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I The effects of decoherence on polariton Feshbach resonance  
 
Feshbach resonance and pump-probe delay dependence 

 
In order to show that the polaritonic Feshbach resonance only persists during the polariton 

coherence time and disappears with the decoherence of the system, we performed the 
experiments as a function of the delay between pump and probe pulses. Positive (negative) delay 
means that the pump (probe) arrives first.  

In Figure S1 below we show the energy shift (upper panel) and absorption (lower panel) 
of the polariton resonance as a function of cavity detuning for different delays. The results 
obtained at zero, negative and positive delays are shown together to highlight the disappearance 
of the Feshbach resonance with decoherence at positive delay and its gradual decrease in 
coherent regime at negative delay.  

 
Let us now explain in detail our experiments and our findings: 
In the negative delay configuration, the pump-probe signal only exists for delays within the 

coherence time of the system. Then the pump-probe signal decays together with coherence and 
therefore with delay. It is important to point out the significance of the experiments at negative 
delays, in which we only probe the coherent effects. 

We plot in Figure S1a the energy shift of the polariton resonance as a function of cavity 
detuning for zero, -1.5 ps and -3 ps negative delays. The resonance behaviour clearly appears 
for zero delay, as the result already presented in Figure 2a in the manuscript. As expected the 
amplitude of the shifts decreases with the increase of the negative delay. In Figure S1b, we plot 
the absorption strength of the polariton resonance as function of cavity detuning at zero, -1.5 ps 
and -3 ps negative delays. Here also we clearly see the decrease of the signal when the delay is 
increased. However it is important to point out that the resonance features (although decaying) 
are always present. 

 
With these experiments we demonstrate that the polaritonic Feshbach resonance persists 

during the coherence time of the polariton system.  
At positive delays the pump pulse arrives first and the pump-probe signal exists during the 

lifetime of the population even if the system loses its coherence. Therefore, in this configuration, 
the pump-probe signal exhibit features related to coherent and incoherent effects.  

We plot in Figure S1c the polariton resonance energy shift and in Figure S1d the 
absorption as a function of cavity detuning obtained at zero, 1.5 ps and 3 ps positive delays. We 
show the polaritonic Feshbach resonance features at zero delay in which polaritons are in full 
coherent regime. 
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Figure S1 Energy shifts (upper panel) and absorption ln(Pref/Ppump-probe) (lower panel) of the lower polariton 
resonance as a function of cavity detuning for different pump-probe delays. Zero, 1.5 ps and 3ps negative 
(positive) delays correspond respectively to circle, triangle and square full (empty) markers. Pref and Ppump-probe 
respectively represent the amplitude of lower polariton resonance without and with pump excitation. Feshbach 
resonance in full coherent regime at zero delay. (a and b) Negative pump-probe delays and the persistence 
of Feshbach resonance in coherent regime: The signal decreases with coherence and therefore with delay. 
(c and d) Positive pump-probe delays and the disappearance of Feshbach resonance in incoherent regime: 
The energy shift resonance feature disappears with decoherence therefore with delay. However the 
absorption persists in incoherent regime due to the presence of polariton population. 

 
 

Upon increasing the delay, incoherent effects take place bringing a destruction of the 
resonance feature. Indeed the dispersive shape energy shift, characteristic of the Feshbach 
resonance is definitely washed out. Moreover, contrary to the results at negative delays the 
absorption variation of the polariton resonance persists for positive delays due to the presence of 
the polariton population. 
 

As a conclusion, measurements performed at negative and positive delays give an 
unambiguous proof of Feshbach resonance as a coherent effect:  

(i) The Feshbach resonance characteristic features both for the energy shift and the 
amplitude of the absorption evolve with coherence at negative delay. 

(ii) Decoherence kills Feshbach resonance. This is clearly demonstrated with the 
disappearance of the resonance feature in the energy shift for positive delays. Because a real 
population is created at positive delays, the absorption persists manifesting the presence of 
incoherent population effects. 

 
Both results together evidence that incoherence prevents polaritonic Feshbach 

resonance. 
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II Background interactions of anti-parallel spin polaritons 
 

There are several possible interaction mechanisms that may contribute to the background 
interactions. We can mention indirect scattering through dark exciton states [26, 31], and also 
through excited exciton states [32], exciton-exciton scattering continuum correlations [33], which 
are attractive. Repulsive interactions such as Van-der-Waals and electrostatic interactions [26] 
could also contribute. However it is very difficult to determine their relative contributions in the 
overall energy shift as shown by the different models that can be found in the literature [26, 31, 
32, 33, and references therein].  

We use a phenomenological model in which the background interaction and the biexciton-
exciton interaction are two independent constants. Our experimental observations (energy shift 
and absorption) can only be reproduced using a background interaction constant with a fixed 
negative value without changing other parameters except the density of polaritons (Figure 2 and 
3 in the paper). In addition, neither null nor positive background constant allow to reproduce our 
data even by trying to adjust the value of the biexciton-exciton coupling gBX constant. 

Here background interaction and biexciton-exciton interaction play a very different role to 
the Feshbach effect. The biexciton-exciton interaction allows to reproduce the two main effects of 
the Feshbach resonance namely the strong absorption and the change of the magnitude and of 
the sign of the energy shift (see Figure S2). The background interaction only acts as an offset of 
the energy shift – which is negative - as illustrated on Figure S2. 
 

 
Figure S2 Effect of the background interaction constant as a fitting parameter on data shown in Figure 
2 (in the paper). Upper panel Energy shifts of the pump-probe spectrum and lower panel, ln(Pref/Ppump-probe) 
as a function of cavity detuning. Blue circles are experimental results, orange and black lines stand for 
numerical simulations with and without polariton-biexciton coupling respectively. (a,d), (b,e) and (c,f) show the 
effect of different values of Ubg on the orange fitting curve. 
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III Origin of the coupling term in the Feshbach resonance 
 

Different transitions between polariton and biexciton could be observed through 
pump/probe experiments. First, the direct transition from a polariton to the biexciton state as 
reported by Borri et al. [19]. Second, the direct coupling between an exciton and a cavity photon 
to reach the biexciton state. This process is at the origin of the oscillator strength transfer from 
excitons to biexcitons reported in [20].  

 
Setting the two anti-parallel polariton spin state in resonance with the biexciton gives rise 

to the polaritonic Feshbach resonance. Our Feshbach resonance observation is defined in the 
framework of the “bipolariton model” [23, 24]. Note that in our model, the polariton-biexciton 
coupling constant gBX describes the anti-parallel spin exciton+exciton coupling to biexciton. This 
effect is induced by the Coulomb interaction of excitons. The Feshbach resonance could also be 
described in the framework of another model the “giant oscillator strength model” [24, 18]. In this 
model the coupling term is B, which refers to the photon+exciton coupling to biexciton. 

 
To highlight all pathways allowing to couple to biexcitons, we have included in our 

“bipolariton model”, in addition to the gBX coupling, the coupling term B.  This model Hamiltonian 
is then rewritten as: 
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In terms of the 3*3 matrix, after mean field approximation the Hamiltonian is the following: 
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Here nC (nx) corresponds to the photonic (excitonic) density generated by the pump 

beam. In addition, we have introduced a phase term between the two couplings gBX and B 
required to generalize the model. 

 
Let us now detail the respective significance of the couplings gBX and B in the Feshbach 

resonance process. 
 
First, in Figure S3a and b (Figure 2a and b in the paper), we show that the experimental 

results are very well reproduced by our model, when we set B=0 and consider the gBX coupling 
as the unique active mechanism in the polaritonic Feshbach resonance. Second, in Figure S3c 
and d, we now set gBX=0 and then we present the results of model when the B coupling term is 
the only responsible for the effect. This model also reproduces the experimental results 
reasonably well at resonance, but the shape of the absorption feature deviates for both very 
negative and positive detuning. These results enlighten that indeed both terms are giving rise to 
a Feshbach resonance, however our experimental observation favors the Coulomb term gBX 
coupling over the giant oscillator coupling. 
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Figure S3 Comparison between the gBX exciton+exciton to biexciton and B exciton+ photon to 
biexciton processes. Both coupling terms reproduce the resonance features. All other parameters are same 
as in the paper. 

 
In order to examine more precisely the model, we now compare our experimental results 

with the theoretical curves obtained by using the same value for both coupling terms gBX and B 
(Figure S4), we only change the phase term . In Figure S4a it is clearly shown that, when setting 
=0, both pathways cancel, and no resonance is observed in the theoretical results. Conversely, 
for phases set either to /2 and  the theory plots recover the Feshbach resonance (Figures S4b 
and c). However, again it deviates for both negative and positive detuning in the absorption feature 
due to the contribution of the B coupling. 

  

 
Figure S4 Same values for the gBX exciton+exciton to biexciton and exciton+photon to biexciton (B) 
processes and different phases. The resonance feature can be reproduced for phases differing from zero. 
All other parameters are same as in the paper except Ubg=-0.06𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛0 . 
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This general model enlightens that different combination of parameters and phase 
relations between the coupling terms are reasonably able to describe the resonance features. 
However, as the phase value cannot be determined a priori within this generalized model, we 
cannot obtain, with the limited information available, a precise determination of all parameters. In 
particular, each term alone gives a reasonable account of the experimental results. The lesser 
quality of the fit when considering only the polariton-biexciton coupling through the term B, 
although it gives rise to a nice Feshbach resonance, brings us to favor the bipolariton model with 
the Coulomb term gBX as unique polariton-biexciton coupling. This gives us the best fit to our 
Feshbach resonance results. 
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