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CHAPTER 1

Introduction

1.1. History

The Ising model was introduced by Wilhelm Lenz in 1920 as a model for fer-
romagnetism. The Ising model is a random assignment of * 1 spins to the vertices
Vi of a graph G. The probability of a spin configuration (0 )y, is proportional
to € PH(®) where B > 0 is called the inverse temperature and the energy H is
given by H (0) = - x~y Ox Oy, the sum being over the pairs of adjacent vertices
of G. The model favors local alignment of spins, and the strength of this effect
is modulated by the parameter B, which in statistical mechanics is set to m%v
where kg is Boltzmann’s constant and T is the temperature. Hence, the higher the
temperature, the smaller the ordering effect and the higher the disorder.

In his doctoral thesis, his student Ernst Ising determined the absence of phase
transition in the model in one dimension (i.e. when the graph is Z), and showed
that the model is disordered at any temperature. He generalized incorrectly this
result to higher dimensions, thus concluding that the model was not suited to model
ferromagnetism. This conclusion, which was believed to be correct by the physical
community for many years, led physicists to introduce and consider alternative
models, for instance the Heisenberg model. In 1936, Peierls showed however that
the model undergoes a phase transition in any dimension greated than one (i.e. on
Z9 for d 2 2), using estimates on the length of interfaces between the spins, thus
showing, said informally, that at low enough temperature, Ising ferromagnets can
exhibit spontaneous magnetization.

In 1941, Kramers and Wannier identified {he critical inverse temperature of
the two-dimensional Ising model as B¢ = % In 2+ 1, thanks to the remarkable
observation of a duality between subcritical and supercritical temperatures that is
named after them. In 1944, Onsager computed explicitly the free energy of the
model, using the celebrated transfer matrix technique, thus allowing for a rigorous
and precise analysis of all the thermodynamical properties of the model. After this,
the Ising model became one of the fundamental examples for an order-disorder
transition.

Onsager’s analysis was later simplified and made more conceptual by Kaufman,
who exhibited deep relations between the understanding of the correlation functions
of the model and the spin representations. A number of alternative methods were
developed to study the model, notably combinatorial approaches in what is referred
to as the “Pfaffian approach”, allowing for many fine results, notably certain scaling
correlation functions to be computed.

Despite the immense progress induced by Onsager’s calculation, the critical
regime at the inverse temperature B; and its neighborhood, of special physical
interest, since they are the key to understand the apparition of magnetization,



remained somewhat mysterious. The introduction of the renormalization group at
the end of the 1960’s allowed for a unified and more conceptual understanding of
the critical and near-critical regimes of the statistical physics model, in particular
the ones of the Ising model, from a physical point of view. The idea is to look at
the scaling limit of the model, which consists informally in looking at the model
“from very far away”, or equivalently in considering the model on a large graph of
very small mesh size. Although non-rigorous, block-spin renormalization ideas gave
convincing evidence of why such at scaling limit should exist at criticality.

Renormalization group suggests the idea of universality: the scaling limit of
a model at criticality should in some sense be independent of many of its local
details, such as the lattice on which it is defined. A large number of similar models
should moreover belong to the same universality class. This led in particular to the
hypothesis of scaling, translation and rotational invariance of the model, and gave
additional evidence for the relevance of the study of the Ising model to understand
more complicated models conjectured to belong to its universality class. By adding
the assumption of invariance of the model under inversions, Polyakov was able to
predict more accurate information, the plausibility thereof led to suspect Mobius
invariance of the model.

In the same time, an operator algebra formalism was introduced for the two-
dimensional model, notably by Kadanoff and Ceva, that suggested the existence of
quantum field theory underlying the model and describing its scaling limit. No-
tably, the idea that a finite number of generating operators could represent all the
correlation functions of the Ising model and other models was developed, which
would be later generalized in the theory of so-called minimal models.

In the 1980’s, the existence of a much stronger symmetry for the scaling limit of
two-dimensional critical systems was suggested by Belavin-Polyakov-Zamolodchikov,
which led to the development of Conformal Field Theory: these scaling limits should
be conformally invariant, that is, invariant under conformal mapping between ar-
bitrary domains. Informally, if 2,2 are Riemann surfaces and ¢ : 2 — Z is a
conformal mapping, then the Ising model on a very fine discretization of £ should
be the image by ¢ of the Ising model on a very fine discretization of . Combined
with the operator formalism ideas, this lead to the postulate that the scaling limits
could be described by quantum field theories with an infinitely-dimensional Lie al-
gebra of symmetry, called Conformal Field Theories (CFT). These theories form a
one-parameter family, indexed by a real parameter c, called the central charge. The
universality classes of the conformally invariant scaling limits of many statistical
models correspond to CFT with specific rational central charges, called the minimal
models.

Using the techniques of CFT, the nature of the critical regime of many models,
for instance the Ising model, could be understood with an unprecedently level of
resolution. In particular exact formulae for the scaling limits of correlations of the
local fields of the models could be derived, revealing deep and spectacular connec-
tions between the models and the conformal geometry of the Riemann surface on
which they live. Concerning the Ising model, the correlation functions of the two
local fields of the model, the spin 0, which measures the repartition of the magne-
tization on the surface, and the energy density [] which measures the repartition
of the energy H across the surface, could be computed on various geometries with
various boundary conditions. In particular, on simply connected bounded domains,



the celebrated mirror-image technique of Cardy [Car84] allowed for the computa-
tions of the spin and the energy in a conceptual and elegant way. However almost
all these predictions are very far from being mathematical results, the very exis-
tence of a scaling limit of the model remaining unproven, the conformal symmetry
of it being even more conjectural and the proof of existence of a CFT describing
the model staying an open problem.

About the same years, another two-dimensional theory, called quantum holo-
nomic fields theory, was developed by Sato, Miwa and Jimbo, that encompasses the
scaling limit of the Ising model and allowed to represent its massive or near-critical
correlation functions in terms of solutions to so-called holonomic differential equa-
tions, enabling notably the exact computation of a number of these functions. This
remarkable theory has the advantage of being more rigorous, many of its aspects
having been developed in a completely rigorous way, in particular by Palmer and
Tracy. Unfortunately, it seems that the extent to which a mathematical use of this
theory can be applied to the Ising model is limited to specific geometries, like the
full plane, the cylinder or the torus, since the key tool to pass to the scaling limit,
the transfer matrix method, does not behave well on general geometries.

Conformal invariance of the Ising model or of other models remained out of
mathematical reach until a revival of the subject with the introduction of Schramm-
Loewner Evolution (SLE), in the late 1990’s. The point of view is different, since
it focuses on the random curves appearing in two-dimensional critical systems, and
mathematically precise; the SLE processes form a one-parameter family, indexed
by a positive parameter K, which can be put in correspondence with the central
charge c of the CFT. Several links between SLE and discrete systems were recently
shown, for percolation, the loop-erased random walk, the uniform spanning tree,
the discrete Gaussian free field, and the Ising model, as well as connections with
continuous process, like the planar Brownian motion and the continuous Gaussian
free field. In the Ising model, the natural candidates for curves are the interfaces
between + and — spin clusters, and they were recently shown to converge to SLE
with K = 3, by Smirnov [Smi06] (on the square lattice) and Chelkak-Smirnov (on
more general lattices) in a so-called Dobrushin setup, by Kytold and the author in
more general setups [HoKy10] (on the square lattice).

While SLE shed a new light on conformal invariance as well as mathematical
rigor and allowed for many exact computations, a number of predictions of CFT
seem beyond the reach of SLE techniques, or that at least one has to use additional
techniques in conjuction with them. This seems to be the case for percolation, and
also for the Ising model: there does not seem be a straighforward way to compute
the spin and energy correlation functions directly with SLE techniques. Moreover,
SLE theory is almost only developed for simply connected geometries and specific
boundary conditions.

In this text, we prove several predictions of Conformal Field Theory for cor-
relation functions of the critical Ising model in bounded geometries (which can be
found in [BuGu93], generalizing the results of [Car84]), generalizing the results
of [HoSm10]. These predictions concern the following two local fields:

* The bulk energy density field [] which is basically the product of two
adjacent spins in the bulk, and hence measures the repartition of the
energy of the model across the surface.
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* The boundary spin field 0, which gives the value of a spin on the boundary
of the surface.

For the energy density, the boundary conditions that are treated are:

* Free: we do not impose anything on the boundary

* Locally monochromatic with boundary changing operator: we condition
the boundary spin to be locally always + or always — and to change at
given locations.

* In the simply connected case, mixed + and — boundary conditions.

These are the boundary conditions for which we have found predictions in the CFT
literature. For the spin, the only boundary condition treated in this text is free.
However, with the additional help of SLE techniques, one can compute boundary
spin correlations with more general boundary conditions [HoKy10]. The results
of this text are the following

* On multiply connected domains, we show the existence of the scaling limits
of the correlation functions of the fields above and show their conformal
covariance.

* On simply connected domains, we obtain exact formulae for these corre-
lation functions.

Our techniques rely on the introduction of so-called fermionic observables, which
can be viewed as complexified deformations of partition functions, and generalize
the fermions introduced in [Smi06], [ChSm09], [HoSm10] (see also [Smi07] for
similar fermions), which are themselve complexified versions of fermions appearing
in the physics literature (see for instance [KaCe71]). These are n-point functions,
which are harmonic in each of their variables (in the scaling limit) and which can
be identified by certain boundary conditions. Some details of our construction are
reminiscent to the one of the holomorphic spinors introduced by Mercat.

The key for proving our results is the analysis of these fermions, first on the
discrete level, and then on the continuous one, once we pass to the scaling limit. No-
tably, we show that they solve certain discrete versions of Riemann-Hilbert bound-
ary value problems, allowing us to use and develop discrete complex analysis tools
to obtain relations between them and to show their convergence.

The introduction consists of the following:

* In Section 1.2, we introduce some notation, mostly related to graphs.

* In Section 1.4, we define the Ising model and the observables that we are
interested it.

* In Section 1.5, we state our main results about the energy density and the
spin.

* In Section 1.6, we give an overview of the stategy used to show the main
results and give a detailed summary of the text.

* In Section 1.7, some additional notation, which is needed in the proofs, is
given.

1.2. Notation

In this section, we define most of the notation and conventions that will be used
in this text. The few remaining notation will be given at the end of this section.

11



1.3. Graph notation

Let us first give some general graph notation. Let G be a planar graph.

1.3.1.

We denote by Vg the set of the vertices of G, by Eg the set of its (un-
oriented) edges, by Eg the set of its oriented edges, by Fg the set of its
faces.

For two vertices X,y € Vg, we write X ~ y if they are adjacent and in
that case, we denote by {X,y) € Eg the unoriented edge between them, by
Xy € Eg the oriented edge from X to y (x and y are called the initial and
final vertex of Xy respectively) by =Xy € Eg the oriented edge from y to
X.
If the graph is embedded in the complex plane, we identify the vertices
with the corresponding points in the complex plane. An oriented edge is
identified with the difference of the final vertex minus the initial one.
For two edges ey, € € Eg, we write €1 ~ € if they share an endvertex and
in that case we denote by e; Ne, € Vg that endvertex.

For two faces f1,f2 € Fg, we write f1 ~ f, if they share an edge and in
that case we denote by fq Nf, € Eg that edge.

Discrete domains.

We denote by Cs the square grid of mesh size & > 0, viewed as a subset
of the complex plane.

Ve,
Ecs

{j +ik:j,kez},
{{vi,v2) 1 v, V2 € Vg, V1 — V2| = 8} .

We will mostly be interested in finite induced subgraphs Qs of Cs (two
vertices of Qs are linked by an edge if they are linked in Cg), that we will
also call discrete domains.

The faces Fq, € Fc, are the faces whose four edges are in Eq,.

We call inner boundary vertices of Qg,\/and denote by doVa, € Vg, the set
of vertices that are at distance 8 or 2 -8 from a vertex in Ve, We
call outer boundary vertices of Qs a\]?d denote by dVq, C Ve, q, or 91Va,
the set of vertices at distance dor 28 from a vertex of Vq,.

We call boundary edges and denote by dEq, C Eg, the set of edges between
a vertex of dgVq, and a vertex of dVq,, by doEqn, the set of edges e € Eg,
between vertices of 9oV, such that e is adjacent to a face of F¢;,\ q,, and
by 90Qs the graph with vertex set doVq, and edge set doEqn,. We denote
by d1Eq, the set of edges e € E¢, between vertices of d1Vq, such that e is
adjacent to a face of Fq,, and by 91Qs the graph with vertex set d1Vq,
and edge set d1Eq, .

We call a discrete domain simply connected if C5\ Qs has only one con-
nected component.

When needed, we identify discrete domains with the union of their faces.

1.3.2. Dual graph. We define the following corresponding notions for the
dual graph:

12



Figure 1.3.1. A discrete domain Qs, with the vertices of doVq,
marked by bold points and the ones of 91Vgq, by small squares and
with the edges of dpEqp, drawn in bold, the ones of dEq, dotted
and the ones of d1Eq, dashed.

* For a discrete domain Qs, we denote by m(f ) the center of a face f € Fg,

and by Qg the dual graph of Qs, defined by

Vo;
En:

5

{m(f):f eFq,}
{{m(f1),m(f2)>:f4,f2 €Fq,,f1 ~f2},

the vertices of Qf being identified with the corresponding points in the
complex plane.

* We call inner boundary medial vertices and denote by 30VQ8 c Vgg the
set of the centers of the faces of F o, that are adjacent to a face of F¢,\ q,
or touch a face of F¢, o, at a corner, and call outer boundary medial
vertices and denote by dVq; C Ve:vq; or 01Vq; the set of the centers of
faces of F,\ g, that are adjacent to a face of Fq, or touch a face of Fq,
at a corner.

* We denote by dEq; the set of edges of En; between a vertex of doVq; and
a vertex of avog. We denote by 80E08 the set of edges e € Eq: between
vertices of doVq; such that e is adjacent to a face in Fc;\ q;, and by 90Q;
the graph with vertex set 30V98 and edge set dg En;. We denote by 01 En;
the set of edges e € Ecg between vertices of 61VQé, such that e is adjacent
to a face in FQS.

» For an edge e € Ep, we denote by e* € EQS the edge of Qj that intersects
e. Conversely, for an edge a € Eg; , we denote by a* € Eq, the edge of Qs
that crosses it.

1.3.3. Approximation of continuous domains.

13



L o

Figure 1.3.2. The dual Q3 of the discrete domain Qs of Figure
1.3.1 (drawn with light stroke), with the vertices of Vq. depicted
by black points, the vertices of d1Vq; by black points. The edges
of Eq; \ doEq; are depicted by densely dotted strokes, the edges
of doEp; by bold strokes, the edges of dEg; by normal strokes and
the ones of 01Eq; by sparsely dotted strokes.

* We say that a family (Qs)5, o of discrete domains (with Qs ¢ Cs for each
0 > 0) approximates or discretizes sa continuous domain Q if for each
0> 0, Qs is the largest connected induced subgraph of Cgs contained in Q.

* Given a domain Q c C we call a straight part of the boundary 9°Q c 9Q,
a piece of the boundary made of finite number of pieces parallel to either
the real or the imaginary line.

+ We say that a domain is smooth if its boundary is piecewise C'.

* For a set of vertices V c Vg, with G5 equal to Qs, Q3, OF or OF “ and a
subset K ¢ C, we denote by V NK the set of vertices of V that are at
distance at most © from K.

1.3.4. Linear algebra and Pfaffi ans. Let us finish this subsection by giving
some general linear algebra notation.

* We denote by M, (R) and M;, (C) the algebras of n X n real and complex
matrices.

* For an antisymmetric 2n x 2n matrix A, we denote by Pfaff (A) the
Pfafi an of A, defined by

Pfaff (A) =

where Sy, is the set of the permutations of {1,...,2n} and sgn (-) denotes
the signature of a permutation.

14



* In particular, we have

O O
0 x

Pfaf _ x 0 - X
+ If for a matrix A € M2, (C), and j,k € {1,...,2n} we denote by A\ €
M2z -2 (C) obtained by removing the j-th line and column and the k-th
line and column, we have,

[l )
Pfaf (A)=  (=1) Aj+Pfaf (A\}4).
i=1

+ For any antisymmetric matrix A € My, (C), we have
Pfaf (A)® = det (A).

« If A € My, (C) is an antisymmetric matrix and B € My, (C) is any
matrix, we have

0 [l
Pfaf B'AB = det (B)Pfaf (A).

1.4. Ising model

Recall that the Ising model is a random assignment of + 1 spins to the ver-
tices of a graph with a parameter 8 called the inverse temperature controlling the
strength of the interactions between the spins. In our setup, the notion of boundary
conditions, i.e. the values that we assign to the spins at the boundary vertices of
the graph, will be crucial: one of the aim of this text is to examine the effect of
these boundary conditions on the behavior of the model in the bulk.

1.4.1. With free boundary condition. More formally, the Ising model with
free boundary condition on a graph G (in this text, G will be a discrete domain Qs
or its dual Qf) at inverse temperature B > 0 is a model whose state space is

0 0
ZEP = (O)geve 10x €{~ 1,1} K eVs ,

where the probability of spin configuration o € = is equal to

1

Pfree - [_ Hfree 0
{0} = Spe exp ~BHE(0)
G,B

with the Hamiltonian or energy H I of a configuration o given by

O
Hiee (o) = - 0x Oy
{x,y>eEg

and the partition function Zg%e given by

O€E=g
For x € Vg, the random number 0y € {* 1} is called the spin at X.

15



Figure 1.4.1. The Ising model with free boundary condition on
the discrete domain Qg of Figure 1.3.1.

1.4.2. With mixed boundary conditions. We define the notion of bound-
ary conditions only in the setup that we will study in this text. Given a (possibly
empty) collection b= {by,...,bpn} of vertices on doVqr , we define the Ising model
on Qg with the (locally monochromatic) boundary condition b as the Ising model
with state space E%% defined as

0 0

(Ux)xevoS e{x 172"V 10, = 0y, == (vi,V2) Eb Wy, vz € Vo,

and with the energy H f)g given by
P U
HQg = - 0x Oy .
<x,y>eEng5 vIEq;

In other words, the Ising model with boundary condition b is the Ising model
with spins on Vg; U dVq; with the boundary spins on dVq; conditioned to be
locally constant, and to switch at the locations of the vertices of b. The model
is well-defined only if for each of the connected components of 99Qs is adjacent
to an even (possibly zero) number of boundary changing operators. The edges
bi,...,pn € dEq, are called boundary changing operators. If there are no boundary
changing operators, we write b= &
The probability of a configuration is as before given by

_ b
T g BHE; @

with the partition function Zgg,B defined as

[l _ayb
e BHQS(O-).

b

O'EEQ*
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Figure 1.4.2. A realization of the Ising model with mixed bound-
ary conditions on the graph Qf of Figure 1.3.2 with locally
monochromatic boundary condition and boundary changing op-
erators at the dashed edges.

We also define the Ising model on Qf with + boundary condition as the Ising

model with state space
a 0
E;)g = (Ox)yev,. €{t1} 0y =1WedVq, ,
S

with the energy H‘f-28 and the corresponding probability measure and partition
function. The Ising model with — boundary condition is defined exactly in the
same way.

Let us finally define the Ising model with alternating +/ - boundary conditions
as follows, on a simply connected domain Qs (the only case where we will consider

these boundary conditions). Given edges by, ...,bpm € dEqg, enumerated in coun-
terclockwise order and alternating signs Sq,...,Som € {* 1}, the Ising model with
the boundary condition b'B5? ... 52"~/ B2™ is the Ising model with state space

O O

=5, = (Oev,, <{E1:0y=§ WedVo, NBBLy

where b b + 1 denotes the counterclockwise arc between by and by + 1 (with the indices
taken modulo 2m).

1.4.3. Critical Ising model. In this text, we will be interested in the crit-
ical lging medel, that is, the Ising model at critical inverse temperature Bc =
; a
sIn 2+ 1.

2

1.4.4. Observables. Let Qg be a discrete domain. The two main observables
of Conformal Field Theory for the Ising model are.

+ The spin: for each x € Vq,, we denote by 0 (x) the (random) value of
the spin at x.

17



* The energy density: for each edge e € Eq,, with e = {X.y), we denote by
(3 (e) the energy density at e, which is defined by

[5(e) = W — OxOy,
where y=  2/2.

Remar k. The value of Y set this way corresponds to the infinite-volume limit
of the product of adjacent spins 0y and Oy: as will be shown later, when & — 0, if
X and y stay away from the boundary, we have oxoy — J.

1.5. Main results

We can now state our main results, whose proofs are given in Section 7.4.
Recall that we consider the critical Ising model on (finite) subgraphs of the square
grid with boundary conditions. Our results concern mostly the scaling limit of the
model, that is, when the mesh size of the square grid goes to zero (and we rescale
properly the quantities that we look at). Let us just make the following conventions:

* For a domain Q, let us denote by (Qs)5. o the family of discrete domains
approximating it.

* For a family b= {by,..., b} of points on dQ and a family a4,...,a, of
points in Q, let us denote for each 8> 0by bs = {b1 5, ..., bk 5} the family
of edges in dEq, that are the closest to {by,...,bpx} and by a15,...,an 5
the family of edges in Eg, that are the closest to aq,...,an.

» For points distinct X4,...,Xzp € C, denote by K (X1,...,Xp) € Mp (R)
the antisymmetric matrix deﬁne% by

i =k,
- Xj = Xk
K(x1,...,xp)jk 0 it = k.
The main theorem of this paper is the following:

Theorem1. Let Q beafinitely-connected domain with a collection b = {by, ..., bx}
of boundary points, such that each connected component of dQ contains an even
number of by’s, and let a4,...,a, € Q be a collection of distinct interior points.

There exists a correlation function {(aq) -...- j(an)>?) € R, such that for any
conformal mapping ¢ : Q — %7 we have

b _ 0 9(b)
(Han) ... @)% = 16(a)" <o (an) ... ( (an)h™
j=1

where ¢ (b) = {¢ (by),..., ¢ (bpn)} and such that the following convergence result
holds:

If Q is smooth and all the boundary points of b are located on a straight part
0%Q c 9Q of the boundary, and if we consider the critical Ising model on Qs with
the above notation, we have

1

5 Ea: [3(@s) . (s (an5)] 57 ((@1) ... [(an)a

uniformly on the compact subsets of
{(by,....,b) €0°Qx ...x 0°Q:h S h Y =1}
x{(a1,...,an) €Qx ... xQ:g Fa y =l}.
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In particular, the limit is independent of the (horizontal or vertical) orientation of
the edges a1 5,...,an 5.
On the upper half-plane, the correlation function is given by

o b _ 1 Pfaf (K(ar...,8n,8,,...,381,b1,...,1pm))
@) L@ = Pfal (K (b1, ... b)) ’

where the matrix K is as defined above.

Corollary 2. With the above notation, in the case of free boundary condition,
we have
1 Efree . . _ < . i >free
5 Eas [8(a15) .. Ls(ans)] > (L(ar) .- L@n))g
where . @
((aq) "o @)oo= (=1 {(ar) ... - A@an))g
where Jdenotes the locally monochromatic boundary condition with no boundary
changing operators. The convergence is uniform on the compact subsets of
{(a1,...,an) € Qx ... x Q:a Fa ¥ FTk}.

Corollary 3. With the above notation, if Q is simply connected and we con-
sider the Ising model with + boundary condition on its discretizations, we have
1
5 Ea; [8(a18) . s(ans)] 7= ((an)-...-[(an),
where
((a1) ... @)V = {(ar) ... Han))3.
The convergence is uniform on the compact subsets of
{(a1,....,an) €Qx ... x Qg Fa ¥ Fk}.

Let 9°Q be a straight part of dQ and by, ..., by € 9°Q be distinct boundary points
appearing in counterclockwise order. With the above notation, consider the critical
Ising model with alternating +/ - boundary condition as = by 515, 5. .. 5, _ 1 5b5 5-
Then, we have

1 b} by ...b}, _ (b5

S Do (@10) (8 (ana)l = ((a) o (a2 )
with

(L(a1) . Jan»g’: by ...bj, 1b£k) - (LK&]) - Jan»g)bw,bz,...bzk—mbzk) ,

where theright termisasin Theorem 1. The convergence is uniform on the compact
subsets of

{(br,....,bx) €(3°Q) :b = b ¥ =1}
x{(a1,...,an) €Qx .. xQ:a =a Y &1}.

Remar k 4. Notice that if Q is simply connected, our result says that the one-
point function {{ay ))g is proportional to the hyperbolic metric element of Q at a
— this is the result obtained in [HoSm10].

Our other result concerns the boundary spin correlation. For a domain Q, let us

denote as before (Qs)ss  the discretization of it. For boundary points X1,...,X2n €
0Q, let us denote this time for each 8> 0 by X15,...,X2n,5 the closest vertices of
30VQ5 to X1,...,X2n.
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Theorem 5. Let Q be a finitely-connected domain and let x4,...,x2, € 90Q be
distinct boundary points on smooth parts of Q, such that each connected component
of 9Q contains an even number of x;’s. Then there exists a correlation function

(O(X1) ... O(xan)h® €R

such that for any conformal mapping ¢ : Q — Q- (with ¢ (x1),...,¢ (X2n) On

smooth parts of 9Q-), we have
0 0

er :
@(x1) o (xan )T = 10 )P o (d (x4)) - O (D (Xan )G

j=1

and such that the following convergence result holds:
If Qis a smooth bounded domain and the points x4, ..., X2, areall on a straight
boundary part 95Q), then with the above notation we have

1
E (05 (x1.0) - 05 (Xan,0)] 772 €0 (x1) .. 0 (xan )™,

uniformly on the compact subsets of
{(X1,...,X2n) €0°Q % ... x 0°Q:x; F xk Y = k}

On the upper half-plane, the correlation functions is given by:

0 _ O,
i) Ol i® = 2 PR (K (x1, . xan)],

with the matrix K as defined aboveanda = 2- 1.

1.6. Overall strategy and summary

1.6.1. Strategy. Informally speaking (and if we concentrate on the arguments
directly used to prove the main theorems given in the previous section) the strategy
that we use is the following;:

* We introduce appropriate representations of the Ising model, to represent
all the discrete quantities of interest in terms of statistics over suitable
families of contours (Section 5.1).

* We introduce so-called fermionic observables which are functions defined
on the midpoints of the edges on which the Ising model is defined (Section
5.2).

* We obtain the quantities of interest as special values of the fermionic ob-
servables (Section 5.3). Very informally, as will be justified later (Section
6.6), the idea to compute the n-point energy correlation with 2k boundary
changing operator is to introduce a 2n + 2k-point fermionic observable,
and to move 2K of those points to the locations of boundary changing op-
erators and to merge pairwise (with some renormalization) the remaining
2n points at the locations where we want to compute the energy (we call
this fusion of observables).

* We obtain integrability properties for the fermionic observables that we
translate in terms of discrete complex analyticity (Sections 6.1 and 6.2)

* We perform an analysis of the boundary values and singularities of the
different observables, summarizing them as solutions of discrete Riemann-
Hilbert boundary value problems (Sections 6.3, 6.4, 6.5).
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* We translate the relations in terms of Pfaffians, reducing the computation
of all the fermionic observables to the computation of two of them (6.6),
which are both two-point observables.

* We apply discrete complex analysis techniques (developed in Chapters 2,
3, 4) to obtain convergence of the two-point observables (Sections 7.1 and
7.2).

* We pass the Pfaffians of discrete functions to the limit and show conformal
covariance properties for them, and obtain exact formulae (Sections 7.3
and 7.5).

1.6.2. Summary. Let us now give a more detailed and systematic summary
of this text. Roughly speaking, this text is divided in two parts:

* A first part, consisting of Chapters 2, 3 and 4, where discrete complex
analysis techniques are developed, including convergence questions. This
part is independent of the Ising model, although the questions are moti-
vated by applications to the Ising model.

* A second part, consisting of Chapters 5, 6 and 7, that are concerned with
the Ising model, and that are notably devoted to an analysis of so-called
fermionic observables, in terms of which the correlation functions of the
main theorems above can be represented.

More precisely:

(1) In Chapter 2, we introduce and adapt results (mostly existing ones) from
discrete complex analysis that will be useful for the study of the observ-
ables:

(a) In Section 2.1, we introduce the discretizations d5, 5, A5 and Vg of
the classical differential operators 9, 9, A and ¥ that will be useful
for us, and obtain discrete analogues of the classical integral formulae
for them.

(b) In Section 2.2, we introduce the classical notions of discrete har-
monicity and discrete holomorphicity, as well as a stronger notion of
discrete holomorphicity, which we call s-holomorphicity, and define
discrete singularities.

(c) In Section 2.3, we introduce discrete versions of the Green’s func-
tions for the d5 and A 5 operators that will play a very important role
throughout the text, providing us with a discrete version of Cauchy’s
formula and a representation of solutions to discrete Poisson equa-
tion.

(d) In Section 2.4, we introduce the s-holomorphic version of the Green’s
function for 85, that are the full-plane analogues of the fermionic
observables introduced in Section 5.2.

(e) In Section 2.5, we discuss the integration of s-holomorphic function,
in particular the remarkable feature that the square of s-holomorphic
functions can be integrated, and study certain properties of the dis-
crete integral.
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In Section 2.6, we formulate the boundary value problems that are
relevant in this text, which are discrete inhomogenenous Riemann-
Hilbert boundary value problems, discuss some of their basic prop-
erties and study relations with the discrete integrals defined in the
previous subsection.

(2) In Chapter 3, we review and adapt to our setup existing notions and results
about regularity and convergence of discrete harmonic, holomorphic or s-
holomorphic functions to continuous ones. Those will be in particular
used in the next section to study the convergence of solutions of discrete
Riemann-Hilbert boundary value problems.

(a)
(b)
(c)

In Section 3.1, we discuss the notion of convergence of discrete har-
monic functions.

In Section 3.2, we discuss the convergence the Green’s functions in-
troduced in Section 2.3 and of harmonic measure.

In Section 3.3, we discuss regularity results for discrete harmonic and
holomorphic functions, in particular about how to transform integral
control into uniform control.

(3) In Chapter 4, we study the convergence of solutions of discrete Riemann-
Hilbert boundary value problems to continuous ones.

(a)

(b)

In Section 4.1, we define continuous Riemann-Hilbert boundary value
problems, which are the natural candidates for the limit of discrete
ones.

In Section 4.2, we obtain regularity and precompactness estimates
for solutions to discrete Riemann-Hilbert problems for the topology
of convergence on compact subsets.

In Section 4.3, we identify the subsequential limits of solutions of
Riemann-Hilbert problems for the topology of convergence on the
compact subsets.

In Section 4.4, we extend the convergence results of the previous
subsection up to the boundary, where it is nice enough.

In Section 4.5, we summarize the results of the previous subsections,
formulating a convergence result that will be used in the next section
to show the convergence of observables.

(4) In Chapter 5, we introduce contour statistics that are relevant for com-
puting the quantities of interest, representing them as special values of
so-called fermionic observables, that are the central tools in this text.

(a)

(b)

In Section 5.1, we introduce two classical contour representations of
the Ising model, which are dual to each other and allow to treat in a
unified way the various discrete correlation functions of interest.

In Section 5.2, we introduce the so-called fused fermionic observables,
that are constructed from more basic ones, called unfused fermionic
observables. These observables come in two variants, a real and a
complex one, which can be viewed as signed or complexified versions
of classical contour representations.

In Section 5.3, we connect the classical contour representations with
the fermionic observables, obtaining the correlation functions of the
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main theorems in terms special values of certain real fermionic ob-
servables. Hence, establishing the convergence of the fermionic ob-
servables will give convergence of the correlation functions.

(5) In Chapter 6, using integrability properties of the critical Ising model,
we derive discrete complex analysis properties of the model, formulating
the observables as solutions to the discrete Riemann-Hilbert boundary
value problems introduced in the previous section and use this to obtain
representations of the observables in terms of each other.

(a) In Section 6.1, we discuss the integrability of the model, that appears
in this case as a collection of conservation laws for the fermionic
weights introduced in Section 5.2 under a family of combinatorial
involutions.

(b) In Section 6.2, we translate the integrability properties of the previous
subsection into s-holomorphicity properties for the complex fermionic
observables.

(¢) In Section 6.3, we study the discrete singularities of the complex
fermionic observables.

(d) In Section 6.4, we study the boundary behavior of the complex fermionic
observables.

(e) In Section 6.5, we summarize the results of the previous subsections,
formulating the complex fermionic observables as solutions to discrete
Riemann-Hilbert boundary value problems, notably introducing a so-
called boundary effect observable.

(f) In Section 6.6, we use the results of the previous subsections and the
discrete complex analysis results of the previous section to deduce
recursion relations between the observables, yielding Pfaffian formu-
lae for them, that allow for the representation of all the fermionic
observables in terms of the two-point fermionic observable and of the
boundary effect observable.

(6) In Chapter 7, we apply the results of the previous section to show the con-
vergence of the discrete observables to continuous ones, to obtain scaling
formulae and eventually to prove the main theorems.

(a) In Section 7.1, we define full-plane two-point continuous fermionic
observables and obtain the convergence of the discrete full-plane ob-
servables to them, using the convergence of the d5-Green’s function.

(b) In Section 7.2, we define continuous two-point fermionic observables
and continuous boundary effect observable and show, using the re-
sults of Section 4, the convergence of the discrete observables to them.

(c) In Section 7.3, we define general continuous fused fermionic observ-
ables and use the results of Section 6.6 and of the previous subsection
to obtain the convergence of the general discrete fermionic observ-
ables to them.

(d) In Section 7.5, we summarize the convergence results of the previous
subsections and use the representations of Section 5.3 to prove the
main theorems.

* In the Appendices A and B, we give the proofs of certain propositions of
Chapter 5.
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* In Appendix C, we give a small by-product of the discrete analysis in
Chapter 5 and 6, that seems to be of independent interest and to be
hard to obtain without discrete complex analysis, although completely
elementary in its statement.

1.7. More notation

Let us conclude this chapter by giving some additional notation that will be
used in this text.

1.7.1. Constants. Throughout this text, we use the same letters for certain
constants, some of which have already been defined above, that we will use fre-
quently. Their definitions will often be recalled throughout the text, but for facili-
tating the rea(gjing, we give them here:

ca= 2=
-BC=V%In 2+ 1,
.“=72’
,)\=e1'ri/4
.n=eni/8_

1.7.2. Orientations and double-orientations. We will often use the fol-
lowing notation
* We denote by S= {z € C:|z| = 1} the unit circle of the complex plane.
We will often refer to the elementsof S as (simple) orientations.

* We denote by (S)2 = (Z)2 :z €S the double covering of the unit circle

by itself. We will represent the elements of (S)2 s elements of S with a
specified square root (in S). We will denote by X this square root for
X € @)2. Conversely, we will denote by (Z)2 the element of (S)2 such

that (Z)2 = z € S We will often refer to the elements of S as double
orientations.
* We denote by S, c S the set of fourth roots of unity {*1,%i} and by
(S)f the set of squares of eight roots of unity
0 0 _0
(£ D2, (20)%,(£N)?, £N ° .
We call S+ and (S)2J the sets of lattice simple and double orientations.

1.7.3. More graphs. We give some more definitions concerning graphs, in
particular, we define two types of graphs that will be central in this text: the
medial graph and its dual.

Medial graph.

* For a discrete domain Qs, we denote by m(e) the midpoint of an edge
e € Ep, and by QF the medial graph of Qs, defined by

Vap {m(e) : e € En, UIEy,}
Eqp {{m(e1),m(e2)): er,& € Eg, UIE,, e ~ &},

where we identify as usual the vertices with the corresponding points in
the complex plane.
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We denote by 80V05m C Vop the set of the centers of the edge% in dEq,
and by 3VQg1 c chn \op the set of medial vertices at distance 726 from
a vertex of Vggn .

We denote by Vggn and Vg‘-’)gn the set of midpoints of horizontal and vertical
edges of Qs respectively.

For a medial vertex X € Vop , we denote by O(x) ¢ S the set of admissi-
ble (simple) orientations of x, defined as {* 1} if x € vgg and as {1} if
X € V}’,gn and by %’))2 (x) c (S)fE the set of admissible %ouble orientatigns

O _
of X, defined as (+1)%,(xi)® ifx € Vip and as (£M)?, iN2

X € Vi .

We denote by Sps the set of simply-oriented medial vertices defined by
Sar = x° X € Vqor,0 € O(x)

and by Dop the set of doubly-oriented medial vertices defined as

O O
Dop = x°:x eVan,oe(O)z(x)

We will often identify an oriented medial vertex x° € SQg‘ or in Dng
to the medial vertex X. In particular, when we speak about “distinct
oriented medial vertices”, we mean that the corresponding medial vertices
are distinct.

We denote by Eéé the set of signed edges of Qs, defined by

By, = {¢°:ecEp,se{z1}}.
As for oriented medial vertices, we will often identify a signed edge €° €
Eé6 with the edge e, and when we speak about “distinct signed edges”, we
mean that the corresponding edges are distinct.
For a boundary middlepoint x € doVqp, we call inward-pointing ori-
entation at x the orientation 0 € S, such that x + %06 € dpVq,, and
inward-pointing double orientation a double orientation o0 € (S)2u that
gets identified with a simple inward-pointing orientation.
We denote by Hg, = (v,x):veVq,,Xx€ Vor  the set of half-edges
of Qs and by HJQé the set of oriented half-edges of Qs. Each edge e =
vy, v2) € Ep, is identified with the union of its two half-edges <v1, m(€)>,{m(e), vz €

Ho,.
We denote by . .
doHg, = u(v,x) 1V €9oVq,, X € EBOVngL ,
dHa, = (v,x):vedVq,,x €doVar
the sets of boundary half-edges. We denote by
dextHa, = j)@/ :X € doVar ,V € dVo, .
OintHa, = J)ﬂ/ 1 X € dVap ,V € doVa, .

the set of outward-pointing boundary half-edges and for a medial boundary
vertex X € aoVQan , we denote by Vext (X) € dextHa, the outward-pointing

boundary half-edge with intial vertex X and by Vint (X) € Oint I'LTQ5 the
inward-pointing boundary half-edge with initial vertex X.
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Figure 1.7.1. The medial graph QF of the graph Qs of Figure
1.3.1, with the edges of Enp depicted by dotted strokes and with
the vertices of 60VQr§ marked by black dots.

* We call (half-edge) oconfiguration a subset of Hq,. For two half-edges
configurations Wy, Wy, we denote by Wy @ up the symmetric difference of
wy and Wy, defined as (W U up) \ (W Nwy).

Dual of the medial graph.

* For a discrete domain Qs, we denote by QF'* the dual of the medial of Qs

the graph defined by

Van* = VQ UVQ*
5 JB 5 \/7 0

2
Eop: = X1,X22:X1,X2 € Vor« 1 |x1 = X2 = 75

Closure of graphs.

« For a graph Gs equal to Qs, Qf, QF or QI'*, we denote by Gs the closure
of G, defined as the union Gs U 0G5, where dGs is defined above for each
of those graphs.
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CHAPTER 2

Discrete Complex Analysis

In this chapter, we shortly review a number of concepts in discrete complex
analysis and adapt them to the framework that will be useful for us. We do not
address convergence results here. In this chapter, Qs denotes a finite connected
subgraph of the square grid Cs = 8Z2 of mesh size .

2.1. Discrete differential operators

2.1.1. Definitions. In this text, we will consider discrete differentiations of
complex-valued functions defined on Vg, with G usually equal to Qs, Qg, QF or
QT *. For an oriented edge 8= Xy € Eg, and a function f : Vg, — C, we define df
asf (y) - f (x).

When G is QF or QF'*, for a function f : Vg, — C, we define d5f : Ve; — C
and 5§f . Vgg —C by

g d 0 U U g o 0 U ood

1 0 o . .0 o)
dsf (x) = > f x+§ - f X_§ -i f x+|§ - f x—|§ .
[ | ] g oo goo

1 0 o . .0 .0

dsf (x) = > f x+§ - f X_i +i f x+|§ - f x—|§

For f : Vg, — C, with G equal to Qs or Qz, we define Vsf : Vg — C? by
Vsf (v)= (f (v+ &)= f (v),f (v+id) = f (v)).
When G is Qs or Q, for a function f : Vg, — C, we define A 5f : Vg, — C by
Asf (v) = - (f (v+ 00) = f (v)).
oe{t 1,£i}

In case of vertex ambiguities near the boundary, the vertex v + 0d designates the
one which is adjacent to v. We will sometimes write Ay for the Laplacian acting
on functions Vg, — C and A 5 for the one acting on functions Vq; — C.

As 8 — 0, with the following renormalizations, the discrete operators converge
(in the sense of distributions) to their continuous versions:

1 1 .
S T 0= S(0-id)),
1~ =_ 1 .
636 550 d= é(ax +idy),
1
iAB i A = (axx + ayy),

& 50
1
SV§ -— V= (0,0y).



As for the continuous operators, we have

A= 40505 = 40505.

2.1.2. Discrete formulae. As in the continuum, the above-defined differen-
tial operators satisfy discrete integral formulae, which are very reminiscent of the
classical integral formulae of vector calculus. We only state them in the contexts
where we will use them. The following lemma is a discrete version of the integral
formula - N

Af = onf,
Q EXe)
where n denotes the outward-pointing normal vector, for differentiable domains and
functions.

Lemma 6. For any function f : Vo, — C, we have
0 0
Asf (v) = onf.

VGVQ& neaexlEhG

Proof. If Qs consists of a single vertex, this is by definition. It suffices to
notice that the right hand-side is additive, in the sense that for f : Vg 5 — C,
with Qs N Qs = @ we have

0 a O
amf + amf = amf!

meaex.EhG meaextgﬁﬁ neaex!EJgﬁuﬁﬁ

which follows from the fact that the inner contributions come with opposite signs.
0

The following lemma is a discrete version of the integral variant of Green-
Riemann’s formula -
1 - 3
2 Q Yo}

for differentiable domains and functions.

Lemma 7. For any function f :Var — C, we have
O 0

N X S A A1 Y

veVom« xy€doEnm

where aon)g is the set of edges of Eqr between the midpoints of the edges in doEq,
and those of dEq,, oriented counterclockwise on the outer component of 99QF and
clockwise on the inner components.

Proof. For Qs consisting of a single square face, this is a straightforward. We
have that the right hand-side is additive, since inner contributions cancel, and the
result follows. 0

Let us now give the following useful discrete integration by parts lemma:
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Lemma 8. For any two functions f : Vor — C and g : Vq, uVQ8 — C, we
have

g L O g L 0
f(x)- dsg (x) = - asf (y) -g(y)
erng yev%uvng
0 0J . g
fa fmE@)g mE@+ S e
2 9 2
eeagE@6 0 0
1 fmE) g mer S e
2 9 2
eedEq

where doEn, denotes the set of edges of 3005 and dEy; the set of edges of dQ;, both
oriented counterclockwise on the outer component of dpQs and dQ; and oriented
clockwise on the inner ones.

Proof. This follows from a straightforward computation. 0

2.2. Discrete harmonicity and holomorphicity

In this section, we introduce the types of functions defined on graphs that will
play a role in this text:

* The discrete harmonic, subharmonic and superharmonic functions.

* The discrete holomorphic functions, which are a particular type of har-
monic functions.

e The s-holomorphic functions, which are a particular type of discrete holo-
morphic functions.

We then introduce the notion of discrete singularities, which as in the continuum,
can basically be represented as defects of discrete harmonicity, discrete holomor-
phicity or s-holomorphicity.

2.2.1. Discrete harmonicity. Discrete harmonicity can be defined in terms
of the discrete operator A 5:

Definition 9. Let G be Qs, Q3, QI or QF'* . We call a function f : Vg, — C

+ discrete harmonic on Gs if A 5f (v) = O for each v € Vg,,
« discrete subharmonic on Gs if Asf (v) 2 O for each v € Vg,
» discrete superharmonic on Gs if Asf (v) < O for each v € Vg;.

As in the continuum, it is easy to see that discrete subharmonic and super-
harmonic functions satisfy the maximum and minumum principle respectively: a
subharmonic (respectively superharmonic) function reaches its maximum (respec-
tively minimum) on the boundary of the discrete domain.

2.2.2. Discrete holomorphicity. Discrete holomorphicity can in turn be
defined in terms of ds:

Definition 10. Let G be either Q' or QF'*. We call a function f : Vg, — C
discrete holomorphic of discrete analytic if d5f (x) = O for each x € Vg;. We call
the equation d5f (x) = O the discrete Cauchy-Riemann equation.
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Figure 2.2.1. Two faces of Cs, with the medial edges drawn with
dotted strokes, and the lines associated with them.

In particular, with these definitions, a discrete holomorphic function is discrete
harmonic. Conversely if Gy is either Q5 or Qf, and if f : Vg, — C is a discrete har-
monic function, then f can be locally extended to a discrete holomorphic function
f: Vng - — C by solving the equation

d5f (X)= 0 W EVng.
If G is simply connected, a global extension always exists and is unique up to a

constant.

2.2.3. S-holomorphicity. We now turn to the notion of s-holomorphicity
(for spin holomorphicity) which is central in this text. Unlike the ones of discrete
harmonicity and holomorphicity, we do not define it in terms of differential opera-
tors: this notion is not C-linear. Also, we will only consider s-holomorphic functions
defined on the vertices of the medial graph QF' . Recall that with each medial edge
e € Egp , we associate a complex line [(€) ¢ C defined by

() = (m(e) - c(e)) * R,

where m(e) is the middlepoint of e and c(€) € Vq, is the opposite vertex of the
corner at €, that is, the vertex of Qs that is the closest to €. Hence the different
lines associated with medial edges on the square lattice are n,n, %, 7°.

Definition 11. We call a function f : Vggn — C s-holomorphic if for each
medial edge e € EQ? with endpoints X,y € VQ? , we have

P o) [f (X)]1= Puey If ()],
where P denotes the orthogonal projection on [in C.

We have that s-holomorphicity implies discrete holomorphicity (it is easy to
check that the converse is not true):

Lemma 12. If f :Van — C is s-holomorphic, then it is also discrete holomor-
phic.
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Proof. Let v € Vor- be a vertex. We want to show that 9sf (v) = 0.
Let us suppose that v € Vq,, the other case v € Vq: is identical. Denote by

V{,Vi,V-1,V-j € Van the four medial vertices v + g,v+ i%,v— g,v— i% and by

e, e x5, 1,8 € Egr the four medial edges vy, Vi), Vi, V- 1), (V= 1, V=i, V=i, V).
By definition, we have
Parlf (V1) = Parlf (Vi)],
Pprlf (Vi) = Pprlf (v-1)],
Pprl[f (v-1)] = PprIf (v-i)],
Prl[f (v-i)] = Parlf (V1)].

Rewriting this, we have

flvi)+ Af(vq) = f(V|)+)\f (vi),
(V.)—)\f (Vi) = f(v-1)= Af (v-1),
fvoq)= AF(voq) = F(voi) = A (v-),

f(voi)+ A (voi) = f (i) + AF (vi).

Multiplying the first equation by J‘T the second by %%, the third by - J‘—i and the

fourth by — %L and summing, we obtaln

0=i(f (v1)=f(v-1)) = (F (vi) = f (w)) =135 (v),
which is the desired result. O

2.2.4. Discretesingularities. Animportant aspect of discrete complex anal-
ysis is the one of singularities, which arise as defects of discrete harmonicity, ana-
lyticity or s-holomorphicity:

Definition 13. Let G be Qs, Q, QF or QI'*, f : Vg, — C be a function and
a € Vg,. We say that f has a discrete A 5-singularity at a if Asf (a) £ 0. Similarly,
we say that f has a discrete dz-singularity at a if dsf (a) € 0.

For s-holomorphic functions, we define the notion of simple pole as follows:

Definition 14. Let @® € Vop be an oriented medial vertex and f : Vop\(ay —
C be an s-holomorphic function. ‘Wesay that f has a simple pole at &°, if the two
complex numbers f ajo Larnd f ET? Ldiffer (which we respectively call front and
rear values), where f a) andf a° are defined by

0 o
P(a,a0, )f rag = Puaan )f %ao)\ )ﬂ
P fa = p f asr
Saax) Kaar) ok
0 o 0

Pa,a o1 )f ua_

PHa,a_ on )f (j" oA )L
0
PL(a,a, or>f a

PJ(a,a, oT)f a ox

N _
‘ﬁhﬁre Ax dﬁaotﬁﬁ a+ 72X5. We call discrete residue at a® the quantity o -
a -f a®¢ e€C.

The following lemma justifies the definitions of discrete simple pole and residue:
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Lemma 15. Let a® € Dop bea doubly-oriented medial vertex. Let f :Van\{a} —
C be an s-holomor phic function with a simple pole with residue p at a°. If we extend
f to Vop by setting f (a) = 1, for any 1 € C, we have

06U o0 DL 06u

Déf + + Osf =

i g ) fﬂ i ﬂa Eﬂ -
0. 0O 0D .0 .00
35f a+|§ + 35f a_li = 0

For any simple contractible counterclockwise y ¢ Eqr\(a) path winding around a,

we have D)+ ()
x)+ f (y
Sy %),
xyey
Proof. A straightforward computation, similar to the one of the proof Lemma
12, gives the first assertion. The second one follows from Lemma 7. 0

2.3. Green’s functions

A central tool in the discrete complex analysis theory that we will need is the
one of discrete Green’s functions for the ds and A 5 operators. The theory of such
functions is well developed and will be of great usefulness for our purpose, mostly
thanks to the following two features:

* They are explicitly computable: we can explicitly obtain the value of these
functions at any given point.

* Their convergence is known: as the mesh size & goes to zero, these func-
tions converge to their continuous counterparts.

The latter feature will be discussed in Chapter 3.

2.3.1. Dirac Green’s function. Green’s functions for the discrete Dirac’s
operator ds play different important roles in this text. We present in this subsection
the usual version, which is discrete holomorphic except at a dual vertex, that allows
to formulate a discrete analogue of Cauchy’s formula. In the next section, we will
present an s-holomorphic version of this Green’s function, which is crucial for the
analysis of the fermionic observables.

Theorem 16. Let a € V¢, be a vertex. There exists a unique function chn —

C, which we denote by G% (a,*) and call the discrete Green's function for the 95

operator such that
per O 0

35G% (a,7) (V)
0 - 0]
05G% (a,7) (a) = 1

OWEVCgH\{a1}.

G% (a,b) = 0

G (a-)n € R
Cs

G®(a )y, € IR
5

Proof. This follows directly from [K en00], where the 85 Green’s function is
denoted by Cy (and whose normalization differ by a factor of 2). 0
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For v € Vc; we define G% (v,?) : Vop — C by translation, by setting G% (v,w) =
G% v- 5 w= 1515 for cach w € Ver . We define also G% (x, ):Vag: —C

for x € Vgp by translation, by setting G% (x,7) = G% x- g, - g for x € VBQ
and G% (y,-)= G% y-0,-— 18 fory e V.

The explicit values of the Green’s function can be explicitly computed. Let us
give the values that we will use:

Proposition 17. Near the point a, the function G% takes the following values:

0 0
3 O 0 1
G% a,a+g = -G% aa-3 = 5
0 0
7 o) - 0 0 i
9 i = H -
: Géma,a+D|§D— -G% aa-i = -5
3 i - 0 O 00 i 2
G aa+ 1+5 5 = GFaa- 1-;5= -2
0 0 0o
5 [ - 0O O .00 2 i
G’ aa+ 1—'é = G% aa- 1+ 8 = FI_IQ
a a oo
E = U O 0.0
G% aa+ %+i O = G% aa+ %—i 5 = %_%
0 0 0o
3 1 -~ 0 O 00 1 2
% - -+ = 95 - 1 = — - =
G a,a 5 i o G a,a- 5;-i 0 5" o

Proof. This follows from [Ken00|. The normalization of the function Cg
defined there differs from the one of G’ by a factor of 2, namely we have G% (-, ") =
2Cy. The computation of the values is made in Figure 6 there (the other values
that we need can be computed by symmetry). 0

This d5-Green’s function allows us to formulate a discrete version of Cauchy’s
formula.

Proposition 18. Let Qs be a simply connected discrete domain and f : Vor —
C a discrete holomorphic function. Then for each v € Var , we have

[
(S . e
fv = 50 f (m(e)) - G% vme+ 5 e
ee[)olag6 .
0 B O iD
+ f(me) 6" vme+s e,
eeaa)g

where doEp, and dEn; denote the sets of edges of 3005 and 8Q3, oriented in coun-
terclockwise direction on the outer component of 9oQs and 9Qj5 and in clockwise
direction on the inner ones.
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Proof. Foreach v € Vqor , by definition of G% (, "), by discrete integration by
parts (Lemma 8) and by the discrete Cauchy-Riemann equation, we have

O o _
f(v) = f(x): 35G% (v,) (X)
XGVQ%n
[ 0
1 0 = i
= 5 f (m(e)) - G v,m(@)+§ ‘e
eed, EQG
O
- _ e
+ f(m(e)-G* v.m(e)+ 5 -e,
eed ETS
which shows the result. O

2.3.2. Laplace Green’s function. Another important Green’s function for
us is the one of the A operator. We only consider here the Dirichlet Green’s
function in bounded domains:

Theorem 19. Let G be Qs or Q5. Then there exists a unique function Gé; :
Vg * Vg, — R such that for each a; € Vg, the following properties are satisfied:
e The function a, & Gé; (a1,a2) is harmonic on G5\ {a4}.
» For each a; € 3Gy, we have Gg° (ay, az) = 0.

Using the Laplacian Green’s function, we can readily solve the discrete Poisson
equation A su = f with Dirichlet boundary values:

Proposition 20. Let G be Qs or Q. The solution to the discrete boundary
value problem

g5u = f
u Ve, = 0,
where f : Vg, — R is the data and u : Vg, — R is the unknown is given by

u(v) = : Gg? (w,v) - f (w).

WEVG5

2.4. Full-plane fermionic observables

In this section, we introduce an s-holomorphic version of the Green’s function
for the d5. The role of this function is extremely important in this text, since
it possesses a direct physical interpretation, beyond being a fundamental tool to
establish later the convergence of the observables and hence of the scaling limit of
the correlation functions: it corresponds informally to the infinite-volume limit of
the two-point fermionic observable. We do not make rigorous or precise sense of
this fact, since we never use it directly, but this consideration plays an important
motivation role for our strategy and justifies the notation.

Definition 21. Let af" € Dcp be a doubly-oriented medial vertex. We call
full-plane discrete complex fermionic observable the function he, (a7',*) : Verayy —
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C defined by

00 0 0 0 ) 0o
h o1 = o T &% +@ + G% _ iod
cs (a7, az) n- 0i-cos o a , a2 a , a2
00 0 0 0 ) a0
. . T Er o] e i010
—ions0osin g G a1——12 ,a + G% a1+—21 , @

where G% is the discrete 95-Green’s function defined in Theorem 16.

The following important properties of h¢, (that characterize it) are the follow-
ing:

Proposition 22. Let aj' € Dcp be a doubly-oriented medial vertex. Then
he, (a7", ") : Var\ {a;; — C is the unique s-holomorphic function such that

« Asa; — », we have h¢, (aJ",az) — 0.
* The function hc, (af', ) has a discrete simple pole at af", of residue +%-.

The two front anb rear values h. and h- of hg, (a3, ") at as are given by

he (29) = N1t H

01 2
1T p-1
ho (a3') =
(31) #?71 2

Vo
where p = 2.

Proof. Clearly, we have that hc, (aJ", az) tends to O as @ — « and we readily
obtain that it is uniquely determined by the two conditions above: the difference
of two s-holomorphic functions chq{a” — C with these conditions extends to
an s-holomorphic function Vep — C, which is harmonic (since it is in particular
discrete holomorphic) and tends to O at infinity, and hence is identically equal
to 0 (by maximum’s principle). By the following lemma, a; = hg, (a',ap) is
s-holomorphic:

Lemma 23. The functions

0 O o5 o O o005 00
Giiap=n- o G a+ & +G° a- - a
and
0o O 0 0 00
N = 016 = 010
Gy:axBin- o G‘96 a1-17,82 "’G‘96 a1+71,82

are both s-holomorphic on Vc,\(a,} -

Set ¢ = cos(1/8) and s = sin(1/8). Once we have the lemma, it it suffices
to check that the front and rear values of h¢; are the ones claimed. Using trans-

lation invariance of G% (+,") and the exact values supplied by Proposition 17, a
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straightforward computation gives:

+ i - u2 1+|L - 2i 1+|uL
ho, a7',a1+ o 5 = 4L ¢ Z- -ji-s- -+
04 1 2 m
g n 0 ﬂ1+|r ﬂ2i+2 1+Iﬂﬂ
=i
01 + —i.a- -
ho, aj',as+ o o ala c — i-s - 5
- -iu n e 2+ 2 1+iL u1+iJL
h 31, a - - + +
Qs 81,8 0125 %C - 5 i-s 3
- T+ n - D2i 1+ij 2 1+i[D
01 — = = = + - . R
ho, aj',aj 01— ) JJ?71 =T o s o 5
0 .
Let us compute the projections on lines corresponding to the edges aq,as + 04 “7'6
g 0 1+ N 1 ﬁ?’
i
P x h 01, + be) = - +
%R Q; di,ar1t O 2 “JE 2(C s)
1 w3
VLI
01 2
g 0 RN
P s . hg a°1a+o1_'5 = 41#.”3.(;
*‘%R 5 1 AN 1 2 071 é
0 O _, oo .
P%R hQﬁ 3?1,81_01 2 0 = _AJ?‘]' E'S
g 0 1+ N 1 n
Pupr ho, afai-o0—-8 = _3‘%'5(0_ )
1
= -4 g
O 2
Another straightforward computation gives
g
1 1+ 1
P = b
%Rjﬁ 2 Yo 2 °
1 1+ 1 nd
P A,/— = 4 LI
2R V52 5 2 ¢
1 p-1 1 n
P g Vj“ = _JJj%& S
o1 o 2 01 2
1T p-1 1 3‘&
P, Rr AJi = _’Ji' =C
o1 o 2 01 2

and hence we obtain the desired result. 0

Proof of Lemma 23. Fix a doubly-oriented medial vertex aj'. Let us use

the translation invariance to rewrite these two functions
\/ [ B o 0 B [l io 6DD
Gi(a) = n- o G a1,32‘17 + G% a1,32*'721
O O O ad
N 016 = 06
Ga(a2) = i'n- o G 31,32*‘17 + G% 31,32_71 )

where on the right hand sides, the two G% (a1, *) terms are orthogonal: one of the
G% (ay, ) terms is purely real and the other is purely imaginary.
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Let e € Egp be a medial edge and let x € Vg?\{a1},y € Vé?\{a1} be its
endpoints with X being the horizontal and y the vertical one. Then there are four
possibilities for the edge <x,y) € Eqp :

o If [(e) = r]-\/aR: we have that x = y + %oﬁand

v _ oESu
P [Gi(x)] = n- 0r-G™ anx- o~
v _ io 6m
= n oG any+ 00
= Pue [G1(y)]
and similarly
o N 5 i1
P(lG2(x)] = i'n- o G &11,X-71
[
= i'ﬂ'\/a'G% am)”%s
= Pie [G2(y)].
o If FKe)=ﬁ3-\/aR: we havethatx=y—%o163nd
O
N 5 101
P(g[G1(x)] = n- o07-G% a1,x+T1
N _ 06j
= N0 GT any- &
= PielG1(y)]
and similarly
0J 0J
. N 5 018
PelG2(x)] = i-n- or-G% a1,x+17
\/ _ .
= | r] 01.036 a,y |0216

o If ((e) = ﬁ-xlaR: we have that x = y + %o@and

Pje) [G4 (é)‘ Gﬂ (1 . . 0
= Avn—,-\/oﬁ G% a1,x—01—6 +iGP% a1,x+@
2 0 0 2 0 . 2
—iGg6 a1,y—0176 —Gg6 a1,y+%
Aoy 0 0

= S or-i 35G% (a1,7) (y)

NI
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Similarly, we have

- L \/a -G% 1,x+0176 +iG% a1,x—$
1010 . oéjD
+G% a1,y—71 iG% a,y+17
0 _ 0
= -dL.Vg 95G% (a1,7) (x)
= 0. J
s If (e)=n®- oR: Wehavethatx=y—%o16and
Pi(e) [G1(x) = G1 (y)]
oy L 018 3 1010
= L. V5 6 ar,x= o -G apx+ o0
06T - i010
+iG% - 29 G + 19
iG% ay,y 5 G? a4,y >
PE o O
= ~¥50 0 967 (@) (%)
and similarly
P Gy (x)- G
éE)E/Z(j) 2éy)] : . L
= L .V5 - a1,x+0176 - iG? a1,x—%3
. 0 0 0
+G% ahY‘@ +iG% 31,y+0176
3 4 o _ N
= o a6 () (v).
This concludes the proof of the lemma. 0

2.5. Discrete integration

Except in special cases, the product (or even the square) of discrete holomor-
phic (or s-holomorphic) functions is no longer discrete holomorphic. However, a
specificity of s-holomorphic functions is that the (real part of the) antiderivative of
the square of an s-holomorphic function can be defined, in the following way:

Proposition 24. Let f : Vor — C be an s-holomorphic function and x €

Vap - . Then there exists a locally well-defined discrete analogue Ix 5 [f ] : VQrén . >R
of the antiderivative L .

-re  f?

obtained by integrating:

Ix,5[f](x)
Ix5[f1(b) = Ix5[f](w)



for each edge e = (b, w) € Egp-, with be Vo and w € Vo, with & = (x,y) €
Eop and with [(e") denoting the complex line associated with e*. The function
Ix5[f]is globally well-defined if Qs is simply connected.

When the choice of the vertex x is not relevant, we will merely write |5 [f ] for
Ix,B [f ]

0 _0
Proof. It is sufficient to check that for each v € Vggw yifforpe A xA if
we set Vp = V+ p% € Vor and €, = {v,V,) € Eqp , we have

R N P S T N A P SN A

since it gives that the increment when going around v is zero, and-hence shows local
well-definedness. But this follows from the fact that for each p € £ A, A the lines

(ep) ezmd [{e-p) are orthogonal and that hence ﬂ’ (ep) [f (V)]-+ P (=) [F (V)]Z =
£ (W) O

The following elementary lemma that immediately follows from the definition
of I5[7] justifies the analogy with — e ()2 :

Lemma 25. Let f : Vo, — C be an s-holomorphic function. Then for any edge
{br, ) € Eq, with middlepoint x € Vor , we have

0J OJ
Is[f1(b) — Is[f1(b1) = —-Te f(x)* (b by)
and any dual edge (w1, w,) € Eq; with middlepoint y € Vor , we have
0J OJ
Is[F1(w2) = Is[f1(ws) = =Cle f(y)*-(wz2= wy)

The function l4 [] is in general not harmonic:

Proposition 26. Let f : VQg‘ — C be an s-holomorphic function. Then the
restrictions I5[f]: Vo, — R and I5[f]: Vo, — R (identifying Vo, with Vop and
Vq; with Va,§n ) are subharmonic and superharmonic respectively: we have

Asl5[f1(b)
Asls [f1(w)

\/* 2
J 270 10sF (B)I” We Va,,
- 2-5-105F (W)° W € Vq;.

Proof. Let us first remark that for any complex number T € C, f — T is still
s-holomorphic and that ds (f = 7)(x) = 0dsf (x) for each x € Vo, U Vq;. Let us
show that Asls[f — T](X) = Asls[f](x) for each x € Vo, U Vq; . From Lemma 25,
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for each x € Vo, U VQg, we have

Aélf[mf [T](X)j ) 0 O 0,0
= [le f x—§ -1 - f x+§ -7
2 2
Uno o O O, OO 0O 0,0
+0e i f x-ig -1 - f x+iz -7
U o 0 0 0 0 0 0 0,
= [le f x—§2—f x+§2+|f X=i= 2—|f x+i§2
2 2 2 2

o _ O
+ e 410f (x)
= Asls[f1(x),

where the last identity follows from the discrete Cauchy-Riemann equation. Let
now X € Vq,; to show that

i > 2
AGI5IF1(B) = 2-5-|asf (B)]°,

0 0
we may suppose that f b- g = 0, by substracting a constant to f if necessaLla.

In that case, by the Cauchy-Riemann equation, we have |05f (b)|2 = b+ %
By definition, we now have

Asls[f1(0) = -

0
where we LIﬁave used the s-holomorphicity and the relations Prsg f b+ i§

anfl Pn3 i§ = 0 that come from the sﬁo&omorp&%lty Esd tﬁe[fact t}&@

f b-2 = 0 These relations give also Ppag f b+ i3 ar f b+
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0 o 0o g

and HﬁaR f b- igﬂ_H= H%]R f b- Izj_H Hence we obtaln

0o o U
1 i 5 E 1 EP :

1 0o o 6ﬂ7

é f ZEDHSR f b+ é j
B % 00 5JL§ 1 EP 5 j
- é nR f b+ é + é R f b+ é

0 0O od 0 O 0d
+1HJan b+§ j+1H’n3Rf b+§ ﬁ
2 2 2 2

where we used once more s-holomorphicity. Using that for any z € C,

2 = = learlal+ el = e[+ Bl

ol
|85 ) (B)I%

which is the desired result. Using exactly the same reasoning, we obtain A 513 [f ](w) =
~ |(3sf ) (w)|? for each w € Vq; .

>
ore
—
—
—
—
=
|

+
-_—

L]

3

Py
)
O

o

[

NIl o1
i
|

CL6]

+

we obtain

Asls[F1(b)

2.6. Discrete Riemann-Hilbert boundary value problems

The purpose of this section is not to give general definitions or a general theory
of discrete versions of Riemann-Hilbert boundary value problems, but rather to
focus on the specific type of boundary value problems we will study. They are the
tool that we use to represent the observables, to obtain relations between them and
finally to pass to the scaling limit.

We will only give here the definition of these problems and a useful uniqueness
result.

Definition 27. Let u: Vop — C be an s-holomorphic function. We say that
u solves the inhomogeneous Riemann-Hilbert boundary value problem (4 q,,f ) for
a function f : aovgg — C if for each x € 80V95m , we have

1
—f ’
(u(x) (x)) ﬂgm

or equivalently
Py i glux)-f(x)]=0.

Viext (x)

Let us give the following proposition, that gives an a priori control on solutions
to the problems (# q,,f) will be very useful in this text:

Proposition 28. If u: VQg‘ — C solves the Riemann-Hilbert boundary value
problem (4 q,,f), then we have
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Proof. We can suppose, by replacing f by f — Py1  g[f] if necessary, that
Vext

for each X € dgVqp , we have

f(v)=pPy_1__glu(x)],

- Vext (x)

so that we can write u(x) = f (x) + g(x), where

g(x)=Py_1__gr[u(x)].

Vext (X)

Consider a branch of the discrete antiderivative I [u] : ngn - — R and its restriction
I5[u] : Vo, — R to Vq,. For each x € doVay , we have

O (x) 15 [U] = %znsR[u(X)]E- %%R[U(X)]E-

Vext (X)
. g

So, we obtain, using that (e f (m)g(m) = 0,

1 .
Sa\iext x5 [ul

I
=2

(V2]
O
ool 4
O

-

3

+

8

w
-

o
O

)

3
[

If (m)I” - g(m)[>.

Using that I} [u] is subharmonic and Lemma 6 (which can be applied without
problem even if |4 [u] is not single-valued, since only the differences of values at
adjacent vertices are used), we obtain

0 < Al u]

VEVQ6

aMext (X) I‘é [u]

xeaovng
U ) 2D
= LGOI 109
XeaoVQg
and hence [ , 0 ,
lg(x)|” = LCY
XE@oVQran xeaovngw
Finally, using that for each X € doVap , |u (X)|2 = |f (X)|2 + |g(X)|2, we obtain the
result. 0

This proposition gives in particular the following uniqueness result:

Corollary 29. Any discrete Riemann-Hilbert boundary value problem (4 o, f)
has at most one solution.

Proof. By linearity, the difference of two solutions solves the problem (4 o, 0).
From Proposition 28, the solution of (4 q,,0) must be zero. 0

Let us now give the following integral reformulation of the boundary condition
0 % that is very useful, since it allows to translate a boundary condition which
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seems a priori badly suited for passing to the continuum limit (since the discrete
normal vector only takes value in a discrete space) into a much more robust one:

Lemma 30. Let u: VQran — C be an s-holomorphic function and let | c 9¢Qs
be a connected part of 99Qs such that

u(x) TJ; Av'¢ E@oVQrén nil.
Vext (X)

Then 15 [u] is locally constant on doVq; N1 . In particular, if | = doQF', then I5[u]
is globally well-defined on Var - and locally constant on aQVQg.
For each x € 30V93n N1, we have

Qo) (5 1UD) = = Ju(x)]?.

Proof. It is straightforward to check from Lemma 25 and the boundary con-
dition that for adjacent vertices X,y € doVa; NI, I5[ul(x) = 15 [u](y). If | = 90Qs,
the global well-definedness follows from the fact that there is no monodromy of
I'5 [u] around the components of Qs and hence no monodromy at all. For the sec-
ond property, we use that, as in the proof of Proposition 28, for each x € 60Vng ,
we have

v v
Pl5l] = 2@1nsguunj— 2@¢¢mﬂﬁuunﬁ

Viext (x)

- Ju(x)?.

0

2.6.1. Boundary modification trick. If u: Vor — C is an s-holomorphic
function with the boundary condition [] 317 on a part | of dVqor , then we have
seen in Lemma 30 that |5[u] is locally Conbtdnt on doVo; NI, but not in principle
on dVq, NI. We can artificially set the value of I3 [u] on dVq, ﬂl to be equal to the
one on the dual vertices of doVq; N1. We denote by N|5 [u] the function Vg, — R
equal to I3 [u] on Vo, \ (81Vq, N1) and where, for each x € 94Vq, NI adjacent to a
dual vertex y € doVo; NI, we set NIG [ul(x) = I5[ul(y).

However this spoils the subharmonicity of |5 [u] established in Proposition 26.
The boundary modification trick, introduced in [ChSmO09] and used in the same
way as in [DHNO09] that we use to overcome this problem consists in defining a
modified version 55 of the Laplacian A 5 acting on functions Va, — R by

0 0 0o 0 .
Kof (V) = erQB:y~xaV«Yf +2a xe&VQG:x~vaVXf if x € 9pVq, NI,
° Asf (v) else
where a =  2- 1 as usual. The following lemma justifies the introduction of &5
and |3 [u]:

0 0
Lemma 31. For each v € Vo, we have that Azl5[u] (v) = (Azl5[ul)(v).
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Proof. Let v € 9gVq, NI (since otherwise there is nothing to check). For each
X € dVq, with X ~ v, we have

duxlzlu] = 6-51(m(vx>)|2
duxlzlu] = & 2-cos g u (mvx))|?
1 .
= %'avxlﬁ[u]
hence 0
(Asls[u]) (v) = vyl [u] + dyx 15 [u]
yeVaysiy~v X€9VqysiX~V
= duyls [u] + 2a Aux 15 [U]

eroézy~vT X€dVqys X~V

Aglgul (v).
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CHAPTER 3

Convergence Results for Discrete Functions

The main purpose of this chapter is to review and adapt to our case existing
tools for showing the convergence of discrete functions to continuous ones that
will be used in the next chapter to study the convergence of solutions of dis-

crete Riemann-Hilbert boundary value problems. Most of these results come from
[ChSm08, ChSm09, Ken00, K es87].

3.1. Convergence of discrete harmonic and holomorphic functions

Let us first define what we mean by convergence of discrete domains and of
functions defined on them to continuous ones.

Recall that we say that a family (Qs)5.  is a discretization or an approximation
of a domain Q if for each > 0, Q5 is the largest induced subgraph of Cs contained
in Q.

For notation convenience reasons, we will extend naturally the functions defined
on G (with G equal to Qs, QF, QF, Q") to functions defined on Q, by defining
the value at x € Q of a function fs : Vg, — C as f5(Xs), where X5 is the closest
vertex (or one of them if there are several) in Vg, to X. We will never use the
precise definition of the extension, and it will never be used in any other way than
to simplify notation.

For a function hg : San — C (respectively Dor — C), a lattice orientation
0 € S, (respectively in (S)f) and a point X € Q, we define hs (x°) as hs (x3®),
where X5 is the closest medial vertex (or one of them if there are several) for which
0 is an admissible orientation.

Let us start by stating the classical result that ensures that the limits of discrete
holomorphic functions are continuous holomorphic — the same is true for discrete
harmonic functions.

Lemma 32. Let (Qs)5. o be a discretization of a domain Q, let (f5 : Vo, — C)s. ¢
be a family of discrete holomorphic functions and let f : Q — C be a continuous
function such that f5 — f uniformly on the compact subsets of Q as & — 0. Then
f is holomorphic.

Proof. We can use Morera’s condition. Let y € Q be a simple contractible
contour oriented counterclockwise and denote by Y ¢ Q the subdomain such that
dY = y. Then, by approximating by Riemann sums, we have

‘ 0 f(x)+f
f (z)dz = lim M(y—x),
v 3-0 2
Xy €do E{(gl
where for each & > 0, 80@9 denotes the set of edges of Ele between midpoints
of 80Eygm and midpoints of 8Eygn , oriented counterclockwise. By the convergence
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assumption, we have

, S )+ : S fs(x) + fs(y)
im — 3 Wmx=ln 3 U7X

Xy€doBym Xy€doEym

and by Lemma 7 and discrete holomorphicity, we have
U +
200+ 15— g
Xy&€doEym

for each &> 0, which shows the result. O

3.2. Green’s functions and harmonic measure convergence

The convergence of discrete Green’s functions and of harmonic measure is a
classical subject, and a lot of results, especially on the square lattice, have been
known since many years. Let us start with the convergence of the full-plane d5-
Green’s function.

Theorem33. Consider the full-plane Green's function G%% . Then, there exists
a universal oonstant C > 0 such that for each 8> 0 and each x € V,, we have

é 3 Yz [E 5 h
) —_ .

Geh (x,y) — e Gg(x,y) = yP W e Ve,

= o _ O 5

G% (x,y)- m Gi(x,y) - £ C——— WeVi,

6 = yI* ;
where Vgg1 and Vg are the sets of horizontal and vertical medial vertioes respec-
tively, and where

I\

7 1
G (x,y)= ————.
c(x,y) Ty - X)
Proof. This follows from [K en00], Theorem 11, by rescaling the lattice (which
is there of fixed mesh size 1). 0

Let us now give convergence results concerning A s-Green’s function G235 with
Dirichlet boundary conditions. The main one, which is very classical, is the con-
vergence of G*3 to the continuous A -Green’s function G :

Proposition 34. Let (Q5)5. o be a family of discrete domains approximating
a bounded domain Q as & — 0 and let (&)s.  denote either (Qs)s. o O (QF)5. o-
Consider the Green's function Gé; 1 Vg * Vg — R with Dirichlet boundary oon-

ditions. Then there exists a universal constant C > 0 such that for any compact
subset K c Q, there exists ek (8) > 0 with g« (d) 2 0 such that

%é; (x,y) - G (x,yé

IN

.|X—62y|2 + ek (0) WK,y € Vg, NK

FNE Y
=VsGg. (x,7) (¥)— VG (x,7) (y)- =

5 + ex (8) W,y € Vg, NK.

= yI°
where G3 is the continuous Dirichlet A -Green's function of Q.
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Proof. Suppose to simplify the notation that (Gs)s. o = (Q5)5s o (the other
case is similar). Then we have that Gé; (x,y) = Gé; (x,y) - égé, where Gé; :

Ve, * Vg, — R is the Green’s function of the full-plane (see [ChSmO08]), defined
by
-
U O .
: 0 ifysx
A3Ge? (X, =
1687 (x) () e

A 1
Gey (x,¥) = 5rlogly=x| == 0.

and where G, : Vo, x Vg, — R is such that
o 0
A5Go; (X,7) (Y)

Gas (X,Y)

Similarly, we have that

0 Y € Vq,, W € Vq,

Ga? (x,y) W € Vq,, W € dVq,.

Ga (x,¥) = Gg (x,y) = Gq (X,y),
where
G& (,y) = - logly - xI.

and Gg 1 O x Q — R is defined by
0 g
AGq (x,7) (y) 0% eQ,WeQ.

Ga(x,y) = GR(x,y) WeQ, WeaQ

By Lemma 12 in [Ken00], we have that there exists a universal constant Cq such
that

: &
iJLé; (X,y) - Gé (X,y)%g Co . W W,y € Vcé.

By Theorem 3.9 in [ChSmO08], we have that for each K, there exists € (8) with
£k (0) I 0 such that for each 8> 0, we have

%Qs (x,¥) = Ga (x,y)[= & (8) ¥,y € Vaq,,

which gives the first estimate. For the second one, we have that there exists Cq
such that
0 L. 0 o, 0 E 5
VaGe? (x,7) (y)— VGg (x,7) (y)—= 2Cq W W,y € Ve,
and by Corollary 2.8 in that paper there exists C, such that

o .. @O R . Cp-E
E VGQS (X,') (y)— VGé (X,') (Y)ES ﬁf;?}))

From there, we readily obtain the desired result. 0

A useful corollary is a lower bound on the integral of G*® (written in [ChSm09]).
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Corollary 35. With the notation and assumptions of Proposition 34, there
exists a universal C > 0 such that for each d > 0, each 8> 0 suff ciently small and
each v € Vg, at distance at least d from 9Q, we have

0
Gg? (v,x) &2 C -

€Vgz ND(v,3d)

Proof. Fix d and v € Vg,. From Proposition 34, we have that for each 8> 0

sufficiently small
0 o U U ug

1 2 1
Gé; (v,x) < GB (v,x) + Erlog(2) W eVg N D v, §d \'D v, Qd
Since ]
Gg (V,x) < Gp(vg) (V,X) = o109 (IvI7d),
we obtain, using that Gé56 (v, *) reaches its minimum at v,
0 0
1 1
Gg? (V,x) < = 4n109(2) W Ve ND v, 5d
Hence, there exists C > 0 such that
0
Gy (v,x) &< -C-
x€Vggz ND(v,%d)
which shows the result. ]

Another useful corollary is an L' upper bound on the derivatives of G235, which
will later allow us to obtain such a control on the derivatives of subharmonic func-
tions.

Corollary 36. With the notation and assumptions of Proposition 34, there
exists C > 0 such that for each v € Vg, and each 0< d s #3299 ' \ye have

O 0 0

VaGé; (v,) (X)E' ¥<C-d,
x €Vgy ND(v,d)

uniformly with respect to .
Proof. By Proposition 34, for each X € Vg, ND (v, d), we have

1 U 5

0 - O 0
10568 (v ) ()5 VG (v,) () C- |
V— X

+ £4(9)

o |2

There exists a constant C1 > 0 such that

0
H]vcag (v, -)D(x)ﬂ-zs2 < Cq Fveg (v, -)[(x)ﬂix,
x €V, ND(v,d) D(v.d)
0 0
Since VGJ (v,) (x) ~ = as X —> V, we have that

@veg (v, -)[(X)Hjx < M;,-d
D(v,d)
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for a finite constant M, > 0, as can easily be checked. For the remainder, we again
use an integral comparison, noticing that

0 e} 1
— 3 . < C3 : _7dx
X €V ND(v,d) V= x| p(v.a) IV~ X|
< My -d,
for universal constants C3,C4 > 0. Since €4 (0) is uniformly bounded with respect
to 8, the result follows readily. 0

Near the boundary, we have also the following estimate, which follows from a
weak discrete version of Beurling’s estimate.

Proposition 37. With the same notation as above, for each compact subset
K < Q and each (1> 0 there exists d (K, [) > 0 such that
& (Vi,v2) = [
for each vi € K and v, such that dist (v2,0G) < d(K, [), uniformly over all > 0.
Proof. Sece [Kes87]. 0

The discrete harmonic measure is well-known to converge to its continuous
part. Let us mention without proof the statement that we will use:

Proposition 38. Let Q be a domain, let | ¢ 9Q be a boundary arc and let
(Qs5)5- o be a discretization of Q. For each 8> 0, let A5 with boundary modification
on dVq, NI, as explained in Section 2.6.1. For each 8> 0, let H :VQ% — R and
H5 : Vo, — R be the harmonic measures of aVQg NI and Vg, NI for the Laplacians
Az and A r&spectively, defined by

Hs (

x

1‘9\’9%”' (X) W €9V,

= 16V950I (X) W € aVQ5 all
= 0W%e VQg

= 0 € Vg,

Ix

5(y
5 (x
(

X

I

)
)
Ag )
AH3 (%)

Then we have that
uniformly on the compact subsets of Q, where H is the continuous harmonic mea-
sure, deflna'jbth =1, H|BQ\|: 0, AH = 0.

Let us finish this section by giving estimates for the discrete harmonic measure
on rectangles (similar to the ones used in [DHN09)):

Lemma 39. Let R be a rectangle with horizontal and vertical sides, and denote
by | c dR its lower side. For each & > 0, let &'5 be the Laplacian modified on
dVgr, NI, as defined in Section 2.6.1. Let Hs : Vg, — R and A5 : Vg, — R be the
harmonic measures of dR5\ | with respect to the Laplacians A5 and A ; defined as
in Proposition 38. Then we have

Hs(x) < Hs(x) Y € Vg,,
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and there exists C4 > 0 such that
C,-0< Hs(z+id) W% eéVRé nI.

and for each € > 0, if we denote by I; c | the part of the segment | defined as
{z €l :dist(dR\ 1) = €}, there exists C3 > 0 such that

Hs(z+ i8)< C3-8 Wz €dVg, Nl.

Proof. Let u c dR be the upper side of R. Then by standard random walk
coupling arguments (by representing Hs and Hs in terms of random walks with
generators A 5 and A 5), we have

Hs(x) < Hs(x) W € Vg,.

Let S be the horizontal infinite strip such that | Uu c dS and denote by 1 and u
its lower and upper sides. Let HS : Vs; — R and H§ : Vs, — R be the harmonic
measures of the upper side of S with respect to Aj and 55 Then by standard
random walk arguments, it is easy to see that we have

HS (x) < Hs(x) ¥ € Vg,.

By symmetry of S, the computation of H§ (x) reduces to a one-dimensional problem
and in particular we have

0

s sy
HE (2+10) = Lt (Ra)

Yz € 0Vs, NI,
which gives us the second estimate.

Let Hz,H5 : VR; — R be the harmonic measures of dRs M u with respect to
the Laplacians A and As (which is modified on 0Vg, NI only). Then, again by
standard random walk coupling arguments, we have

Hj(x) _ Hj(x)

i < 1.
Hs(x) Hs(x)

Still by random walks arguments, it is easy to see that for each € > 0, there exists
a constant C3 > 0 such that for all 8> 0

Hi(z+i5) _ 1

By symmetry arguments, the computation of |:|§ reduces to a one-dimensional
problem and we have that there exists C4 > 0 such that for all 8> 0, we have

HE (z+i8) < Cy 8 W2 €8Vg, NI,
which yields the desired result:

Hs(z+ i0)< C3-Hi(z+i8) < C3-Cy-HE (z+i8) Wz € dVg, Nl.



3.3. Regularity estimates for discrete harmonic and holomorphic
functions

The following result gives uniform control on the derivatives of discrete har-
monic functions, thus allowing to obtain that they are uniformly Lipschitz-continuous
on the compact subsets:

Proposition 40. Let f5: Vg, — Cs>0 be a discrete harmonic function (with
G equal to Q5, QF, QF or QF'*). Then there exists a universal constant C > 0
such that
. V1 = Vol " MaXyedoVe, If5 (v)I
min (dist (v1,0Vg;), dist (v2,0Vg;))’

If5(vi) = fs(v2)| < C

for all vi,vo € Vg,.

Proof. This follows directly from Corollary 2.8 in [ChSmO08]. 0

In the case of s-holomorphic functions, we have the following useful result,
which allows to transform L' boundary control into L* bulk control and hence to
deduce precompactness in some cases:

Proposition 41. Let f5 : Vor — C be a discrete s-holomorphic function.
Then there exists a universal oonstanut C > 0 such that

‘ < C WEdoVom Ud- 1 2Vom If5(w)| -0

fs I = - dist (v, 8Qs) '
wedoVam Ud- 1 ,Vam 18 (W) O

E;vafé(x)ﬂ S 0 né 172 06 ,

(dist (v,005))*
U O 0V,
where d_ ¢, ZVng = XE€ Van :dist X,aoVng = 50

Proof. From the discrete Cauchy’s formula (Proposition 18), we have
U
U U
1 a 3 ie
fov) = x°  f(m@e)G® vm@e+z e
EGag Egé
0

0 B 0 .

+ fm@rﬁﬁmm@+§-ﬁ,

eeaEQg

where 80|Eh6 and 8Ehé are the sets of edges of 9gQs and 8Qj, oriented in coun-
terclockwise direction on the outer component of the boundary and in clockwise

direction on the inner on%s. Hence we have
0 [ . oo
1 O U 3. 1€l
Vsfs(x) = 5 - f(m(g)) VsG” -,m(e)+ > (x)-e
eeauEQ5
O
0 ad O oo

+ f (m(e) VsGo -,m(@)+i§‘E (x)-e .

eeéEms
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Since by Proposition 33, there exists a constant C such that %E% (x,y)ﬁ <
C 5(X,y) and such that

1 | _ g 0 g
2 E VG (-,y) (X)ﬂS % VG () (X)i
uniformly over all {(x,y) € C x C}, we obtain the desired result. 0

From there we deduce another useful result, which translates L' bulk control
into L control.

Proposition 42. Let f5: VQg1 — Cs be a discrete holomorphic function. Then
there exists a universal constant C > 0 such that

o) s G Ve BMIIE
° B (dist (v, 8V, )2
1 weVq |f5(W)|62
— [Vsus (V) < 5 ,

5 (dist (v, 8Vq,))*

for each v € Vg, .

Proof. Let d = dist (v,0Vq,). By integrating the estimates of Proposition 41
on the following family of squares

kd k6ﬂ . ko 6T ﬂd d - .
_ _ ko, ko _ ko .0 .
Rk 5 % 2,v 5 X Vv |2,v |2 NCs:k € 15 25 NN
we obtain the desired result. O

An important tool for us is the control of values of s-holomorphic functions by
the values of the discrete antiderivatives of their squares, developed in [ChSmO09]
(whose proof we follow closely):

Proposition 43. Let f5: Var — C be an s-holomorphic function. Then there
exists a constant C > 0 such that for 3> 0 and any x € Var -, we have

j MaXw eV - |15 [f5] (W)]
C- & g
dist V,aoVQg‘

IA

If5 (V)

EVng.

O

] MaXwevgy - [lox [fa] (W)l
5 (Vsus (V)L

IA

C-

dist V,a()VQrEn 2
Proof. Let M be maxwev,m. |l5x [fs] (W)|. Let us give the two following
S
lemmas:

Lemma 44. There exists a universal constant Cy > 0 such that for any v € Vag ,

we have
O

Asl5[fsl(w) < Co-Ms,
dist(v,8Vay))

Asls [fs](w)
weVq: ND(v, 3 -dist(v.8Va, )

weVa, ﬂD(v,%
0

IN

Co - Ms.
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Lemma 45. There exists a universal constant C4 > 0 such that for any v € Vag ,

we have
0
|f5(x)|2 -8 < Cq-Mjp - dist (v,0Vq,) -

x€Vom ND(v, dist(v,8Va, ))

Once these two lemmas are proven, by the Cauchy-Schwarz inequality, we ob-
tain that there exists a universal constant C, > 0 such that

0
If5 (x)] - &

x€Vom ND(v, 3dist(v,8Va, ))

]
< C,-dist(v,dVa,) - If 5 (x)|? - &

x€Vom ND(v, §dist(v.8Va, ))
o_
< C,-Ci- Mp-dist(v,dVq,)? .

From Proposition 42, we deduce that there exists a universal constant C3 > 0 such
that

0]
Ms
max fs(x)] £ C3+ ————
xeVap nD(v,%dist(v,av%))l 5(x)I °  dist(v,dVa,)
Ms
max (Vofs) (x)] < Cq—>r,
xeVan ND(v, 3dist(v,aVas)) dist (v,dVq;)?
which is the desired result. U

Let us now give the proofs of the two lemmas:

Proof of Lemma 44. Set d = dist (v,0Vq,). Let us denote by Hg,S; :
Vq, — R the harmonic and subharmonic parts of 15 [f5] and by Hz,S; : Vo; — R
the harmonic superharmonic parts of |5 [f5] defined by

Hs(v) = I5[fsl(v) W €dVq,,
Hy (w) = 13[fsl(w) W € Vo,
AjHi (V) = OWeVq,
AsHs (W) = O0W €Vq:,
Hy(v)+ Sg(v) = I3[fsl(v) W eVq,,
Hs (W) + S (w) = I5[fs](w) W e Vq:.

By the maximum principle, we have that Hz and H are bounded by M and hence
that S5 and Sz are bounded by 2M &. Since S5 and S5 have zero boundary values,
by Proposition 20, we have

O
S5 (v) = A5S5 (x) Gyl (x,v) W € Vq,,
x€Vay
Ss (W) = A5Ss (¥) Go? (y,w) W € Vo,
yeVay

53



Since Gé;ﬁ (+,") £ 0, we obtain that
0
0 O - w)F : A}
Ss (W) - min Gq? (x,w) < 2M5.

3
weVa, ND(v.3d) xeVqsND(v,2d)

and hence, summing over W € Vg, we obtain
0 0
0 0 A
H Sy(w)” - min G35 (x,w)
x€Va,; ND(v,2d) @
weVa, ND(v, 2d) @5 AT 4T weVo,
< Co-M;s-d?
for a universal constant Cy. By Corollary 35, there exists a universal constant Cy
such that 0

min Gg? (x,w) = Cy -d?
x€Vqag; ND(v,3d)

WEVQ6
Hence we obtain 0
0 C
H S (W)~ = M,
Cq
weVq, ND(v,3d)
which finishes the proof of Lemma 44. O

Proof of Lemma 45. Set d = dist (v,dVq,). We have

If5 (V) = = (3sl5[fs]) (V)

as can easily be checked from the definition of |5 [fs] and hence we have to show
that there exists Cq > 0 such that

0
(9515 [fa])(V)E & < Co Ms-d

veVom ND(v, §d)

d
0,0 . o, , 0 R
Let Qs be Qs ND v,3d and Qs be Qs ND d,5d . Let H5,S5 : Vo, — R
be the harmonic and subharmonic parts of 15 [fs] and let Hg, S5 : VQS — R be

the harmonic and superharmonic parts of I3 [fs], defined by Hs + S5 = 15 [f5],
Aéﬂg = 0, Sélana = O7 ﬂ% + §°5 = |°5[f5] Aéﬂé = 0 and SglavQg = 0. By

Proposition 40, there exists C4 > 0 such that
Ci Mg

0sHs (X)- < 4 W e Vp,,

. Ci-M
EgaaHaw)E < T WeVy.

Hence

O

é@aﬂB(X)ﬂ < Cyi-Mj-d,
erﬁG
U
35H8(Y)§ < Ci-Mj-d

erﬁg
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On the other hand, by PropositionTQO, we have

O 1 0
0S5 (x)5 8 = U A§Ss (v)H

VEVﬁa VeVq,
0
0 1. As 0
 max 5 9Cq; () (2) &,
Z€Va; X€Vp
0 O
g U
Bg-aésuw)ﬁ-t? s U ASsw)
wthg weVgST
a
- max H 5 9%GY (v,) (z) & .
z€ a3 erﬁé

By Lemma 44, the first terms in the right hand sides are uniformly bounded by
C, - Mg, for some universal constant C,. By Corollary 36, the second terms in the
right hand sides are uniformly bounded by C3 - d. The lemma follows. 0
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CHAPTER 4

Convergence of Solutions of Discrete
Riemann-Hilbert Boundary Value Problems

In this chapter, we study convergence of solutions to discrete Riemann-Hilbert
boundary value problems to continuous ones.

(1) We first define continuous Riemann-Hilbert boundary value problems.

(2) We then obtain precompactness results for solutions of discrete Riemann-
Hilbert boundary value problems with bounded boundary data.

(3) We identify the subsequential limits of discrete Riemann-Hilbert boundary
value problems with convergent boundary data.

(4) We finally improve the convergence of the previous point up to the pieces
of the boundary where it is nice enough.

In the next chapters, these results will be applied to show the convergence of the
discrete fermionic observables.

4.1. Continuous Riemann-Hilbert boundary value problems

In this section, we define the continuous Riemann-Hilbert boundary value prob-
lems which are the natural candidates for the limits of these converging subse-
quences, as will be proved in the next section.

Definition 46. Let Q c C be a finitely connected domain with Q = C. Let
f : Y — C be a holomorphic function defined on some neighborhood Y of 9Q in
0. We say that a holomorphic function u : Q — C solves the continuous Riemann-
Hilbert boundary value problem (4 q,f) if we have
(W=-f)(z) 15— v € a0
Vext (Z)

0 a
in the following integral sense: for any a € Q, the real part { & [le : (u(z)-f (Z))2 dz

of the antiderivative of (u - f )2 is well-defined on Y, extends continuously to Y udQ,
is locally constant on dQ and is non-increasing as z — 9Q.

It is easy to check that when the boundary has enough regularity to define the
normal vector at a point, the above definition coincides with the one that (u— f)
extends to the boundary and satisfies the condition []¥<— in the usual sense. Let

Xt
us also remark that this boundary condition is conformally covariant:

Proposit ion 47. Let ¢: Q — Q be a conformal mapping. Then there exists a
glohally weII-defined\polomorphic function such that g : Q — C such that y? = ¢,
which we denote by ~ ¢~'when its branch choice is clear or irrelevant. Ifu:Q— C
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is a holomorphic function such that on a connected component b c 9Q of the
boundary, we have
u(z) ﬂ917 el
ol 0 Vlaxt (Z)
in the sense that Je  u? is globally well-defined on a neighborhood\)of b and ex-

tends continously to a constant on b. Then for any branch choice of = ¢", we have
that

Ve e T e W e ()
Véxt (C) ,

in the same sense as above.

Proof. Let b be a connected component of dQ. Then, by argument’s principle,
we have that

< <

) dlog (¢ (2))

bd|09(<P "T1(2)) - dlog(7 (2))

=  +2m - 2m,
where T denotes the counterclockwise-oriented tangent direction of b, since ¢ : b —
@ (b) is a homeomorphism (in the sense of prime ends), either orientation-preserving

(in which case the above quantity is 0) or orientation-reversing (in which case we

obtain — 41). Since this is true, we have that
0 U

w(z)= ep 10g(o (2)

is globally well-defined and satisfies y? = @
The boundary condition follows from the change of variable formula. 0

As in the discrete world, we have that the boundary data of such problems
identifies uniquely their solutions when they exist:

Proposition 48. A Riemann-Hilbert boundary value problem (# o, f ) for given
Q and f has at most one solution.

Proof. By linearity, it suffices to show that the unique solution of the problem
(#0,0) is 0. Let us assume that, Q is smooth; If h : Q — C is a solution to (4 g, 0),
then we have that H () = Ce : h (Z)2 dz is globally well-defined, harmonic on

Q and constant on Q. By Gauss’ formula and the boundary condition, we have

0

AH (x + iy)dxdy
0

= a\Lex((Z)H (Z) dZ
Q

h(@)I” dz,
2Q
which shows that h is equal to 0 on 9Q.
It Q~is not smooth, by Proposition 47, we can map Q conformally to smooth
domain Q by a conformal mapping @ and we have that he ¢°'- @ ¢ 1is a
solution to the problem (4 g, 0), hence reducing to the previous case. 0
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4.2. Discrete Riemann-Hilbert boundary value problems: regularity
and precompactness

In this section, we establish precompactness and regularity result for solutions
to discrete Riemann-Hilbert boundary value problems, under the assumption that
the boundary of the domain considered essentially has rectifiable boundary. The
central result of this section is the following, which gives control on the solutions
and their derivatives:

Proposition 49. There exists a universal constant C > 0 such that for each
&> 0 and any s-holomorphic function us : Vor — C solving the discrete Riemann-
Hilbert boundary value problem (4 q,,f5) for f5: aoVan — C, we have

=
=

If5 (x)| -6

X€doVqgm
o H— W e VQg1 ,

dist AV, aoVan

(4.2.1) lus(V)? < C-

g
1 x€doVop [fa(x)| -0
(4.2.2) 5 [Nsus (V) = C- ] 5 W e Vgm
dist V,a()VQan 2
Proof. From Proposition 28, we have that
. 2 : 2
lus (x)| < If5 (x)I° .
xeaovogn VE@QVng

Fix y € doVq, and consider the antiderivative |y 5[us] : Vng — R as defined in
Section 2.5, normalized to be equal to 0 at y. By definition of |y 5 [us], integrating
along the boundary, we obtain

U
Iy 5usl(2)] < 2 If5 (x)|* -5 Wz € dVq,.

XGaOVQg\

From the subharmonicity of I} 5[us] and the superharmonicity of I| 5[us], by the
maximum,/minimum principle, we easily deduce

sup 5 [Us] (X)) < 2 If5(x)] - .

XE@QVQg\
The estimates 4.2.1 and 4.2.2 then follow from Proposition 43. O
From this, we obtain the following precompactness resul:

Theorem 50. Let (Q5)5, o be a family of discrete dom[ains approximating a
smooth domain Q. Let P c R" be a parameter space and let ug ngz be a family of
functions such that for each > Oand eachp € P, u§ : Vor — C solves the discrete
problem 4 o.,ff with f§ :8oVor — C. Then if the the family of functions

U ol
aOVQg' x P D(va) :;l-) (fa(x))ﬁ >0

is uniformly equicontinuous and bounded, the family of functions

g [p
Vapr x P L(v,p) & Ug(V) 4,

is uniformly equicontinuous and bounded for the topology of the convergence on the
compact subsets of Qx P.
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Proof. For each d> 0, denote by Kg = {z € Q:dist(z,0Q) = d}. Let €> 0
and a compact subset P ¢ P be given. From Proposition 49 and the assumption
on 9Q, there exists M > 0 such that we have, uniformly in > 0,

HJ%(V)HS M W e Vop NKy, ¥ eP.

From Proposition 40, we obtain that there exists C > 0 such that we have, uniformly
ind>0

ilg(v)— ug(\'/)}s C-M-|v=-¥| W,V eVqr NKy, Yo €P.
From Proposition 49, we also obtain that for each € > 0, there exists T > 0 such
that .
Eg(v)— ug(v)ﬁs W € Vor NKy W,peP :|p-pl<T.
By a classical application of the triangular inequality, we obtain the desired result,

once we extend the functions in a suitable way, for instance by. piecewise affine
interpolation. O

4.3. Riemann-Hilbert boundary value problems: identification of
subsequential limits

In this section, we study subsequential limits of solutions to discrete Riemann-
Hilbert boundary value problems and identify them as (unique) solutions to the
continuous problems defined in Section 4.1.

Proposition 51. Let Q be a domain and (Qs5)5. o be %discretization oﬁQ and
let Y c Q be a neighborhood of Q such that 9Q c Y. Let gs, : VYamn —C be

nz0

a sequence of s-holomorphic functions such that

1
05, (X) IE——= W € 9dypVar .
Vl?xt (X) °

Suppose that, as n — « , §, — 0 and, uniformly on the compact subsets of Y, we
have gs, — g for some eontinuous function g : Y — C. Then we have that g is
holomorphic and that [le g? is globally well-defined on Y and extends continuously
to a locally constant function on dQ, and has nonpositive outer normal derivative
there.

Corollary 52. Let (Qs)s. o be a family of discrete domains approximating a
domain Q and let (us)s. o, be a family of s-holomorphic functions such that for each
5> 0, us: Vor — C solves the discrete problem (4 q,,f5), withfs —»f asd— 0.
Suppose that there exists a neighborhood Y c Q with 8Q c Y such that for each
0> 0, f5:doVap — C extends to s-holomorphic function f5 : Vyp — C, and such
that fs — f uniformly on Y for some holomorphic function f : Y — C as 8 — 0.

Then any convergent subsequence of (us)s. o (for the topology of uniform ocon-
vergence on the compact subsets) converges to the solution to the continuous problem
(4q,f) asd— 0, which isin particular guaranteed to exist.

Proof of Corollary 52. From Proposition 51, we have that any subse-
quential limit u = limp_« Us, is the unique (by Proposition 48) solution to the
Riemann-Hilbert boundary value problem (# q,f ), the existence thereof is in par-
ticular guaranteed. By uniqueness, we conclude that us — u as & — 0. 0
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Proof of Proposition 51. Let us first remark that by Lemma 32, the func-
tion g is holomorphic on Y and that hence [le @2 is at least locally well-defined.

We treat the boundary values separately on each of the connected components
of 0Q. Let b ¢ 9Q be such a connected component and let A € Y be a neigh-
borhood of b in Q, such that dA\ 8Q is smooth and contained in Y. Consider
the antiderivative |5 [gs] : V/\gn +, which, thanks to its boundary values, is constant
on ngw - and globally well-defined on AJ' *J)y Iﬁmma 30. We know by assumption
that g5, — g and that |5, [s, ] - —He g®> on the compact subsets of Q NA
as N — = . So, to prove that [Je @® extends continuously to a locally constant
function on 2Q, it is sufficient to show that we have

lim sup ch—,n [95,1(V) = 15, [gﬁnl(bé)Hv‘:g 0.

where |5 [gs] (Ds) denotes the (constant) value of 15 [gs] on doVa; NIQ. This is
given by Lemma 53 below. 0 0

We should finally prove that the normal derivative of - Je g° is nonpositive
on Q. This follows from the discrete the fact that this property is true on discrete
level. We introduce the boundary modified antiderivative |5 [gs] defined in Section
2.6.1 and use the fact that the normal derivative of 6%‘7'5 Pﬁ] S]O on doVop : since
NIE-) [g5] is constant on 8Q, if the normal derivative of — [le g would be positive
at a point of Q, it would yield a contradiction as n — = . 0

Lemma 53. Let A be a doubly-connected domain and denote by b one of the two
oonnected components of dA. Let (gs, ),», be a family of s-holomorphic functions
with g5, : Va,;, — C such that we have

9, (V) el we 9oV, Nb.
Vext (X)

Then if gs, is uniformly bounded on the compact subsets of A, we have
imsup T, [g5, (V) 15, (85,1(be) == 0

Proof. We use the boundary modification trick introduced in Section 2.6.1:
foreach d € {&, :n = O}let 15 : V/\gn - — R denote the antiderivative of g5, boundary
modified on dVp, Nb, such that TB (x) = 15[gs] (bs) for each x € dVp, Nb and that
A 'BNI'6 [gs] = O, where 55 is the boundary-modified Laplacian also defined in that
section. Let Y be a doubly-connected subdomain of A with Y NdA = b and
denote by d c dY the other connected component of dY. Let I:|6 :Vy, — R and
Hs: VY% — R be the harmonic parts ofT'6 and |5, defined by

Hy(x) = T3lul(x) ¥ €aVy,,
Hs(y) = Tglul(y) W eaVy,,
AsH5(X) = 0 eVy,,

AsHs(y) = 0WeVy,.

From super and subharmonicity, we have, if we extend the functions defined on
Vy;m to functions on Y in the usual, piecewise constant, way,

Hy(z) < I3[ul(2) < Tyul(z) < Ay(2) Yz eY.
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By assumption, we have that (s, ),s ¢ is uniformly bounded on the compact subsets
of A\ and hence that |5 and |5 are uniformly close near d and it follows that H 5 and
H 5 are uniformly close near d; they are moreover equal on b. We deduce that since
T.én and I3 are uniformly bounded on the compact subsets of A, 15 [gs,](bs, ) is
uniformly bounded: if this were not the case, then H 5, and Hy would blow up
in the same direction, forcing |5, [u] to blow up, a contradiction. From there, we
easily deduce that

imsup A1y, (2)- 1y, [gs,1(0)" —— 0

n— z—b
imsup Hy (2)- 15, 65,1(6s,) | == O,
n— z—
and the desired result follows. O

4.4, Extension of convergence to the boundary

The convergence results obtainable by the precompactness and identification
results of the previous sections only apply in the bulk of the domain. However,
the computation of the energy density with mixed boundary condition involve the
values of s-holomorphic observables on the boundary on the domain and to treat
many interesting cases we hence need to establish boundary convergence results for
solutions to Riemann-Hilbert boundary value problems. We do this in the simplest
case: when the boundary is straight, by which we mean parallel to the lattice: either
horizontal or vertical in our case.

In such a case, we can obtain convergence result (using mostly the same tech-
niques as [ChSm09]).

Proposition 54. Let (Q5)s. o be a discretization of a domain Q with a straight
boundary part 9°Q c 9Q. Let Y c Q be a neighborhood of dQ with 6Q c Y. Let
G : Vyp — C beafamily of s-holomorphic function such that for each 8> 0, we
have

1
X) OH———= W € 9pVgn
gﬁ( ) Vext (X) o
and such that as & — 0, we have gs — g uniformly on the compact subsets of Y
for some holomorphic function g. Then the convergence extends uniformly to the
compact subsets of Y u dsQ.

Corollary 55. Let (Qs5)5. o, be a family of discrete domﬂns approximaﬂing
a domain Q with a straight boundary part 9°Q c 0Q. Let us: VQran —C 50
be a family of s-holomorphic functions that are the solutions to discrete problems
(#q,,f5). Suppose that there exists a neighborhood Y c Q of dQ with dQ c Y such
that for each 8 > 0, f5 extend to an s-holomorphic function Vyr — C and such
that f5 — f uniformly on Y for somef as®— 0. Then if us — u uniformly on the
compact subsets of Q, where u is the solution to (# g, u), we have that u extends to
Quo%Q and that the convergence us — u extends uniformly to the compact subsets
of QuasQ.

Proof of Corollary 55. Set gs = us— f5. Then it follows from Proposition
54 that gs converges uniformly on the compact subsets of Y U d%Q. Since f5 also
converges on the compact subsets of Y, we obtain the convergence of us. 0
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Proof of Proposition 54. By the following two lemmas, the family of func-
tions in uniformly bounded near d%Q and converges uniformly on the segments
compactly contained in d%Q to a continuous function. Using harmonic measure
estimates (since everything is bounded), is easy to conclude that the convergence
extends to the compact subsets of Y U 95Q.

Lemma 56. With the notation and under the assumptions of Proposition 55,
we have that for each straight segment s compactly contained in 9%Q, there exists
a rectangle R ¢ Q with R NdQ = s such that the family of functions (us)s, o IS
uniformly bounded on R.

Lemma 57. Let (Rs)s o be a family qﬂ discrete domains approximating a
rectangle R. Let s be a side of R and let gs:Vry —C 50 P2 a family of s
holomorphic functions such that for each > 0, we have the boundary condition

G5 (X) J917 Y& € dgVrs Nls.
Vaxt (X) "

Then if there exists a holomorphic function g : R — C such that
% -39

uniformly on the compact subsets of R\ s and if (gs); is uniformly bounded on R,
then the convergence gs — g is uniform on the compact subsets of s.

Let us now give the proof of these two lemmas.

Proof of Lemma 56. . We adapt the ideas of [ChSm09]. Let | be a segment
compactly containing s and compactly contained in 9%Q. Let A be the connected
component of Y Q near | and let R be a rectangle contained in A such that
RNoQ=1I. Let gs:Var —C 5 be the family of s-holomorphic functions defined,
for each 8> 0 by gs = Us — f5. Then we have

1
g5 (X) 02— Yk € 9gVan NQ
Vext (X) ®

and hence we can use the boundary modification trick introduced in Section 2.6.1,
defining the modified yersion Ts [gs] : &7/\5 — R of the antiderivative |5[u], which
is locally constant on 91Va; Ud1Vp,; N 9Q, superharmonic on V. for the usual
Laplacian and subharmonic on Va, for the modified Laplacian A 5 introduced there.
Let us first show the following lemma:

Lemma 58. For each € > 0, there exists C > 0 such that for each 8 > 0 and
each v € Vgp - such that dist (v,0R\ I) 2 €, we have

i [g5] (V) = T[Qé]('é)ﬁs C -dist (v,1).

Proof of Lemma 58. First of all, let us remark that the above quantity is
uniformly bounded. Indeed, let y € A be a curve disconnecting d/ANAQ from oA\ 9Q
and let I' be the connected component of A\ y near dANJQ. By superharmonicity,
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subharmonicity and the maximum’s principle, we have, if we extend TB and NIG to
functions A — C, for ieach xerl,

min Ts[gs](ls), my < T5[gs](X)
< Tilesl (x) .
< max T[ga](lg,),Mv )

where my = infss infzey 1[g5](z) and My = supss g SupZEVT [gs] (z). By Lemma,
we have that 53 1 [g5] (I5) — my and 1 [95] (I5) = My are uniformly bounded and hence
the uniform boundedness of ™5 [gs] (V) — 1 [95] (I5) Cfollows easily.

To simplify the notation, let us fix t%e adﬁitive constant of Nla[ga] so that
T[gsl(ls) = 0. Set Mg = SUPss o SUP,eR (1 [G5] and denote by Hy : Vg, — R
the harmonic measure of d1Vg;\|; in Rs with respect to A and by Hs : Vr; = R
the harmonic measure of 61VR3\ I, in R3, as defined in Proposition 38. Then, from

superharmonicity and subharmonicity, we obtain that for each z € R, we have (if
we extend the discrete functions to functions R — R)

~MgH5(2) < T5[g5](2) < T3 [gs](2) < MrH 3 (2).
Now, from the estimates of Lemma 39 on discrete harmonic measure, it is easy to
obtain that for each € > 0, there exists a constant C > 0 such that, uniformly for
all > 0 and z € R with dist (z, R\ 1) = €, we have
Hz(z) = Cdist(z]l),
Hz(z) < Cdist(z]l),
which finishes the proof of Lemma 58. 0
Let us now finish the proof of Lemma 56. By Lemma 58, we obtain that taking

R c R such that R N9Q = s, we have, if we normalize |5[gs] to be equal to 0 on
s, that there exists C such that for each 8> 0 and each v € R

5[9] (V)= C -dist (v,0Q).
By Proposition, 43, we readily obtain that gs is uniformly bounded. 0

Proof of Lemma 57. Let us suppose without loss of generality that s is the
right side of R (the three other cases are symmetric, modulo an adaptation of the
phases). Then the boundary condition becomes

g (V) ERW eaongn Nsg
and we moreover have
g(v) eRWes.

Let us remark that applying Schwarz reflection principle, we readility see that g(v)
is uniformly Lipschitz continuous near the compact subsets of s. What we have to
show is that for each z € s, we have

limsup  sup g5 (x) =~ g(z)| == 0.

6—-0 xe[z-ig,z+ig] 50

Let us denote by hs : VRr — C the function x = g5 (x) =~ g(z), and by h:R —» C
the function x & g(x) — g(z), both of which still satisfy the same boundary
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condition as gs and g respectively. Let Ts [hs] denote the discrete antiderivative

hg with the Boundary modification trick applied on s, which is constant on
80VR;5 UdoVr, MN's and let ~|6 [hs] denote its restriction to Vrp , which is sub-
harmonic with respect to the modified Laplacian. From Proposition 52, we have
that 0 0

15 [hs] ~—-lCe h?,

_ - o .0
where the convergence is uniform on R. Let us normalize |5[hs] and — e  h? to
be equal to 0 on s. From the boundarymgonditmion, we deduce that

-9,e h? <0

O

a
and hence we obtain that —[le ¢ is nognegitive on a neighorhood of s. From

there and the convergence Ts [,s] » - Je ¢° , we easily deduce that for each
€ > 0 sufficiently small, the rectangle R® = [z - €] % [z— i€,z + i€] is contained in
R and is such that for each &> 0 sufficiently small, we have

T5[hs](x) 2 0 Yk € Vo NRG.
Notice that we have

Bupe()5 sl = =803 W € doVry Nss

and that on the other hand, by subharmonicity of ~|'5, we have, for each € > 0

sufficiently small
g g U

O i)lslel s maxiilhl(y) ~HE" x= 5 W edoVrp Nz~ ie,z+ ],

where H3® : Vry NR® — R denotes the discrete harmonic measure of 91Vgr,0R® \

[z-ig,z+ i€g] in VR, NR?. From the estimates of Lemma 39, we have that there
exists a constant C > 0 such that for each € > 0 and any 8> 0, we have
6ﬂ . £ g
Hi x- 3 S C-d3% €doVry N z- ié,z+ i=

2
Hence, for each € > 0 and each & > 0E we have
hi< C- maxizhs](y) .
yeRE
and hence 0 0 . .
limsup max < Cplimsup mang [hsl(y)
50  xe€doVrm N[z-if.z+if] 50  YeR®

so it remains to show that the right hand side converges to 0 as € — 0.

Since hg converges on the compact subsets of R\ § to h, which is equal to 0
at z and which is Lipschitz near z, we have that there exists C1 > 0 such for each
0< g1 < g, there exists & (€1) such that for §< & (&1),

lhs (X)| = Ci|x—z| & e Vr, N[z €,2- &].

Since hg is uniformly bounded on R by a constant M > 0, by integrating h% along
straight segments, we deduce that for 6< & (&1)

T5[hs](x) < M2gq + %C1 Ix - z° W € Vg, NRE.
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And hence 0 0
limsup maxTs[hs](y) < M?2gq+ Cqe?.
5—0 yeRe®

Letting €1 — 0, we obtain -

limsup maxiy[hs](y) < Cq€?,
50 yeRe®
which converges to 0 as € — 0 and hence proves the desired result. 0

4.5. Convergence of solutions to Riemann-Hilbert boundary value
problems

Let us finish this chapter and summarize its results by the following convergence
theorem.

Theorem 59. Let Q be a smooth domain with (possibly empty) straight bound-
ary parts 6°Q c Q, (Q5)5. o a discretization of Q. Let Y ¢ Q be a neighborhood of

9Q such that 9Q c Y and let P be a parameter space. Let ﬂugrgfz be a family of
s-holomorphic functions such that for each ﬁ> 0 an% eachpeP, uf: Vop — Cis
the solution to the boundary value problem # o, f2 such that f£ extends to an s-
holomorphic function Vy» — C[ Then ifjé’ (z)D—> fP(z) in a uniformly continuous
way on the compact subsets of (z,p) € Y x P , we have that
uf (z) —— uP (2)
5—0

uniformly on the compact subsets of {(z,p) € (Qu Q) x P}, where uP is the so-
lution to (# o, fP), the existence thereof in particular exists, which depends contin-
uously on p.

Proof. By Theorem 50, we have that the family Dug (z) :Vap x P — Cj6 is
uniformly equicontinuous and bounded on the compact subsets of {(z,p) € Qx P}.
By extending the functions U§ in a piecewise-linear way and by Arzela-Ascoli’s
theorem, we have that this family admits convergent subsequences. By Corollary
52, we deduce

p - p
UG (Z) 53 u (Z) ’
uniformly on the compact subsets of {(z,p) € Q x P}, continuously with respect to
z and p, and in particular that the limit exists. By Corollary 55, we have that this
convergence extends to the compact subsets of {(z,p) € (Qu 9%Q) x P}, and it is
easy to see that it is continuous with respect to z and p. 0
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CHAPTER 5

Contour Statistics and Fermionic observables

In this chapter, we define the fermionic observables, that will allow us to prove
the main theorems of this paper. More precisely, we will:

* Introduce classical contour representations of the Ising model:

— The low-temperature representation, which is a way of mapping spin
configurations to contour configurations, and hence to translate Ising
partition functions as weighted sums over families of contours.

— The high-temperature expansion, which is a way of representing par-
tition functions and correlation functions as statistics over contours.

— We explain the Kramers-Wannier duality which relates them.

— We derive consequences for the energy density and spin fields.

 Introduce the discrete fermionic observables, which are complexified ver-
sions of these contour representations.

— We introduce a complex phase on certain families contours, which is a
compactification of its winding number and show its well-definedness.

— We introduce the real discrete fermionic observables, which are an-
tisymmetric functions defined on collection double-oriented medial
vertices.

— We express the discrete correlation functions of interest to us in terms
of these observables

— We introduce the discrete complex fermionic observables, which are
modified versions of the real observables and will fit in our discrete
complex analysis framework.

All the above quantities are basically signed weighted sums over certain families of
contours. Let Qs be, as in the rest of this chapter, a discrete domain, that is, an
induced connected subgraph of the square grid Cs = 8Z2. We call contour or (edge)
configuration a subcollection of Eg, or of its half-edges set Hq,. Let us define the
contours that we will use:

* We denote by Co, the set of subcollections w € Ep, such that each vertex
v € Vg, belongs to an even number of edges of w. In other words, the
configurations of Gy, are the set of contours that consist of (non necessarily
simple) loops.

* For vertices vi,...,Vn € Vq,, we denote by Co, (V1,...,Vn) the set of
subcollections w C Eq, such that each vertex v € Vo, \ {Vv1,...,Vvn} belongs
to an even number of edges of wand such that each vertexv € {v4,...,vp}
belongs to an odd number of edges of w. Informally, a configuration in
Ca, (V1,...,Vn) consists of a set of (non necessarily simple) loops, plus %
paths linking pairwise the points vq,...,v, (it is easy to see that this set
is empty if n is odd).
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» For half-edges hy,...,hy € Hg, (or equivalently oriented medial vertices
a‘1)1 ,...,ad ), we denote by Cqy, (h1,...,hn) the set of subcollections of
edges and half-edges w ¢ Hq, consisting of full edges plus the n half-edges
hy,...,hn, such that each vertex v € Vg, belongs to an even number of
edges and half-edges of w.

* For a contour set Clike the above ones and * 1-signed edges e?* oo, B0 €
Eq, we denote by clei’ e} the subfamily of C defined by

clei' e} = {yeCiaey == s=-1%=1,...,m}.

5.1. Classical Contour Representations

5.1.1. Low-temperature expansion. The low-temperature expansion of the
Ising model is a natural graphical representation of the model which was introduced
by Peierls in 1933 to show the existence of a phase transition in the Ising model.
Informally, the idea is to represent a configuration by tracing the contours of its
spin clusters, or equivalently its interfaces, and to express partition functions as
weighted sums over families of contours.

Consider the Ising model on the dual graph Q3. With each spin configuration

oe{t 1}VQ% we associate and edge configuration w(0) C Eq; defined by
v, w)' e w(o) €= o, = gy V{v,w) € En; -
The proof of the following is elementary:

Proposition 60. The map o0 =& w(0) is a surjective two-to-one mapping be-
tween the set of spin oconfigurations with locally monochromatic boundary condi-
tion on 9Q* and the set of contours Co,, and more generally between the spin
configurations with locally monochromatic boundary conditions b alternating at
bi,..., oy € dEq; (with an even number of b ’s adjacent to each connected compo-
nent of doQs) and the set of contours Co, (X1,...,X2n), Where x4,..., Xz, are the
endpoints in Vg, of by,..., b, respectively.

Remark 61. If we fix the sign of a given spin, then 0 & w(0) becomes a
bijection. In particular, if Qg is simply connected, it realizes a bijection between
the spin configurations of the Ising model + boundary condition and Cq,.

It is also easy to check the following:

Proposition 62. The probability on Cq, (X1,...,X2n) induced by the mapping
0 & w(0) is such that for each w e Cq, (X1,...,X2n),

P{w} ool

where |w| denotes the number of edges of w and a, = e 28, where B is the inverse
temperaturg of the Ising model. In papticular at the critical inverse temperature
Bc=2In 2+1,wehavea =a= 2-1

Given a boundary condition by, ..., bpy, we denote by Zq, (b1, ..., b, ) the low-
temperature partition function, defined by
O
Zas(br,...,pn) = alwl,
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Figure 5.1.1. The edge configuration associated with the Ising
configuration of Figure 1.4.2, with the edge of the configuration
drawn with bold strokes, the other edges of En, drawn with dotted
strokes and the boundary changing operators with dashed strokes.

Given signed edges eﬁ” ,...,em we define the restricted low-temperature partition
function as
1 O
ZE5 5 (o, ) = alo
weC£e11 """ " (|

5.1.2. High-temperature expansion. The high-temperature expansion of
the Ising model is a slightly more involved representation of the Ising model, which
was introduced by Kramers and Wanniers in 1941 and allowed for the first deriva-
tion of the critical temperature of the Ising model, through the Kramers-Wannier
duality (see below). Unlike the low-temperature expansion, it does not consists of
a mapping between spin and edge configurations, but rather in a way of computing
in a graphical way partition functions, allowing notably for a powerful representa-
tion of spin correlations. A notable difference is also that in this case, the contours
involved live on the same graph as the Ising model — and not on the dual graph.
We state here the version that we will need in this text. The Kramers-Wannier
duality in general will be shorty discussed in the next section.

Proposition 63. Consider the Ising model on Q5 with free boundary condition
at inverse temperature 3 and denote by nge its partition function. Then we have

free — o|Vag| |Eqs, | - |w]
Zg,” = 21701 (cosh B)!™e ap o,
weCqy

where an = tanhfy and |w| is the number of edges of ). In particular, at the critical
value B; = 5In 2+ 1 of B, wehavean = a = 2- 1. More generally, for
distinct vertices vi,...,von € Vq,, if we denote by Z{{fe(w, ...,V2n) the partition
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function

0
Zgﬁee(v17""V2n)= O'V1'.._'O‘V2n-e_BH(U),
oe{+1}'0%
we have
O
E
Z8 (V1,...,V2n) = 2Ves | (cosh g)IE2s | al®,
wECQG(V1 ..... V2r|)
In particular, we have
g 0o O 0
free u ol U Ll
Egelos (V1) ... 05 (V2n)] = U al“l 0 i,
weCqg(Vi,...,Van) weCay

In the critical case B = B¢, we can rewrite this latter ratio as
ZQ5 (V1,---1V2n)/205,
where Zq, is as defined in the previous paragraph.

Proof. See Appendix A. 0

5.1.3. Kramers-Wannier duality. It is remarkable that contours appear-
ing in the low-temperature representation of Ising model on Qf and in the high-
temperature expansion of correlations on Qs are the same (for the appropriate
boundary conditions). This is a particular case of the general Kramers-Wannier
duality, which informally “exchanges” data about the model, in this sense: low-
temperature expansions of certain quantities with certain data in one model are
equal (up to multiplicative constant) to the high-temperature expansions of dual
quantities with dual data. The exchanged quantities and data are the following
data:

* The graph Qs and its dual Q3.
* The temperature  and a dual temperature 3* — the critical temperature
is self-dual.
* Locally monochromatic boundary conditions and free boundary condi-
tions.
* Boundary condition changing operators and boundary spin operators.
There is a way to make precise a general version of this duality, with an involutive

operation that involves complex terms in the Hamiltonian. We will not describe it
here, but rather focus on the implications

Proposition 64. Consider both the critical Ising model on Qj with locally
monochromatic boundary condition and the critical Ising model on Qs with free
boundary condition. Let e4,...,en € E(Qs) be distinct edges. Then we have

EGels(er) . (s (em)= (- )™ EG, ['s(€) ..~ (& (eh)],

where Jdenotes the locally monochromatic boundary condition with no boundary
changing operators.

In other words, the discrete energy field with free boundary condition is equal
to minus the discrete energy field with locally monochromatic boundary condition.

Proof. See Appendix A. 0
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5.2. Discrete fermionic observables

We now introduce the discrete fermionic observables, that are the central tool
to compute the correlation functions. They are related to both low- and high-
temperature expansions, in the following sense:

* They can be viewed as discrete deformations of the low-temperature ex-
pansions of energy correlations.

* They are very similar to high-temperature expansion of correlation func-
tions, with the difference that complex phases are added to the weights of
the contours.

We introduce first the real-valued versions of these observables, for which conve-
nient and clean formulae will be obtained in further chapters and which give nice
representations of the discrete correlation functions of interest. Further in this sec-
tion, we will introduce the complex version, which are just slightly rephased and
which fit in the discrete complex analysis setting that we will develop later, a fact
that will permit to derive the above mentioned formulae and eventually to obtain
convergence to continuous observables.

We then define the real and complex versions of the full-plane observable, in-
troduced in Chapter 2.

As mentioned above, the central point in the observables is the presence of a
complex phase in the weights of the contours, this complex phase being a compact-
ification of a topological notion: the winding number. The first part of this section
is devoted to elementary properties of this phase, in particular, its well-definedness.

The next ones are devoted to the definition of the observables themselves.

5.2.1. Winding numbers and complex phases. Let a,b € Vgor be two
medial vertices and let y = {a,v4,...,Vy,b) be a walk from a to b, consisting
of (non-necessarily distinct) vertices Vvi,...,Vqn € Vq, with v; ~ vj+q for each
j €{1,...,n= 1} and with a ~ v4 and v, ~ b

We define the winding number w (y) of y as the total rotation of y from a4 to ap,
when going along the sequence of edges <@, v4), v1,V2), ..., Vn-1,Vn?, Vv, a@2): it
is defined as § (n.— nr), where n_and n; denote the number of left and right turns
made by Yy respectively.

Let us recall that, as defined in Section 1.7.3, we denote by Dop the set of
doubly-oriented medial VertDices of Qs, that is, the set (Ef medial vertices

x°:x EVQ%“,OG(O)Z(X)

equipped with a double orientation (i.e. an orientation with a specified square root,
as defined in Section 1.7.2).

We now introduce the notion of winding phase. Let a3",a3* € Dor be doubly-
oriented medial vertices and y a walk from a; to a, using the two half-edges specified
by the orientations 04 and 0. We call oriented winding phase of y and denote by
@(Y,01,02) € S the phase defined by

_ oo O
. 02 |
@(Y,01,02) = i " ¥—-exp —Zw(y)
01 2
Let us now define the winding phase of a configuration. Let a7", ..., a3 € Dop
be distinct doubly-oriented medial vertices and let Cqo, (aY',...,a3%") be the set

of configurations defined at the beginning of this chapter. For a configuration
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w € Cy, (a‘1’1 e ,agﬁ" ), we call admissible choice of walks on w a collection of n
walks y1,...,Yn € w linking pairwise the medial vertices aq, ..., az, each of them
being oriented from the medial vertex of lower index to the one of higher index. It
is easy to see that such an admissible choice of walks always exists and is in general
not unique — for non-trivalent graphs like the square grid.

Definition 65. We define the winding phase @(y1,...,Yn) by

0 0 0
@Y1, ¥y Oy vty Opn) = (= 1)0LYTm¥0) ® Vi,0,,0 ,

Yi :alj U aTj

where (- 1)0(V1 """ V) is the crossing signature in the upper half-plane of the pair
partition {{1j,7;} :j €{1,...,n}} of {1,...,2n} induced by the paths y; : if we link
the numbers {1,...,2n} c R by simple paths in the upper half-plane in general
position, it is easy to see that the number of crossings points of these paths is well-
defined modulo 2, and we define (- 'I)C(V1 """ ") to be 1 if this number is even and
=1 if this number is odd.

Remar k 66. Another way of defining (- ‘I)C(V1 """ ¥) is as follows: if we reorder
the indicesj €{1,...,n} in such a way tJhat (1] )j is increasing, it is easy to see that

we have (- 1)C(V1 “““ Vo)

defined by gy,

= 89N Oy,,....yn) » Where Oy, . y.) € Son is the permutation
Vn)(2k) =71 fork=1,...,n.

The following proposition allows us to define the oriented phase of a configura-
tion:

Proposition 67. Let a',...,a3" € Dor be doubly-oriented medial vertices.
Then for each configuration w € Cq, (a3', ..., a3 ), thewinding phases ¢ (y1,...,Yn,01,...,02n)
and ©(¥1,---,¥n,01,...,00,) Of any two admissible choices of walks on w are the
same.
We denote by ¢ (w, 04, ...,02,) the winding phase of w defined as the winding
phase of its admissible choices of walks. The winding phase is antisymmetric with
respect to the permutations of the indices {1,...,2n}.

Proof. See Appendix B. 0

Another important feature of the winding phase is that it is fixed when the
medial vertices are all on the boundary. Recall that for a boundary middlepoint
X € doVar , we call inward-pointing (simple) orientation at X the orientation

X
o= \Ent ( ) e O (X) ,
|Wnt (X)l
and that we call a double-orientation 0 € (O)2 (x) inward-pointing a double orien-
tation if it gets identified with the inward-pointing simple orientation at X.

Proposition 68. Let a,...,an € aOVng be boundary medial vertices such
that each connected component of 6Q5 contains an even number of g;’s let and

04,...,00n € (S)f be inward-pointing double orientations at a4,...,az,. Then for
each w e Cy, (a7, ...,a%" ), the winding phase ¢ (w) is the same.

Proof. See Appendix B. 0
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Figure 5.2.1. A configuration in Q{)? e} (a1,...,a10) with
an admissible choice of walks (drawn with white on black paths)
Y1 Par [ ar, y2 D@ [J @, Ya i a3 [l a4, Ya @ a [l @,

Y5 : @9 [ 1_aqg. If we put for instance the orientatiins 0 = (1)2,

BEE) 2 2 U+ 2
02=)\703=(_1)704=(1)705=_)\706=(1)’
or = ()%, 08 = (M 09 = (N, 010 = (=1)% on a,..., a0,
we have @(y1,01,07) = 1, @(y2,02,08) = i, ®(y3,03,04) = — 1,

®(Y4,05,06) = 1, ®(ys,80,a10) = 1 and (- 1)V’
which gives (p(Y1,...,Y5,01,...,O10) = -1.

3

5.2.2. Thereal fermionic observables. The previous proposition allows us,
for doubly oriented medial vertices a7",...,a3" € Dan to define the real fermionic
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observable f o, (af",...,a5%") by

0 OJ
1 0 u O
fo, (a)",...,a2") = [ al“lg(wo1,...,00)0

where Zq, is as defined at the end of the previous section and |w| denotes the
number of edges of w, with each half-edge counting % As for the partition function,
given signed edges eﬁ” ,...,em distinct from aq, ..., @2y, we define the restricted real

fermionic observable by
0 0

AL 1 0
fé? oo € } (3?1, O2n ) -

...,azn ZQ qlwl(p(wyo,l,”_,ozn)ﬁ_
5

s1
G )

Given a collection of doubly-oriented edges (...), a collection of signed edges {. ..}

disjoint from (. ..) and edges ey, . .., €n , we define the fused real fermionic observable
fg? """ em {1} (...) inductively by

..... ol _ eleren- 1l e T+ y esem - 1)

o) () = gl ) T H gl il ()
v

where g = 2- 1. It is easy to check that this definition does not depend on the

order of e1,...,€m.

Remar k 69. As will be shown later (in Chapter 6), a fused observable fg[)e; """ em ] (a,...,ax")
corresponds informally to a 2n + 2m-point unfused observable, where 2m points
are merged pairwise together at the edges eq,...,en, and the other points are
aj',...,a%" , which justifies the denomination.

5.2.3. Complex fermionic observables and weights. We now define a
slightly modified complex variant of the real fermionic observable that will fit
the discrete complex analysis framework detailed in the next chapter, hence en-
abling to derive formulae for the real observables and later to pass to the scaling
limit. Let {...} be a collection of signed edges, [...] a collection of edges and

aﬁ” e, agﬁn IS DQTGH be doubly oriented medial vertices. We define the complex
fermionic observable h[(')'ﬁ']{"'} (af",...,a%") by
...... oy [ .
e, (@) = = (@),

The complex fermionic observable hence does not depend on the branch choice of
Oy (i.e. we can take Opp € S rather than in (S)2). When we do not specify any

orientation for thejlast medial vertex aﬁn € VQan (and keep a‘1’1 yenn ,agﬁ"_‘f € Dle ),
we define hE')'G']{ Sha%t A%l ap, by
O O i 0 O
hE'.l.é.]{ - a’, ... ,agﬁ”_'f ;8n = hgs'](“') ar',..., agin—_11 Jagn'

02n €0(azn )

where O (agn) is the set of the two admissible simple orientations of agn (% 1 if it is
a horizontal medial vertex, xi if it is a vertical one). We call the observables fused
if they contain edges in the brackets [...] and unfused otherwise.
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Finally, let us define a quantity which will be very useful in the proofs of Chapter

6. For a collection a%',...,a%"" € Dgon of doubly-griented medial vertices, a
1 2n- 1 T ¥ 19 )
medial vertex ay, € Vle , and a configuration w € Cq, a‘1’1 Y enn ,agﬁ,”_'f ,azn , let us

denote by W (w, 04,...,00n-1) the complex weight of w, defined by

i
Wi (w0r,....0n-1) = N -alp(wor, .. 0zn)
n
for any choice branch choice of 0y, such that we W (w,01,...,00-1) (it is easy
to check that this is independent of the branch choice). With this notation, we
have in particular
0
0 ) 0o .
hh? &y, ....a% e = i B
Qs

Wh((J‘)yo'lv--'!02r‘l—'])H
o2n-1
2n-

wecgﬁ“) (a1 ..... a,2"7" azn )

Remar k 70. The use of double-orientations to define complex discrete observ-
ables is reminiscent of the spinors used in the treatment of the Ising model (see

[KaCe71, M cWu73|, for instance).

5.2.4. Full-plane: real and complex versions. In Section 2.4, we defined
a two-point function he, (a3",) : Veri(a,) — C for ai" € Dep , called full-plane
complex fermionic observable, using the Green’s function for the d5 operator. Some-
what in reverse order of construction, compared to the fermionic observables for
domains, we define the following functions:

Definition 71. We hg, (a{", a3?) for doubly-oriented medial vertices a
DC%" with a1 & az by

?1 , ag2 c
he, (a7',83") = P._rlhc, (a7', )]

and we define the real full-plane fermionic observable f¢, (a3',a3?) by
fo, (a7',83) = i 0z -hg, (a',a3).

As before, notice that hg; (a$",a5?) does not depend on the branch choice of 0p.

5.3. Representations of discrete correlation functions

We finish this chapter by connecting the fermionic observables with the discrete
correlation functions of the main theorems, allowing for a unified representation of
the latter by the former.

Proposition 72. Consider the critical Ising model on Q3 with locally monochro-
matic boundary condition with boundary changing operators at the edges by, ..., by, €
0Eq, such that an even number of b 's are incident to each component of 99Qs, and
let a1,...,a, € Eq, be interior edges. Then, if we denote by vq,...,vy, € aOVng

the medial vertices m(by),...,m(byp), for any choice of inward-pointing normal
double orientations o4,...,0, € (S)2 at vq,...,Vo, We have
(br....bzp) farenl g Vf_i;"
M yenny 2p . . = —_ n on 5 [] N
(:31) Eg ™ s (@) (@) = (1) 27 ST
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.
Proof. The winding phase ¢ (w, 01, ..., 0gp) is the same for all w € Cq; V%“ yeeesVap

by Proposition 68. Hence the complex phase @ factors out of the numerator and
the denominator of the right hand side of Equation 5.3.1. From each of the config-
urations in Co; VI',... ,Vgé" , we remove the half-edges {vq,X17,...,{Vop, X2p) €
doHor with vy = m(ly) and x; € doVo, incident to by for each j € {1,...,2p},
hence dividing the weights al'l of each of these configurations by aP. We obtain
that

[a1,..., an] ,01 2p [a1,..., an]
fo, COVE Vg Zy, (X1, ...,X2p)
g o — =
fos vﬁ’ﬂ...,vzf)" Zgs (X41,...,X2p)
where Zq, (X1, ...,X2p) is as defined above and Zg; """ anl (X1, ..., Xgp) is inductively

defined, similarly to the fused observable f [1(...) above, by

..... e = pleran-il{ay
ZBran e (g xgp) = 2 st k)

where p = 72

What remains to show is that we have:

Z[a1 ..... an] (X1 X2 )
E(b1 ----- pr) a - a = _1 n 2n Qs ’ ’ p
1) [ (@) o s (@)l = (<) )

From Proposition 60, it is easy to show that we have

Z(a1 ,,,,, an>(X1 Lo, X2 )
E(bj ’’’’’ MP)@a @a = —1n. ’ ) p,
Q; (‘5 (a1) @)1= (=1 Z0s (X1, X2p)
where Zg’: """ an? (X1,...,X2p) is inductively defined by
Zg]; ..... an ...} (x1,.--,X2p) = ZS; ..... an-1>{...,an}(x1,...,X2p)
—Z;a; ..... an-1){...a; } (X1, .., X2p)
“ZG T (X, Xap)

Z(a1 ..... an_1)= 2n—1Z£§1§1 ..... 8”71](X1,_..,X2p),
let us show that
Z@an) = oz (x g xgp).
If we expand (omitting the boundary points (X1,...,X2p)), using the induction
. [a1,....an- 1){a; } lat,..an-11{ar } _ Slar....an-1] .
assumption and that Zq_ +Zg, =Zg, and putting
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together, we obtain

Z(a1 ..... an>(__)
_ Z;a; ..... anf1){an}( ) z;)a; ..... an71){an}(.”)_uzgy ..... an_1>(. ) :
A AR R R O
0 ) 0
= 27t 2ozl n ezl
L[a anl [
= 2" ZQ; """ L)),
which is the desired result. O

Proposition 73. Consider the critical Ising model on Qs with free boundary
condition and let vq,...,va, € 9pVq, be boundary vertices such that there are an
even number of v;’s on each connected component of 9qQs. Let wq,..., W2, €
doVay be the closest boundary medial vertices to v1,...,Vzn. Then, for any choice

of inward-pointing normal double orientations oy, ...,00, € (S)% at vq,...,Vvon, We
have 1
EGe [0 (V1) .- 05 (Van)] = o Ify (WE',... wE)].
Proof. By Proposition 68, since Wy, ..., Wzq are on the boundary, the winding

phase of all the configurations in Cq, W$1 e, ng is the same and hence factors
out from f g, giving

O O
(o] O:. 1 m
[fas (WP, ..., Woa" )| = a U alwl
Qs
weCqy(W1,...,Wan )
By removing from each of the configurations the half-edges {vq, W), ..., {Van, Won ),
we divide their weights by a", WJe obtain .
1 O
0 alol
O weCag(Vi1,....V2n )
By Proposition 63, this equals
ER%[05 (V1) ...~ 05 (Van)].
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CHAPTER 6

Discrete Analysis of the Observables

In this chapter, we study the fermionic observables defined in Section 5.2, from
a discrete complex analysis point of view. As before, Qs c Cs is a discrete domain,
that is, an induced connected subgraph of the square grid Cs = 8Z? of mesh size
0> 0. The strategy is the following:

* Three types of properties on the complex fermionic observables hg are
obtained:
— Away from the signed edges in {...} and from the oriented medial

vertices and (...), the observables h{Q';} (...) are s-holomorphic in
their last variable (Section 6.2).

— Near the oriented medial vertices in (...), the observables hga”} (...)
have discrete simple poles with identifiable singularities (Section 6.3).

— On the boundary, the complex fermionic observables satisfies discrete
Riemann-Hilbert boundary conditions (Section 6.4).

* We then use these properties to express the observables hgé'] (...) in terms
of solutions to discrete Riemann-Hilbert boundary value problems (Sec-
tion 6.5).

* Using the results of Section 6.5, we obtains recursion relations between
the different observables, yielding Pfaffian formulae for them (Section 6.6).
The strategy is to first obtain Pfaffian formulae for the unfused version of
the observables and then to merge points two by two in a suitable manner
to obtain formulae for the fused observables (which justifies their name).

6.1. Integrability

Before entering the discrete complex analysis considerations, let us introduce
the elementary integrability relation that is central for the analysis of the observ-
ables.

By integrability of a system, one usually means the existence of a large number
of relations or of conservation laws that allow to solve the system exactly. The Ising
model is known to be integrable and in our (critical) case, integrability arises in
terms of relations between the values of the observables, which will get translated
in terms of s-holomorphicity.

For each edge e € Eqgp, we denote by Ke C Hgq, the corner at e, consisting
of the two half-edges forming a right triangle together with e. Let us denote by
W B W & Ke the involutive operation on half-edge configurations that perform a
symmetric difference between w and the two half-edges of Ke.

The following elementary lemma is instrumental in the next two sections and
concentrates all the integrability of the model that we will use; it also justifies the
introduction of the winding phase. Let us remark that this is the only place (besides
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Kra rs—Waﬁnier duality) where we use the value of the inverse temperature B¢ =
Tin  2+1
> .

Lemma 74. Letaf',..., a0, € Dor bedoubly-oriented medial vertices at dis-

tance at least & from each other, let a3z, a5 e Sqp be two adjacent simply-oriented
medial vertices distinct frtom ar,...,a,n-1 qnd denote by ee EQg‘ the medial ?dge
{@n,8n). Let we G, ay',...,a2"  ,a and e Co, a)',...,a" 8 be

two configurations such that w® c(e) = . Then we have
Pie) W (w,01,...,000-1)]1 = Pye) [W (W, 01,...,00-1)].

Proof. Set W (*) = W (:,01,...,02n-1) to shorten the notation. Assume
that ag, is a horizontal medial vertex, and that hence 2y, is a vertical one. Denote
by € and &, the edges whose midpoints are ag, and @z,. Assume that ap, =
an t (1+1) g (the other cases are symmetric). 0
Let us delﬁote by 02n, O2n E~S tge simple orientations such that w € Co, a3y, ..., a3 ,a%"
and e Co, af",...,a0 {,85" , by ¢; € H}) and G € HY_ the horizontal and
vertical half-edges of Ke, and by von € Vg, the vertex ¢1 (€) Ncy (€) . Then we have
four possibilities:

* We have 0o, = 1 and Oy, = i: in that case, we have that W (w) € R and
W (@) = aAW (w). Indeed, we have WNKe = Dand WNKe = Ke, so the
modulus of the weight of w gets multiplied by a and for any admissible
choice of walks on w, the one arriving at az, can be extended by Ke to a
walk arriving at @y, , thus adding one more left turn to the winding of the
path, and hence multiplying the total winding phase by A (we keep the
other walks unchanged).

* We have 0pp = 1and &y, = —i: in that case, we have that W (w) € R and
W () = =AW (w). Indeed, we have WNKe = ¢ and WNKe = ¢, so the
modulus of the weight gets unchanged. Let y4,...,Yn be an admissible
collection of walks on w with for each j, y; : &, [1 a; and with the
indices chosen such that T, = n. Then, we have three subcases:

— We have &, £ yqU...Uy, and hence &, belongs to a simple loop A ¢
w\ (y1Y...Uuyy). Then yq,...,Yn-1,¥n is an admissible collection
of walks on @, where ¥, is the walk y, extended by ¢y and then
following A in the counterclockwise direction up to @, hence giving
W (V2n) = W (y2n) + 37“ Hence we have W () = =AW (w).

— We have &, € y, and it is easy to see that y4,...,Yn-1,Yn is an
admissible collection of walks on @, where ¥, is the walk y stopped
at Agn, if &p is ran from top to bottom by yn, in which case we have
W (Y2n) = W (y2n) + 37” and where ¥, is the walk y, stopped at van,
following then ¢; and finally running along the rest of y, backwards
from agn to Azn, in which case we have w (Y2n) = W (Y2n ) — 57“ + 4k
In both cases, we have W () = — AW (w).

— We have &, € vy; for some j € {1,...,n = 1}. Then we have the
several possibilities:

* If 1, < 1; < 1) and &y is ran from top to bottom, by y; then
Y1, Y-,V Yj+1,-- -, ¥Yn-1, Y2n is an admissible collection
of walks, where ¥; : @, [ a; is obtained by following y,
from a,, to agn, then ¢; and then running along y; from vy,
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to a;,, and where Y, is obtained by following y; from a,; to

agn. In this case, the crossing signature of the pair partition

of{1,...,2n} induced by V1,...,Yn is changed and we have

W (¥;)+ W(¥n) = W(yj)+ w(yn)— 2+ 4KT and we hence

have W () = =AW (w).

* If 1, < 1; < 1j and &y is ran from bottom to top by v;, then
Y1, Yi- 1Y), Yj+1,---,¥n-1,Yon is an admissible collection
of walks, where ¥; :a,, [J a, is obtained by following y, from
a,, to azy, then € and finally running along y; backwards from
Von to @, and ¥n : &, [ @z, is obtained by running along y;
backwards from a;, to @zn. In this case, the crossing signature
of the pair partition of {1,...,2n} induced by y4,...,Yn is
unchanged and we have w (¥;) + W (Yn) = W(y;) + w(vyn) +
31/ 2+ 4kt and hence W () = — AW (w).

* All the other subcases (1j < 1, < Tj and 1 < Tj < 1) can be
treated in a similar manner.

* We have 0o, = —1and &, = i: in that case, we have that W (w) € iR and

W (@) = AW (w): if y1,...,Yn is an admissible choice with y, arriving at

azn, then yq,...,¥Yn-1,Yn is an admissible choice, where ¥, is obtained by

removing ¢; from y, and adding G to it, thus giving W (Yn) = W (yn) = 3

and keeping the number of edges unchanged.

We have opp = =1 and Oy, = —i: in that case, we have that W (w) € iR

and W () = a” "AW (w). Indeed, we have wNKe = Ke and WNKe = &

so modulus of the weight of w gets divided by a. For the phases, if we fix
admissible choices Y1, ..., Yyn of walks on wwith y, arriving at agy, as for
the case when opp = 1 and &, = i, there are three subcases:

— We have &, € yn. If &y is ran from top to bottom by yn, then
Y1s---,»Yn-1,Yn is an admissible choice of walks, where ¥, is obtained
by following Yy, and stopping it when it arrives at d,, and removing
Ke. In this case, the number of edges has decreased by 1 and we have
W (Vn) = W (Yn) + T/ 2, which gives W () = a” "AW (w). If &, is
ran from bottom to top, then y, arrives from vy + ® before passing
through &, and comes back to Von from vz, — i®, and hence makes a
loop around ay, in counterclockwise direction between the two times
it hits von. We can reverse the direction in which this loop is made
without changing the admissibility of y, and hence we can assume
that & is ran from top to botton.

— We have &, € W\ (Y1 U...Uyp). Then y, arrives at v, from v, — id
and turns left to arrive to az, and hence there is a simple loop in
w\ (Y1 U...Uyp) touching v, and we can extend y, by this loop, so
that we are in the previous subcase.

— We have @ € yq U... Uyp-1. Then there is a path y; :1; [J T; that
interesects with y, at Vo, such that y, arrives at vo, from vo, — i® and
with yj either arriving at Vo, from von, — ® and leaving to von + 8 or the
converse. Then we can construct another admissible choice of walks
Vi, Yi- 1Y Yi+ 15 .-+, Yn-1, Yo on w, with v and v, obtained by
gluing the two components of yj \ {van} with the two components of
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Figure 6.1.1. The possible configurations when 0, = 1 and their
images by the involution w5 w & Ke.

¥n \ {van} respectively (there is only one admissible way to do this),
so that y; ends at azn, and we are back to the first subcase.
a

This relation will both enable for the derivation of the s-holomorphicity and
the analysis of the singularities.

6.2. S-holomorphicity

We now turn to the first (and most important) ingredient of the analysis of the
complex fermionic observables, which is their s-holomorphicity.

Proposition 75. Let €}',..., e € E3, be signed edges and &Y', ..., a5 { €
Dap be doubly-oriented medial vertices such that m(eq),...,m(em),a7", ..., azr”,
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the way to make the appropriate choices of walks.
are at distance at least & from each other. Then the function
Var\(m(e1),..m(em ).ar....a0-1} — ©C
St esm) [ B 0
an B hg; i a)',..., a2, ann
is s-holomorphic.
Proof. We have
S1 Sm ] 0
{eit, e} Lo Oz - 1
he, ay',...,ay,—4,an
0
1 0
W(w:o11-"!02n—1) .
205 {es1 L.esm
uueCQB1 T (@g a0 ez )
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For two adjacent medial vertices @2n, @20 € Vog\ {m(ey),....m(em ).a1,...,a0 - 1} » the invo-

S1 Sm
lution WE> WS K¢a,, a,,) is a bijection between Q{)? """ G a%",...,a% . ag
1
and CD? """ &) ad',...,ay" ), By, . From Lemma 74, we have that
g 0 L0
Pagn 2oy [W (W 01,...,000-1)]1 = Pay, 2pn) W WO Keay, 2y 3 015+, O2n—1
. el e 01 O2n - 1 U . . . ot
for each w € Gy, ajy',...,a,,_ 1,82 . By reallinearity of the projections
we obtain
U U
U
P (ayy 20) W (w,01,...,0n-1)
eSh,.., e
weCi ! (af"...., 2n- " az)
0
: } :
= P,(aZn,E!Zn)j 1 ) W((A),O1,...,02n_1)j
weCi: o em }(a°1 ..... a;ﬁ"_f ézn)
and the result follows, since Zg, € R. 0

6.3. Singularities

With the notation and assumptions of Proposition 6.2, near the medial vertices
m(e1),...m(en) and a4, ...azn- 1, the function

et,.esm} U - 0
azn Bhg; } al',..., a2, an

is not discrete holomorphic: it has simple poles (near the medial vertices that are in
the interior of Qs). We only analyze here the behavior near aq,...,a- 1, since it
is the only case that we need to understand for what follows, although the behavior
near €i,...,€n is very similar and can be studied in the same way.

Proposition 76. Lete}',...,er € E5 besigned edgesandletay’,..., a0 €
Dqr be doubly-oriented medial vertices, such that m(et),...,m(eyn),aq,...,an-1

are at distance at least 6 from each other.
For each j €{1,...2n - 1} such that g € Vor \ doVar , the function

O
aZthg? """ el @0 L a%n ) ag,

has a discrete simple pole at a; , with front and rear values given by:

—1 j*+1 S Sm oyt [ ' ' O
h = 4—( ij -f({):'1 e el@)" } aﬁ”,...,ajo’_‘f,ajo‘,jf,...,agf]"_‘{ ,
_ -1 ] e]l,....eim e(a;)” U - - - U
h™ = LJq—)'fg{)51 2 aﬁ’1,...,ajc’L11,ajc’L11,...,agf]_f ,
where e(a;j ) € Eq, denotes the edge whose midpoint is g; .
For eachj €{1,...,2n = 1} such that g € doVqr, the function
e;l,....esm O -
aon E»hg; } ay',..., a2, ann
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can be extended to an s-holomorphic function to a;, by setting the value at g; to

1 {el eSm}D ' ' O
+ . 1 9 m 01 0j - 1 Oj + 1 O2n - 1
h; _,v% fo, al,..aly el Ay

Proof. It follows from an adaptation of Lemma 74; let us treat the case of
j €{1,...,2n = 1} such that g € Vle \ 80VQg1 first.

If we denote by vj,V; € Vor the two medial vertices g + ¢ - (1+ i)g and
a + 0 (1= )3, the contour set

{

&

is the image under the involutions W = W ® K¢g; v,y and W = WS K¢, 7,y of the
contour sets

1 sSm REaun
€ .. e" .e(a;) } 01 0j - 1 Oj + 1 O2n - 1
5 a1,...,aj_1,aj+1,...,azn_1

and .

01 O2n-1 &
a1 ,...,azn_1 ,VJ
and we can apply Lemma 74: we have

Pita v ) W (W01,...,00-1)] = Pita vy [W (W@ <5,V ),01,...,0-1,9)],
Plaj,Vj>[W (CU:011"-!02n—1)] = PLKaj,\?j)[W (GJ®<aj,Vj>,01,...,02n—1,0])]
respectively for each
S1 Sm 0 O
w € :1 """ e} aj',...,ax v,
S1 Sm ] 0J
b e {:1 """ &) al',...,apx Y,

where on the right hand sides, the configurations W®K¢,, v,y and WK, 7,y should
be interpreted as configurations in

U .
ay,...,ax " a’
where there is a “walk of length zero from a to a” (of zero winding), and in
particular with no edge at @, . By definition of the weight W , we have
—q\*1
( 1L _qﬁ)ﬂ)K(ajvvj)H
9

QW <@,V ), 01,...,0-1,04+1,...,0n-1),
o oy A TP
W (e (a,Vj?,01,...,000-1,G) = ﬁ%( 2)} N BRI
‘Q(®<aj,Vj),01,...,0-1,8+1,...,02-1)
where on the right hand sides, W ® K¢a; v,y and W @ K¢y, ) are interpreted as a
configurations in

W (w@(aj,Vj>,01,---102n—1vQ)

S1 Sm R 0J
{61 ----- enm e(a) ) } 01 0j - 1 Oj + 1 O2n -1
Co, L B R R e
S1 m1 [] ] S1 sml [ [
. {e1 ..... e } o O2n- 1 . {e1 ..... e } o Oan-1 =
Summing over all w € G " ay',...,au ¢,V andwe Gy " a',...,amn 1,9,
we obtain
. i S1 Sm )t ] 0]
+ _ o nn\it1 | . {61 ----- enm e(a)) } 01 Oj - 1 0j + 1 O2n - 1
hi =(-1) % 5, ar,....aly Lk, ant
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Similary, if we denote by wj,W; € Vop the two medial vertices a = ¢ - (1~ 1) g
anda - o - (1+1) g, we can apply Lemma 74 to obtain

g o N
Ptay i) W (W, 01,...,000-1)] = PL(aj,wi)DW WO Ky w201 0= 1,0
Plaj,Wj>[W (CU:011-'-!02FI—1)] = PL(aj,Wj) W CU$K(8],W])1011'-'!O2H—110J
respectively for each
1 esm} [ O
w € CQ:“ =} aj',...,axlw
1 eim} [ s
W € CQ:“ e} aj,...,ax W,

where, this time, the configurations W @ K(a, w;y and W ® K w,; y should be inter-
preted as configurations in
S1 . Sm ] " 0]
ch Y e
where there is a “walk from & to @ that makes a loop” (of * 21T winding), and in
particular there is an edge at g . By definition of the weight W, we have

[ DY ey
W(.U@K(aijj),01,...,02n_1 :%.a <aj""’i>

@(aj,w,-),01,---,Q—1,OJ+1,---,02n—1),
O _ (G0 fexg e

|
W w$K(aj,W1):o1y---s02n—1,0j a

>

0
P WO Ka ;) 015G -1, @8+1,...,02n-1

where on the right hand sides, W ® K¢a, w,y and © ® K, ;) are interpreted as a
configurations in

S1 sm -1 [
{e1 """ en" .&(a)) } 01 Oj-1 J0j+1 L02n-1
G, A1 @ Qg8
.Summing over all
S1 sm Y [] 0
€1 s €n 01 O2n - 1
w e G, ay’',...,a0 W ,
S1 sm\ [ g
~ {efit. e } 01 O2n-1 \=
w € 5 aq .., 1,W
we obtain
_ oo {ef".....em ()" } 0 oi - o O
— (_1\] . 1 ©m j 01 -1 j + 1 O2n - 1
hy = (-1) ,V% f 5, ar’,.... gy, aky . anty
Forj €{1,...,2n - 1} such that & € doVay , it is clear that
S1 Sm ] 0
eil...., ey ° Oor —
aon Bhgé } ay,...,a 4, an

can be extended to &;, since the only two adjacent medial vertices to g are v; and
V; . Using again Lemma 74 in the same way as for interior medial vertices, it is easy
to see that the value of this extension is the one claimed. 0

The following proposition (and its corollary) is a key in the fusion procedure,
since it allows to make the fused observables appear as special values of extensions
of unfused ones.
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Figure 6.3.1. The configurations contributing to the front value
of the observable and their images by the involution w & w &

Klaj aj+05-(1+1)3 )

Proposition 77. Let €}',..., e € E], besigned edges and &Y', ..., a3 €
Dqr be doubly-oriented medial vertices such that m(et),...,m(eyn),aq,...,an-1
are at distance at least & from each other. Then for each g; € Var \ aoVan , we
have that

&S, esmY [ _ 0
an S hg; "} aj',...,a" ) axn
. s1 sm [ ] OJ
i {ef'.n er} o 0 - 0+ 02n - 0j
+(=1) -fg, oAy, el gl ety he, @ ann

extends in an s-holomorphic way to a;. The value of the extension to g; is equal to

j+1
(_1)J+ {e51,...e5m Ye(a )1 L g 0i-1 _Oj+1 o201
4‘{?405 a11,...,aj'_1,ajj+1,---,azn—1 ,

where e(a;j ) € Eq, denotes the edge whose middlepoint is a; .

A wuseful corollary, which follows from the definitions of the fused observables,
it the following:

Corollary 78. With the notation above, for each a; € Vor \ doVop we have
that

0 0
ayy b h[é}; """ o] 3?1,---,38?1"-_11:3%
- O O O O
-1\ . [e1,..., em ] (o] 0j - 1 Oj + 1 O2n - 1 0j
+ (=) fo, T A, gl a8ty hey g ann

extends in an s-holomorphic way to a; and that the value of this extension at g
equals

_ it
(=1 _f[e1 ----- em ,e(aj )] Dao1 %1 gl a02n—1[
D= Qs 1@ g8 g, 800y
]

Proof of Proposition 77. It is sufficient to check that the above function,

which we will denote by azy = u(a2,) has discrete residue zero at @ for each

.....

S1 Sm
j = 1,...,2n. By definition of hﬁg "} and Proposition 76, the difference

""" e} Da?1 Ozn - 1
’

e}’
between the front and rear values of as, & hg; ...,8 4 ,axm near
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Figure 6.3.2. The configurations contributing to the rear value
of the observable and their images by the involution w = w &

Ky ay- 0 (1-1)8 )

a; is equal to

1

j+1
(-1 &, em} [ 0 o o
ﬁ/?-f({); W ay',....a ey, e
1

Uo
By definition, the difference between the front and rear values of az, = hc, af’
is equal to AJ%T and hence the front and rear values of u are the same and we can

extend it by them. The front value of ap, =

again given by Proposition 76 and is equal to

j 1 S s +
CP i oo} o

9
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A
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i O, +1
', 80 IS equal to ”T Hence the
front value of u () (which is equal to its rear value) is equal to

.
By Theorem 22, the front value of az, & hc;, a’

+1 .
(_ )J f{e?1 ----- en™ .e(a)) }Dm 0j-1 0j+1 OZn—1[
L= 0 ar,....aly,aky . anty
0
P 1+ {e esm}r ' ' g
-1\ . . 1 m 01 Oj-1 0j+1 O2n - 1
+(=1) 5% fa, ar, ..l 0,8k, .., 8

_ i1
( 1) _f{e?1 ----- eﬁnm}[e(aj)]ﬂm 0j-1 A0j+1 02n—1r
4—@ Gy at, .. ak L am

which is the desired result. O

6.4. Boundary conditions

The boundary values of the complex fermionic observable are very simple to
study:

Proposition 79. Let €',...,e5r € E; besigned edges and af', ..., a5 €
Dqr be doubly-oriented medial vertices such that m(et),...,m(eyn),aq,...,an-1
at distance d from each other. Then for each azn € doVar \ {a1,...,a2n-1}, We
have

h{e?1 ----- exm [801 O2n - 1 O 1
Qs 1 —_—,
Vext (azn)

...,azn_1 ,azn
and for each ay, € dpVo, N{ai,...,az-1}, we have, for the natural extension of
Proposition 76.

et esm) [ _ 0 i
h}g; } al',..., a2 ay, [E————.
Vext (82n)

Proof. Ifay, € 80Van \{a1,...,az- 1}, then for topological reasons, we have

U {e
(o} O2n - 1 — 1 0 (o} O2n - 1 O;
811,...,82n"_1,82n —ho6 a11,...,a2n”_1,32$]” ,

where 0o, = % Indeed, in that case, the only possibility for an admissible

walk to arrive at ap, is to pass through ag, + ozn% and hence the result follows

. ell,....esm U _
from the definition of hg; } ay,..., agﬁ”_ ., a%n

If ayn € 9oVa, N{a1,...,azn- 1}, the result follows from Propostion 76. 0

6.5. Discrete Riemann-Hilbert boundary value problem

We now summarize the information obtained in the previous sections to express
the unfused complex fermionic observables hq, (...) as solution to Riemann-Hilbert
boundary problems (#,...), as defined in Section 2.6. The idea is to remove the
singularities of the observables by substracting functions with the same residues.
We can first formulate the two-point version of the observable in this way, which
will be essential for proving convergence of it:

Proposition 80. Let a‘1’1 € Doam \60D95m be an interior doubly-oriented medial
vertex. Then we have that

ax = ths (a(’l)1 1a2) - hCé (a(’l)1 ’a2)
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extends to an s-holomorphic fungtion VQGm — Candis th%solution to the Riemann-
Hilbert boundary value problem #q,,—hc, (a%', ") |avﬂg1

Proof. From Proposition 77, we have that the function hg, (a3', -)= hc, (aJ", ")
extends to an s-holomorphic function Vor — C. The fact that hq, (a, ) -
hc, (a7", ) solves the Riemann-Hilbert boundary value problem follows from the
boundary condition of Proposition 79. 0

Definition 81. We denote by hg? the function hg, = hc, and by f$® : Dan x

DQg‘ — R the function f o, — f¢,. We call fgg the discrete boundary effect fermionic
observable.

Let us then formulate the 2n-point version of the observable in terms of the
2(n = 1)-point and two-point versions, which will help us obtaining the recursions
that will yield the Pfaffian formulae:

Proposition 82. Letay',..., a2, € Doy be doubly-oriented medial vertices.
Then we have that the function
0
ay B hg, al,...,ax ,amn
@n , 0 O O
- (=1 g A, at Ak at ho, @Y, an

j=1
extends to an s-holomorphic function Vor — C and is the solution of the Riemann-
Hilbert boundary value problem (# ,,0) and hence is identically equal to 0.

The following corollary is immediate:

Corollary 83. We have that

01 02 & j [01 Oj-1 40j+1 OZn—1[ DOj 02
fo; (a7",...,a%") = (=1 fa, ay,....a a . ...,a 0 fo, &’ a5
j=1
. U U
Proof of Proposition 82. Let usdenotebyr aj',...,a5%" ", @ the func-
tion defined by
U U
roal,..., a2, an
01 O02n - 1 O
haos ay',...,a,,- ¢ an
3" : 0 0 O 0
0 - 0j + O2n - (]
- (=1 fo, A, ek, e ho, &, azn
j=1
To 02n - 1 O : :
The fact that apn & r ay",...,8,,{,an extends to an s-holomorphic function

Var — C follows from Proposition 76. The fact that is a solution of (4 q;,0)
depends on the following:

e For each ag, € 80Vng \ {a4,...,a2n-1}, by Proposition 79, we have that
0 o O2n -1 0 1
ho, ai',...,ay 1axn [E——
Vixt (aZn)
and
Og _ O 1
hQ5 a; ,aZn 0 = P——

! Vext (a2n )
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Since f g, is real, we obtain that

0 ) 0 1
roaj,...,a  ,am € B———m Vo, € doVar \ {a1,...,azn-1}.
Vbxt (azn)
e Ifagy, = a € 80VQg1 for some k € {1,...,2n — 1}, we have, by Proposition
76, that
r01 O2n - 1 .
axn = hg, & ,...,jaZn_1,aZn . .
k - i+ n- ;
- (-D)fo, a,....a" &, ..., a0 ho, @ ,az

extends in an s-holomorphic way to azn by 0. And we deduce readily that
in that case as well

0 0 1
r a(1)1 e ,agaﬂ:';,aZn € —ru——— ‘Vazn (S 30Vng ﬂ{a»], ...,a2n- 1} .
Veﬁt (azn)
By Corollary 29, we deduce that r a',...,a" /a3, = 0. a

6.6. Pfafi an formulae and fusion of observables

From the previous section, we can directly derive a Pfaffian formula for the
unfused observables:

Proposition 84. Let a7',...,a3" € Dor be doubly-oriented medial vertices
at distance at least & from each other. Then we have
faos (8),...,a%") = Pfaf (Aq, (a",...,a%")),

where A o, (a%',...,a%") € My, (R) is theLantisymmetric matrix defined by
U o g
fa’,ax ifj =k,

(Ag, (af',....80 ) = ifj = k.

Proof. It follows readily from the recursion formula for the Pfaffians given in
Section 1.3.4 and from the recusion formula of Corollary 83. 0

From the previous one, we obtain the Pfaffian formula for the fused observables:

O2n

Proposition 85. Let eq,...,em € En, be edges and aj',...,a3" € Dap
be doubly-oriented medial vertices such that m(e(),...,m(em),a1,...,a2, are at
distance at least & from each other. Then for each choice of orientations q; €
O(et),...,qm € O(en) we haveu

N
. A 2
fg;1 """ enl(@0r,...,a%") = Pfaf Aq, e?,...,eﬁ;",eLLQm)Z,...,eﬂ'q” ay,...,ax
0 0
where A o, xﬁ* ye .,xgg” € My, (R) isdefined for (non necessarily distinct) doubly-
oriented vertices x?,...,ng)” € Dap by] .
S if oy,
0 0 , 00 Efo5 ij , Xp . if X; & X,
Aq, X?,...,Xzf)p = G xjgj,xkk if Xj; = x¢x and § = &,

ik g @

0 otherwise.

wherefgg = fq, — fc, is the discrete boundary effect observable.

Proof. This follows from the Corollary 78 and Proposition 84, by induction
onmz= 0.
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* For m = 0 and all values of n = 0, this is given by Proposition 84.
* Let us suppose the assertion proven for m — 1 = 0 and all values of
n 2 0. Then by the induction assumption, we have that for a® € Dqp ,

([);; """ e”‘D”](a?H...,agﬁ",eﬁqm,a°) is given by .
Pfaf Aq, e‘1‘1,...,eﬂqm_‘f,ef]iqq_m{”z,...,eﬂiq”z,aﬁ“,...,agg“,eﬁ;",a°
aI%d tha%f([)e; ----- em-1l(@, ... a%n ) fe, (€8, a) is given by -
Pfaf Anq, e‘1‘1,...,eﬂq”‘_'{,eﬁri,q_m{”z,...,eﬂiq”z,aﬁ“,...,agﬁ”,eﬂT,a° :
Wherﬁ O
Ag, = Aq, e‘T,...,eﬂ:‘_’f,ef;q_’”ﬂ)z,...,eﬂiq”z,a?,...,agﬁ“ ®Ac, (e, a%),

with M 1 ®M 2 € Mp+( (R) denoting the direct sum of the matrices M 1 €
Mp (R) and M , € M, (R), where the diagonal blocks are M 1 and M > and
the off-diagonal ones are zero. By definition, we have

hieteen -l (g0 agn i a0) = —alflerenoid(gen  gom e g0)

|
|

oﬁ*' o
—

o7

fo o (ag,. . a3 ) he, (e 2°) L@ a8 ) o, (e @)

and from Corollary 78, we have

..... m R _ €1,....em - R m
higrerd(agr, . agn) = hglom(ag, e el en)
—f([)e; """ e”‘”D](aﬁ“,...,agﬁ")hcé(eﬁqm,em
N __\2
..... m - n m I Om
R
[e1,....em - 1] /401 021 : q (i\/qT)zu
~fa, (at',...,a3" ) he, e . em

since the right-hand side can be extended in an s-holomorphic way in the
variable a° at €y . The second equality follows from the phase at en,
which is also given by Corollary 78u. Hence we obtain

N2 U
- I Qm
plovenl g gy = floeemeil gon | gg o ol )
[e1,....em - 1] 1 01 O2n - a (i\lCIT)Zr
-fo, (ay',...,ax2" ) fc, er,em ,

for any choice of gn. Replacing the first and second parts of the right
hand side by the Pfaffians and reordering, we obtain the desired result.

0

This is the final formula of the discrete part: it reduces all the questions con-
cerning the observables to the computation of the two-point observable.
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CHAPTER 7

Scaling Limits of the Observables and Formulae

In this chapter, we define the continuous versions of the discrete observables
introduced in Chapters 5 and 6, and then use the results of Chapter 4 to show the
convergence of the discrete observables to the continuous ones. More precisely, the
plan of this chapter is the following:

* In Section 7.1, we define the continuous full-plane two-point fermionic
observables and obtain convergence of the discrete full-plane observables
to the continuous ones.

e In Section 7.2, we define the continuous two-point fermionic observables
(on finitely-connected domains), give properties for them and obtain con-
vergence of the discrete two-point fermionic observables (including the
boundary effect ones), to the continuous observables.

* In Section 7.3, we define and study the continuous general n-point fused
observables and give properties for them.

* In Section 7.4, we obtain the main result of this text concerning the con-
vergence of the general discrete observables to the continuous ones.

* In Section 7.5, we give the proofsﬂof the main theoremé of the introduction.

For a domain Q, we denote by Dg = a°:ae€Q,o0€ (S)2 the set of doubly-

oriented points of Q and by Sqg = {a°:a € Q,0€ S} the set of simply-oriented
points of Q.

7.1. Continuous full-plane two-point observable

We first define the continuous version of the full-plane two-point fermionic
observables and study the convergence of their discrete versions (defined in Section
5.2.4).

Definition 86. For a doubly-oriented point aj' € Dg, we denote by he (a3, *) :
C\ {a1} — C the function defined by

[}
a-ar

hc (al", az) =

For a doubly-oriented points a3',a3? € Dq, we define

[} 1 1
hc(ad',a??) = P, glhc(ad,a)] = e ——
102 o2 ! 2—\/31 010 ax— a4
N i 01 O i 1
fc(ad,a) = i “he (a%1,a%2) = - Al ,
c(ay',ay?) 02 -he(ay',ay”) a - a ‘o1 0, @m-ar

oo _ 1o
p-a; a-ar

oo(af ag) = or-ho(ad,ap) =
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We call f¢ and he the continuous real (respectively complex) full-plane fermionic
observables. We call gc the two-point free fermion.

Notice that hg (a‘1’1 , agz) does not depend on the branch choice of 0, and that
dc (a‘1’1 ,a§2) does not depend on the branch choices of 04 and 0,.

Note also that have not introduced a discrete version of gc, although it could be
properly defined without any problem. The reason is that this discrete version is not
convenient from a discrete complex analysis point of view, not being s-holomorphic.

We can now state the following convergence result:

Theorem 87. For each ¢ > 0, the (renormalized) discrete full-plane real
and complex fermionic observables (a7",85*) = 1 fc, (al",a%) and (a',ay’) =
1 -hc, (al",a3?) converge uniformly on (aq,a;) € C?:|aj - a| 2 € to their con-
tinuous analogues f¢ and hg as 8 — 0.

Proof. This follows directly from the construction of the full-plane observable
(Theorem 22) and the convergence of the Green’s function G° to its continuous
analogue (Theorem 33). |

7.2. Continuous domain two-point observable

We now turn to a central result of this paper: the convergence of the two-point
discrete fermionic observables to their continuous analogues, which, thanks to the
Pfaffian formulae for the more-point versions established in the previous chapters,
will allow for the proof of convergence of the general observables (handled in Section
7.4). Let us first define the continuous two-point observables:

Definition 838. Let Q be a finitely-connected domain. For a doubly-oriented
point aj" € Dq, we denote by hg (a3',") : Q\ {a;} — C the unique holomorphic
function solving the following boundary vah\l/e problem:

[

hq (8", P Y

1
hq (3(1)1,82) [ S——— ¥a, €9Q,
Vxt (32)

where the boundary condition is defined in the integral sense defined in Section 4.1.
Equivalently, hq (a{", *) is the unique solution to the continuous Riemann-Hilbert
boundary value problem (4 o, hc (aJ", ") |aq)-

Analogously to the discrete case, we define hq (aJ",a3?) for a doubly-oriented
point @' € Dg and a simply-oriented point a3? € Sg by

ha (a3, a%2) = PiVgr[ha (8, a2)].

For af",a%? € Dq, we define fq (a3",a3?) asi - 0zhq (a]",a5?). We call hg and fq
the continuous (two-point) complex and real fermionic observables.

Unfortunately, on general finitely-connected domains, we do not have an Ising-
independent proof of the existence of these observable: the uniqueness is guaranteed
by Proposition 48, and the existence is obtained by using the scaling limit of the
discrete observables (Proposition 92). On simply connected domains, though, the
continuous complex fermionic observable can be constructed explicitly in terms of
the conformal mapping to the half-plane.
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Proposition 89. If Q is bounded and simply connected, the two-point contin-
uous observables hq is given, for any conformal mapping ¢o : Q — H and any

branch choice of ¢4, by
U U

h 01 = h E61 2
o(ay', az) lbg (@1)] &g (a2)hy &7, a2 ,

.
where 31,3, = ¢q (a1),da(a2) andd = dq(a1) o?Ez/ l¢g (a1)| and
\/ N

1 o
hu (27", 22) = + —.
Zy — Z4 Zy — Z4

Proof. It is straightforward that

hH (Z1q1,22) ~ as Zp — Z4

Zy — Z4
and it is easy to check that

1

Vext (22)
The only subtlety is for non-smooth boundary point at infinity, but it is easy to
check that R
0 .0 ) o
Lle hy (Z;41 ,22)" dzp -— 0
0 -

and hence that by change of variable formula, we have
g U

Qo » B 1
100 (@) ¢q(a2) -hy &7',8 [Io——= Vap €0Q,
Vext (32)
in the integral sense defined in Section 4.1. By expanding as ap — aq, it is again

straightforward that we have
0 O V .

0~ 0
[0 (a1)] dq(a2) -hu &8 ~ —,
azx — a1

which shows the result. U

Also analogously to the discrete case, we define the boundary effect observables.

Definition 90. We denote by f§ and h§ and call continuous (respectively
real and complex) boundary effect observables the functions Dg X Dg — C defined
by

fg = fQ - fc,
hS = hqg- he.
As before for @' € Dg and a; € Q, we define
U U
h (ag", az) = h§ (a3, a") + h a5’ a;%
for any 0y € S (the choice thereof does not matter).

Equivalently, h§ (aJ",) can be formulated as the solution to the continuous
Riemann-Hilbert boundary value problem (4 g, hg).

Since they depend on the continuous real and complex fermionic observables,
the existence of the boudary effect real and complex observables on multiply con-

nected domains is only guaranteed by the existence of scaling limits of the discrete
versions.
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Using the results of the previous chapter, we can now prove the following the-
orem, which is central to our strategy:

Theorem91. Let Q be a smooth finitely-connected domain with straight bound-
ary parts 9°Q c 9Q and (Qs);5. o a discretization of Q. Then we have that the
following limits exist:

1
S fQ (@), aP) -— fS(a,aP),

¢) 50
1on%(aa) oo hg e,
where the convergence is uniform on the compact subsets of

O 0
{(a1,32) € (Qx (QUI°Q)) U ((QU Q) x Q)} x  (01,02) € () * (S)°

and that the following limits exist:

g'f05(331'a§2) - fa(ay,ay),

“hq, (a", a3?) oy ha (a7",a3?),

5
where the convergence is uniform on the compact subsets of
Ha1,a2) € (QuosQ) x F(Q uosQ) :aq & ag}
x  (o1,00) €(8)° x (9

Proof. We have that

1
5 he (af" a2) - hG (af' a)
uniformly on the compact subsets of
U U
{(ar,3) € Qx (QUaQ)} x o1 € ()

and in particular that h§ (aJ", ap) exists: it follows from Theorem 59, since % :
hg5 (aﬁ” , ) solves the Riemann-Hilbert boundary value problem # o, % “he, (a?1 )
since for each a{' we have

1
< he, (81,9~ he (af' )

and since the convergence (on a neighoborhood of Q) is uniformly continuous with
respect to a3' (while a1 stays away from Q). We deduce that

1
5 Mo (a7, 32) == ho (a7, 2)
uniformly on the compact subsets of
0 0
{(a1,22) € Q% (QUE*Q) a1 = ap} x o €(S)°
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the existence of hq (aJ', ap) being guaranteed by the one of h§ (a$", ay). Using the
definition of hg, and the antisymmetry of fq, (, '), we easily obtain

(o))
- —hg, (a2,a}"),

hQs (3(1)1 ) 332)

(ida)2

O N
1,0
o e = - Nolho (a8

which, given the convergence exchanging the indices 1 and 2, gives that

1
5 hos (a7, ) ~—ha (a7, a)

uniformly on the compact subsets of
0 0
{(a1,22) € (QUAQ)x Q:a; T a} x 05 €(S)°

By Proposition 54, since we have
1
hQ6 (8(1)1 ,a) lE— Vay € 30VQr5n ,
Vext (a2)

we can extend the convergence of % ‘hq, (aj", a2) uniformly on the compact subsets

of 0 0
{(ar,a2) € (QUA*Q) x (QU3E®Q) a1 = ay} x o €(S)?

Hence, we finally obtain the existence of the continuous observables:

Proposition 92. The continuous observables fq, hq, f§, h§ exist on any
finitely-connected domain Q and we have the following conformal oovarian\qe prop-
erties: if ¢ : Q — Q is a conformal mapping, for any branch choice of ¢~ we
have

(o] O. b . [...6 ~ 0 0
fo(ay',a?) = ]|¢7(a1)I'DI¢7(az)If@ ﬂaf, 2; ,
ho (a',a2) = ld-(a1)l - ¢ (a2) - gp N%,éz :
D \li . L Vo= 2s
(g aral ™ = p@)rg el
1 0. .0
hg (al',a1) = a%-wf(anl-hg CEE- Y
x Ly . _
where 3 = ¢ (a), § = ¢(a)- o ,forj €{1,2}. We have the following
antisymmetry property:
fo(al',ay?) = -fa (a3, a}").

Proof. Let us first suppose that Q is smooth. Then for any lattice double-
orientation 01 € (S)Zi7 by Theorem 91, we have t\ylat hq (a3 ,\/az) exists. , For a
general double-orientation 0 € (S)z, we have that 0y = cos9 p;+ sind @ for
some angle 8ﬁ1}d some lattice double-orientations p1, ¢y € (S)% , and hence we can
construct hg aj',- as cosd -hq (af',-) + sind -hq (af", ). If Q is not smooth, we
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can conformally map it by a conformal mapping ¢ to a smooth domain Q. We have
that hg (a3', az) can be constructed by
U | 0 . g
ho(al",a2) = [¢ (a)l- ¢ (&) hy & & ,
U N
where 81 = ¢ (a1), 82 = ¢ (a2) and & = ¢-(a1) o1 /[$p (a1)].
The right hand side does not depend on therl?ranchrchome of ¢F ‘(and such a

branch choice exists by Proposition 47) and hg a3',%, exists since Q is smooth.
By Proposition 47, it is easy to check that we have

ho (89, 85) 15— Vi, €80

Vext (32)
and by expanding near a4, that we have J
o1
hqg (a3', az) ~ :
o(af' @) ~

Hence hg (af",az) and it follows readily from their constructions that the other
observables hS, fo and fg also exist and from the above discussion the conformal
covariance formulae follow.

The antisymmetry of f o for smooth Q follows from the one of the discrete real
fermioinic observable given by Proposition 67, by passing to the limit. For general
domains it follows from the conformal covariance formula. 0

Finally, let us define slightly rephased versions of the observables:

Definition 93. For simply-oriented points y1 ,y22 € Sp, We define the domain
fermion gq by J

O O g_ O O € O
g ¥i'.v® = Giha ¥§.¥8 = %fo yvive

which, as can be easily checked, does not depend on the branch choices of {1 or (5.
The following lemma will be useful to us:

Lemma 94. Let Q be a finitely-connected domain any y1 ,y2 be two simply-
oriented points. Then we have

0 0
(7.2.1) G Yi'V8 = ga y3.YY
Also, we have that
0 O O O

(7.2.2) g Yi'V¢ +da ¥iLyp®
does not depend on (,, that

G 0 o 0
(7.2.3) g Yi.VE * g vioyE

does not d d on {4, that

epend on &, tt D 0 0 0o 0
(7.24)  ga Y5'¥8 +da Yi¥2? +tgo YiYVE tda Vioyo
does not depend on ¢4 or Czﬁ and that .
(7.2.5) 7y o y1 Y2 = da ¥io.Y2

does not depend on (1.

g
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Proof. Equation 7.2.1 follows from the definition of the antisymmetry of f o,
given by Proposition 92, and the definition of gq.

The independence with respect to {2 of the expression 7:2.2 follows from the
definition of gg and the fact that hg y? , y§2 +ho vi',y;5 G2 = ha y? Y2 does
not depend on {y by definition. The independence with respect to {1 of expression
7.2.3 follows from the independence of 7.2.2 and Equation 7.2.1. The independence

of 7.2.4 follows from the independence of
o o 0 0 oo o o 0 0 N

g ¥ViYE +oa Vi ® ¢ g0 vitvE tao vty ©
on {» by expression 7.2.2 and the independence of
0 0 ~ oo o o _ 0 0 _ ~ 0
g ViYE oo vty o+ a0 VLYY tgo vitLys

on {q1. On the other hand, we have
0O O 0 0 o0 0 O O o U o4

o__
_ _ - . 4
Toga ¥iye —%0 Vit = & Gha iy, -0 Gha y %)
sHo_o_ B, B D_0_
= ¢ G Gha yi'y2 —i G Gihg
O (1)? 0 O (0? O
= hg yi’,y2 —i-ha yi’,y2 ,
and hence that the expression 7.2.5 is indeed independent of (. 0

U U U 0
Definition 95. We denote by gg y? Y2 , 90 y1,y§2 . Ga (Y1,Y2) and g3 (y1,
the four functions defined by Equations 7.2.2, 7.2.3, 7.2.4 and 7.2.5 respectively. We
denote by g§ the difference gog = gec.

The following lemma follows from a straightforward computation:

Lemma 96. On the upper half-plane H, we havef

0 . . 0
D(1 Czj .1 G & i i G0G
94 Y13 T - Yt =" —C ,
Y= Y1 Y2= VY1 Y2—Y1 Y2— VY1
0 0 15 2 i 0
< G N
WYY 2m Y2=y1 Y2~ Vi
g | 0 = .0
gH Y1 yc2 = i C__ !
2 21 Y2-Vi Va-vyr
O (Y1, y2) = S
H (Y1, Y2 y——
o (y1.y2) 1
H T2 m(y2 - y1)’

7.3. Continuous general observables

We now define the natural candidates for the scaling limits of general discrete
observables, as in the discrete case, as Pfaffians of the two-point functions defined
in the previous section. Let Q be a domain and let a3',...,a%2" € Dg be doubly-
oriented points. We first define the continuous analogues of the discrete observables
introduced in the previous chapters.
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Definition 97. We define the fermionic matrix Aq (aJ',...,a3*") € My, (R)
by

0 jg ¢ 0
j k : R
0 O § 00 Hfg uxj L X . if X; = X,
Aq X§1,...,X2i)p = fg ngj,XEk if Xj; = Xk and § £ &,
ik H
0 otherwise,

where the continuous two-point fermionic observables fq and f§ are as defined in
the previous section.

Definition 98. We define the continuous (unfused) real fermionic observable
fa(al",...,a3") for distinct points aq,...,an € Q by

fa(al",...,a") = Pfaf (Aq(al",...,a5")).

The following lemma allows us to canonically define the continuous fused fermionic
observable:

Proposition 99. Let Q be a finitely-connected domain and let af",...,a%%" €
Dq be distinct doubly-oriented points. Let eq,...,en € Q\ {ay,...,a2,} be points
and let ¢,...,0n € (S)2 be double orientations. Then the Pfaff an
U U N __\2 N __\2 oo
(7.3.1) Pfaf Aq €f,... e ef,: o) ,...,eS' ) ,a, ..., ayn

is independent of the choices qy,...,Gn and is equal to

MPfaﬂ(XQ(e1,...,em,a?1,...,ag$,")),
O1-...° Opn
where, if we set v = (eq,...,en,a3",...,a%2"), we have
|
Kat= XG0 Xk XEG)
X3 (v) XE) XF(v)
and where X 11 (v), X2 (v),X2"(v),X2%2(v) € My, (C), are defined for j,k €

{1,...,m} by

[l
0 0 HO ifj =k
XG (V) |, = Egg‘)(emq) ifj <k

% (a0 >k
Yo - Cidlee)  ifitk=m
@Ik Sie(ecens) ifjrk=m
0 0 -i-g€(e,q) ifj+k=m
X(2-21(v)Jk = _m 'fJ'

. i Qo (&, €m-j) ifj+k&m
. . 40 ifj =k
F) e = % (en-en-y)  ifj<k

0 (Em-k.em-j) if] >k



where X 13 (v), X2 (v) € M » (C) are defined for j € {1,...m} andk € {1,...,n}
by

0 0

XE)3(V)jk = go(a(k)k,ﬁ),

L 23 0 H X Ok

XQ (V) ik = I'gQ (ak ,em—j),

0
andX31 (v), X3 (v) €My m (C)aredefined by X3! (v) = = X (v)qandxg’)2 (v) =
- X23( v) ' (where T denotes the adjoint matrix) and X33 (v) € M, (C) is defined

by
L . .
a5, 0 E 0 o M=k
XQ(V) g - QQDakka‘ ifj <k
O " do a{fk,aJ ifj > k.

In particular, X q (v) is independent of the branch choices of o4, ..., 0.

Definition 100. We denote by f "1 (29", ... ag2") the continuous (fused)
real fermionic observable defined by the Equation 7. 3 1.

Proof of Proposition 99. To shorten the notation, set

D (Vay ey )
p = e‘,‘ih,_”,egnm,&n ,...,e1 ,a(1)1,.. agﬁ," ’
a = (4---,Gn).
We can rewrite A g (p) in terms of gq and g§, since we have by definition
g 0 \/ETK g 0
fa XEJ XEk = iEH?gQ gJ XEk ,
i
0 0 *’E—k 0 0
fQ XJ@J ,ng = jC ?gg Jﬁj ,ng
J
Let B (q) € Mam+ 2n (C) be the diagonal matrix with
-
HA ¢ if1<j<m

Bjj = Q ign-; ifm+1<j<2m
AN O-om if2m+1<j<2m+2n

0 O
Then we have that B (q)Aq(p)B (q) = Aq(p) . where Aq x§',...,x57¥ e
M2, (C) is defined by

g 0
0 0 s ﬂﬁj do xf” ,xﬁk - if x; & X,
A 3 .
Aq X? X2§)p ik ﬂij gQ XfJ ,ng if Xj = Xk and gj g gk:

0 otherwise.
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Let C (q) € Mm+2n (C) be the matrix defined by
0

(¢} if1sj =ks<m
E—i ifm+1<j=ks< 2m

=i if1<j=2m+1-k<m

-9 ifm+1<j=2m+1-ks<2m
%1 if2Zm+ 1< j=k<2m+ 2n

0 else

Then a straightforward computation, together with the relations of Lemma 94 shows
that we have

C(a)Aa(p)CT(a)= -Xa(er,....em,a9",...,80").
Hence, by the formula Pfaff (Q'RQ) = det (Q) Pfaf (R), we have that
Pfaff (Xq (p)) = det (C (q)) det (B (q)) Pfaff (Aq (p))-

Since we have

VN
3 ... On - O1-...° Oopn

det (B (a)) = -
and .
det (C (q)) = 2" A,
we obtain
Pfaf (Aq(p)) = %Pfaﬂ(xo(a,...,em,aﬁ”,...,agﬁ" ))

7.4. Convergence of general observables

We can now state the main convergence result for the general discrete observ-
ables to the continuous ones, which are defined in the previous section.

Theorem 101. Let Q be a smooth finitely-connected domain with straight
boundary parts 6sQ c 9Q and (Qs)5. , a family of discrete domains discretizing
it. Then for any integers n,m = 0, the renormalized discrete real fermionic observ-
able

(a‘1’1,...,agf1”,e1,...,em)B—>6%-1‘521 """ em](a?ﬂ...,a%")
oonver%% uniformly, as & — 0, on the compact subsets of
(z4,---,Zon s W1, ...,Wp) € (QuosQ)x ...x (QuoQ)x Ox ...Q
. : Dzj 2z, fe&, 9 2k,z S V,k
x (01, 0m) €(9)2 x ... x (97,
where to its continuous counterpart

[e1,..., em] o 0.
fogmi(at, ... a).

O

Proof. This follows directly from Proposition 85, which gives a Pfaffian rep-
resentation of the discrete fermionic observables in terms of two-point observables,
from Theorem 91, which gives convergence of the two-point observable and from
Proposition 99 which allows to define canonically the continuous fused observables
in terms of the continuous two-point observable. O
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The conformal covariance properties and of the fused observable will allow to
prove the conformal covariance of the scaling correlation functions we are interested
in:

Theorem 102. The continuous real fermionic observable f o satisfies the fol-
lowing conformal oovqyianoe properties: for any conformal mapping ¢ : Q — Q and
any branch choice of ¢~ we have

0 00 [
[e1,....em] /501 Oo2ny = [] . O 0 & O 3 [&1,...8m] ]"61 %02n
feel@, ez =0 10 (e)l 10 (@)t fE RIS
j=1 k=1
- . - . _ oo o
whereg = ¢ (g) forallj=1,...,manda; = ¢(a), 0 = — e
Proof. This follows from the Pfaffian representation of Proposition 99 and of
the conformal covariance of the two-point function given by Proposition 92. 0

And the following explicit computation of the observable on the upper half-
plane, together with the conformal covariance result above, allows for the one of
the scaling correlation functions in simply connected domains:

Theorem 103. Let a4,...,an, € R and e,...,en, € H be distinct points.

Then for any choices of double orientations oy, ...,0, € (S)2 such that o = (% )\)2
for eachj = 1,...,2n, we have
f[e1 ..... em] (ao1 a02n ) - im ) Eﬂ 1
H 1 5--280 mrm %2 o

j=1
‘Pfaf (K (e1,...,em,8m,...€1,a1,...,82n)),
where the antisymmetric matrix K (x1,...,X2p) € M2, (C) is defined by
0

1 e =
ifj gk,
K X1y.--3X2p)):ir = X~ Xk
(K¢ 2T ifj = k.
Proof. From Proposition 99, we have that f}[_|e1 """ om ] (a3, ...,a2") equals
0 O
1.2 0 O . D
i—nL ﬁUPfaﬁ“ Xa €,...,en,ay, ..., a8,
j=1
where we have replaced the double orientations 04, ... 0. by the simple orientation
i € S, which is allowed since X does not depend on their branch choices. Using
Lemma 96, straightforward computations give that Xy €1,...,eqn,a4,...,85, Iis

equaltok(e1,...,em,ﬁ,...,é1 La1,...,aZn)7WhereR(X1,...,X2q Oy, ...,Y2r) €
Mog+ 2r (C) is defined by

0 ifj =k

T if1<j,k< 29j =7k
m if1<j<29< k< 29+ 2r
m if1<s ks 29<js<2q+2r
—ﬂ(yjlyk) if2q+ 1< j,k<2q+ 2r,j =k

U U

K (X1v---,X2q ﬂyh---yYZr) ik =

[ [T O
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It is easy to check that
[l . .U
D (2m,2n)Xy e,...,em,a,...,85, D(2m,2n) = K (e1,...,Em,8m,---€1,81,...,82),

where D (2m,2n) € Mym+2n (C) is the diagonal matrix with the 2m first diag-
onal elements equal to 1 and the 2n last ones equal to —i. Using the formula

Pfaf (Q'RQ) = det (Q) Pfaff (R), the result follows. |

7.5. Proofs of the theorems of the introduction

Having established connections between the discrete correlation funnctions of
the introduction and the fused fermionic observables in Chapter 5 and shown their
convergence in Section 7.4, we can now prove the theorems of the introduction.

Proof of Theorem 1. We have that the correlation function {((a4) - ... [(an ))?)
is given in terms of the observables by:

. . b _ /_4\n . n_f(['2a1 ‘‘‘‘‘ a"](X1,...,X2k)
o)y = (-1 [

Indeed, by Proposition 72, if we denote by X135,...,X2k 5 € aQVQg' the medial
vertices of by, ..., bpp we have

O
[@1,5,.-,@n,8] 01,5 02k,5
fo, X150 X5
| )

Eg)bj’é ..... bzk,é) [% (31,5) - %(anyﬁ)] = (_ 1)" .2!’1 .

)
5

fas X3 s Xas
for any branch choice of orientations such that gj 5 is pointing in the inward normal
direction at X 5 (i.e. towards a vertex of dgVq, ) for each j = 1,...,2k. By Theorem
101, we have that .

[@a1,5,...@n,8] 01,5 02k, 5 a
fQG - X1,5""’X%,6 _)f([)1 ----- ](X1,...,X2k)

fQ§ X$1'65,___,X2ik'6§ 5—-0 fQ(X‘];---,XZk)

o

and hence

ElreP29) [ (ay5) +... (5 (an.5)] s (@) T(an))y -

5

By Theorem 102, the right hand side satisfies the claimed conformal covariance
properties. The explicit formula for the half-plane follows from Theorem 103.  []

Proof of Corollary 2. By Proposition 64, we have that
EGC[5(a15) -~ (3(an,0)] = ~EQ: [[6(a1,8) *-- " 5 (an5)]
and hence the result follows from Theorem 1. 0

Proof of Corollary 3. By 0 & — 0 symmetry of the energy density [§, we
have that

Eq: ['s(a15) - " [5(an,5)] = Eq. [[6(a1,5) - (8 (an5)]-
Hence we have

EBg [G(ais) ... 3(ans)] = ES’g [(3(a1,5) " .. [3(an5)]
and the result follows from Theorem 3. Similary, we have

E(b; by ...b5 455, ) (b7 b5 ...b

Qs [3(a1,5) ..~ [3(an,5)] = Eg, Ek”b;k)[%(mj)-...-@(an,é)],

102



which gives

£S5 [ (@) o (@] = ER ) [ (@16) - 3 (@0 o)

and shows the result. 0
Proof of Theorem 5. We have that the correlation function {o (v4) - ... 0 (Vz2n ))f(;ee
is given by
(O(V1) ... O(Van)pee = qinfg(w?,...,wggn).
The conformal covariance of {G(vq) ... -G(VQn))gee follows from the one of fq

given by Theorem 102 and the explicit formula in the upper half-plane follows from
the one given by Theorem 103.

By Proposition 73, if we denote by W1 s,...,Wan 5 € 60VQQ the closest bound-
ary medial vertices to Vi, ..., Van 5, we have
0 ﬂﬁ

EG®[05 (V1,5) - .- 05 (Van 5)] = o %Qé Wi's, oo, Wo2's
for any branch choices of inward-pointing doubly orientations 01, ..., Oy at Wﬁ’jé, e, Wgﬁ"’ 5
By Theorem 101, we have that

1 O O
. 0 o2n  _ o 0O2n
5 fa, W1,15’ o ,sz]’a 6_>—0>fQ (Wq',.o,wn ).

Hence we obtain that

1 f

5 EG%[05 (V4,5) " - .- O5 (Van,5)] 32 O@(vi) ... o (Van )5
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Appendix A: High-Temperature Expansion and
Duality

In this appendix, we give the Proofs of Proposition 63, which is one of the stan-
dard tools of classical statistical mechanics, and of 64, which also relies on classical
arguments — although we were not able to find this statement in the literature.

Proof of Proposition 63

This result, which dates back to Kramers and Wanniers can be found in [Pal07]
for instance. We put it for self-containedness reasons mainly, and also because al-
though standard in classical statistical mechanics, it appears very rarely in proba-
bility.

Proposition (Proposition 63). Consider the Ising model on Qs with free
boundary condition at inverse temperature 3 and denote by Z}{fe its partition func-
tion. Then we have

0
zfree = 2lVas| (cosh ) |Fos| al!,

(J\)ECQ5
where an = tanhfy and |w)| is the number of edges of ). In particular, at the critical
value B; = %In 2+ 1 of B, wehavea, = a = 2- 1. More generally, for
distinct vertices vy,...,von € Vq,, if we denote by nge (v1,--.,Von) the partition
function .
Z8(V1,...,V2n) = Oy, *... Oy, -€& PH()

oe{+ 1)’
we have
[
E
Z%® (v, ..., Van) = 21Vos | (cosh ) /o] al¥l,
WeCag(V1,.--,V2n)

In particular, we have

O

0 o 0

O

lelu/u - a|w|J
h h :

wnglé(w ..... Van) wnglé

ESe[05 (V1) *... " 05 (Van)]

In the critical case B = B, we can rewrite this latter ratio as
Zgé (V1,...,V2n)/ZQB,
where Zq, is as defined in the previous paragraph.
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Proof. For a configuration ¢ € {* 1}VQE , we have

O
exp (- BH (0))

exp (Boxoy)
{x,y>eEq,
O
= (cosh (Boxoy) + sinh (Boxoy))
{x,y>eEq,
O
= (coshB + oxoy sinh (B))
{x,y>eEq,
O
= (cosh B)lEesl (1+ oy, tanh (B)).
{x,y)eEq,

Let us write the expansion of Zg;ee (V4,...,V2n) (the case n = 0 corresponding to
the first statement).

Zg:e(v‘ly--u-,VZn)
O en
= ~ oy -exp(=BH (0))
oe{t1}V0s (=1

0 O
0 @n 0
= (cosh )/l - o, (1+ oxoy tanh (B))

]
oe{s}V0s =1 .y)eEa;

lEo, | 0 @ 0 0
= (coshB)!=%s u o0 ox 0y tanh (B)
oe{t1}Vos (=1 wc Egy (x,y)ew
oag oo oo
lEo, | O gl U @2n 0
= (coshB)!™s tanh (B) ot g, U4 oxoy L.

wc Egy oe{+1}V0s j=1 (x,yrew

For each edge configuration w ¢ Eq,, we ﬁﬁve that iﬁﬁgpin oy with v € Vo, appears
an odd number of times in the product 122 1Oy,

0 O
0 @2n 0
S ooy b Ox Oy

oe{t1}V0os (=1 (x,y)ew

(x.yyew OxOy , the sum

vanishes by symmetry. Hence the only edge configurations for which this sum does
not vanish are those where each 0, appears an even number of time in the above
product. Equivalently, those are the edge configurations w such that each vertex

vV € Vg, \ {Vv1,...,van} belongs to an even number of edges of w and such that
each of the vq,...,Vzn belongs to an odd number of edges of E. This set of edge
conﬁ%lrations is exactly Cq, (V1,...,Von). For each w € Cq; (V1,...,V2n), we have
that (x.y)ew Ox Oy is equal to 1 for each spin configuration 0 € {* 1}V96 and hence
that 0 O
0 G 0
< o,V o, = 2lVas|,
06{11}\/95 j=1 (x,y)ew
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It follows that

Z free (v = o|Vas| |Eas | . |l
05 1y...,Von) = 2" 1 (cosh B) aL

wc C% (V1,eeey Van)
which shows the result. The expression for Egéee [05 (V1) * ... 05 (Vvan)] folllows from
the fact that it is equal to nge (V1,---,Von)/ nge and from the fact that the
prefactor terms simplify. 0

Proof of Proposition 64

We now give the proof of the application of Kramers-Wannier duality to the
energy density field.

Proposition (Proposition 64). Consider both the critical 1sing model on Qj
with locally monochromatic boundary condition and the critical 1sing model on Qs
with free boundary condition. Let eq,...,en € E({5) be distinct edges. Then we
have

EGels(er) .. (s (em)= (- )™ EG, ['s(€) ...~ (& (eh)],

where Jdenotes the locally monochromatic boundary condition with no boundary
changing operators.

In other words, the discrete energy field with free boundary condition is equal
to minus the discrete energy field with locally monochromatic boundary condition.

Proof. Let us denote by B the set {0,1}", equipped with the lexicograph-
ical order. For each b = (by,...,by) € B, let us denote by sp the vector of
signs (1- 2by,...,1— 2by) € {£1}™ and by pp the subset {ey,...,€en} defined as
{g €{er,...,en} : b = 1}. We denote by vo = (1,0) and v4 =ﬁ0, ) the canonical
basis of R% and we denote by (Vb)pep the canonical basis of R? m, where, for
each b € B, vy, is defined by

U,ls
Vo, ®...®Vp, € R? m.
0
Let us define the five vectors x',...,x% € R2D8m by
0 0
] O > O X
X = Eog 5(e") -V,
beB [eepb O
2 . %] . *
x® = Eo; (l5(e)+ W) Vb,
beB eepyp
O 1 essbh ..... e(sb)m
3 - .7 -
X Q Vb,
bep 0 °
a a
. 0 ‘ 0
x¥ = ER® (5(@)*H) v,
beB TGGM
x5 = EE® 5(e) -vo,
beB eepy



\/

where p = TE and the restricted partition functions Zgﬁ") are as defined above.
Let us now define the four matrices A2, A23 A34 A45 € Mon (R) by
0 [l
Al2 10 ®m
(VI ’
Sao1 Hem
AR =% 2 ’
2 2 Derm
A3,4 — 1 1
a a’ ’
0 O
pss - 1 0%
-y 1
It is clementary to check that the product A% -A34-A23 - A12 cquals
0 1 0 Hem
-1
It is hence sufficient to check that
AT = x2
A23x2 = x3
A34x3 = x4
A4,5X4 - X5,
to obtain that
free - b 1D
E05 [Q(e1)Q(Qn)] - X (1,..,1)
= ()" xS

(- ™ EE, [s(e]) - s (ep)],

which is the desired result.

The claims A "2x" = x? and A*®x* = x5 can easily be proven by induction on
m and by expanding the products in x? and x5 (note that the matrices A2 and
A %5 are inverse of each other).

For the claim A23x? = x3, notice that x? can be rewritten as

s "Vb
beB Zas

as can be checked readily, since [3(€") = 1 on Zgi } and [3(e) = —1on Zg:_}

for each edge e € Ep, and that hence

g 0
1 m 5 5
1 -1 '

From there the claim follows, since A 23 is the inverse of that matrix.
For the claim A%4x3 = x# notice that for each edge e = {y,z) € Eq,, we can

}

.. e L. e
add e to any configuration in Zgﬁ } and remove € to each configuration in Zg_ 7,
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hence obtaining a configuration in Cq; (Y, z), and that this realizes a bijection be-
tween Cq, and Co, (Y, z). For b € B, by Proposition 63, if we denote by e, ..., e,

the edges in py, we have
g Pb " . 0

k0 0 0

Eg?e O % e‘j = i O ulwlL
=1 Zq,
i weCay (Y1,21,--,Yk 12k )

and from thE above observ%tion, it follows that

¥ oo m 0
ZQBEHEW 5 e 0 = alwl
i=1 weCay(Y1.21,-.Yk .2k )
0 O U .
= a i=1Si alwl
(31 ----- Sk)e{i' 1}k es1 ..... eSk
(»ECQ6 1 k
O o O
= a J'k=1 S qlel
..... m +1}m 1 eSm
(s1,....,sm )e{£ 1} wTeci e
O |k {e Sm
_ P e
= o i=t1 ZQ§
(S1,0--s Sm)e{t 1}™
= A34y3
which shows the claim. O
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Appendix B: Winding Phases

In this appendix, we give the proofs of Propositions 67 and 68.

Proof of Proposition 67.

Let us first recall the statement of Proposition 67 (Section 5.2), which guaran-
tees the well-definedness of the observable.

Proposition (Proposition 67). Let aj',...,a32" € Dqp be doubly-oriented
medial vertices. Then for each configuration w € Cq, (a3",...,a%" ), the winding
phases ®(Y1,...,Yn,01,...,02n) and @(V4,...,¥n,01,...,02,) Of any two admissi-
ble choices of walks on w are the same.

We denote by ¢ (w, 01, ...,02,) the winding phase of w defined as the winding
phase of its admissible choices of walks. The winding phase is antisymmetric with
respect to the permutations of the indices {1, ...,2n}.

Proof. We can assume that aq, ..., az, are midpoints of horizontal edges and
that 04,...,00n are equal to (1)2: indeed, the oriented winding phase of an admis-
sible walk is always an odd multiple of T, all the admissible choices of walks use the
same half-edges, and the possible ambiguities depending on the choices of walks in
a configurations w € Cy, are caused by the vertices in Vg, that belong to four edges
or half-edges of w. 0 0
To each configuration Cy, a(11)2, .. ,a(21n)2 , we add the 2n half-edges h4,...,hyy €
Ho,, withh; = (g, )forj €{1,...,2n}, yielding a configuration in Co, (b1, ..., bpn).
Clearly, any admissible choice of walks can be extended by adding these 2n half-
edges and we define naturally the winding phase of any choice of walks on Cq, (b1, Ep bon )

2
as the winding phase of the corresponding choice of walks on Co, a(11) - 13(2:1)

and denote it also by @. We denote by Gy, (br,...,bpn) € CGo, (b1, ..., 1pn) the set
of configurations w € Cq, (b, ...,bpn) such that we have {bx, b + d) € w for each

2 2
k €{1,...,2n} (which is in bijection with Cq; aﬂ” . ..,a(21n) ).
Let us first prove the n = 2 case:

Lemma 104. Let w e Cy, (by,bp) be a configuration with by, b, € Vq,. Then for
any two admissible extended walks v,V : by U by, we have ¢(y) = ¢(V).

Proof of Lemma 104. The idea is to construct a bijection between edge con-
figurations of Cq, (b1, bp) and “twisted” spin configurations, such that for any ad-
missible walk, its winding phase is represented as a local observable of this spin

configuration. Let us denote by © the space
0 g [ oo

pesS p e tep -~ (arg(v- b+ arg(v- b))
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and by ©, the subspace {p € O :arg(py,) = 0} (where arg denotes the principal
determination of the argument). To each configuration w € Gy, (b1, bp), we associate
the configuration (p(w),) € O, , such that

veVg,

U u
le p(w), p(w), >0 == W) Ew Vv,w)eEq;.

It is easy to see that this determines uniquely p(w) € ©, and that such configura-
tion always exists. Denote by y1,...,yL € Eb and y1,...,¥; € E}) as the sequence

of the edges of y and ¥ when going along them from by to by, by I4,...,IL € VQ%
and |1 e |~ € VQ6 the sequence of the dual vertices on the left of yq,...,y. and
¥1,..., ¥ respectively, by is,...,iL € Vg, and ~i1, - ~||_ € Vg, the initial vertices
of y4,...,yL € Vng and V1,...,¥; € Vng, and finally by my,...,m_ € Vng and
my,...,Mp € Vle the midpoints of the edges y4,...,yL and ¥4,...,¥;. As can
easily be checked by induction, we have
0 O
ce p(w),_, p(w), > 0
0 0
e p(wy_ p(wy > 0
. g 0
for each j € {2,...,L} and each j € 2,... ,L_ . Frorun there, we can show by
induction that for eachj € {1,...,L} andj € 1,... L, we have
U ¢ U

&p - iim(vlo,J,- )0l m Juim, ;1 (48rg(¢ = br) + darg (¢ - b))

p(w), = p(w), exp Q_ij o (Qarg (T - by + darg({ - b)) ,
0 . ’ O
exp -3 ; m 5,1(darg(¢ - by) + darg(g - bz))
p((,\))—lj~ = p((JJ)~|1 2 E( [1 J] [ Jj ]

exp 2 [i1,m1]ulmq,l4] (darg(C b1) + darg(C bZ))

where the integration variable is ¢ and where y [0,j — 1] and ¥ O,j~ -1 denote the
j and | first edges of y and ¥ (viewed as paths from by to ij and from by to iy ) and
where for X,y € C, [X,y] c C denotes the straight segment between them. We have

used that |1 m1,l1 = i1, My, |y In particular, when evaluating at j = L andj =
we obtain
o 0
exp 2 yulic,me Ju[me, |L](darg(< - by) + darg(C - b))
p(w)y, = p(w), &,
&P =} mopuimt) (42rG(C = br) + darg({~ b))
[l O
exp - (darg(¢ - by) + darg(C - b))
p(UJ)b1 _ p(UJ)'|1 2 yulic,meJulme 1] 0
&P ~5 i (darg (g = by) + darg({ - b))
where we have used that TE , m; ,Nll: = i.,m.,IL Now, let us notice any non-self

crossing path y* : x4 0 X2 with X1,X2 € Vo, and y* ¢ Eq,, we have
(darg(¢ - x4) + darg({ - x2)) = w(y),
v
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as can be shown by induction on the length of y* (or using argument’s principle).
Hence we finally obtain

] . ]
. i . p(w) &xp 2 ['L mg Ju[me, |L](darg(< b1)+ darg(< bZ))
ep —ow(y) = +—=8
P (W), expm 5 o motm, 11 (429 (C = br) + darg (g - bz»m
T oW &P 5 o i (dArG(C - by) + darg (- b))
exp -ow(y) = = =N
P(Who, exp =5 1 o ime (d@rg(C = by) + darg({ - by))
which is the desired result, since
0J i 0
o(y) = exp —EW(v) ,
O 0

o) = ep -zw ()

a
Lemma 105. Let we Gy, (b1, ..., bpy) bea configuration with by, ..., by € Vg, .
Then for any admissible choice of extended walks y1, ..., Yyn, the phase
(P(Yh---aVn)

is antisymmetric with respect to indices permutations of by, ..., bp,.

Proof of Lemma 105. It is sufficient to check this for the transpositions k «
k+ 1 for each k €{1,3,...,2n} (with the indices taked modulo 2n). If b and by 1
are linked by one of the walks y;, then the orientation ofy; is reversed under the
change of indices and since w (y;) is an odd multiple of T, the winding phase is
multiplied by — 1. If this bx and b+ ¢ are not linked, then the walks y4,...,yn are
unchanged, but the parity of the crossing number ¢c(y1,...,Yn) is changed, so the
winding phase is multiplied by — 1. 0

Let we Gy, (br, ..., bpn) be a configuration. It is easy to see that any choice of
admissible walks is determined by prescribing a “turn left” or “turn right” q, € {I,r}
rule at each of the vertices v € Vq,: fix a set of such rules (q,),, and start from
by and follow the edges and apply the rule whenever we arrive at a vertex where
there is an ambiguity (that is, a vertex that belongs to four edges or half-edges
of w), until the walk arrives to an other medial vertex in {by,...,bpn}, then take
the unvisited medial vertex in {by,...,bpn} with the smallest index and follow the
rules, and so on. Let (q,), be a set of rules y1,...,Yn be an admissible choice of
walks following (q,),. Let V € Vo, be an arbitrary vertex and denote by (&), the
set of rules (q,), modified at ¥ and let be ¥1,...,¥n be the admissible choice of
walks determined by (§,). We have to show that

(P(Yh---aYn): (P(Vh---aVn)-

If the connection diagram induced by V1, ..., ¥n is the same as the one by y1, ..., Yn,
then the result follows from the n = 2 case: we have that y1 : b, 0 b, and
Y1 :b, O b, are two admissible choices of walks on W®Yy2 ®...®Y, € Cﬁ; (b,,b,)
and hence o . 0 0o . 0

| | -
exp 5 w(y1) = exp 2 w (V1)
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So suppose it is not the case. Then we can suppose (by changing the indices of the
walks) that we have yq1 Uy = ¥4 U¥2 and that Yo b, O b, Y2 ! b, 0 b, and ¥4 :
b|1 0 th V2 blz 0 qz where (iq,t4,i2,t2) & iq,t4,i2,t2 . Since @(Y1,...,¥n)
and @(V1, ..., ¥n) are both antisymmetric with respect to permutation of the indices
of by,..., by we can suppose that i1 = 1, t1 = 2,ip = 3, to = 4. Then we have to
show that
W (y1) + w(y2) = w (Y1) + w(V2) (mod 4m)
if the pair partition of {1,...,4} induced by ¥1 and ¥ is planar and

w (Y1) + w(y2) = w (Y1) + w (¥2) + 2 (mod 4m)

otherwise: in that case we have ¥ : by 0 by and 2 : by [0 by. By exchanging if
necessary the indices of by and by, we can assume that we are in the first case, since
the winding numbers of the admissible walks on w are odd multiple of Tr.

So, in that case we have 1 : by [J by and Y2 : by [J bz, where ¥ is obtained by
following y¢ from by to V and then following y2 from V to by and ¥2 is obtained by
following y4 backwards from by, to V and then following y2 backwards from V to bs.
We hence have

w (Y1) = W (¥2) = W (y1) + w (y2) + 2 (mod 4m),

the 21 difference coming from the fact that y1,y2 both turn left (thus contributing
for Tmto w (y1) + w (y2)) or right (thus contributing for —to w (y1) + w (y2)) at ¥
and that in these respective cases, ¥4 turns right and ¥ left ¥ (thus contributing for
—mto w (V1) — w (¥2)) or the converse (thus contributing for T to w (Y1) — w (¥2)).
Using that the winding numbers of the admissible walks on w are odd multiple of
T, we finally obtain the result. 0

Proof of Proposition 68

Let us now give the proof of Proposition 68, which allows to show that the
winding phase of a configuration with boundary points is independent of the con-
figuration, and which is used later to factor the winding phase out of the observables
and to use them to derive probabilistic observations about the model. Let us first
recall its statement:

Proposition (Proposition 68). Let aq,...,a € aOVan be boundary medial
vertices such that each connected component of dQ5 contains an even number of
a'sletandoq,...,0n € (S)2 be inward-pointing double orientations at ay, ..., azn .
Then for each w e Gy, (8", ...,a%" ), the winding phase ¢ (w) is the same.

Proof. It is easy to see that we can suppose that aq,...,az, are horizontal
boundary medial vertices and that 04,...,0n = (1)2. Then, the proposition follows
from the following lemma, which defines the continuous version of the winding
phase. The small difference that the discrete domains are only piecewise smooth
and the paths not self-avoiding but only non-self-crossing plays no role. 0

Lemma 106. For any piecewise smooth path y : [0,1] — C, let us define its
winding number w (y) as -

1
. darg(y (1)),
where y denotes the time derivative of y and the integration variable is t.
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Let Q c C be a smooth domain and let a4,...,a;, € dQ be boundary points
such that on each connected component of 9Q there are an even number of a;’s and
such that 9Q is vertical near each of the points a4,...,as, and such that Q is on
the right side of dQ near those points. Let us call admissible collection of paths a
ocollection y1,...,yn : [0,1] — Q of simple, mutually avoiding paths linking pairwise
the points a4, ...,ax, withy; {0} = a, andy; {1} = &, such that 1; < 1; for each
j €{1,...,n}, withy,(0),...,yn (0)> O0and y{(1),...,yn (1) < 0.

For each admissible collection vy, ..., yn, let us define @(y1,...,yn) by

0 0
j "
QY1 oa¥n) = (C N e -5 w(y)
j=1

where (- 1)°V1¥n) is the crossing signature of the pair partition of {1,...,2n}
induced by the paths yq,...,yn.

Then for any two admissible collections of paths y4,...,yn and y1,...¥n, we
have that

(P(Yh---,Yn): (P(Vh---,Vn)-

Proof of Lemma 106. Let us show the claim by induction on the number of

points.

For n = 1, it is easy to see by planarity that we have

g i 0 U i U
exp —ow(yi) =exp - (w(@a)+m

where d{a, is the counterclockwise arc of dQ between as and a.

Let us show the claim for n =2 2, supposing it true for n— 1. Since @ (y1,...,Yn)
and @(V1,...,¥n) are both antisymmetric with respect to the permutations of the
indices {1,...,2n}, by exactly the same arguments as the ones used in Lemma 105,

we can assume that asn- ¢ and ap, are on the same connected component of dQ
and that the counterclockwise arc between az,- 1 and az, does not contain any of

the points ay, ..., axn-2. By reordering the paths yq,...,Yn and y1,...,¥n, we can
assume that ap, is the endpoint of both y, and y,. From yq,...,V¥n, let us define
an admissible collection of paths y;r, o ,VI _ 4 linking pairwise @y, ..., azn-2 in the

following way:

o If y, links azn-1 and ap,, we define VI,...,VI_1 as Y1,.-.,Yn-1. By
planarity, we have that
- i . . i 0o 0
exp ‘EW(Yn) = exp 5 W aghk1azy + T
Taking into account the crossing signature, we obtain
ot P o
® Vi Vnoq = &P W axbqdn  @(Vr,...,Vn).

» If yy links @, to a2, and yi links a,, to az,-1, and 1x < 1, we define
y;r,...,y;r_1 as V1,..-»Yk=1,Yk+1,--->¥Yn-1,Y", where y* is obtained by
following first yi from a,, to agn- 1, making a 77/ 2 turn, following the coun-
terclockwise arc aghl- 1ag2, of 9Q between az,- 1 and az,, making another
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T/ 2 turn and finally following y, backwards from ap, to a,, . Modulo 41,
we have that

w(y")

0 0
W (Yk) + T+ W agh 1azn _Wu(Vn)
W (Yk) + W (Yn)+ W axlqax, + 3m,

since W (Yn) is an odd multiple of 1. Since we have

we obtain
0 ST
0] Y1,---,YI—1 = exp EW aZW—132n (P(Vh---vYn)-

If yn links @, to az, and yk links a,, to agn-1 with 15 < 1, we define
y;r,...,y;r_1 as Y1, Yk=1,Yk+1,--->Yn-1,Y", where y* is obtained by
following first y, from a,, to azn, making — 1/ 2 turn, following the clock-
wise arc of 0Q between ap, and agh- 1, making another =1/ 2 turn and
following yx backwards from agn-1 to a,, . Moﬂdulo 411, we have that

w(y") W (Yn) - T—w azw-1aan- w (Yk)
- ]W(Vn)"'"*'W agh-1an + W (Yk),

since W aghl 182y is a multiple of 21 and W (yx) an odd multiple of
1. Taking into account the crossing signature (which is unchanged), we
obtain

0 [i 0
¢ VI,---,YI-1 = exp oW ak1an  Q@(Y1,...,¥n)-

We proceed similary to define admissible paths \"(;r, ceey \"(I_1 linking a4,...,a2n-2

from V1, ...

, ¥n such that we have

0 0 Li[ e

(P v:]r:--.vv:{—’] =exp éw a2@—132n (P(Vh---yVn)-

By the above considerations and the induction hypothesis, we obtain

P F O 0

O(Vi,--.¥a) = &P -~ oW aglidn @ Vi...Vi-g
O
e = ot
= exp _EW an-1a2n @ Yq,.o-,Vn-q
= (P(Vh---:Vn)a
which is the desired result. O

114



Appendix C: Pfaffian for Spin Correlation

As a short by-product of our analysis of the discrete observables, let us give the
following discrete proposition, that can be of independent interest. Our proof use
discrete complex analysis and hence only works in the critical temperature, but it
seems that they can be generalized without too much trouble at other temperatures,
using massive fermionic observables.

Proposition 107. Consider the critical Ising model on a simply connected

discrete domain Qs with free boundary condition and let vq,...,v2, € doVq, be
boundary vertices enumerated in counterclockwise order. Then we have that
EGC[0v, * ... 0w, 1 = Pfaff (Zos)l,

where Zg, € M2, (R) is given by
0

ifj =k

BO rrog oo e

(ZQB)J- EEree Oy, Oy, . ifj <Kk,
EfLe oy, Oy, ifj > k.

Proof. By Proposition 73, we have, if we denote by Wy, ...,Wz, € 60VQ%n the
closest boundary medial vertices to V4, ..., Vo,, for any choice of inward-pointing
double orientations O4,...,0n at Vq,...,V2n

1
EG[oy, *... Oy, 1= o If Qs (W', ..., w32")|,
where a =  2- 1 as usual.

Let us chooqﬂ the br an@l chocies of the double orientations 0¢, ..., Opn in such
a way that fq W Wo',:11 > 0 foreachj € {1,...,2n - 1}, Wthh]lS poqmbl

since by Proposmon 68, the winding phase of all conﬁgul ations in Co, w WOJ "

is the same.

It is @by to beﬁ}thdt since the points are in counterclockwise order, this implies
that fq, WJ WPk > Sfor eac}hj ke{1,...,2n} withj < k: we (Em constrUﬁt a
configuration UJE Co; W WK by W) &. @Uq( 1, where w € Co, W/ ,Wlof11 for
eachl €{j,...,k— 1}, and it is easy to see that ¢ (w, g, 0) is positive, and again b}j
Proposition 68, the winding phase @ (+, 0;, 0 ) of all con@guratloﬁs in Cq, V\h?’ Wi 0
is also positive. By Proposition 73, we obtain that f g WJ WPk = 1 Efree Oy, Oy,
for each j < k. By Proposition 84, we have that

fas (W', ...,w3) = Pfaf (Aq, (WS',...,w2")),

where Lf [W.OJ' WOkD it =k
(AQs(W$1’-"1Wgﬁn))jk= 0 17k ifj - ,
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Hence, the result follows readily.
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