CLE(k (¢)) process,
with k(q) = 4m/ arccos(—,/q/2). The following conjecture is thus natural:

Conjecture 6.1. Consider the FK percolation model of parameter (psq(q), ¢) with
1 <g <4andlet0 < B; < B2. Two constants 0 < ¢(g) < cn(q) < 1 exist
such that for any rectangle R with side lengths n and m € [S1n, B2n], one has

¢ @) =Py (g rCo(R) = ¢ (q)
for any boundary conditions &.
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At g > 4, the random-cluster model (conjecturally) undergoes a first-order
phase transition at py(g) = /q/(1 + /q) in the following sense (this result has
been proved for g > 25.72; see [10] and references therein): at criticality, there
exist different infinite-volume measures. If one considers the infinite-volume mea-
sure with wired boundary conditions, the probability of having an infinite cluster
is 1, while if one considers the infinite-volume measure with free boundary condi-
tions, the probability of having an infinite cluster is O and the two-point functions
decay exponentially fast. Therefore, the probability of having a crossing goes to 1
(respectively, to 0) with wired boundary conditions (respectively, free boundary
conditions). A result analogous to Theorem 1.1 thus does not hold in this setting.

At g = 4, the picture should be slightly different. It is conjectured that the
family of interfaces converges to the CLE(4) process, which would imply that the
probability of having crossings between two opposite sides with free boundary
conditions converges to 0. Nevertheless, a slight modification of the previous con-
jecture is expected to hold true: the probability of having a circuit surrounding
the origin in an annulus of fixed modulus, with free boundary conditions, stays
bounded away from O and 1 uniformly in the size of the annulus.
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