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Abstract- The goal of this study is to assess the possibility of accurate on-line instantaneous velocity 
estimation in swimming. Having an on-line tool, coaches could provide immediate feedback about 
performance to trainees. More importantly, by on-line monitoring of velocity anomaly in open-water 
swimming, the safety of events can be significantly improved. We have previously introduced a method, 
using a wearable IMU, to estimate swimming instantaneous velocity, though information about pool 
length and a complete lap data were needed to correct the integration drift of IMU signals. In the 
present study, we used our previous algorithm for cycle’s mean velocity estimation, as a criterion for 
drift correction in instantaneous velocity estimation without the knowledge about pool length. Using a 
simple within-cycle linear drift model, the relative error of the algorithm tested on 8 swimmers is 
0.1±15.4%.  As a result, the instantaneous velocity is available at the end of every cycle.
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1. INTRODUCTION

Performance monitoring is a crucial task for elite athletes during both training and competition. Velocity is the 
key parameter of performance in swimming. Assessment of instantaneous swimming velocity has a twofold 
importance. First, it has been shown that intra-cycle velocity variation is a predictor of swimming energy 
expenditure [2]. Second, coaches can utilize the instantaneous velocity profile to design individually tailored 
allocation training i.e. how much time and distance should be dedicated to different actions in one swimming 
lap to optimize a swimmer’s performance [3].  However, swimming performance evaluation remains immature 
due to the complexities of measurements in water [4]. The use of inertial measurement units (IMUs) in the 
aquatic environment turns out to be a viable option to study the swimming biomechanics [5, 6]. 
Using a single sacrum worn IMU in [1], we estimated the instantaneous velocity of front-crawl. We used a 
simple biomechanical constraint of front-crawl along with the change detection theory for piecewise modeling 
of velocity drift. This drift attenuation method induced an offset to the velocity profile. The velocity curve 
offset could be corrected in post-processing using the pool length. The method is accurate, though an on-line 
monitoring of instantaneous velocity cannot be carried out directly. In open-water swimming, athletes might 
require urgent medical care due to uncontrolled environmental conditions or adverse medical states. An on-line 
assessment of anomalies in the velocity pattern could immensely improve open-water swimming safety.  
In the present work, we propose a solution for an on-line estimation of swimming instantaneous velocity using 
an IMU. We proposed to further developed the Gaussian process framework described in [7] to estimate the 
mean velocity at every swimming cycle, independent of knowing the pool length. We use the estimation of 
cycle’s mean velocity to correct the instantaneous velocity drift for the corresponding cycle. We validated the 
accuracy of the proposed method through statistical analysis and comparison with a reference system. 

2. MATERIAL AND METHODS

On-line Velocity Drift Correction Algorithm 
The proposed velocity drift correction algorithm is carried out in two main steps at every cycle. First, we 
employ the estimation of orientation (using angular velocity data) to find acceleration and accordingly velocity 
in the global frame of study. This operation involves a drifted velocity pattern due to sensor inherent noises [1]. 
In the second step, using a linear drift model we correct the velocity profile as illustrated in Fig. 1 (a). 
Suppose we have the average velocity of cycle k denoted by . Suppose also that the start and end times of the 
same cycle are given by  and  respectively. We show initial velocity of the cycle by  and assume that 
due to a linear drift pattern the cycle average velocity has been changed by a value of  as in (1): 

(1)
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Figure 1.  (a) Illustration of drift modeling based on value of error on cycle mean velocity, . (b) Block 
diagram of the proposed on-line instantaneous velocity estimation algoritm. 

Therefore, , the slope of the linear drift can be calculated by (2): 

(2)

where the initial condition is , by starting the trials from a motionless period. In order to estimate the 
average velocity, , we used the method described in [7]. This consists extracting at every cycle, the relevant 
acceleration features and apply a Gaussian Process to estimate . Besides, as illustrated in Fig. 1(b), the 
drifted instantaneous velocity of the cycle, , has been estimated by applying the strap-down integration of 
kinematic signals. By applying the correction model (2) to , the instantaneous velocity, , has been 
estimated. Finally, the initial condition for cycle k+1 is determined as .

Data Collection Protocol and Measurement System 

Eight well-trained swimmers (2 female, 177.3±10.6 cm, 68.6±11.3 kg, 18.4±5.0 years) participated in the 
study. The experimental procedure was approved by the Ethics Committee of the Faculty of Biology and 
Medicine, University of Lausanne (protocol # 87/10) and followed the Declaration of Helsinki. Each swimmer 
performed four 25 m front-crawl trials consecutively from 70% to 100% of their personal maximum speed 
(considering their actual 100m record) by starting in water with a push off on the wall.  

As the reference system, we used a tethered speedometer (SpeedRT®, ApLab, Italy, 100 Hz) that was attached 
to the waist of swimmers with a belt. A resistance of 5N was applied to keep the nylon line tight via a clutch on 
the pulley compartment of the apparatus. The swimmers were equipped with a waterproofed IMU (Physilog® 
III, GaitUP, Switzerland, 3D-accelerometer ±11 g, 3D gyroscope ±900 °/s, embedded data logger, 100 Hz). 
The IMU was worn on the sacrum inside the pocket of the swimming suit.

Statistical Analysis
We reported the total error of the algorithm as the RMS of difference between the estimated and reference 
instantaneous velocity curves over all trials of all participants. The RMS error was also calculated for each 
trial of the participants, separately. A Friedman test [8] (to consider the repeated measures) was used to 
investigate the existence of a significant difference in the RMS error medians for the four trials (significance 
level: p<0.05). Relative accuracy and precision at each trial have been assessed as the mean and standard 
deviation of instantaneous error normalized by the average velocity of the trial.  

3. RESULTS

Fig. 2(a) shows compares the instantaneous velocity of a swimmer obtained based on the proposed algorithm 
with the reference velocity over a single trial of 25 m. The RMS error of estimation is 19.2 cm/s corresponding 
to overall relative error of 0.1±15.4%. Fig. 2(b) represents the RMS estimation error for four trials. The 
Friedman test did not show any significant difference between median value of RMS error as a function of 
trials (p>0.74). Fig. 2(c) shows that except for subject 4, the relative error of trials is generally smaller than 
average relative error. 

4. DISCUSSION

The presented algorithm extends our earlier works in [1] and [7] to an on-line estimation of instantaneous 
velocity. The results show that a reliable on-line instantaneous velocity estimation is possible when the average 
estimation of cycle velocity (according to [7]) is used to rectify the drift of IMU strap-down operation.  
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Figure 2.  (a) An example of proposed on-line instantaneous velocity method vs reference system. (b) RMS 
error of estimation for all subjects at four trials. (c) Absolute relative error (absolute value of relative error 
mean plus relative error standard  deviation) of estimation represented at four trials for every subject.

Nevertheless, the estimation error is larger than that of proposed in [1] (RMS error: 11.3 cm/s). Two sources 
for this difference can be considered. Firstly, the error of estimating mean velocity using Gaussian process 
regression [7] propagates to the slope estimation in (2). Secondly, an even more important error can originate 
from the assumption of linear drift during one cycle according to (1). As demonstrated in Fig. 2(a) the linear 
drift model cannot follow the changes of velocity, specifically in the beginning of the trial when a swimmer 
glides (with pushing off the pool’s wall). A path to fix this problem is by identifying the family of functions 
(polynomial, hyperbolic, etc.) that best represents the difference between the drifted velocity (Fig. 1(a)) and the 
reference cycle velocity. Such a modeling approach could be realistic since strap-down integration of IMU is 
bounded by using the cycle mean velocity as a constraint.
The system allows coaches to individualize training program by observing minute details of performance at 
different intensities. On top of that, reviewing the USA Triathlon Fatality Incidents data from 2003 to 2011 
period, shows that 30 out of 43 athlete fatalities, recorded during race events, occurred during the swim leg [9]. 
On-line monitoring of swimming velocity is thus required to reveal any anomalies in the swimmer's 
performance in order to improve open-water swimming safety. 
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