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1
Introduction

Positron Emission Tomography (PET) [7, 10, 13] is a medical diagnostic tech-
nique that enables a physician to study blood flow in and metabolic activity in an
organ in a visual manner (see Figure 1.1). This technique, introduced by David

Figure 1.1: Whole-body
PET scan of a woman in
the context of a tumor
diagnosis: besides normal
accumulation of the tracer
in the heart, bladder,
kidneys and brain, liver
metastases of a colorectal
tumor are clearly visible
within the abdominal
region of the image.
Source: [19].

Khul in the late 1950s, has since become a very cen-
tral visualization tool in various fields of medicine:
oncology, neuroimaging, cardiology, pharmacokinet-
ics... PET scans of brains of people suffering from
schizophrenia have for example revealed very distinc-
tive metabolic patterns associated with this disorder.
The study of these metabolic portraits suggested new
treatment strategies and facilitated the diagnosis of
this disease. A more detailed discussion on the subject
as well as on the numerous other possible applications
of PET imagery can be found in [10].

As many noninvasive techniques, positron emis-
sion tomography belongs to the vast family of
reconstruction problems: the metabolic activity
is not directly observed, but inferred from the
action of probes on the organ of interest. More specifically, a bio-
chemical metabolite labeled with a positron emitting radioactive substance
is introduced into the organ of interest and the radioactive emissions

Figure 1.2: Image of a typical
PET facility. Source: [20].

are then counted1 using a PET scanner (machine
consisting in possibly many rings of detectors sur-
rounding the patient’s body; see Figure 1.2). The
choice of the biochemical and radioactive tracer
strongly depends on the organ of interest: for ex-
ample, labeled glucose is often used in PET scans
of the brain, as glucose is the primary source of
energy of the brain.

Then, recovering the metabolic activity of an
organ based on the scanner records is an instance

1In reality, we cannot directly count the radioactive emissions, we can only record gamma rays
emanating from the encounter between a positron and an electron.
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of an inverse problem [3, 5, 6], and as such is very sensitive to the mathematical
algorithm chosen for the reconstruction process: in mathematical terms, we face
an ill-posed problem. In this report, we take inspiration from the physics of PET
to design a mathematical model tailored to the problem. We think of positron
emissions as an output of an indirectly observed Poisson process and formulate
the link between the emissions and the scanner records through the Radon
transform. This model allows us to express the image reconstruction in terms of
a standard problem in statistical estimation from incomplete data. Then, we
investigate different algorithms as well as stopping criterion, and compare their
relative efficiency.

In all this report we will consider the brain as the organ to be studied.

1 The Physics of PET
This short introduction to the physics of PET follows the one presented in [7].
The idea of PET is the following: as primary source of the brain’s energy, glucoseWe give in this section a

slightly more detailed
description of the physics of
PET. A better comprehension
of the underlying physical
phenomenon will in fact be
very useful while elaborating
the mathematical model.

will concentrate in the various regions of the brain in quantities proportional to
the brain’s metabolic activity. Then, if we label this glucose with a radioactive
substance, the positron emissions will also be directly proportional to the glucose
consumption and therefore to the brain’s metabolic activity. Thus, if we were
able to record the locations of each emission, we could produce a portrait of the
brain’s metabolic activity.

Unfortunately, we cannot identify the exact location of positron emissions. How-
ever, we can determine a cylindrical volume in which the emission occurred. In
fact, when a positron is emitted, it quickly annihilates with an electron, naturally
present in the brain’s medium. This annihilation generates two gamma rays,
flying off in nearly opposite random directions. Therefore, by positioning a
ring of scintillation detectors around the head of the patient, one can detect
those gamma rays, that hit in coincidence a pair of detectors (see Figure 1.3).
This pair of detector defines then a cylindrical volume (to be referred to as a
detector tube), which provides us with a partial information on the location of

Figure 1.3: The physics
of PET. Glucose is labeled
with a radioactive tracer,
and deposited in the brain
in quantities proportional
to the glucose
consumption. When a
positron is emitted, it
quickly annihilates with an
electron. This annihilation
generates two gamma rays,
which are detected in
coincidence by a pair of
scintillation detectors.
Adapted from [15].
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the positron emission. During a PET acquisition, the scanner will record each of
these coincidences and count the total number of them for each detector tube.





2
Preliminary Concepts

1 Basic Theory of Point Processes
Most of the material presented in this section is inspired from the sections I.1
and II.7 of [1], from which we selected only results relevant to the context of
PET. In this chapter, we first

provide some basic results on
point processes and Poisson
processes. Then, we present
briefly the Radon transform,
that we show to be of central
importance in positron
emission tomography.

A point process on a space S is a stochastic rule for the occurrence and position
of point events. Those are ideal models for the study of random samples

X1, X2, . . . , X
⇠

,

where X1, X2, X3, . . . are independent, identically distributed (i.i.d.) random
elements in the state space S, and ⇠ is a random sample size independent of
the X

i

’s. Let (x1, . . . , x
k

) be a realization of such a random sample. Then, the
examination of this observation can be carried out by counting the number of of
points in subsets B of S . This leads to the concept of point measures.

Example 1.1 We have represented on Figure 2.1 earthquakes in the Pacific
ocean, for a period spanning from February 2014 to March 2014. A model
based on point processes could be proposed to calculate the probability of
a certain number of events within a specific subarea of the state space. In
this particular case, the state space is multi-dimensional (five dimensions:
longitude, latitude, depth,magnitude and time of occurrence). ⌅

Figure 2.1: Earthquakes
of magnitude greater than
2.5 from February 2014 to
March 2014, in the Pacific
Ocean. Circles’ size
indicates the magnitude of
the earthquakes, while the
color indicates the depth of
the epicenter (Data
collected by [17]).



10 Preliminary Concepts

1.1 Point Measures
We endow the state space S with a �-field B. Let (x1, . . . , x

k

) be an outcome of
the random experiment previously described. Then, we propose to representAn output (x1, ..., xk) of a

random sample can be
represented by a point
measure.

the observed points x
i

by a discrete measure µ on the �-field B, that we call a
point measure:

Definition 1.1 — Point Measure. Let {x
i

: i 2 I} ⇢ S a countable set of points
and B a �-field on S. Then, the following discrete measure µ on B is called a point

measure:
µ =

X

i2I
✏
xi ,

where ✏
x

(B) := 1
B

(x), 8B 2 B, a Dirac measure with mass 1 at x. The space of

point measures on B is denoted by

M = M(S,B).
Remark 1.1 If I = ; then µ is the null measure (that is, µ(B) = 0, 8B 2 B).

Since µ is a Borel-measure, we can identify it with (µ(B))

B2B,Point measures µ can be
identified with their
truncations on the borel sets
B 2 B. Point processes will
inherit this useful property,
which will simplify their
study.

µ(B) =

X

i2I
✏
xi(B).

This legitimates the introduction of the projection mapping:

⇡
B

:

(
M ! N [ {1},
µ 7! µ(B).

Then, M(S,B) is endowed with the �-field M(S,B) such that the projections ⇡
B

,
B 2 B are measurable.

1.2 Point Processes
Point measures extend naturally to point processes, which are simply randomPoint processes are random

point measures. point measures on (S,B):
Definition 1.2 — Point Processes. Let (⌦,F ,P) be a probability space. Then, we
call a point process on (S,B) a measurable mapping:

N :

(
(⌦,F) ! (M(S,B),M(S,B)),
! 7! N!.

As point processes are random analogs of point measures, we would like
to be able to manipulate them in the same fashion. To this end, we introduce
the mapping N(B) = ⇡

B

�N , composition of the projection ⇡
B

and the point
process N :
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N(B) :

(
⌦ ! N [ {1},
! 7! N!

(B).

Vocabulary 1.1 We call the mapping N(B) a one-dimensional marginal of N with
index B 2 B.

The following criterion provides us with the desired identification of a point A point process can be
identified with its
one-dimensional marginals.
See section I.1 of [1] for a
proof of Criterion 1.1.

process with its one-dimensional marginals:

Criterion 1.1 The following two assertions are equivalent:
• N : ⌦ ! M is a point process,
• N(B) : ⌦ ! N [ {1} is (F ,P(N [ {1}))� measurable for each B 2 B

(with P(N [ {1}) the power set).

Before continuing our developments, we present simple but yet fundamental
examples of point processes.

Example 1.2 — Fundamental point processes. Let X1, X2, X3, . . . be i.i.d.
random variables from ⌦ to S .

• Empirical Processes: This collection of random variables can be repre-
sented by the following point process (where the information about the
order of appearance is lost) :

N
n

=

nX

i=1

✏
Xi .

From the Criterion 1.1 we can affirm that N
n

is indeed a point process as
N

n

(B) =

P
n

i=1 1
B

(X
i

) is obviously measurable. Moreover, we observe
that N

n

(B) is binomial for every B 2 B.
• Mixed empirical processes: We now consider a random sample size ⇠,

independent from the X
i

. Then, the following point process is called a
mixed empirical point process :

N =

⇠X

i=1

✏
Xi .

One more time, we can invoke Criterion 1.1 to verify that this is indeed
a point process.

⌅

We now have a useful characterization of a point process in terms of its one-
dimensional marginals. However, in a modeling context, we are interested in
the distribution of a point process, in order to compute probabilities of events of
interest.

The following theorem, uniquely determines the distribution of a point process
by its finite dimensional marginals.
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The distribution of a point
process can be seen as the
collection of probabilities
{N(B1) = n1, ..., N(Bk) = nk}

for all possible choices of Borel
sets B1, ..., Bk 2 B and all
k 2 N. See section I.1 of [1]
for a proof of Theorem 1.2.

Theorem 1.2 — Uniqueness Theorem. Let N0 and N1 be point processes on
(S,B). The following two assertions are equivalent:

• N0
d

= N1,
• For every k 2 N and B1, . . . , B

k

2 B:

(N0(B1), . . . , N0(B
k

))

d

= (N1(B1), . . . , N1(B
k

)),

where d

= denotes the equality in distribution.

Finally, we wish to design summary features of a point process. Point pro-
cesses being random by essence, it is natural to consider the expected value
of these random measures. This leads to the concept of intensity measure (or
mean measure):

Definition 1.3 Let N be a point process on (S,B). The intensity measure ⇤ of N
is defined by the expectations:

⇤(B) = EN(B), 8B 2 B.
⇤(B) is the expected number of observations in B.

It is quite easy to show that ⇤ is indeed a measure, convincing ourselves
about the legitimity of the appellation. In the Euclidean case where S = Rk and
B = [b1, x1[⇥ · · ·⇥ [b

k

, x
k

[, then the intensity (or density) of ⇤ (provided that ⇤
is absolutely continuous), is given by the derivative:

�(x1, . . . , x
k

) =

@k

⇤(B)

@x1 · · · @x
k

.

Even if there is no one-to-one correspondence between distributions of point
processes and their intensity measure, we can still notice that two point processes
with the same distribution will have the same intensity measure. The converse,Intensity measures play a key

role in the characterization of
point processes, role that will
even strengthen up in the
particular case of Poisson
processes

which does not hold for general point processes, will appear to be true in the
special case of Poisson processes, where we will be able to fully characterize the
distribution of a Poisson process by the knowledge of its intensity measure.

We finish this section by presenting the computation of the intensity measures
of the two point processes introduced in Example 1.2:

Example 1.3 — Intensity measures. The intensity measure of an empirical
process is given by

⇤(B) = nP{X1 2 B}, 8B 2 B.
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For a mixed empirical process, the intensity measure is given by

⇤(B) = EN(B) = E [E [N(B)|⇠]] =
1X

m=1

E

"
mX

i=1

✏
Xi(B)

���⇠ = m

#
P{⇠ = m},

= P(X1 2 B)

1X

m=1

mP{⇠ = m} = P(X1 2 B)E⇠.

⌅

1.3 Poisson Processes
We introduce here the Poisson process with a finite intensity measure (⇤(B) <
1 8B 2 B), which plays a similar central role as the Gaussian distribution. In
fact, in some situations, Poisson processes arise as the limit of many sequences
of point processes. Therefore, in applications involving point processes models, For a Poisson process, the

number of points in a given
subset follows a Poisson
distribution, and the number
of points occurring in
separate subsets are mutually
independent. Therefore,
Poisson processes are ideal
candidate models for random
scatter. However, there are
physical phenomena for which
Poisson processes appear to be
poor models (e.g. phenomena
where there is a natural
spacing or clustering).

we often restrict our attention to the class of Poisson processes for the estimation
of the underlying stochastic process.

In our context, it is even more legitimate to restrict our attention to the Poisson
process, as it can be shown that the positron emission process is a Poisson
process.

Definition 1.4 — Poisson Process. Let ⇤ be a finite measure (⇤(B) < 1 8B 2
B). A point process N : ⌦ ! M(S,B) is a Poisson process if the following
properties are satisfied:

• For every B 2 B,
N(B)

d⇠ Poisson(⇤(B)),

with Poisson(⇤(B)) the Poisson distribution with parameter ⇤(B) � 0.
Recall that a discrete random variable X 2 R is said to have a Poisson distribu-
tion with parameter � � 0 if its density function is given by

P{X = k} =

e���k

k!
, k 2 N,

with the convention 0

0
= 1 when � = k = 0.

• For every k 2 N, and all disjoint sets B1, . . . , B
k

2 B, the random variables
N(B1), . . . , N(B

k

) are independent.

Remark 1.2 Observe that ⇤(B) is the intensity measure of N . In fact, from the
definition of a Poisson process and well-known properties of the Poisson distribution
we have EN(B) = ⇤(B), 8B 2 B. Moreover, from Criterion 1.1 and the above
definition, it is straightforward to see that Poisson processes with equal finite intensity
measure ⇤ are equal in distribution.

Poisson processes can be explicitly represented using mixed empirical pro-
cesses introduced in Example 1.2. More precisely, the Poisson process may be
seen as a mixed empirical process with the sample size ⇠ being a Poisson random
variable.
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Proposition 1.3 — Construction of Poisson Processes. An explicit representation
of a Poisson Process N on (S,B) with finite intensity measure ⇤ is given by

N =

⇠X

i=1

✏
Xi ,

where ⇠, X1, X2, X3, . . . are independent random variables such that
• ⇠

d⇠ P(⇤(S)),
• X

i

d⇠ ⇤/⇤(S), 8i 2 N.
We can show that the point process defined above is indeed a Poisson process

with intensity measure ⇤ but we will not provide the proof here.

Example 1.4 — Homogeneous Poisson Process. Let ⇤ = cµ with c 2 R+

and µ the Lebesgue measure. Then the homogeneous Poisson process on
[0, T ] is obtained by N =

P
⇠

i=1 ✏Xi , where ⇠
d⇠ P(cT ), and X

i

d⇠ U(0, T ). ⌅

1.4 Indirectly Observed Poisson Processes
Assume we are interested in a Poisson process N1 =

P
⇠

i=1 ✏Xi , in some space
(S,B), with ⇠ and the X

i

s as in Proposition 1.3. Imagine now that only indirect
information on this Poisson process is available to us, through another Pois-In the context of positron

emission tomography, we do
not directly observe the
positron emission process: we
register impacts of gamma
rays on the detectors
resulting from the encounter
of a positron with an electron,
naturally present in the brain
medium. This is an indirect
observation of the stochastic
process, leading to the
concept of indirectly observed
Poisson processes.

son process N2 =

P
⇠

i=1 ✏Yi in a measurable space (T , C), where Y1, Y2, . . . are
independent and identically distributed random variables such that

P
Y

=

Z

S

K(x)dP
X

(x), (2.1)

with K : (S,B) ! (M(T , C),M(T , C)) a Markov kernel:

Definition 1.5 — Markov Kernel. Let (S,B) and (T , C) be two measurable spaces.
A Markov Kernel with source (S,B) and target (T , C) is a map

K :

(
(S,B) ! M(T , C),
x 7! K(x),

that associates to each point x 2 S a probability measure K(x) 2 M(T , C) such that
8C 2 C, the map x 7! K(x)(C) is measurable with respect to the �-algebra B.

Then, from Example 1.3 and (2.1), we obtain

⇤2 = E⇠P
Y

,=

Z

S

K(x)E⇠dP
X

(x),=

Z

S

K(x)d⇤1(x), (2.2)

where ⇤1 and ⇤2 are the respective mean measures of N1 and N2. If we assume
existence of densities for ⇤1,⇤2 and K(x), we can re-express (2.2) in terms of
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densities
�2(y) =

Z

S

k(y;x)�1(x)dx,

with �1,�2 the respective densities of ⇤1 and ⇤2, and k(·;x) the density of K(x).
From this, we see that the kernel k also relates the intensities of the two Poisson
processes. In such a case, we call N1 an indirectly observed Poisson process.

2 Introduction to the Radon Transform
The main results presented in this section are adapted from the Chapters 1,2, 3
and 5 of [2]. We recommend an interested reader to consult this reference for a
much more detailed discussion on the Radon transform and its properties, as
well as its relationships with the Fourier transform and other classical transforms.

The problem of estimating the density of an indirectly observed Poisson
process is a special instance of a larger class of problems, called reconstruction
problems. These problems all share a common framework: we are interested in PET is a reconstruction

problem: we wish to
determine the internal
structure of an object without
dissecting or damaging it.
Then, we use internal or
external probes that act on the
object, providing a collection
of profiles of it, from which we
seek to estimate properties of
interest of the object. The
appropriate unifying
framework for this type of
problems is the Radon
transform.

some internal distribution of an object (in our case the intensity map of the brain’s

Figure 2.2: Internal distribution and
two profiles. Each profile is a
projection of the internal distribution
(see Vocabulary 2.1 for a rigorous
definition).

metabolic activity) that we cannot directly ac-
cess, often to avoid damaging the object. But
we can still act on the latter with probes (X-
rays, gamma rays, micro-waves...), whose ac-
tion provides a projection or profile of the dis-
tribution of interest (see Figure 2.2). Then, the
problem is to recover the internal distribution
based on a collection of such profiles. The
Radon transform is then a convenient mathe-
matical tool that encapsulates most of the re-
construction problems in the same framework.
This operator, denoted by R, maps the dis-
tribution of interest (approximated by some

density function f ) to the projected distribution, or profile ˇf :

ˇf = Rf.

The Radon transform can be thought of as the formal mathematical represen-
tation of the action of the probe onto the distribution (see Figure 2.3).

Figure 2.3: Schematic
illustration of the
mathematical framework.
The internal distribution is
approximated by a
function f , the profile by a
function f̌ , and the action
of the probe is modeled by
the Radon transform, that
maps f to f̌ .
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2.1 Definition of the Radon Transform
Two dimensions
Let (x, y) 2 R2 , and consider an arbitrary function f defined on some domainWe will first define the Radon

transform in the two
dimensional case. We will
propose different equivalent
definitions: the first one, more
intuitive, will help us having
a better geometrical
understanding of the
transform, while the second, a
bit more formal, will appear
to be particularly well suited
to generalize the transform to
higher dimensions in a
straightforward manner.

D ⇢ R2. If we call L ⇢ R2 any line in the plane, then the mapping defined by the
projection or line integral of f along all possible lines L is the (two-dimensional)

Figure 2.4: Different
parametrizations of a line L in the
domain D. The distance p to the
origin is allowed to take negative
values, and � 2 [0,⇡].

Radon transform of f provided the integral exists.
Then, depending on the chosen parametriza-

tion of the line L, the explicit definition of the
transform will take different form. A first natural
parametrization for L is

L = {(x, y) 2 R2
: xcos(�) + ysin(�) = p},

with1 p the distance of the line to the origin, and
� the angle between the x-axis and the unit vector
⇠ normal to the line (see Figure 2.4). Then, the
Radon transform ˇf depends on the values of p
and �:

ˇf(p,�) =

Z

L

f(x, y)dl. (2.3)

Using the fact that a point v = (x, y) 2 L admits
the parametrization v = p⇠ + t⇠?, with t 2 R and
⇠ = (cos(�), sin(�)) , we can re-write (2.3) in a
more explicit form:

ˇf(p,�) =

Z 1

�1
f (pcos(�)� tsin(�), psin(�) + tcos(�)) dt.

If ˇf(p,�) is known for each p and �, then ˇf = Rf is the two-dimensional
Radon transform of f . When ˇf is only known for certain values of p and � ,In practice, because of the

discrete nature of the
detectors, we only have access
to a sample of the Radon
transform.

then we say that ˇf is a sample of the Radon transform.

Vocabulary 2.1 — Profile. Suppose that � = �0 is held constant as p varies. Then,
the points (p,�0) define a line on the half-cylinder [0,⇡]⇥] �1,1[. For each point
along this line, we associate a real number ˇf

�0(p) =
ˇf(p,�0). Then, the set of points

ˇf
�0(p) is called a profile of the function f (see Figure 2.2 and 2.5b).

Vocabulary 2.2 — Sinogram. In medical imagery, we call sinogram the intensity
map of the raw data ˇf(p,�) collected by the detectors (see Figure 2.5a).

Alternatively, we could also choose another parametrization for the line L.
Let ⇠ and p be as in Figure 2.4. Then, we can express L as:

L = {x 2 R2
: p� ⇠ · x = 0}.

Using the Dirac delta function �(·), we can then write the Radon transform as

1in this report, to conform with the convention used in the Matlab function radon, we allow p

to take negative values and constrain � to the range [0,⇡].
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Figure 2.5: Example of a
sinogram and the
associated profile for
� = 90�.

an integral over R2:

ˇf(p, ⇠) =

Z

R2
f(x)�(p� ⇠ · x)dx. (2.4)

Higher dimensions
The generalization of (2.4) to higher dimensions is simply obtained by letting x

and ⇠ lie in Rn. We obtain the following definition:

Definition 2.1 — Extension of the Radon transform to Rn. Let x 2 Rn and
⇠ 2 Sn�1, with Sn�1 the n � 1 dimensional generalized unit sphere. Let also
f : Rn ! R be an arbitrary function and p 2 R. Then, the (n-dimensional) Radon

transform of f, designated by ˇf , is obtained by integrating f over each hyperplane
in the space, provided the integral exists. We note then ˇf = Rf and we can express
ˇf in the explicit form:

ˇf :

(
R ⇥ Sn�1 ! R,

(p, ⇠) 7! R
Rn f(x)�(p� ⇠ · x)dx,

with �(·) the Dirac delta function.

Remark 2.1 The geometrical interpretation developed in the two dimensional case can
be extended to Rn: the parameter p is the perpendicular distance from the origin to the
hyperplane and the unit vector ⇠ defines the orientation of the hyperplane.

We conclude this section by presenting the explicit calculation of the Radon
transform of the two-dimensional Gaussian distribution.
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Example 2.1 — Gaussian distribution. Let f(x, y) = e�⇡(x2+y

2), 8(x, y) 2 R2.
Then,

ˇf(p, ⇠) =

Z 1

1

Z 1

1
e�⇡(x2+y

2)�(p� ⇠1x� ⇠2y)dxdy, (2.5)

with ⇠ = (⇠1, ⇠2) a unit vector. Then, we perform the following orthogonal
transformation:

✓
u
v

◆
=

✓
⇠1 ⇠2
�⇠2 ⇠1

◆✓
x
y

◆
.

We note that the columns of the matrix are respectively ⇠? and ⇠, two unit
vectors perpendicular to each other. Therefore, the transformation is indeed
orthogonal, and thus u2 + v2 = x2 + v2. Moreover, in this new basis, the
equation of the line L = {(x, y) 2 R2

: ⇠1x + ⇠2y = p} becomes simply:
L = {(u, v) 2 R2

: u = p} (see Figure 2.4) . Therefore, following this change of
variable, (2.5) becomes:

ˇf(p, ⇠) =

Z 1

1

Z 1

1
e�⇡(u2+v

2)�(p� u)dudv,

= e�⇡p

2
Z 1

1
e�⇡v

2
dv = e�⇡p

2
,

where in the last step we performed the change of variable
p
⇡v = t and the

well known result
R1
1 e�t

2
dt =

p
⇡. Hence, we have: R{e�⇡(x2+y

2)} = e�⇡p

2

(see Figure 2.6). ⌅

Figure 2.6: The Gaussian
distribution and its Radon
transform.
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2.2 Basic Properties of the Radon Transform
Several elementary properties can be derived directly from the definition of the In this section, we continue

our investigation of the
Radon transform and present
some of its basic properties.
We will use all of these
properties to compute the
Radon transform of a test
distribution, that will serve
later as a reference to verify
the correctness of our discrete
Radon transform procedure.

Radon transform. In all that follows, the functions are assumed smooth enough
so that all the quantities involved exist.
Proposition 2.1 — Linearity. Let f and g be two functions and ↵,� 2 R. Then, the
Radon transform is linear:

R{↵f + �g} = ↵Rf + �Rg.

⌅ Proof 2.1 We have R{↵f + �g} =

R
(↵f(x) + �g(x)) �(p� ⇠ ·x)dx = ↵ ˇf + �ǧ, which

proves the result.
⌅

Proposition 2.2 — Transform of a linear transformation. Let f be a function, x 2
Rn and A 2 Rn⇥n an invertible matrix. Let (p, ⇠) 2 R ⇥ Sn�1. Then we have:

R{f(Ax)} =

|det(B)|
kBT ⇠k

ˇf

✓
p

kBT ⇠k ,
BT ⇠

kBT ⇠k
◆
,

with B := A�1.
⌅ Proof 2.2 By definition, we have:

R{f(Ax)} =

Z
f(Ax)�(p� ⇠ · x)dx. (2.6)

With the change of variable y = Ax and by defining B := A�1, (2.6) becomes

R{f(Ax)} = |det(B)|
Z

f(y)�(p� ⇠ ·By)dy,

= |det(B)|
Z

f(y)�(p�BT ⇠ · y)dy. (2.7)

It would be tempting to conclude from (2.7) that R{f(Ax)} = |det(B)| ˇf(p,BT ⇠). Unfor-
tunately, BT ⇠ is not a unit vector in general, so we have to normalize it in order to avoid
violating the domain of definition of ˇf (see Definition 2.1). To this end, we introduce the
following change of variables: kBT ⇠ky = v. Then, (2.7) becomes

R{f(Ax)} =

|det(B)|
kBT ⇠kn

Z
f(kBT ⇠k�1

v)�

✓
p� BT ⇠

kBT ⇠k · v
◆
dv. (2.8)

Let H0 be the hyperplane H0 = span( BT ⇠
kBT ⇠k )

? and H = H0 + p BT ⇠
kBT ⇠k the translated

hyperplane selected by the Dirac delta function in (2.8). If H0 = {h1, . . . ,hn�1} is a
basis of H0, then any v 2 H can be written as

v = p
BT ⇠

kBT ⇠k +

n�1X

i=1

↵ihi, ↵ := (↵1, . . . ,↵n�1) 2 Rn�1.

Then, we can express explicitly (2.8) as

R{f(Ax)} =

|det(B)|
kBT ⇠kn

Z

Rn�1

f

 
p

kBT ⇠k
BT ⇠

kBT ⇠k +

n�1X

i=1

↵i

kBT ⇠khi

!
d↵.
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Finally, with the change of variables � = ↵/kBT ⇠k, we obtain

R{f(Ax)} =

|det(B)|
kBT ⇠k

Z

Rn�1

f

 
p

kBT ⇠k
BT ⇠

kBT ⇠k +

n�1X

i=1

�ihi

!
d�,

=

|det(B)|
kBT ⇠k

Z
f(v)�

✓
p

kBT ⇠k � BT ⇠

kBT ⇠k · v
◆
dv,

=

|det(B)|
kBT ⇠k

ˇf

✓
p

kBT ⇠k ,
BT ⇠

kBT ⇠k
◆
,

which is the desired result. ⌅

Proposition 2.3 — Shifting property. Let x,a 2 Rn and f a function. Then, the
Radon transform of the shifted function f(x� a) is given by

R{f(x� a)} =

ˇf(p� ⇠ · a, ⇠),

with (p, ⇠) 2 R ⇥ Sn�1.
⌅ Proof 2.3 R{f(x� a)} =

R
f(x� a)�(p� ⇠ · x)dx =

R
f(y)�(p� ⇠ · a� ⇠ · x). ⌅The explicit computation of

the Radon transform of the
characteristic function of an
ellipse will be very useful as
the phantom image on which
we will test our algorithms
later will be composed of
ellipses.

Example 2.2 — Radon transform of the characteristic function of an ellipse.
Consider the function f : R2 ! R defined by

f(x, y) =

(
1,

�
x�x0
a

�2
+

�
y�y0
b

�2  1,

0, otherwise,

with a, b 2 R⇤
+. We are interested in finding the Radon transform of this func-

tion. For this, we observe first that the Radon transform of the characteristic
function u(x, y) of a unit circle centered at the origin is simply the length of a
chord at a distance p from the center, given by

ǔ(p,�) =

(
2

p
1� p2, |p| < 1,

0, otherwise.

Consider now the linear transformation defined by the matrix A:

A =

✓
1
a

0

0

1
b

◆
.

Then, with x = (x, y), we have: u(Ax) = e(x), where e(x, y) is the characteris-
tic function of the ellipse implicitly defined by: {(x, y) 2 R2

:

�
x

a

�2
+

�
y

b

�2  1}.
Then, using the Proposition 2.2, we can express the Radon transform of e as:

ě(p,�) =
|det(B)|
kBT ⇠k ǔ

✓
p

kBT ⇠k ,
BT ⇠

kBT ⇠k
◆
,

=

(
2ab
s

q
1� �p

s

�2
,
��p
s

�� < 1,

0, otherwise,
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where s =
q
a2cos2(�) + b2sin2

(�) and B := A�1. Finally, as f(x, y) = e(x�
x0, y � y0) we conclude by invoking Proposition 2.3 with a = (x0, y0)

T . We
obtain:

ˇf(p,�) =

(
2ab
s

q
1� �p�p0

s

�2
,
��p�p0

s

�� < 1,

0, otherwise,
(2.9)

where s =
q
a2cos2(�) + b2sin2

(�) and p0 = x0cos(�) + y0sin(�). ⌅
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(c) Radon transform. We can observe that the Radon transform is the sum of
the four Radon transforms.

Figure 2.7: The Radon
transform of a sum of
ellipses’ characteristic
functions.

In Figure 2.7, we use this result together with the linearity of the Radon transform
to compute the Radon transform of the sum of four ellipses’ characteristic
functions. Each characteristic function have been rescaled by a factor directly
proportional to the grayscale image on Figure 2.7a.
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2.3 Inversion of the Radon Transform

Interestingly enough, an inversion formula for the Radon transform depends on
the parity of the ambient space’s dimension. Therefore, it will be convenient toThe problem we are facing is

an inverse problem: we want
to recover an internal
distribution f from its Radon
transform f̌ , the only
quantity we have access to.
For this problem to admit a
unique solution, it would be
desirable that the Radon
transform be an invertible
operator.

consider the inversion formula in two parts, depending on wether Rn is odd or
even. A detailed demonstration of the inversion formula is not in the scope of
this work, and an interested reader can find more details in the Chapter 5 of [2].
In all that follows, we assume that the functions are smooth enough so that all
the quantities involved have a well-defined meaning.

Theorem 2.4 — Inversion formula. Let f : Rn ! R be a smooth enough
function (let’s say C1 with compact support), and ˇf its Radon transform:
ˇf = Rf . Then, with the same notations as before, �

x

the Laplacian operator,
and C

n

:=

1
2(2⇡i)

�(n�1),we have
• Odd dimension (n � 3):

f(x) = C
n

�

(n�1)/2
x

Z

|⇠|=1

ˇf (⇠ · x, ⇠) d⇠, 8x 2 Rn, (2.10)

• Even dimension (n � 2):

f(x) =
C
n

i⇡

Z

|⇠|=1

Z 1

�1

⇣
@

@p

⌘
n�1

ˇf (p, ⇠)

p� ⇠ · x dp d⇠, 8x 2 Rn. (2.11)

Remark 2.2 It is interesting to note that the inversion problem is changing of nature
depending on the evenness of the dimension. Indeed, for n � 3 odd we see in (2.10)
that the problem is local, in the sense that we only need to know the Radon transform
ˇf for p = ⇠ · x (i.e. on planes that go through x). On the other hand, for n � 2 even,
we see in (2.11) that the knowledge of ˇf for p = ⇠ · x is not sufficient anymore: the
problem becomes global as we integrate ˇf for all p 2 R (i.e. for all planes) . Considering
this intriguing behavior, one could argue on the physical admissibility of the Radon
transform to model the action of the probes onto the distribution of interest. However, as
surprising as this phenomenon might be, there are examples of physical problems that
behave in the same fashion: on page 80 of [Evans] a similar behavior is noticed for the
solution of the wave equation. Therefore, despite its exotic behavior, the Radon transform
might still be a legitimate framework for reconstruction problems.As every inverse problem, the

PET reconstruction problem
is intrinsically ill-posed.
Therefore, we have to expect
instabilities in practice,
complicating the task of
reconstructing the metabolic
activity from the sinogram.

Remark 2.3 The inversibility of the Radon transform means that if we were able to
measure ˇf with an infinite precision, then we could exactly recover f . Unfortunately in
practice we cannot reach arbitrary precision in measurements.

If the invertibility of the Radon transform is a necessary condition for the
feasibility of our reconstruction problem, it is unfortunately not sufficient to
ensure the well-posedness of it. As a matter of fact, the study of the singu-
lar value decomposition of the Radon transform made by Johnstone et al. [9]
and Natterer [3] reveals that the reconstruction problem is a midly ill-posed
problem: the spectrum of the Radon transform operator decays polynomially.
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This rather gentle ill-posedness at the continuous level could worsen a lot
during the discretization2 of the problem, resulting in a numerically badly
behaved problem.

3 The EM Algorithm
In this section, we follow the approach of the Chapter 1 of [4], which outlines
a unified and complete treatment of the theory and methodology of the EM In this section, we describe

the so-called EM algorithm, a
general-purpose algorithm for
maximum likelihood
estimation. This algorithm is
applicable in a wide variety of
situations, referred to as
incomplete-data problems.
We will see that the PET
reconstruction problem can be
expressed as such.

algorithm and its extensions, as well as applications. The EM algorithm, or the
expectation-maximization algorithm is one of the most important algorithm
in modern statistics, as it allows to conveniently compute the maximum likeli-
hood estimator in a wide variety of situations, where the maximization of the
likelihood function would be otherwise very challenging. Problems where the
EM algorithm has been successfully applied are referred to as incomplete-data
problems. This very general term encapsulates not only evidently incomplete-
data situation, such as problems with missing data, truncated distributions,
censored or grouped observations, but also more general situations, where the
incompleteness of the data is far from being obvious. The idea behind the EM
algorithm is quite simple, and therefore it has been discovered and re-discovered
many times in various forms and in several different fields of science. However,
Dempster, Laird and Rubin [11] were the first to propose a general formulation
of the algorithm and to derive its main properties. Following this celebrated
paper, a whole variety of applications of the algorithm have appeared in the
literature.

Assume that we observe an output y of a random vector Y 2 Rn and we
know that its intensity function f(y|✓) depends on an unknown parameter
✓ 2 Rp. The ultimate goal is to find the MLE of ✓ by maximizing the likelihood
function L(✓;y), (or equivalently the log-likelihood function). Unfortunately,
it might occur that this maximization is very difficult to perform, because of
some properties of the likelihood function, but almost straightforward with
the knowledge of some additional unobserved data. Then, regarding Y as
an incomplete version of some complete data random vector X with density
f
c

(x|✓) might simplify a lot the apparently challenging task of finding the MLE.
Formally, we have Y = g(X) for some non-injective function g. Often, we
choose g to be a projection on some linear subspace. In this context, we call x the
vector containing the augmented data x = (y, z), with z the vector containing
the additional unobservable data (also referred to as latent variables). Then, g
is the projection of x onto the y component, and the incomplete-data likelihood
is given by

L(✓;y) =

Z
f
c

(y, z|✓)dz =

Z
L(✓;y, z)dz,

2In practice, the discretization of the problem is enforced by the detectors, that cannot reach
arbitrary precision. Therefore, the continuous case is only a theoretical framework, but full of
insights regarding the origin of the ill-posedness of the problem.
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with L(✓;y, z) the complete-data likelihood. Often, the complete-data likeli-
hood is in a nice form that greatly simplifies its maximization, relatively to the
maximization of the incomplete-data likelihood function. The idea of the EM
algorithm is then to exploit this reduced complexity in order to indirectly solve
the original maximization problem of the incomplete-data likelihood function.

At this stage, the only problem is that as nice as the complete-data likelihood
might be, we are unable to maximize it, as we cannot observe x. Therefore, we
compute the expectation of the complete-data likelihood function L(✓;x) (or
equivalently of the complete-data log-likelihood l(✓,x)), given the observed
data y and the current estimate of ✓. More precisely, we compute

Q(✓;✓(k)
) = E[l(✓;x)|y,✓(k)

], (2.12)

with ✓(k) the current estimate of the parameter ✓. This step is called the
expectation step (or E-step). Then, we update the estimate ✓(k) during the max-
imization step (or M-step). The new estimate ✓(k+1) is chosen as the maximizer
of (2.12), namely

✓(k+1)
= argmax✓ Q(✓;✓(k)

).

Then, we repeat iteratively these two steps on the new estimate ✓(k+1), until
we detect the convergence of the algorithm with some stopping criterion. To
summarize, the EM algorithm is given by:

⌘ The EM Algorithm

Input: An initial estimate ✓(0) of ✓ and observations y.
Output: The maximum likelihood estimator ˆ✓

ML

of ✓.
1. k:=0;
2. while the stopping criterion is not met do;

• E-step: Compute Q(✓;✓(k)
) := E[l(✓;x)|y,✓(k)

];

• M-step: ✓(k+1)
:= argmax✓ Q(✓;✓(k)

);
• k:=k+1;
• Compute stopping criterion;

endwhile;
3. ˆ✓

ML

:= ✓(k);

Remark 3.1 It might occur that the maximum in the M-step is not unique during the
iteration. In this case, it is sufficient to choose any of the ✓’s maximizing Q(✓;✓(k)

).
The choice of the stopping criterion depends on the considered problem. A common
criterion is to stop the iteration when the improvement in the log-likelihood function
is less than a certain threshold ✏. In the context of PET, we will see that such a naive
stopping criterion is not sufficient, and will design a goodness-of-fit stopping criterion.

We conclude this section, with an important result, proved by Dempster, Laird
and Rubin [11], that tells us that after each iteration of the EM algorithm, the
incomplete-data likelihood L(✓;y) has either increased or remains unchanged.
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Theorem 3.1 The EM sequence of likelihoods {L(✓(k)
;y)}

k2N increases monot-
ically, that is

L(✓(k+1)
;y) � L(✓(k);y), 8k = 0, 1, 2, . . .

⌅ Proof 3.1 See [4] Section 3.2. ⌅

An immediate consequence of this theorem is that for bounded likelihood
functions L(✓,y) the sequence {L(✓(k)

;y)}
k2N converges to a limit L⇤. Care

must be taken however not to overinterpret this theorem. First, the convergence
of the sequence does not imply the existence of a ✓⇤ such that L⇤

= L(✓⇤
;y),

nor does it imply that L⇤ is a maximum of L(✓,y). Moreover, even if under
some regularity assumptions we can show that there exists a stationary point ✓⇤

of L(✓,y) such that L(✓(k),y) ! L(✓⇤,y), nothing tells us that the iterates ✓(k)

actually converge to the stationary point ✓⇤.
Hopefully in the particular case of PET, we will be able to show that these

desirable results hold.





3
A Statistical Model

The statistical model derived in this chapter is inspired from the developments
in [7]. However, our approach differs a little: while they chose to model the
problem in terms of a thinned Poisson process, with each positron emission
having a certain probability to be detected by a given detector, we preferred
to reformulate everything in terms of two Poisson processes, with intensities
relating through the Radon transform. Even if the two formulations are still
very similar, we believe that the Radon transform framework provides a better
understanding on the origin of the instabilities encountered during the image
reconstruction process.

1 Construction of a Mathematical Model
We begin our investigation by proposing a mathematical model tailored to the
physics of the positron emission process. To facilitate the task, let us first make
the unrealistic assumption of a perfect knowledge of the location of each positron
emission within the brain. Under this assumption, a collection of positron

Figure 3.1: Schematic
illustration of a random
scatter of positron
emissions within the brain.

emissions occurring during a certain fixed period of time
has every aspect of a random scatter (see Figure 3.1). In
Chapter 2 we introduced point processes and particularly
Poisson processes, that revealed to be ideal candidate mod-
els for the study of such random samples. It would then
seem legitimate to try and model the stochastic rule gov-
erning the positron emissions with a Poisson process. But
such a choice of model is not as straightforward as we
would like it to be, and we should not rush headlong into
it. In fact, there are situations in which Poisson processes
appear to be very poor models. This is particularly true when the studied phe-
nomenon exhibits a natural clustering1, as it seems to be the case in Figure 3.1.
Hopefully, in our context we can invoke empirical arguments to decide on
the validity of the model. Indeed, we have observed experimentally that the

1Because of the property of independence in Definition 1.4 , Poisson processes are unable to
capture spatial dependencies between observations.
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positron emissions occur independently from one another (or at least there is no
strong evidence for the contrary). Thus, the clusters observed in Figure 3.1 do
not result from a dependency among emissions, but simply from the metabolic
activity of the brain, that will naturally concentrate the radioactive tracer in areas
stimulated by the cerebral activity of the patient.Another way to formulate this
is to say that, conditional on the metabolic activity, the positron emissions are
observations from independent random variables.

This empirical observation preventing us from one of the main pitfall ofThe empirically observed
independence of positron
emissions allow us to
investigate Poisson processes
as possible models for this
phenomenon.

Poisson processes, we can now embrace this model with a bit more confidence.
Let us first re-express all the quantities involved in terms of the vocabulary of
point processes, introduced in Chapter 2.

⌘ PET in the Poisson process framework

• We consider as the state space S the brain, that we see as a compact
subset of R2, endowed with the Borel ��algebra B.

• For every B 2 B, we consider positron emissions as the output of
many independent Bernoulli trials: for each radioactive nucleus con-
tained in a subregion B of the brain, we have two possible outcomes,
"success" if it decayed and emitted a positron during the fixed period
of observation, "failure" if not (see Figure 3.2).

• Finally, let N be a spatial point process in (S,B) with finite mean
measure ⇤, according to which the positron emissions occur.

Under the above modeling assumptions, we can show that the point process
N is approximately a Poisson process. In fact, for every B 2 B, the number
of positron emissions N(B) is a sum of many independent Bernoulli trials.
Therefore, the exact distribution of N(B) is a binomial distribution, but as
the number of radioactive nuclei is extremely large in practice and the decay
probability is very small, we can use asymptotic results and approximate this
distribution with a Poisson distribution, with rate ⇤(B) (this is a famous result
known as the law of rare events). Finally, the second property of Definition 1.4
follows directly from the independence of positron emissions. This achieves

Figure 3.2: Positron
emissions can be seen as
the output of many
Brenoulli trials.
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Figure 3.3: By placing a
ring of detectors around
the head of the patient, we
can record gamma rays
resulting from the
annihilation of a positron
with an electron. These
gamma rays are recorded
in coincidence by a pair of
detectors. In the ideal case
of infinitely many
detectors, a pair of
detectors can be identified
by a chord on the detector
ring.

to convince us that the Poisson process is a reasonable model for the positron
emissions process.

Then, if we still assume the knowledge of the locations of each positron
emission, we could very easily exploit this model in order to assess the metabolic
activity of the brain, that would simply be given by an estimate of the mean
measure2

⇤ , or equivalently of its intensity function �. Such an estimate could
be obtained for example by a 2D histogram of the emissions’ locations.

Unfortunately, things are not so simple in practice. In fact, as explained in
the Section 1 of the Introduction, we cannot identify the exact location of positron
emissions. The best we can do is to determine a cylindrical volume in which
the emission occurred, by recording coincidences of gamma rays resulting from
the annihilation of an emitted positron with an electron (see Section 1 of the
Introduction for a more detailed explanation). To do so, a ring of detectors is
positioned around the head of the patient. In the ideal case of an infinite number
of detectors, a pair of detectors can be associated with a chord on the detector
ring (see Figure 3.3). Then, instead of looking at a random sample of positron The stochastic process

governing positron emissions
can be modeled as an
indirectly observed Poisson
process.

emissions in the brain space, we observe a random sample of coincidences in
the detector space, the set of all possible chords on the detector ring. This new
random sample inherits the independence property of the positron emissions
and therefore can be modeled by another Poisson process N⇤. Of course, these
two Poisson processes are linked together and we can make this link rigorous
by the use of indirectly observed Poisson processes, introduced in Section 1.4,
and the Radon transform, introduced in Section 2. If �⇤ is the intensity function
of N⇤ and � is the intensity function of N , then we have:

�⇤
= R�. (3.1)

In this formulation, N is said to be an indirectly observed Poisson process. It

2Recall that for every B 2 B, ⇤(B) is the expected number of emissions in B, proportional to
the consumption of glucose and therefore indicator of the metabolic activity in B.
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Figure 3.4: In practice,
the number of detectors is
necessary finite. Pairs of
detectors form a detector
tube. We count the number
of coincidences in each
tube. Finally, to simplify
the mathematics, we
assume the existence of a
grid of B boxes covering
the brain, such that � is
constant on each box.

is possible to provide some intuition about this modeling approach. In fact, if
we parametrize chord on the detector ring by two coordinates (p, ⇠) 2 R ⇥ S1,
we can re-write (3.1) as

�⇤
(p, ⇠) =

Z

R2
�(x)�(p� ⇠ · x)dx, 8(p, ⇠) 2 R ⇥ S1,

with p, ⇠ as in Figure 2.4. Then, �⇤ can be interpreted as the intensity function
of the expected number of counts recorded by a detector aimed along a line
defined by p and ⇠ (see Figure 3.3).

Of course, in practice the number of detector cells is necessary finite, and thus
we can only have access to a sample of the Radon transform. In this situation,
a pair of detectors no longer form a line but a cylindrical volume, to be referred
to as a detector tube (see Figure 3.4). Moreover, if D is the number of detector
tubes, we have 8d 2 {1, . . . , D},

�⇤
(d) =

Z

tubed

�⇤
(p, ⇠)d⇠dp =

Z

tubed

✓Z

R2
�(x)�(p� ⇠ · x)dx

◆
d⇠dp, (3.2)

with �⇤
(d) the expected number of counts in tube d.

The goal is now to estimate �⇤
(1), . . . ,�⇤

(D) from an output of the random
vector (N⇤

(1), . . . , N⇤
(D)) where N⇤

(d) ⇠ Poisson(�⇤
(d)) is the number of co-

incidences detected in the tube d. Then, based on these estimates, we want
to recover � by exploiting (3.2). But at this stage, this is an infinite dimensional
problem: we have to estimate a continuum of parameters on the basis of finite
data. Therefore, to simplify the problem, we will assume that there exists aTo simplify the problem, we

look for � in the class of step
functions.

grid of B boxes covering the brain and that in the bth box the value of �(x) is a
constant. Thus, the emission density � is a step function that can be written as



2 Computing the Radon Matrix 31

follows:

�(x) =

BX

b=1

�(b)

V (b)
1boxb

(x), 8x 2 S ⇢ R2, (3.3)

where �(b), b = 1, . . . , B is the expected number of emissions in box b, V (b) is
the volume of the bth box and 1boxb

denotes the indicator function of the bth
box. Finally, substituting (3.3) in (3.2) yields

�⇤
(d) =

BX

b=1

�(b)

:=R(d,b)
z }| {
1

V (b)

Z

tubed

⇣
R1boxb

⌘
(p, ⇠)dpd⇠,

=

BX

b=1

R(d, b)�(b). (3.4)

If we fill a matrix R 2 RD⇥B with the coefficients R(d, b), we can re-write (3.4) as

�⇤
= R�, (3.5)

with �⇤
= (�⇤

(1), . . . ,�⇤
(D))

T 2 RD and � = (�(1), . . . ,�(B))

T 2 RB . We
will refer to R as the Radon matrix. The goal is now to recover � from an
estimate of �⇤ and the knowledge of R.

2 Computing the Radon Matrix
To compute the discrete Radon transform R, we used the Matlab function radon.
This function takes two inputs (see Figure 3.5):

• A gray scale image, of which we wish to compute the discrete radon
transform. The dimensions of this image naturally define the grid in the
brain space: a box correspond to a pixel. Moreover, the expected number
of counts �(b) at each box b is given by the grayscale intensity of the
corresponding pixel.

• A range of angles (in degrees), that determines the spacing between each
detector cell on the detector ring.

Then, the function returns the discrete radon transform of the image as a sino-
gram image (see Vocabulary 2.2 for a definition of a sinogram). The dimensions
of this image are determined from the range of angles provided to the function
and the dimensions of the input image (more precisely the diagonal of the input
image, see Figure 3.5). Finally, the grayscale intensity of this image corresponds
to the intensity function �⇤.

The radon function does not provide directly the Radon matrix R as an
output. However, we can form this matrix very easily for images with given
dimensions N = m⇥n. First, we consider the image as a vector in RN . Then, we
compute the discrete Radon transform of the basis vectors e

i

= (�
ij

)

j=1,...,N 2 RN

with the function radon. From a classic result of linear algebra, the image of
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Figure 3.5: A typical
output of the Matlab
function radon. The
dimensions of the output
image are determined by
the range of angles
provided as an input and
the diagonal of the input
image. The intensities of
the input and output
images are to be
interpreted respectively as
the densities � and �

⇤.

each of these basis vectors e
i

, i = 1, . . . , N , will form the ith column of the matrix
R.

2.1 Validation of the Procedure
In order to validate the preceding procedure, we will use the phantom image3

from Figure 2.7 as a testbed, and compare the discrete Radon transform with the
exact Radon transform (calculated in Example 2.2). A qualitative comparison
of the two sinograms is presented in Figure 3.6, where we chose 120 equally
spaced detectors cells to compute the discrete Radon transform. We observe
that the two sinograms appear very similar both in shape and intensity: the only
apparent effect of the discretization process is a slight pixelation of the discrete
sinogram Figure 3.6b. Of course this pixelation becomes stronger as the number
of detectors decreases, but this is an expected behavior.

3 Computer Simulation of a PET Scan
In order to test the relative efficiencies of different estimators of �, we need to
simulate the output of a PET scan. For this, we first draw a phantom image (see
Figure 3.7) that describes the intensity � from which we wish to generate the data
and that we wish to recover. This phantom image is made of eight ellipses, that
are meant to provide a simplification of both the brain’s geometry and metabolic
activity: the skull, ventricles and tumors metabolize at different rates, between
0.1 and 2.0. This phantom image is widely used among researchers in tomogra-
phy to test the numerical accuracy of reconstruction algorithms (see for example
[7]). The rates in Figure 3.7 have been converted to grayscale values, that are nat-
urally understood as intensities by the procedure described in Section 2. We then
resize this image so that its dimensions are 100⇥ 128 pixels. As explained in Sec-
tion 2 resizing the image is equivalent as choosing a bi-dimensional grid of size

3Test images such as the one in Figure 3.6a are usually referred to as phantom images by
researchers in tomography.
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(b) Sinogram computed with the discrete
Radon transform.
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(c) Exact Sinogram.

Figure 3.6: Qualitative
comparison of the discrete
Radon transform (b) and
the exact Radon transform
(c) of the same phantom
image (a). The grid in the
brain space is determined
by the pixels of the
phantom image (a). To
compute the discrete
Radon transform in (b) we
chose 120 equally spaced
detectors cells.

B = 100⇥ 128 that covers the brain. In order to provide physical interpretability
to each of the values �(b), b = 1, . . . , B, we rescale them by a constant factor,

Figure 3.7: Phantom
image used in the
computer simulation of the
PET scan. This image is a
simplification of the brain’s
geometry and metabolic
activity. Smaller ellipses
represent features in the
brain (ventricles, tumors,
etc...) metabolizing at
different rates. This image
was reproduced from the
phantom image proposed
in [7].

so that the total number of positron emissions is equal
to 10

5 (approximately the number of coincidences we
observe during a PET scan).

In the detector space now, we choose a sector ring
composed of 60 equally spaced detectors, which gives
us D = 3540 detector tubes. Thanks to the procedure
previously described, we then compute the discrete
Radon transform �⇤ of the image, which gives us the
sinogram in Figure 3.8a. Then, for each d = 1, . . . , D,
we simulate a Poisson random variable with mean
�⇤

(d). We obtain this way a new sinogram (see Fig-
ure 3.8b) that we interpret as the output of a simulated
PET scan (number of coincidences detected in each detector tube), and that we
will use in order to recover �.
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Figure 3.8: Simulation of
the output of a PET scan
(b) by generating Poisson
noise with densities given
by the sinogram (a) of the
phantom image in
Figure 3.7.
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(a) Sinogram of the phantom image in Figure 3.7.

φ (degrees)

p

 

 

0 50 100 150

−80

−60

−40

−20

0

20

40

60

80 0

200

400

600

800

1000

1200

1400

1600

φ (degrees)

p

 

 

0 50 100 150

−80

−60

−40

−20

0

20

40

60

80

20

40

60

80

100

(b) Poisson generated sinogram with densities given by (a).
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4
Estimation of the Poisson Intensity

In this chapter we investigate and compare the relative performance of various
estimators of the intensity �, proposed by Vardi et al. in [7]. We begin naively
our investigation with the classic least squares estimator, that will, as it could
have been expected by the nature of the problem, perform very badly. To try
and provide a cure to the bad performances of this estimator, we propose to con-
strain it positively, as proposed in [7]. This positively constrained least squares
estimator will provide much more satisfying results than the unconstrained one,
but still not entirely satisfactory (especially in terms of computational cost of the
estimation). Finally, we investigate the maximum likelihood estimator, that we
compute by means of the classic EM algorithm, after having re-expressed the
problem in terms of a standard problem in statistical estimation for incomplete
data. As we will show, the quality of the last two estimators is highly dependent
on the choice of a good stopping criterion. We propose here a goodness-of-fit
stopping criterion, similarly at what has been proposed by Veklerov et al. in [8].
However, we design a different statistical test than the on proposed in [8] , that
we believe provides a interesting mathematical interpretation of the problem of
overfitting that occurs when letting the EM algorithm run for too long.

1 Least Squares Estimator
A sensible estimate of �⇤ is given by the moment estimator. Indeed, for every
d = 1, . . . , D, �⇤

(d) is the expected number of coincidences falling into the
dth pair of detectors. As the typical output of a PET experiment is a single
observation n

⇤
= (n⇤

(1), . . . , n⇤
(D))

T 2 RD from N⇤, the empirical mean is
simply the observed data and the moment estimator1

ˆ�⇤ of �⇤ is given by

ˆ�⇤
= n

⇤.

Using (3.5) we can obtain an estimate of � by solving

n

⇤
= Rˆ�. (4.1)

1which is also the maximum likelihood estimator in this case
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If we try and solve system (4.1) three problems can arise:
1. the linear system might have no solution (n⇤ does not belong to the range

of R),
2. the solution to this system might not be unique,
3. the solution might be very sensitive to errors in the data, because of the

bad conditioning of the matrix R.
In practice, the first issue often occurs when R is not full row-rank (for example
when the number of detector tubes is greater than the number of pixels). Then,
n

⇤ might fall far enough from �⇤ and therefore not belong to the range of R.
Such a behavior is the rule rather than the exception in PET, because of the high
number of detector tubes with low counts rate. These detector tubes having lowThe moment estimator (4.1)

of � generally does not exist
in practice, because of the bad
conditioning of the problem.
The least squares estimator
(4.3) always exist, but might
(and will very likely) lead to
physically inadmissible
estimates.

densities �⇤
(d), the standard deviation

p
�⇤

(d) of the Poisson random variable
N⇤

(d) is comparable with �⇤
(d) and therefore the observations n⇤

(d) might fall
far away from �⇤

(d). To avoid this undesirable situation, we can alternatively
try and solve the following normal equations:

RT

n

⇤
= RTRˆ�,

which always admit a solution. It can be shown (see [Kaipo] Chapter I) that this
is equivalent as minimizing the quantity kn⇤ �R�k2. Therefore an estimate of �
is given by the least squares estimator

ˆ�
LS

= argmin�2RBkn⇤ �R�k2. (4.2)

Even if this estimator always exist, there is no guarantee that the resulting
density ˆ�

LS

be positive, which is an absolute requirement to maintain physical
interpretability. Moreover, the solution to (4.3) might not be unique. In this case,
we can select among the solutions the one with minimal norm. Such a solution is
provided by the Moore-Penrose pseudoinverse of R. In Figure 4.1 we present
the reconstruction process of the phantom image described in Section 3 by means
of the least squares estimator ˆ�

LS

(to solve (4.3) we used the Matlab function
pinv). We observe that the estimated density (see Figure 4.1b) is dramatically
far from the true density (see Figure 4.1c). The reconstruction is so bad that we
cannot even begin to guess the shapes of the ellipses constituting the phantom
image. Moreover, the density ˆ�

LS

is physically inadmissible, as it takes large

Figure 4.1:
Reconstruction of the
brain’s metabolic activity
by using the least squares
estimator �̂LS .
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negative values.
We need thus to be more careful in the optimization process, in order for

the final estimate to be physically acceptable. For this, we propose to solve a In order to avoid physically
inadmissible estimates, we
need to constrain positively
the least squares optimization
problem.

constrained version of (4.3):

ˆ�
LS,C

= argmin�2RB
,��0kn⇤ �R�k2, (4.3)

where we only look for positive � minimizing kn⇤ � R�k2. We solve this
constrained optimization problem with the function fmincon of Matlab, an
iterative method based on the interior point algorithm (see [12]). On Figure 4.3a,
we can observe the evolution of the estimate ˆ�(k)

LS,C

for selected iterations of the
fmincon function. Surprisingly, it seems that the quality of the estimate does
not improves monotically with the number of iterations. This is confirmed
by Figure 4.2 where we plotted the squared error (SE) kˆ�(k)

LS,C

� �k2 versus
the number of iterations: the SE first decreases, reaches a minimum around
iteration 14, and then increases. It seems that we face a typical bias/variance
tradeoff: the estimate is less and less biased as the number of iterations increases,
but suffers from an increasing variance, that creates an undesirable noise on
the reconstructed density for high iterations. This phenomenon is even more
apparent on Figure 4.3b, where the ellipses’ boundaries progressively fade away
as the bias decreases and an increasing noise spreads in the domain.

We will come back on this peculiar behavior when analyzing the EM algo-
rithm, and try to provide some intuition on why we could have expected this
result. However, we can already affirm in the light of theses observations that
the stopping criterion will have a significant influence on the quality of the
reconstruction.
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 Figure 4.2: Squared error
(SE) k�̂(k)

LS,C � �k2 versus
the number of iterations.
We observe that the SE first
decreases up to iteration
14, and then increases.

2 The Maximum Likelihood Estimator
We continue our investigation with the maximum likelihood (ML) estimator,
originally proposed by Vardi et al. [7]. From Definition 1.4, we know that the
random variables N⇤

(1), . . . , N⇤
(D) are independent Poisson variables with
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Figure 4.3: Iterations of
the fmincon function
used to compute the
positively constrained least
squares estimator �̂LS,C .
We observe that the quality
(in terms of squared error)
of the estimate does not
necessarily improve as the
number of iterations
grows: we have a
bias/variance tradeoff.
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respective means �⇤
(d), d = 1, . . . , D. Therefore, the likelihood of the observed

data n

⇤ is given by

L(�) =
DY

d=1

e��

⇤(d)�
⇤
(d)n

⇤(d)

n⇤
(d)!

,

(3.4)
=

DY

d=1

e�(
PB

b=1 R(d,b)�(b)
)

⇣P
B

b=1R(d, b)�(b)
⌘
n

⇤(d)

n⇤
(d)!

, (4.4)

with R the discrete Radon matrix, and B the number of pixels composing the
brain’s grid. By taking the log of (4.4) we obtain the so-called log-likelihood
function l(�) = logL(�). Then, the first and second derivatives of l(�) are given
by:

@l(�)

@�(b0)
= �

DX

d=1

R(d, b0) +
DX

d=1

n⇤
(d)R(d, b0)P

B

b=1 �(b)R(d, b)
,

and

@2l(�)

@�(b0)@�(b1)
= �

DX

d=1

n⇤
(d)R(d, b0)R(d, b1)⇣P
B

b=1 �(b)R(d, b)
⌘2 .

We can show that the matrix of second derivatives in negative semidefinite
(see [7]), and therefore l(�) is concave. Hence, all its maxima are global maxima.

The maximum likelihood estimate ˆ�
ML

of � is then by definition maximizing
the likelihood function (or equivalently the log-likelihood function):

ˆ�
ML

= argmax�2RB
,��0 l(�). (4.5)

Because of the concavity of the log-likelihood function, sufficient conditions
for ˆ�

ML

to be a solution of Equation (4.5) are given by the Karush Kuhn Tucker
conditions (see [Zangwill Theorem 2.19])

Proposition 2.1 — Karush Kuhn Tucker conditions. ˆ�
ML

is a solution of (4.5) if
the Karush Kuhn Tucker conditions hold:

�(b)
@l(�)

@�(b)

���
�̂ML

= 0, and
@l(�)

@�(b)

���
�̂ML

 0 if ˆ�(b) = 0, b = 1, . . . , B. (4.6)

Remark 2.1 Figure 4.4 provides an illustration of the Karush Kuhn Tucker conditions.
The first order condition �(b)@l(�)

@�(b)

���
�̂ML

= 0 tells us that either @l(�)
@�(b)

���
�̂ML

= 0 (the �(b)

maximizing the likelihood is positive), or ˆ�(b) = 0 (the �(b) maximizing the likelihood
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Figure 4.4: Schematic
illustration of the Karush
Kuhn Tucker conditions.

is negative so we choose 0, as negative values are unadmissible). The supplementary
condition @l(�)

@�(b)

���
�̂ML

 0 if ˆ�(b) = 0 is making sure that whenever ˆ�(b) = 0 the
likelihood function does not improve in the positive direction, so that the maximum of
the likelihood is indeed negative (remember that the likelihood function is concave).

3 The EM Algorithm in the Context of PET

We now describe how the EM algorithm can be used to efficiently compute the
MLE, solution of (4.5). To derive the EM algorithm in the context of PET we take
inspiration from the developments in [7], that present a derivation tailored to
this very specific problem. Here we consider a bit more general derivation, that
follows more closely the recipe proposed in [11]. Our treatment is very similar to
the one in [16] that applies the same methodology in the context of high energy
physics.

In order to apply the EM algorithm to (4.5), we first need to re-express the
problem in the framework of statistical estimation from incomplete-data. To this
end we define the random quantities N(b, d), b = 1, . . . , B and d = 1, . . . , D
as the number of gamma rays originating from the pixel b and falling in the
detector tube d. From the statistical model constructed in Chapter 3, we know
that these random variables are independent Poisson variables with means
�(b, d) = �(b)R(d, b) (see (3.4)) :

N(b, d) ⇠ Poisson(�(b)R(d, b)), d = 1, . . . , D, b = 1, . . . , B.

Then, we choose n

c

= {n(b, d); b = 1, . . . , B, d = 1, . . . , D} as the complete
data, and n

⇤
= {n⇤

(d); d = 1, . . . , D} as the incomplete data. We have

n⇤
(d) =

BX

b=1

n(b, d), 8d = 1, . . . , D.

As N(b, d) are independent Poisson variables, the complete-data log-likelihood
is given by
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l(�;n
c

) =

X

b,d

n(b, d) log(�(b)R(d, b))� log n(b, d)!� �(b)R(d, b). (4.7)

Now we need to apply the E-step of the EM algorithm and compute the
conditional expectation of the complete-data log-likelihood (4.7) given the ob-
servations n⇤ and the current estimate �(k) of �. This yields:

Q(�,�(k)
) = E[l(�;x)|n⇤,�(k)

],

/
X

b,d

E[n(b, d)|n⇤,�(k)
] log(�(b)R(d, b))� �(b)R(d, b) (4.8)

We need to compute E[n(b, d)|n⇤,�(k)
]:

E[n(b, d)|n⇤,�(k)
] = E[n(b, d)|n⇤

(d),�(k)
],

=

n⇤
(d)�(k)

(b)R(d, b)
P

B

b

0=1 �
(k)

(b0)R(d, b0)
. (4.9)

In the first equality of (4.9), we used the mutual independence of the n⇤
(d)’s

and in the second equality, we used the fact that if X
i

are independent Poisson
variables with means ✓

i

then the conditional distribution of X
j

knowing thatP
X

i

= x⇤ is Binomial(x⇤, ✓
j

/
P

✓
i

) and so E[X
j

|PX
i

= x⇤] = x⇤✓
j

/
P

✓
i

.

Substituting (4.9) in (4.8) yields

Q(�,�(k)
) /

X

b,d

n⇤
(d)�(k)

(b)R(d, b)
P

B

b

0=1 �
(k)

(b0)R(d, b0)
log(�(b)R(d, b))� �(b)R(d, b). (4.10)

Finally, we apply the M-step and maximize (4.10) with respect to �. Differen-
tiating with respect to each component of � and equating to zero leads to the
following update equation:

�(k+1)
(b) = �(k)

(b)
DX

d=1

n⇤
(d)R(d, b)

P
B

b

0=1 �
(k)

(b0)R(d, b0)
, b = 1, . . . , B. (4.11)

Therefore, in the special case of PET the EM algorithm is given by:
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⌘ The EM Algorithm in the Context of PET

Input: An initial estimate �(0) > 0 of �.
Output: The maximum likelihood estimator ˆ�

ML

of �.
1. k:=0;
2. while the stopping criterion is not met do;

• �(k+1)
(b) := �(k)

(b)
DP

d=1

n

⇤(d)R(d,b)PB
b0=1 �

(k)(b0)R(d,b0)
, b = 1, . . . , B;

• k := k + 1;
• Compute stopping criterion;

endwhile;
3. ˆ�

ML

:= �(k);

We note that the estimate ˆ�
ML

provided by the EM algorithm is positive as
long as the initial guess �(0) is. In fact, if �(0) > 0, then all the quantities involved
in the update equation (4.11) are positive and we can show by induction that
all the iterates will also be positive. Moreover, in the special case of PET, Shepp
and Vardi asserted in [13] that the sequence of estimates produced by the EM
algorithm converges to a maximum, as k ! 1. The proof they provided in [13]
had a gap but the assertion was correct, and was proven by Csiszàr and Tusnàdy
in [14].

Theorem 3.1 The sequence of estimates {�(k)}
k=0,1,2,... provided by the EM

algorithm converges to a limit point ˆ�
ML

that maximizes l(�).

⌅ Proof 3.1 See Appendix of [7]. ⌅

We now run the EM algorithm on our testbed, and analyze the evolution of the
estimate with the number of iterations. We observe on Figure 4.5 a behavior very
similar to the one of the positively constrained least squares estimator. Indeed
the estimate �(k) does not necessarily improve with the number of iterations:

it first decreases, reaches a minimum aroun k = 15 and then starts to increase
from this point. Finally, it seems that we once again face a bias/variance tradeoff:
the estimate is less and less biased as the number of iterations increases, but
suffers from an increasing variance, that creates an undesirable noise on the
reconstructed density for large iterations.

4 A Goodness-of-fit Stopping Criterion
We now investigate a goodness-of-fit stopping criterion, similarly at what has
been proposed by Veklerov et al. in [8].

For both the least squares and maximum likelihood estimators, we encoun-
tered a notable difficulty while trying to compute them with iterative algo-
rithms. The quality of the estimates is not always improving with the number
of iterations: after some point, the estimates become considerably noisy. This
is a quite unusual behavior that stresses the need for a good stopping crite-
rion: running the algorithm for a very long time will not necessarily produce
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(b) Estimate �(k) at iteration k.

Figure 4.5: Iterations of
the EM algorithm used to
compute the maximum
likelihood estimator �̂ML.
We observe that the quality
(in terms of squared error)
of the estimate does not
always improve as the
number of iterations
grows: we have a
bias/variance tradeoff.

a good estimate, we need to know when to stop to avoid the deterioration
previously observed. In order to design such a stopping criterion, we first
need to better appreciate the origin of this odd phenomenon, and why it could
have been expected. The answer to this inquiry lies in the nature of the prob-
lem itself: because of the extremely bad conditioning of the Radon matrix,

Figure 4.6: We use an
estimator �̂ as a target for
our iterative algorithm and
stop prematurely the
procedure when the
estimate pass close enough
to the real intensity �.

the slight perturbation introduced by the Poisson
noise in the detector space gets amplified when
mapped back in the brain space during the in-
version process, resulting in estimates ˆ�

MLE

and
ˆ�
LS

far away from the true intensity. This is a
very common situation in inverse problems (see
Figure 4.7). In the light of this observation, we
understand that we actually do not want the algo-
rithm to converge, because the resulting intensity
would be far away from the true intensity. How-
ever, as bad as the MLE or LS estimates might be, we can still extract some
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Figure 4.7: Because of
the extremely bad
conditioning of the Radon
matrix, a slight
perturbation introduced by
some Poisson noise in the
detector space gets
amplified when mapped
back in the brain space
during the inversion
process, resulting in an
estimate �̂ far away from
the true intensity �.

information out of them, and use them wisely in order to get to a good esti-
mate of the true intensity. The idea is the following: we use these estimators as
targets for our iterative algorithms and stop prematurely the procedure when
the estimate is "good enough". Roughly speaking, the hope is that the iterative
algorithms will pass close enough to the true density on their way to the MLE or
LS estimators, so that we can "recognize" it (in a sense that will be made precise
later) and stop near to it (see Figure 4.6). Mathematically speaking, we perform
a statistical test at each iteration and test wether or not the current estimate
�(k) could have produced the observed data n

⇤
= (n⇤

(1), . . . , n⇤
(D))

T . More
precisely we test:

H0 : � = �(k) vs. H1 : � 6= �(k),

or in the detector space:

H0 : �
⇤
= �⇤

(k) vs. H1 : �
⇤ 6= �⇤

(k).

For this, we introduce the following test statistic:

C =

DX

d=1

⇣
n⇤

(d)� �⇤
(k)(d)

⌘2

�⇤
(k)(d)

, (4.12)

with �⇤
(k) := R�(k) and k 2 N the index of the iteration. Note that the test

is performed in the detector space (where the observed data lie) and not di-
rectly in the brain space. Roughly speaking, we indirectly test the intensi-
ties in the brain space by comparing two sinograms (i.e. intensities in the
detector space). Under the null hypothesis and our modeling assumptions,
n⇤

(d)
d⇠ Poisson(�⇤

(k)(d)), 8d = 1, . . . , D. Therefore, from properties of the Pois-
son distribution, we have E[n⇤

(d)] = Var(n⇤
(d)) = �⇤

(k)(d). Moreover, as the
number of detected coincidences in each detector tubes is usually very high2 in
PET experiments, the counts rate �⇤

(k)(d), d = 1, . . . , D will also be very high and
we can thus approximate the Poisson distribution by a Gaussian distribution:

2in our setup we have on average 400 coincidences per detector tube.
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Figure 4.8: Rejection and
acceptance regions for the
test.

n⇤
(d)� �⇤

(k)(d)q
�⇤
(k)(d)

d⇠ N (0, 1).

Then, it naturally follows that

⇣
n⇤

(d)� �⇤
(k)(d)

⌘2

�⇤
(k)(d)

d⇠ �2
(1),

and finally

C =

DX

d=1

⇣
n⇤

(d)� �⇤
(k)(d)

⌘2

�⇤
(k)(d)

d⇠ �2
(D).

We recognize here an instance of the classic Pearson’s chi-squared test, com-
monly used as a measure of goodness of fit. A similar goodness-of-fit criterion
for stopping the EM iteration is proposed in [8]. Finally, because the number
of detector tubes is very big, we can approximate the �2

(D) distribution by a
normal distribution and we obtain

C �Dp
2D

d⇠ N (0, 1).

If we now choose a significance level ↵ = 0.05 we can define regions of accep-
tance and rejection for the test (see Figure 4.8). The right tail of the distribution
[z1�↵/2,+1[ (with z1�↵/2 = �

�1
(1� ↵/2) = 1.96) in Figure 4.8 corresponds to

intensities too far away from the observed data to have possibly generated it.
The acceptance region [�z1�↵/2, z1�↵/2] corresponds to intensities that could
have likely enough produced the data. Finally, the left tail of the distribution
]�1, z1�↵/2] corresponds to the region of overfitting: the intensities that fall in
this region are so close from the observed data that it becomes very unlikely that
they actually produced the data (indeed it is really unlikely than thousands of
Poisson random variables all generate an output very close to their mean).

Then, we will stop the iterative algorithm as soon as one iterate falls into
the acceptance region of the test previously designed. In Figure 4.9 we can
see the estimated intensity based on the only iterate �(18) of the EM algorithm
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Figure 4.9:
Reconstruction of the
brain’s metabolic activity
by using the EM-algorithm
together with a
goodness-of-fit stopping
criterion .
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(b) Estimated density
�̂MLE .
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(c) Error |�� �̂MLE |.

falling in the acceptance region. For our setup, we had been lucky enough so
that only one iterate falls into the region of acceptance. But it could occur that
some specific setups lead to many iterates falling into the region of acceptance
or on the contrary not any. Then, we could still select an estimate in these
situations by choosing the iterate falling the closest to 0, the middle of the
segment [�z1�↵/2, z1�↵/2].

5 Test of the Procedure on More Realistic Data
We conclude this study by analyzing the behavior of the reconstruction pro-
cedure previously described on a more complex and realistic intensity. More
specifically, we use as a phantom image an actual PET scan output, provided
by [18]. Then we test the reconstruction process with different setups, and
observe the evolution of the reconstructed intensity, estimated with the EM
algorithm together with the goodness-of-fit stopping criterion. In the different
setups, we vary the number of detector cells c and the expected total number
of observed coincidences n. The results are available on Figure 4.10. We can
see that the estimated intensity improves much more with the number of ob-
servations n than with the number of detector cells c. Moreover, we also notice
that the "convergence" of the EM algorithm happens much later as the number
of observations increases. In comparison, the convergence of the algorithm
seems less affected by the number of detector cells. Finally, the reconstructed
intensity obtained on Figure 4.10d is very similar to the real intensity, which is
very satisfying.
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(a) Setup: n = 105 and c = 30. The EM algorithm stopped at iteration k = 18.

 

 

20 40 60 80 100

20

40

60

80

100 5

10

15

20

 

 

20 40 60 80 100

20

40

60

80

100 5

10

15

20

 

 

20 40 60 80 100

20

40

60

80

100

2

4

6

(b) Setup: n = 105 and c = 60. The EM algorithm stopped at iteration k = 24.
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(c) Setup: n = 107 and c = 30. The EM algorithm stopped at iteration k = 84.
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(d) Setup: n = 107 and c = 60. The EM algorithm stopped at iteration k = 110.

Figure 4.10:
Reconstruction of the
brain’s metabolic activity
in different experimental
setups. For the
reconstruction, we used
the EM algorithm together
with a goodness-of-fit
stopping criterion. On each
figure we have, from left to
right: phantom image,
estimated intensity �̂(k)

MLE ,
and error |�� �̂(k)

MLE |.





5
Conclusion

In conclusion, our knowledge from Poisson point processes and the Radon
transform from Chapter 2 allowed us to construct a statistical model tailored to
the physics of PET. Based on this model, we investigated different estimators
of the brain’s metabolic activity, which both experienced an unusual behavior
when ran long enough: the estimated intensity started to deteriorate after some
point. While such a behavior is very peculiar for an algorithm, we have been
able to provide some intuition on the nature of this odd phenomenon by looking
at the reconstruction problem as an inverse problem. This discussion allowed us
to design a goodness-of-fit stopping criterion, aimed at stopping prematurely
the iterative algorithm before the deterioration of the estimate occurs. However,
this methodology, while coherent with the interpretation we developed, can
appear a bit ad-hoc: indeed, the whole success of the estimation process lies in
the hope that the iterative algorithm will pass close enough to the true intensity
while traveling to the MLE or LS estimators. But there is no guarantee that this
will indeed happen and therefore it could be wise to try and construct some
other estimators, such as penalized likelihood or Bayesian estimators.
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