
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. H. Hofmann, président du jury
Prof. K. Scrivener, Prof. P. J. McDonald, directeurs de thèse

Prof. S. Churakov, rapporteur 
Prof. C. Hall, rapporteur 

Prof. H. Stang, rapporteur 

Water dynamics in cement paste: insights from lattice 
Boltzmann modelling

THÈSE NO 6292 (2014)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 24 JUILLET 2014

À LA  FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE DES MATÉRIAUX DE CONSTRUCTION

PROGRAMME DOCTORAL EN SCIENCE ET GÉNIE DES MATÉRIAUX

Suisse
2014

PAR

Mohamad ZALZALE





All that I am, or hope to be,

I owe to my angel mother.

— Abraham Lincoln

Per ardua ad astra . . .

ú


G
.�

�

@ ð ú




��
×

�

@ ú

�
Í@

�





Acknowledgements
First and foremost, I would like to thank Marie∗ for the generous funding without which this

thesis, but more importantly many splendid memories, would not exist. I would also like to

express my deepest gratitude to Karen and Peter for their support and guidance. The results of

this thesis are mostly due to their flexibility towards my ideas which would not have blossomed

without their multi-disciplinary vision.

I am indebted to all the LMC staff who guaranteed THE perfect play work atmosphere. LMC

would not be LMC without the numerous apéros, BBQs, Leysin seminars and lab hikes so

thanks for all who organized (and allowed organizing) these events. I was lucky to be in the best

office at EPFL so I must thank Berta and Julien for making it such an animated and lively place.

Also, running during work times was strangely satisfying (still not 100% clear if the satisfaction

comes from running or simply from stopping work) so huge thanks for Anne-Sandra, Maude

and Lionel.

Visiting European cities and mountains was an integral part of my stay in Switzerland. Thanks

for Elise, Pawel and Julien for the city breaks. Thanks for all those who invested their time

in teaching me how to ski and for those who dragged me to the summits of few of the most

beautiful and picturesque mountains on Earth.

Writing down all the names and acknowledgements on one single page is the hardest task of

an EPFL thesis. I just would like to finish by thanking all my friends and colleagues for making

my Ph.D. a pleasurable experience. If all the labs lead to a doctorate, then it is how you get there

that matters. . .

Lausanne, June 27th 2014

Mohamad Zalzale

∗This project is part of a Marie Curie ITN funded by the European Union Seventh Framework Programme (FP7 /
2007–2013) under grant agreement n°264448.

v





Abstract
Transport properties are often used as indicators of durability because water underpins most

of the degradation mechanisms of concrete structures. The objective of this thesis is to

understand the link between the microstructure and the permeability of cement paste, the

binder phase of concrete. To achieve this goal, the lattice Boltzmann method is used to

simulate the flow through three-dimensional model cement paste microstructures generated

with the hydration modelling platform µic.

First, it is confirmed that standard lattice Boltzmann (LB) models fail to predict the perme-

ability and the water isotherms of cement paste. This is because the calcium silicate hydrate

(C-S-H) has a complex and uncertain structure and is usually, out of computational necessity,

treated as an impermeable solid. The LB model is consequently extended with an effective

media approach to incorporate the flow through the nano-porous C-S-H.

Accordingly, to calculate the permeability of cement paste, the C-S-H is assigned an intrinsic

permeability. It is found that when the capillary porosity is completely saturated with a

fluid (either water or gas), the calculated intrinsic permeability is in good agreement with

measurements of gas permeability on dried samples (10−17−10−16 m2). However, as the water

saturation is reduced, the calculated apparent water permeability decreases and spans the full

range of experimentally measured values (10−16 −10−22 m2). Thus, the degree of saturation

of the capillary porosity is likely the major cause for variation in the measurements of the

permeability of cement paste. Further, it is found that the role of the weakly-permeable C-S-H,

omitted in earlier modelling studies, has a non-linear effect on the permeability of cement

paste and is critical at a low capillary porosity and / or low capillary saturation.

Finally, to calculate the water isotherms of cement paste, the LB model is extended from

isothermal to non-ideal fluids as described by an equation of state. Using a novel method, the

C-S-H is assigned an intrinsic permeability and effective wetting properties. It is found that, in

agreement with experiments, the calculated water isotherms show two main steps, the first

corresponding to the capillary pores and the second to the smaller gel pores.

Key words: Cement paste; Modelling; Transport properties; Permeability; Desorption; Isotherms;

Lattice Boltzmann; Effective media; Calcium silicate hydrate; Model microstructures; Porous

media;
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Résumé
Les propriétés de transport sont souvent utilisées comme indicateurs de la durabilité des

structures en béton car l’eau joue un rôle essentiel dans la plupart des mécanismes de dégra-

dation du béton. L’objectif de cette thèse est une meilleure compréhension du lien entre la

microstructure et la perméabilité de la pâte de ciment, phase liante du béton. A cette fin, la

méthode lattice Boltzmann est utilisée pour simuler l’écoulement dans des microstructures

tridimensionnelles de pâtes de ciment générées avec la plateforme d’hydratation µic.

Les modèles standards de lattice Boltzmann (LB) ne reproduisent pas correctement la per-

méabilité ni les isothermes d’adsorption et de désorption d’eau de la pâte de ciment. En effet,

la complexité et la variabilité de la structure du silicate de calcium hydraté (C-S-H) est souvent

simplifié en un solide imperméable pour le calcul. Pour palier ces limitations, un nouveau

modèle LB basé sur des propriétés homogènes a été développé qui inclut le transport à travers

les nano-pores du C-S-H.

Dans ce modèle, une perméabilité intrinsèque a été attribuée au C-S-H pour calculer celle de la

pâte de ciment. Les simulations montrent que lorsque la porosité capillaire est complètement

saturée par un fluide (eau ou gaz), la perméabilité intrinsèque calculée est en bon accord

avec les mesures expérimentales de perméabilité aux gaz effectuées sur échantillons secs

(10−17 − 10−16 m2). Cependant, en réduisant la saturation en eau, la perméabilité à l’eau

apparente diminue et couvre la même gamme que les valeurs mesurées expérimentalement

(10−16 −10−22 m2). Ainsi, les résultats des simulations suggèrent que le degré de saturation

capillaire est la principale cause de variation dans les mesures expérimentales. En outre, le flux

à travers C-S-H, omis dans les études antérieures, a un effet non linéaire sur la perméabilité. Ce

flux est indispensable pour calculer la perméabilité à faible porosité ou saturation capillaire.

Finalement, pour calculer les isothermes d’eau de la pâte de ciment, le modèle LB a été

modifié pour inclure des fluides non-idéaux décrits par une équation d’état. Dans cette

nouvelle méthode, le C-S-H est caractérisé par des propriétés intrinsèques de mouillage

et de perméabilité. Les isothermes d’eau simulés présentent deux régimes principaux: le

premier correspond aux pores capillaires et le second aux pores du C-S-H, en accord avec les

expériences.

Mots clefs: Pâte de ciment; Modélisation; Propriétés de transport; Perméabilité; Désorp-

tion; Isothermes; Lattice Boltzmann; Propriétés homogènes; Silicate de calcium hydraté;

Microstructures modèles; Milieux poreux;
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1.1 Concrete

Concrete is the most widely used material on Earth. The current yearly production exceeds

1010 m3 and is enough to build a 5 m2 beam that stretches from Earth to the Moon∗. This

huge ever-increasing volume means that, although concrete is a material with intrinsically

low CO2 emissions, it is responsible for some 5 to 8% of global man-made emissions [1].

Consequently, it is of great environmental interest to design new concretes with lower CO2

footprints. Nonetheless, the challenge is that they must have comparable or improved, and

predictable properties, notably in terms of resistance to degradation and durability.

Water transport underpins most physical and chemical degradation mechanisms. Water is

transported through porous materials by advection, diffusion, and absorption. In concrete

structures, the transport of water strongly impacts durability both directly, e.g. freeze-thaw

action, and indirectly by permitting the ingress of aggressive ions.

1.2 From concrete to cement paste

Concrete is made by mixing aggregates, cement and water. The water reacts with cement

to form cement paste, the glue that binds the aggregates together to form a rock-solid mass.

Concrete is often regarded as a composite material composed of aggregates, cement paste

∗Unfortunately, gravity prevents us from doing so.
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and an interfacial transition zone (ITZ) between them. The ITZ is the region of the paste that

surrounds the aggregates and is perturbed their presence. This perturbation leads to a local

increase in porosity [2]. The properties of concrete are dependent on the individual properties

of its components but are mainly determined by the quality of the cement paste. Therefore,

the introduction of any new concrete must be preceded by a quantitative understanding of

the microstructure, properties and durability of cement paste.

Cement paste is made by mixing cement and water. The chemical reactions between the

anhydrous cement and water lead to the formation of hydrates (figure 1.1). As the degree of

hydration increases with time, the total porosity of cement paste, i.e. the fraction that is not

solid, decreases. The main hydrate phase, calcium silicate hydrate (C-S-H), is a nano-porous

material that fills about 50% of the volume of the paste (figure 1.1). It comprises inter-layer

spaces (∼1 nm) and gel pores (∼3 – 5 nm) [3]. The space not filled by hydrates is referred to as

capillary porosity (or inter-hydrate porosity) and has a characteristic size that ranges from 10

to 100 nm. Figure 1.2 shows the evolution of the volume composition of a white cement paste

with a water-to-cement (w/c) ratio of 0.4.

(a) (b)

Figure 1.1: (a) Back-scattered electron microscopy for a 28 days old cement paste. Image
by Elise Berodier. (b) Transmission electron microscopy of a 1 day old cement paste. Image
by Amelie Bazzoni. AN: Anhydrous cement; IP: Inner product (C-S-H); OP: Outer product
(C-S-H); CH: Portlandite.

The absolute volume of the solid plus liquid part of the cement paste decreases with time

because the volume of the hydrates is smaller than the combined volumes of the reactants

(anhydrous cement and water). This is called chemical shrinkage. Initially this decrease is

accommodated by overall changes in the volume of the paste. However, from initial setting,

the paste starts to resist deformation which causes the formation of micron-sized voids within

the capillary porosity. Without an external source of liquid water, these pores remain empty.

Unreacted water occupies other capillary pores with sizes ranging up to a few microns [3].

The total capillary porosity (water-filled and void) of a mature cement paste with a water-to-

cement ratio of 0.4 is of the order of 7 – 11%. Figure 1.3 recaps the dimensional range of pores

in hydrated cement paste.
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Figure 1.2: Volume composition of a white cement paste with a water-to-cement ratio of 0.4.
Adapted from [3].

Figure 1.3: Dimensional range of pores in hydrated cement paste.

1.3 Indicators of durability

In practice, the deterioration of cementitious structures is rarely due to a single cause. It is

generally the result of decades of coupled physical and chemical reactions. Nonetheless, there

are several measurable quantities that are used as indicators of the durability of cementitious

materials. Some of the most widely used indicators are briefly described below.

The porosity is often used as a stand-alone indicator of durability. Analysis range from simple

measurements of the total porosity to more complex mercury intrusion experiments which

additionally reveal the pore break-through diameter of the material. Simple porosity mea-

surements, such as those that estimate the porosity from the difference in weight between

the water-saturated and oven-dried samples, are attractive. However, the problem is that the

measured porosity includes the chemically and physically bound water molecules that do not

necessarily contribute to the transport properties. Hence, the transport properties, such as

permeability, sorptivity and diffusivity correlate better with the durability of structures. More-

over, these transport properties correlate relatively well between them although permeability

is more sensitive to the presence of micro-cracks and changes in total porosity, compared with
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diffusivity or sorptivity [4].

The intrinsic permeability characterizes a medium from the perspective of pressure-induced

fluid flow through the fully saturated porosity. It quantifies the ability of a material to resist

fluid penetration and consequently correlates well with durability. It is related to macroscopic

observables through Darcy’s law [5]. For cement paste with water-to-cement ratios ≤ 0.5, it is

very low and difficult to measure reliably. Hence, there is a paucity of experimental data and a

considerable variability.

With the exception of the near-surface, concrete structures are rarely saturated with water. In

partially-saturated materials, suction leads the the uptake of water. This is called absorption

and can be described by the extended Darcy equation. Moreover, the partially saturated struc-

tures can be exposed to variations in the ambient relative humidity (RH). These changes lead

to the egress (desorption) and ingress (adsorption) of liquid water and vapour. The adsorp-

tion and desorption isotherms, also known as the water isotherms, describe the equilibrated

systems below full saturation and quantify the liquid - vapour - solid interactions.

The diffusion of water vapour and ions affect the durability of cementitious structures. In

practice, ions, such as chloride and sulfates, diffuse in the liquid-saturated part of the struc-

tures. The former causes extensive cracking and the latter leads to the corrosion of the steel

rebars. Other degradation mechanisms that are based on diffusion include carbonation where

the CO2 diffuses through the empty porosity and reacts with the portlandite. Although the

mechanisms that govern the water vapour and gas diffusion are dissimilar, the latter is often

used as a durability indicator because it is easier to measure.

1.4 Statement of the problem

The measurement of transport properties is necessary to control the quality and predict the

durability of cement paste. However, the experiments are often time-consuming and in some

cases, e.g. permeation of water, show a large unexplained scatter and anomalous behaviour

(see chapter 2).

Computer models can help address these problems. More importantly, they can help to

understand the link between the microstructure and the performance of the material. They

also make it possible to isolate the effects of various parameters which is very difficult to do

in experiments. These advantages are critical en route to develop better, more predictable

materials.

Computational fluid dynamics models have been successfully used to understand water

transport in a wide range of porous media including sandstones [6], carbonates [7] and fuel

cells [8]. However, their application to cement paste remains rather limited [9, 10, 11, 12, 13].

Numerical models have been restricted to either molecular dynamics simulations at the nano-

scale [14, 15] or to rather simplified models of flow through the micron-sized capillary pores
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[9, 16, 17, 18, 10, 11, 12]. The general consensus is that the macroscopic properties of cement

paste are governed by transport through the capillary pores. However, the models which are

limited to the capillary pores fail to reproduce experimental measurements [9, 16, 18, 10, 11,

12]. Moreover, in aggressive environments where structures are exposed to sea-water, high

performance concretes are often used. The cement pastes of these concretes have a smaller

and finer porosity and the measurement of their transport properties is consequently more

laborious and more time-consuming. These factors make it crucial to develop novel models

that can predict the water dynamics and interactions in both capillary and C-S-H gel pores.

The objective of this thesis is to develop a numerical model that calculates the permeability of

cement paste based on its microstructure. The layout of the thesis is as follows.

Chapter 2 reviews the experimental and numerical methods that are used to measure and

model the permeability of cement paste. Emphasis is put on the large scatter in experimental

data and on the limitations of the current numerical models.

Chapter 3 presents two lattice Boltzmann models for isothermal fluids. The first method is a

relatively standard flow model that is limited to the capillary pores. The second additionally

accounts for the flow through the C-S-H gel pores via an effective media approach. These two

methods are used to simulate the permeability of model cement pastes in chapter 5 where

it is shown that the degree of water saturation and the flow through the C-S-H are critical to

correctly match the experimental permeability measurements.

In chapter 4, the lattice Boltzmann permeability model is extended to non-ideal fluids de-

scribed with an equation of state. This modification is necessary to model the desorption

and adsorption of liquid water and vapour in the capillary pores. The model is further ex-

tended to include the transport and isotherms in the C-S-H gel pores. This is achieved with a

novel effective media approach implemented within a free energy framework. The method is

demonstrated in section 4.2.6 on pseudo-random cement-like systems. It is shown that the

novel LB model can reproduce a two-step isotherm where the first corresponds to the capillary

pores and the second to the smaller gel pores. It is also shown that the model can reproduce

the ink-bottle effect. The model is used to simulate the desorption and adsorption in model

cement pastes in chapter 6 where it is shown that it is critical to take into account the C-S-H

gel pores in order to match the experimental water isotherms.

Finally, chapter 7 summarizes the insights discovered during this thesis and provides an

outlook for possible future work.
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2 Permeability of Cement Paste: State-
of-the-art

Contents

2.1 Darcy’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Modelling techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Empirical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Experiments and models: a mismatch ? . . . . . . . . . . . . . . . . . . . . . . 15

This chapter reviews the techniques that are used to calculate the permeability of cement paste.

First, section 2.1 introduces Darcy’s law. Then, sections 2.2 and 2.3 discuss the experimental

and numerical techniques that are used to measure and model permeability, respectively.

Finally, section 2.4 discusses the reasons behind the mismatch between the experiments and

models.

2.1 Darcy’s law

The intrinsic∗ permeability κ characterizes a medium from the perspective of pressure-

induced fluid flow through the fully saturated porosity. For incompressible liquids and viscous

flows, it is related to macroscopic observables through Darcy’s law [5] which may be written

under the form:

κ= L0

A

µJ

∆P
(2.1)

for a sample of length L0 and cross-sectional area A through which a fluid flow J is driven by

an applied pressure gradient ∆P (figure 2.1). The dynamic fluid viscosity is µ= ρυ where ρ is

∗The non-intrinsic permeability, also called hydraulic conductivity, is fluid dependent and is expressed in m.s−1.
The ratio of intrinsic permeability to hydraulic conductivity is given by µ/ρg where g is the acceleration due to
gravity. For water at 20◦, µ/ρg ' 10−7 m.s.
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the density and υ is the kinematic viscosity. The intrinsic permeability is expressed in units of

[L]2 and is usually expressed in m2 or mD†.

Figure 2.1: Schematic illustration of Darcy’s law.

The intrinsic permeability can be measured using various techniques. A standard methodology

consists of applying a pressure gradient in one spatial direction, measuring the fluid inflow

and / or outflow, and calculating the permeability using Darcy’s law (equation 2.1).

2.2 Experimental techniques

The water permeability of cement paste is challenging to measure with standard methods

because it is difficult to force a measurable liquid flow through the paste. Measurement of

gas permeability is easier but requires prior drying of the sample to a well-defined state of

saturation which may take more than one year and could induce micro-cracks. Nonetheless,

standard permeability techniques have been used to measure the permeability of cement

paste by many authors [19, 20, 21, 22, 4]. For a material with low porosity and / or high

tortuosity, the required time to reach steady-state is very long. Hence, indirect measurement

methods such as beam-bending [23] have also been employed.

Table 2.1 shows a selection of measured permeabilities for mature cement pastes with water-

to-cement ratios around 0.4. There is a large unexplained scatter. Measured values range from

10−22 to 10−16 m2. In theory, the intrinsic permeability is a property of the medium and is

independent of the penetrating fluid or applied pressure. However, contrary to expectations,

the reported values suggest that the intrinsic permeability of cement paste is strongly depen-

dent on the penetrating fluid. Measurements with oxygen [4] as the permeating fluid are 3

to 5 orders of magnitude greater than typical values obtained using water [20, 21]. A similar

discrepancy is observed for other cementitious materials [27, 28]. Moreover, for the same fluid

(water), the permeability measurements span 2 to 3 orders of magnitude [24, 21]. Even for

nominally similar pastes with comparable cement composition, water-to-cement ratio and

hydration age, the measured permeability values differ by a factor of four.

Several hypotheses have been advanced to try and explain these anomalies including: gas

slippage on the surface of the pores [27]; microcracks induced by sample drying prior to

†One Darcy is equivalent to 9.87×10−13 m2.
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Table 2.1: Experimental permeability measurements for mature cement paste with water-to-
cement mass ratios (w/c) ranging from 0.35 to 0.47.

Method Fluid Conditioning w/c Age Intrinsic
(days) permeabi-

lity (m2)

Nyame & Standard Water Cured underwater 0.47 600 5×10−22

Illston permeability (no information
1981 [20] cell about the delay before

placing underwater)

Banthia & Tri-axial Water Sealed for 24h 0.35 28 8.9×10−20

Mindess permeability then cured
1989 [21] cell underwater

Ai et al. Thermo- Water Sealed and moist 0.4 548 10−22

2001 [24] permeatry cured for 24h then
cured underwater

Vichit-Vadakan Beam- Water Sealed for 48h then 0.4 14 5×10−22

& Scherer bending cured underwater −10−21

2002 [25, 26]

Vichit-Vadakan Beam- Water Sealed for 18h 0.45 3 6×10−22

& Scherer bending then cured
2003 [23] underwater

Ye 2005 [22] Three parallel Water Sealed. Vaccum 0.4 28 9×10−21

permeability saturated with water
cells for 4-8h prior to

measurement

Grasley Dynamic Water Sealed for 12-18h 0.4 14 2×10−21

& Scherer pressurization then cured
2007 [26] underwater

Wong et al. Standard Oxygen Sealed. Dried prior 0.45 90 6.5×10−17

2009 [4] permeability to measurement
cell

gas permeability measurements [4]; delayed cement hydration [28, 29]; swelling of cement

hydrates in contact with water [29] and dissolution and migration of fine elements [21, 28,

29, 30]. However, an examination of the results shows that none of the hypotheses discussed

above is sufficient to explain fully the wide variation of results.
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A plausible hypothesis is the variation in the degree of water saturation, defined as the fraction

of the porosity that is filled with water. Abbas et al. [31], Baroghel-Bouny et al. [32] and Wong

et al. [33] showed a strong dependency of the intrinsic gas permeability on the degree of water

saturation for concretes, mortars and other cement-based materials. At the start of this work,

the author was not aware of any similar study on cement paste using water as the permeating

fluid. Only very recently, Zamani et al. [34] measured the water permeability of cement paste as

a function of the internal relative humidity (RH) using a combination of 1H nuclear magnetic

resonance (NMR) analysis and empirical modelling. In general, although experimentalists

try to ensure water saturation before measuring water permeability, total saturation might

be difficult to establish and maintain. The analysis of the procedures leading to the results

reported in table 2.1 suggests that none of the measurements of water permeability to date

has actually been carried out on a fully saturated material.

The differences in water saturation of the capillary porosity primarily originate from the

conditioning of the samples after mixing. In systems which are cured sealed, the chemical

shrinkage voids are necessarily devoid of liquid water. In underwater cured systems, it is

often assumed that water is drawn into the voids as they form. However, this depends on

the size of the paste and the delay in exposing it to additional water. Water cannot permeate

across more than millimetre-sized samples on the timescale of the curing due to the rapidly

decreasing permeability of the paste and the relatively small pressure head. Hence for large

samples, such as might be used for permeability tests, and / or for water exposure delays of

more than a few hours, a significant fraction of the chemical shrinkage porosity may remain

devoid of liquid water. This is confirmed by recent 1H NMR experiments, which have also

shown that it is difficult, if not impossible, to subsequently saturate the shrinkage voids even

when using vacuum saturation on small samples [35]. This argument will be further developed

in sections 5.2.2 and 5.2.5 of chapter 5.

2.3 Modelling techniques

Models of water transport can be divided into two main categories. In the first category, simple

experimental measurements are combined with empirical equations in order to predict the

transport properties. In the second category, the flow is simulated through the explicitly

resolved porosity by solving or approximating the equations of flow. In this case, the pore

structure can be obtained by imaging techniques or simulated with a microstructural model.

2.3.1 Empirical models

Empirical equations can be combined with experimental measurements such as mercury

intrusion porosimetry (MIP) and electrical conductivity to calculate the water permeability.

For example, Katz and Thompson [36] proposed an empirical relation that describes the

permeability of rocks saturated with a single liquid phase with κ = cl 2
c
σ
σc

. Here, lc is the

characteristic pore size, σ is the conductivity of the rock saturated with a brine solution
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of conductivity σ0, and c is a constant on the order of 1/226. They reported an excellent

relationship between the calculated and measured permeabilities for various sandstones [36,

37]. El-Dieb and Hooton [38] and Christensen et al. [39] used the Katz and Thompson model

to calculate the permeability of cement paste. They both reported a poor linear relationship

between the measured and calculated permeabilities. There are several reasons that can

explain the discrepancy. First, the Katz and Thompson equation was developed for fully

saturated rocks. As discussed in section 2.2, it appears that the cement paste samples that

are used for permeability experiments may not be fully saturated. Second, the Katz and

Thompson equation was tested on various sandstones. These rocks have a relatively coarse

porosity. Cement paste has a finer porosity and a wider pore size distribution with multiple

characteristic pore sizes (mainly capillary and gel pores). Third, it is unclear how pore sizes

determined with MIP on dried samples can be used to estimate the permeability of virgin

samples [38, 40].

Along these lines, Cui and Cahyadi [41] included the contribution of the C-S-H gel pores in the

permeability calculation by using an analytical expression derived from the general effective

media theory [42] for the calculation of the conductivity of bi-composite materials. The pore

structure characteristics were determined by MIP and the volume of hydrates with Power’s

model. They reported permeability coefficients in good agreement with measurements for

different w/c ratios and degrees of hydration. However, the model requires input quantities

that are practically impossible to measure such as the critical volume fraction of C-S-H.

Moreover, similarly to the application of the Katz and Thompson model to cement paste, it is

unclear how pore sizes determined with MIP on dried samples can be used to estimate the

permeability of virgin samples [38, 40].

2.3.2 Numerical models

Pore structure of cement paste

Imaging techniques The pore structure of cement paste can be reconstructed using micro-

tomographic images obtained with, for example, scanning electron microscopes or focused

ion beam. Although the obtained structures are realistic, there are several limitations. For

instance, the resolution is often limited to ∼ 0.1−1 µm which means that the inter-hydrates

and fine capillary pores cannot be resolved. Additionally, the resolution is larger than the

break through diameter obtained from mercury intrusion experiments. For example, figure 2.2

shows the pore size distribution for a 28 days old cement paste with a water-to-cement ratio

of 0.4 as obtained from a mercury intrusion experiment. The pore break-through radius is of

the order of 7 - 20 nm. This is smaller than the minimum feature that can be resolved with

traditional imaging techniques. Moreover, most imaging techniques require drying of the

sample which might damage the microstructure.
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Figure 2.2: Pore size distribution of a 28 days old cement paste with a w/c ratio of 0.4 as
obtained with mercury intrusion porosimetry. Data from Elise Berodier.

Microstructural models Microstructural models of cement paste have been developed

for the purpose of understanding cement hydration and kinetics. Some of these models

account for a range of properties derived from the chemistry and thermodynamics of cement

such as phase composition, assemblage and interactions during the hydration processes.

HYMOSTRUC3D [43], CEMHYD3D [44] and µic [45] are amongst the leading models.

(a) (b)

Figure 2.3: 2D images of cement model microstructures as obtained with (a) µic and (b)
CEMHYD3D. The microstructures are (100 µm)3 in size. In (a) The model is of a white cement
paste with a w/c ratio of 0.4 and after 17 hours of hydration. The main phases are alite (red),
monosulfate (purple), ettringite (pale green), aluminate (white), C-S-H (cyan), portlandite
(green) and pores (black). In (a), (b) the model is of a CEM I cement paste with a w/c ratio
of 0.5 and after 28 days of hydration. The main phases are: alite (light brown), belite (blue),
aluminate (grey), aluminoferrrite (white), C-S-H (beige), portlandite (dark blue) and pores
(black).

HYMOSTRUC3D uses the vector approach to generate resolution-free microstructures. How-
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ever, it is severely limited in so much as it combines all the hydration products and grows

the microstructure as expanded spheres based on the original cement particle distribution

without taking into account interactions with neighbours. In so doing, it is unable to fully

capture the microstructural complexity of cement paste.

CEMHYD3D is lattice based and consequently more complex particle shapes may be mod-

elled than in HYMOSTRUC3D. However, practical computer and imaging resources limit

the minimum particle sizes to around 1 to 0.25 µm. Consequently, the pore network of the

microstructures tends to depercolate at relatively high porosities.

The microstructural model µic uses the vector approach and is hence inherently resolution-

free. However, in contrast with CEMHYD3D and HYMOSTRUC3D, µic is offered as a platform

where the user can define the physical and chemical properties as illustrated in figure 2.4. The

Figure 2.4: Elements in µic with examples of customizable properties and plugins. Figure
adapted from [45].

core of the model serves as a stand-alone module that provides the user with means to input

the properties of the cement and the rules of hydration. Afterwards,µic calculates the reactions

and outputs the vector microstructures. In contrast with HYMOSTRUC3D, the platform allows

the hydrates to nucleate in the pore space and explicitly accounts for impingement between

neighbouring grains. Moreover, µic employs efficient implementations of data-structure

algorithms that allow the simulation of the hydration of cements with realistic particle size

distributions. Furthermore, the user can also create plugins to describe, for example, the

morphology of the hydration products (e.g. C-S-H).

Simulation of flow through the pore structure

The porosity of cement paste is complex and heterogeneous. It is consequently impossible to

find analytical solutions for the equations of flow. Nonetheless, the flow can be solved with

two different approaches.

Network models In the first approach, the pore network is divided into a series of nodes

representing pores that are linked together by cylinders. The lengths and radii of the cylinders
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are determined by the pore separation and throat size. Then, the equations of laminar flow

within this network of cylinders, essentially a large set of simultaneous equations, are solved.

Most previous attempts to simulate the water permeability of cement paste are based on

such network models [16, 18, 17]. Pignat et al. [16] reported intrinsic permeability values

of the order of 10−13 to 10−15 m2 depending on the porosity and the cement particle size

distribution using the microstructural model IKPM, a precursor of µic, for a w/c ratio of 0.42.

Using microstructures simulated with HYMOSTRUC3D, Ye et al. [18] reported permeabilities

varying from 10−16 to 10−20 m2 depending on the porosity for a paste with a w/c ratio of 0.4.

Related to these studies, Koster et al. [17] derived a network model from 1 µm resolution 3D

micro-tomographic images of cement pastes and calculated a single permeability value of

9.3×10−20 m2 for a sample with a w/c ratio of 0.45 and a degree of hydration of 0.67.

The large difference in the values reported by Pignat et al. [16] and Ye et al. [18] is rather

surprising since they both approximate the flow using network models in microstructures

essentially composed of overlapping spheres. At similar porosities, ∼ 20%, Pignat et al. report

a permeability of ∼ 3×10−15 m2 while Ye et al. report a permeability of ∼ 10−19 m2. This

difference outlines the degrees of freedom that are available in network models due to the

different possible means to choose the number, radius and connectivity of the nodes.

Discrete models To avoid inadvertent change of the pore structure, the second approach

consists of solving - not approximating - the equations of flow using numerical methods such

as finite element or lattice Boltzmann. This approach removes the requirement to reduce the

highly complex pore structure into a series of cylinders and was previously used by Garboczi

and Bentz [9] and Zhang et al. [12].

Garboczi and Bentz [9] used a lattice Boltzmann model to calculate the permeability of

CEMHYD3D cement paste microstructures as a function of the capillary porosity and mi-

crostructure resolution (minimum particle size). They reported that the calculated perme-

ability was very sensitive to the resolution of the microstructure and at the highest resolution

studied (0.25 µm), the permeability was circa 10−17 m2 at a capillary porosity of 12%. Most

recently, Zhang et al. [12] used the LB method to calculate the permeability of HYMOSTRUC3D

cement paste microstructures. They reported a permeability of approximately 2×10−18 m2

for a w/c ratio of 0.4, a hydration age of 50 days and a microstructure resolution of 0.5 µm.

In general, the water permeabilities obtained with discrete numerical models are of the

order 10−17 −10−18 m2, several orders of magnitude larger than the lowest water permeability

measurement and closer to the gas result (table 2.1).
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2.4 Experiments and models: a mismatch ?

The measured permeabilities show a considerable scatter. For mature cement pastes with

w/c ratios around 0.4, the permeabilities range from 10−22 to 10−16 m2 (table 2.1). For reasons

outlined in section 2.2, it appears that most measurements have been done on non-saturated

samples. In this case, the measurements are no longer of intrinsic permeability.

The values obtained using computer models are scattered as well and range from 10−20 to 10−15

m2. Here, there are several problems that need to be addressed. First, previous simulations

only addressed fully saturated porosity. Hence, they cannot be compared to the reported

experiments without matching the conditioning of the samples in the experiments with the

degree of water saturation in the models. Second, at high degrees of hydration and low degrees

of water saturation, the water-filled capillary porosity depercolates and the nano-porosity

of the C-S-H becomes crucial to maintain the percolation of the water-filled pore network.

Previous simulations only addressed the capillary porosity and ignored the nano-scale porosity.

With the exception of the analytical work of Cui and Cahyadi [41], all the simulations discussed

above treated the C-S-H phase as an impermeable solid with no inherent porosity. This makes

the percolation of the pore network, and thus the permeability, critically dependent on the

resolution of the microstructures. These factors lead to an overestimation of the permeability

at large porosity and cause it to fall catastrophically to zero below the percolation threshold of

the capillary porosity.

Consequently, what is required to clear up the mismatch is a numerical model that can

account for the degree of water saturation and solve the flow in both the capillary and gel

pores. Discrete methods, such as finite element and lattice Boltzmann, can do so. Additionally,

they offer the advantage of solving the flow without the need to reduce the pore structure

into a series of cylinders. Furthermore, they can help develop more pathways for testing the

microstructural models of cement paste against experimental data.

In this context, the lattice Boltzmann method was selected for solving the equations of flow. It

was previously used by Garobczi and Bentz [9] to calculate the permeability of cement paste

and by Svec et al. [46] to study the flow of fibre reinforced self-compacting concrete during a

slump test. Besides the advantages discussed in the last paragraph, it offers the ability to deal

implicitly with arbitrarily shaped geometries which is critical for complex porous media like

cement paste. Moreover, the computer code that would be initially developed for permeability

could be extended to model a wide range of transport phenomena including diffusion and

desorption. In the latter case, lattice Boltzmann methods give a significant advantage over

other discrete methods because they offer an implicit tracking of the liquid - vapour interfaces.
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3.1 Standard methods

3.1.1 Overview

Over the past 25 years, a new class of computational fluid dynamics solver, the lattice Boltz-

mann (LB) method, has emerged [47, 48, 49, 50, 51, 52, 53, 54]. A large amount of research

effort has resulted in a large inventory of lattice Boltzmann algorithms suitable for a wide

range of applications including the simulation of multi-component [55] and multi-phase

non-ideal fluids [56], chemical reactions [7], turbulence [57], magneto hydrodynamics [58],

relativistic hydrodynamics [59], heat transfer [60] and free surface flows [61]. The successful

development of LB methods is due to several factors. First, in its most basic form, an LB
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algorithm is easier to implement than other computational fluid dynamics solvers based on

the direct discretization of the Navier-Stokes equations. Second, the LB methods are based on

a mesoscopic description of fictitious fluid particles. This makes it easy to incorporate several

types of interactions between the fluid particles, and to describe interactions between the

fluid and solid boundaries. This includes the ability to describe complex boundaries by means

of very simple arithmetical operations. Moreover, due to the local nature of the interactions,

most LB algorithms are highly amenable to parallelization and can take advantage of the

recent growth in computing power.

Historically, the lattice Boltzmann approach developed from the lattice gas method [48, 49]

but it can also be directly derived from the Boltzmann equation [62] which describes the

statistical behaviour of a system that is not in thermodynamic equilibrium. Under appropriate

conditions, the LB equations are formally equivalent to the Navier-Stokes equations discretized

in space and time [51]. The Navier-Stokes equations emerge from applying the second law

of Newton to fluid motion and assuming that the stress in the fluid is the sum of a pressure

term and a diffusing viscous term. They are of paramount importance in physics as they

successfully describe, amongst other things, water flows, oceans currents and air turbulence.

In LB methods, at each node of a discrete lattice mesh, the fluid is represented by a density

distribution of Q fluid elements each with a defined lattice velocity performing consecutive

propagation and collision steps as illustrated in figure 3.1

(a) Time t (b) Time t +1

Figure 3.1: 2D illustration of the distribution functions (a) before and (b) after a streaming step
in the lattice Boltzmann method.

The lattices grids must fulfil certain symmetry conditions in order to recover hydrodynam-

ics behaviour with full rotational symmetry of space. The most widely used lattice is the

D3Q19 where D3 denotes a three-dimensional lattice and Q19 stands for 19 discrete velocities

(figure 3.2).
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Figure 3.2: D3Q19 lattice with three sub-lattices and 19 discrete velocities: rest position (black),
six velocities towards face centres (dark blue) and 12 velocities towards the edge centres of the
cube (light blue).

In this case, the velocity vectors ei are given by:

ei =


(0,0,0) for i = 1

(±1,0,0), (0,±1,0), (0,0,±1) for i = 2−7

(±1,±1,0), (±1,0,±1), (0,±1,±1) for i = 8−19

(3.1)

where i = 1...19 represent a stationary velocity, six velocities towards face centres and 12

velocities towards the edge centres of a cube.

The standard LB method can be encapsulated in:

fi (r +ei∆t , t +∆t )− fi (r , t ) =∆t
Q∑

j=1
Si j

(
f j (r , t )− f eq

j (r , t )
)
+F . (3.2)

Here r is a lattice node and ∆t is the simulation time step. The functions fi represent the

density of fluid at position r and time t moving with velocity ei . The first term on the RHS of

equation 3.2 is the collision operator in which Si j is the collision matrix that serves to relax

the fluid towards an equilibrium distribution f eq
j (r , t) that encapsulates the physics of the

problem. Lastly, F is the external forcing that describes, for example, gravity or interfacial

tension.

In the absence of external forces, the macroscopic density ρ(r , t ) and momentum ρ(r , t )u(r , t )

are calculated from the distribution functions as:

ρ(r , t ) =
Q∑

i=1
fi (r , t ) (3.3)
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and

ρ(r , t )u(r , t ) =
Q∑

i=1
fi (r , t )ei (3.4)

where u(r , t ) is the macroscopic velocity.

3.1.2 Collision operators and equilibrium functions

The collision operator serves to relax the fluid towards the equilibrium functions. A very

widely used approximation of the collision operator is the Bhatnagar-Gross-Krook (BGK)

model [51], also known as the single-relaxation-time (SRT) model. This model reduces the

collision operator to

Si j =−1

τ
δi j (3.5)

where τ is the relaxation time and δi j =
{

0 if i 6= j

1 if i = j
is the Kronecker delta. The first term of

the RHS of equation 3.2 becomes:

Q∑
j=1

Si j

(
f j (r , t )− f eq

j (r , t )
)
=−1

τ

(
fi (r , t )− f eq

i (r , t )
)

. (3.6)

The relaxation time τ is related to the kinematic fluid viscosity υ through

υ= c2
s

(
τ− ∆t

2

)
(3.7)

where c2
s = c2

3 is the lattice speed of sound with c = ∆x
∆t the lattice speed and ∆x the lattice

spacing.

Under certain conditions, the SRT collision operator yields unphysical behaviour such as

viscosity-dependent permeability [63, 64, 65]. To overcome this problem, the multi-relaxation-

time (MRT) scheme [63] was developed. In this version, the linearized collision operator is

implemented in the hydraulic modes of the problem instead of the space of discrete velocities.

The hydraulic modes include hydrodynamic conserved quantities such as the density and

momentum and other non-conserved quantities. The first term of the RHS of equation 3.2

becomes:

Q∑
j=1

Si j

(
f j (r , t )− f eq

j (r , t )
)
=−M−1 ·S

(
m (r , t )−meq (r , t )

)
(3.8)

where S is a diagonal relaxation matrix and M is a 19×19 transformation matrix that links the
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hydraulic modes m with the distribution functions f by:

m = M · f (3.9)

f = M−1 ·m. (3.10)

For the D3Q19 lattice, out of the 19 moments, only the density ρ and momentum ( jx , jy , jz )

are conserved and measurable quantities. The other moments can be used to improve the

numerical stability [63] by adjusting their corresponding relaxation times. The MRT model

can be regarded as the more general collision operator, and can be simplified to recovered the

SRT model or a two-relaxation-time (TRT) model as proposed in [64, 65]. More information

about the MRT collision operator can be found in appendix A.

Regardless of the collision operator, the underlying physics of the problem is defined by the

equilibrium distribution functions f eq
j . For incompressible isothermal fluids, the equilibrium

distribution functions are [51]:

f eq
i (r , t ) =ωiρ

(
1+ u∗.ei

c2
s

+ (u∗.ei )2

2c4
s

− u∗.u∗

2c2
s

)
, (3.11)

where u∗ is the equilibrium velocity and is equal to the macroscopic velocity in absence of

external forcing. The lattice weights ωi are specific to the chosen lattice and are calculated in

order to correct the lattice with respect to isotropy. For the D3Q19 lattice, they are:

ωi =


1
3 for ei = 0 (i = 1)
1

18 for ei = 1 (i = 2−7) .
1

36 for ei =
p

2 (i = 8−19)

(3.12)

3.1.3 Boundary conditions

Fluid – solid boundaries

In computational fluid dynamics (CFD) models, the collision of the fluid with solid boundaries

is usually accounted for by implementing a no-slip boundary condition. In lattice Boltzmann

methods, the no-slip boundary condition is often approximated with the bounce-back rule

[66]: if a fluid element hits a solid boundary following the propagation step, its momentum is

reversed so that:

fi (r +ei , t +1) = f ĩ (r , t ) (3.13)

where ĩ is the direction opposite to i : ei =−e ĩ . This ability to handle highly irregular bound-

aries by means of simple arithmetical operations is one of the most appealing advantages of

LB methods. The bounce-back rule is the most widely used fluid – solid boundary condition

as it provides a very good compromise between ease of implementation, numerical perfor-

mance and accuracy. The main draw-back of the bounce-back rule is that spherical structures
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must be approximated with stair-case geometries (zig-zag type). Consequently, if the lattice

resolution is coarse, the bounce-back rule introduces an artificial rugosity which might reduce

the accuracy of the near-wall flow fields [53].

Open-flow boundaries

Unlike fluid – solid boundaries, open flow boundaries are not physical interfaces. In many

CFD applications, the pressure or the velocity is fixed on a boundary in order to replicate

an experimental condition (e.g. pressure head or wind speed). The former is referred to

as Dirichlet boundary condition and the latter as Neumann boundary condition. In LB

methods, the Dirichlet boundary condition can be replicated by applying a body- force [67] or

by controlling the pressures at the inlet and outlet of the sample [68].

Body-force There are several ways to implement a body-force in lattice Boltzmann algo-

rithms. Most commonly, an external force acting on all the fluid nodes is implemented by

adding a term, i.e. F , to the RHS of equation 3.2 and then modifying the macroscopic and

equilibrium velocities accordingly [67, 68, 69]. Several mathematically derived variants exist.

One variant consists of adding the term [67]

Fi = 3ωi ei .g (3.14)

to the RHS of equation 3.2 where g is the acceleration due to the external forces. The velocities

become:

u (r , t ) = u∗ (r , t ) =
∑Q

i=1 fi (r , t )ei∑Q
i=1 fi (r , t )

+ g

2
(3.15)

where it is assumed that ∆t = 1 and that the average density in the system is ρ0 = 1.

Pressure boundary conditions An alternative way to control the flow takes advantage of

the equation of state that links the pressure P to the density ρ by:

P = c2
s ρ. (3.16)

Accordingly, it is possible to define regions with a certain pressure by setting the corresponding

densities in a hydro-dynamically consistent way. Zou and He [68] first proposed how to

implement pressure boundary conditions for the D2Q9 lattice and explained how to derive

them for the D3Q15 lattice. Kutay et al. [70] extended the pressure boundary conditions to

include the D3Q19 lattice. Most recently, Hecht and Harting [71] generalized the condition

to include inflow with arbitrary velocity direction on D3Q19 lattices. The pressure boundary

conditions are derived for LB algorithms by using the density and momentum equations. Due

to the continuity relation, it is possible to specify three of the four variables
(
ρ,ux ,uy ,uz

)
and
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then solve for the fourth. Since the density must be fixed in order to control the pressure, it is

possible to fix two out of the three components of the velocity. For example, in the most simple

case, a pressure can be imposed by setting ρ = ρ0, uy = uz = 0 and then solving for ux . All of

this is done by calculating and setting the appropriate values of the distribution functions.

More information about pressure boundary conditions can be found in appendix B.

3.1.4 Definition of a lattice Boltzmann algorithm

A lattice Boltzmann algorithm consists of a combination of:

1. A set of equilibrium distribution functions that defines the physics of the problem (e.g.

isothermal or non-ideal fluids).

2. A fluid – fluid collision operator that relaxes the system towards the equilibrium distri-

bution functions.

3. A fluid – solid boundary condition that describes the interactions between the fluid and

the solid (e.g. no-slip, wetting).

4. An open-flow boundary condition that replicates the experimental conditions (e.g.

pressure head, gravity, wind speed, ambient relative humidity).

Finally, the algorithm is implemented in a computer program with an implementation lan-

guage.

3.1.5 Implementation

As part of this work, a lattice Boltzmann algorithm was implemented to simulate the per-

meation of isothermal fluids in saturated porous media. The equilibrium distribution func-

tions were defined with equation 3.11 to model an incompressible isothermal fluid. A multi-

relaxation-time collision operator was implemented as developed by D’Humières et al. [63]

and described in appendix A. The relaxation rates were chosen following the two-relaxation-

time model [64, 65] so that:

s1 = s4 = s6 = s8 = 0,

s2 = s3 = s10 = s11 = s12 = s13 = s14 = s15 = s16 = 1/τ,

s5 = s7 = s9 = s17 = s18 = s19 = 8(2− s2)
/

(8− s2).

(3.17)

The main relaxation time was set to τ= 0.6 following the work of Ref. [69] on the permeability

of Fontainebleau sandstones. The no-slip fluid-solid boundary condition was simulated by

applying the standard bounce-back rule. The pressure gradient driving the fluid was simulated

with an external force acting on all fluid nodes. The acceleration in equation 3.14 was set to

g = g ex where the acceleration value, g , was set to 10−5. Periodic boundary conditions were
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used in the three spatial directions in order to minimize boundary effects. The algorithm was

implemented in MATLAB and parallelized using Jacket [72] GPU engines. The algorithm is

capable of running on any computer equipped with a CUDA-enabled GPU. The system that

was used to run the simulations comprised an NVIDIA GeForce GTX 460M with 192 CUDA

cores running at 1.36 GHz and 1.5 GB of memory. Using Jacket, a speedup of ∼ 16 was achieved

for typical systems with one million nodes (execution time on CPU without Jacket / execution

time on GPU with Jacket).

3.1.6 Methods for calculating permeability

The intrinsic permeability is related to macroscopic observables through Darcy’s law [5] as

previously shown in equation 2.1. In the lattice Boltzmann simulations, when a constant

body-force is applied throughout the sample, it is not necessary to calculate the pressure

gradient as its value is simply given by g [73]. Consequently, the intrinsic permeability can be

calculated with:

κ= 〈ux〉µ
g

(3.18)

and is expressed in units of ∆x2. In the simulations, the intrinsic permeability was calculated

when the simulations were considered to be converged, that is, when the mean velocity change

per voxel per time step averaged over 100 time steps was smaller than 10−8.

3.1.7 Validation

Analytical solutions exist for flows in a number of relatively simple geometries. In these few

cases, the accuracy of the implemented model can be tested by comparing the simulation

results with analytical solutions. Accordingly, the relative error in permeability is defined as

the relative error between the simulated and the analytical value:

ε= κLB −κanal y ti cal

κanal y ti cal
. (3.19)

Flow in square pipes

To validate the implemented LB model, the flow was computed in an infinitely long 3D square

pipe of side length h. The permeability of the square pipe can be calculated analytically by

assuming a laminar flow and is given by [74]:

κanal y ti cal = h2

4

[
1

3
− 64

π5

∞∑
i=0

tanh
(
(2i +1) π2

)
(2i +1)5

]
≈ 0.03514h2. (3.20)

Figure 3.3 shows that the relative error in permeability decreases from 36% for h = 1, to 1.4%

for h = 10 and to less than 0.1% for h = 40.
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Figure 3.3: Relative error in permeability ε vs. the side length h of a 3D infinitely long square
pipe.

Flow through a cubic array of overlapping spheres

The accuracy of the model in a more complicated geometry was tested by computing the flow

through a cubic array of overlapping impermeable spheres of radius r and centre-to-centre

spacing L. Figure 3.4 shows an illustration of a single simulation unit cell and of the overall

resulting medium when periodic boundary conditions are used.

Figure 3.4: (left) Schematic illustration of a simulation unit cell consisting of a sphere centred
in a cubic lattice of side length L. (right) The resulting medium when periodic boundary
conditions are used and the spheres are allowed to overlap. Figures are adapted from [75].

The analytical permeability is given by:

κanal y ti cal = 1

6πCD

L3

r
(3.21)

where CD is the porosity dependent drag force coefficient as described in [75].

First, the size of the system L (i.e. number of pixels used to discretize the side length of

the cube) was varied while keeping the porosity constant at circa 20%. The analytical and
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numerical permeabilities and the relative error in permeability are shown in figure 3.5. Second,

the radius of the sphere, and consequently the porosity, were varied while keeping the size

of the system constant at a relatively coarse resolution of L3 = 213. The relative error in

permeability is shown in figure 3.6.

(a) (b)

Figure 3.5: (a) Analytical and numerical permeabilities κ and (b) relative error in permeability
ε vs. the size L of a system of overlapping spheres with 20% porosity.

Figure 3.6: Relative error in permeability ε vs. the porosity of a system of overlapping spheres
of size L3 = 213.

With increasing resolution (figure 3.5) or increasing porosity (figure 3.6), the relative error in

permeability ε decreases and the simulated permeability converges to the analytical prediction.

However, in both cases, the error does not decrease monotonically, presumably due to the

discretization of the spheres as has been previously observed by Manwart et al. [76].

Additionally, the permeability of the system of overlapping spheres was computed for several

values of the kinematic fluid viscosity. This was achieved by varying the relaxation time τ

between 0.6 and 2.0. The permeability shows a negligible dependence on the viscosity, a
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clear advantage of the multi-relaxation-time collision operator [64] when compared to the

single-relaxation-time collision operator (figure 3.7).

Figure 3.7: Normalized permeabilityκ
/
κ0 for a system of overlapping spheres vs. the kinematic

viscosity υ obtained using a multi- and a single- relaxation times collision operators. The size
of the system is L3 = 323 and the porosity is 85.1%.

In all the validation tests described above, a very good agreement was observed between

numerical and analytical results. This suggests that the implemented algorithm can be trusted

to compute the flow in more complex geometries where analytical solutions cannot be found.

3.2 Effective media methods for the transport properties

3.2.1 Overview

In general, in effective media approaches, a multi-scale problem is addressed by assigning

effective macro-scale properties (e.g. permeability) to appropriate numerical nodes. A good

example is the Brinkman equation [77] which is an extension of Darcy’s law that accounts for

fluid flow through porous solids:

β∇2 J + J = A

L0
κ∆P (3.22)

where β is an effective viscosity term. Effective media approaches are capable of extending the

use of standard numerical methods to include larger media or media with partly unknown ge-

ometries (e.g. C-S-H). There are two main classes of lattice Boltzmann solvers that incorporate

effective media: force-adjusted and partial bounce-back methods.

Force-adjusted methods

Originally, Spaid and Phelan [78] proposed a two-dimensional model to recover the Brinkman

equation by modifying the velocity term in the LB equilibrium functions to reduce the magni-
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tude of the momentum. The idea behind this approach is to use the Stokes equation to model

the flow in open regions, and the Brinkman equation to model the flow through porous struc-

tures by treating them as an effective medium of known permeability. The main drawback of

this approach is its inability to model objects with very low permeability. Freed [79] improved

the method by allowing it to recover flow through a resistance field with a higher momentum

sink. Martys [80] extended the validity of the LB Stokes-Brinkman approach over a larger range

of forcing and “porous media effective viscosity” by incorporating the dissipative forcing into

a linear body-force. Martys and Hagedorn [81] applied this model to study the effect of the

permeability of sand grains on the bulk permeability of a Fontainebleau sandstone. Unsurpris-

ingly, they found that the bulk permeability increases with the sand grain permeability at low

porosities, and that, at high porosities, the bulk permeability is insensitive to the sand grain

permeability. They pointed out that their algorithm was unstable when the sand permeability

was low, less than order∗ ∼ 0.1∆x2. Kang et al. [7] combined the Stokes-Brinkman LB model

with a non-uniform mesh to study the effect of simplified 2D fractures on the permeability

of rocks. They reported that the importance of the flow in the porous matrix depends on the

ratio of the permeability of the porous matrix to that of the fracture.

Partial bounce-back methods

In a different approach based on earlier work done by Balasubramanian et al. [82] and Gao

and Sharma [83] on lattice gases, Dardis and McCloskey [84, 85] proposed a lattice Boltzmann

method where momentum loss is due to the “presence of solid obstacles”. The “solid scatterer

density”, or more simply the “solid fraction”, is related to the permeability of the porous

medium that they represent. They reported a behaviour consistent with a Kozeny-Carman [86,

87] type relationship between the solid fraction and the permeability for low to intermediate

solid fractions. They noted that at intermediate to high solid fractions, the rapid decrease in

permeability is consistent with a percolation process giving a power-law relationship between

the solid fraction and the permeability. However, their use of a two-dimensional hexagonal

lattice made it impossible to calculate the permeability of porous media with high solid

fractions and thus low permeabilities. Thorne and Sukop [88, 89] developed an algorithm

where the additional “porous media step” takes place after the traditional collision step and

used it on a D2Q9 lattice to model the Elder problem where the fluid flow is initiated by density

variations. Chen and Zhu [90] analysed the Gao and Sharma [83], Dardis and McCloskey

[84] and Thorne and Sukop [88] models. They showed that only the Thorne and Sukop

model is valid for the whole range of solid fractions (zero to one). They also showed that

these models yielded velocity profiles in good agreement with Brinkman’s predictions. Walsh

et al. [91] proposed a new “pre-collision” partial bounce-back algorithm and derived an

analytical expression that links the permeability to the “solid fraction”. They showed that

their model [91] and the models of Dardis and McCloskey [84] and Thorne and Sukop [88]

produce equivalent results although their own has significant advantages in terms of mass

conservation in heterogeneous media and suitability for parallel computing. Recently, Zhu

∗In general, ∆x is on the order of 10−7 to 10−5 m in porous media.
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and Ma [92] proposed a new partial bounce-back algorithm and showed how both their model

and the Walsh et al. [91] model recover similar forms of the Brinkman equation.

3.2.2 Theory

For simplicity and without loss of generality, the Walsh et al. model [91] is demonstrated on

the single-relaxation-time collision operator with ∆x,∆t and τ set to unity. In this case, and in

the absence of external forces, equation 3.2 is reduced to:

fi (r +ei , t +1) = f eq
i (r , t ) . (3.23)

In the partial bounce-back method, the fluid – fluid collision and the bounce-back rules are

combined to reflect local material properties (figure 3.8). To control the partial bounce-back

Figure 3.8: A 1D schematic showing one distribution function for (a) propagation between
fluid nodes, (b) full bounce-back at a fluid-solid interface, (c) propagation and partial bounce-
back between a fluid and a weakly-permeable grey node and (d) propagation and partial
bounce-back between two weakly-permeable grey nodes. Pores are shown in white, solids in
black and weakly-permeable grey nodes in dotted grey. Black arrows stand for the distribution
function at time t and grey arrows for the distribution function at time t+1.

step, an effective media parameter σ(r ) is introduced [91] which combines equation 3.23 with

the bounce-back step as described in equation 3.13. The master equation of the algorithm

becomes:

fi (r +ei , t +1) = [1−σ (r )] f eq
i (r , t )+σ (r ) f ĩ (r , t ) . (3.24)

Equation 3.24 recovers equation 3.23 in pores (σ(r ) = 0) and equation 3.13 in the case of solid

boundaries (σ(r ) = 1). The “effective media parameter” σ(r ) is equivalent to the “density of

solid scatterers” or “solid fraction” previously used by other authors [84, 88, 91, 92]. The term

“effective media parameter” is preferred in this work in order to avoid unnecessary confusion

with the intrinsic porosity or density. Hence, a weakly-permeable node with defined effective
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media properties is labelled a grey node. Accordingly, the following classes of nodes are

defined:

σ(r ) = 0 :

0 <σ(r ) < 1 :

σ(r ) = 1 :

pores

grey nodes

solids

(3.25)

The microscopic and macroscopic density and momentum are given by:

ρ∗(r , t ) =
Q∑

i=1
fi (r , t ) (3.26)

ρ (r , t ) = [1−σ (r )]
Q∑

i=1
fi (r , t ) (3.27)

ρ∗ (r , t )u∗ (r , t ) =
Q∑

i=1
fi (r , t )ei (3.28)

ρ (r , t )u (r , t ) = [1−σ (r )]
Q∑

i=1
fi (r , t )ei (3.29)

where the asterix signifies a microscopic variable used for the calculation of the equilibrium

functions. For σ(r ) = 0, equations 3.27 and 3.29 recover equations 3.26 and 3.28, respectively

while for σ(r ) = 1 they are both equal to zero.

At the start of each simulation, the nodes are initialized to a microscopic density according to:

ρ∗(r , t = 0) =


0 for solids

1 for grey nodes,

1 for pores

(3.30)

zero microscopic velocity:

u∗(r , t = 0) = 0, (3.31)

and the macroscopic moments are calculated with equations 3.27 and 3.29.

Walsh et al. [91] derived the intrinsic permeability of grey nodes (partially-permeable homo-

geneous media for which σ(r ) =σ∀r ) as a function of the fluid kinematic viscosity and the

effective media parameter as:

κ(r ) = 1−σ(r )

2σ(r )
υ. (3.32)

Equation 3.32 was derived by projecting the D3Q19 lattice onto a D1Q3 lattice and assuming

a stationary fluid as shown in Appendix C. For low values of the effective media parameter σ,

a similar equation, κ= υ/2σ, was obtained by Balasubramanian et al. [82] by introducing a

damping term proportional to the velocity in the Navier-Stokes equation.
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3.2.3 Implementation

The model as described above in equation 3.24 was first proposed and implemented by

Walsh et al. in 2D [91]. What follows is believed to be the first 3D implementation. A three-

dimensional version is necessary for porous media because the percolation is critically de-

pendent on the number of spatial dimensions. This implementation will highlight some

ambiguities within [91], demonstrate the ability of the model in a number of relatively com-

plex geometries, and compare the numerical results with analytical predictions whenever

possible.

Walsh et al. use the term “solid fraction”. In this work, the term “effective media parameter” is

preferred in order to avoid any unnecessary confusion with the inherent porosity or density of

the grey nodes.

Walsh et al. tested the model on homogeneous materials composed of grey nodes only.

Although Walsh and Saar [93] subsequently studied the 2D speleogenesis of carbonate aquifers

with a wide range of permeabilities, it was an application and not a validation and hence it did

not clarify the implementation method. The setups used by Walsh et al. [91] are insufficient to

reveal errors or inconsistencies in the definition of the hydrodynamic moments. This became

clear as soon as inhomogeneous materials with pores, grey nodes and solids were tested.

This is the reason why Zhu and Ma [92] recently claimed that, in the Walsh et al. model, the

velocity appears to be “discontinuous” at the interfaces between grey nodes with different

permeabilities. However, equations 3.24 - 3.31 show, clearly, how to implement the model and

initialize the variables. Section 3.2.5 demonstrates the accuracy of the model in a wide range

of test setups. Additionally, section 3.2.5 shows that the “discontinuities” reported by Zhu and

Ma are not a property or a limitation of the Walsh et al. model. Rather, they are most probably

due to an inconsistency in the implementation of the Walsh et al. model by Zhu and Ma.

As part of this work, an effective media lattice Boltzmann model was implemented to simulate

the permeation of isothermal fluids in saturated porous media. The equilibrium distribution

functions were defined with equation 3.11 to model an incompressible isothermal fluid.

The single-relaxation-time was preferred to the multi-relaxation-time collision operator to

minimize the number of parameters while developing the model. For numerical efficiency,

the relaxation time was set to τ= 1. The no-slip fluid-solid boundary condition was taken into

account in an implicit way in equation 3.24 on solid boundaries marked with σ(r ) = 1. The

pressure gradient driving the fluid was simulated with pressure boundary conditions acting

inside injection chambers as further discussed below. Periodic boundary conditions were

used in the two remaining spatial directions in order to minimize boundary effects. Finally,

the effective media algorithm was written in C and parallelized using the OpenMP library.
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3.2.4 Methods for calculating permeability

The calculation of the intrinsic permeability was previously described in section 3.1 when a

constant body-force was applied throughout the sample. However, when pressure boundary

conditions are used, several additional parameters need to be defined. The critical ones are

described in this section.

The simulations were carried out on samples of size Lx ×Ly ×Lz . The pressure boundary con-

ditions were setup in the x direction. Accordingly, five-node-wide inlet and outlet chambers

were added on the left and right hand sides of the sample. Therefore, the total system, com-

posed of inlet, sample and outlet, has nodes located at (lx , ly , lz ) = (1,1,1)...(Lx +10,Ly ,Lz ) as

illustrated in figure 3.9. The pressures were fixed on the first layer of the inlet (P = Pi nlet , lx = 1)

and the last layer of the outlet (P = Poutlet < Pi nlet , lx = Lx +10) following the description of

Hecht and Harting [71] by setting the densities to ρi nlet and ρoutlet < ρi nlet , the velocities to

uy = uz = 0 and then solving for ux . For more information see Appendix B.

Figure 3.9: A 2D illustration of the setup used to impose pressure boundary conditions and
calculate permeability.

The pressure gradient was approximated by the arithmetic mean of the pressures at the

first surface layer (lx = 5, lx = 6) and last surface layer (lx = Lx +5, lx = Lx +6) of the sample as

described by Narváez et al. [69]. The permeability was calculated with equation 2.1 when the

simulations were considered to be converged, that is, when the relative permeability change

per 1000 time steps was less than 10−5.

3.2.5 Validation

In this section, the implemented algorithm is validated by comparing the numerical results

with analytical predictions for a suite of standard test cases including flows in square pipes,

flows through arrays of overlapping impermeable spheres, and flows through homogenous

media with effective transport properties. In these cases, the relative error in permeability

is calculated using equation 3.19. For some additional test cases, analytical solutions do not
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exist and the results are discussed qualitatively.

Recovery of the standard lattice Boltzmann algorithm

Flow in square pipes First, to verify that the effective media algorithm recovered the stan-

dard lattice Boltzmann model behaviour, the flow was computed in a 3D infinitely long square

pipe of side length h. The effective media parameter was set to σ(r ) = 0 for the fluid pores

and to σ(r ) = 1 for the solid walls. The analytical permeability is given by equation 3.20.

The relative error in permeability of the resultant Poiseuille flow decreases from 13 to 1%

when the side length of the pipe increases from 3 to 7 nodes (figure 3.10). Figure 3.11 shows

that the relative error is slightly different than that obtained using the standard LB algorithm

of section 3.1. The small difference arises from the fact that the present algorithm uses an

SRT collision operator with pressure boundary conditions while the algorithm developed in

section 3.1 uses an MRT collision operator with an external body-force.

Figure 3.10: Relative error in permeability ε vs. the side length h of a 3D infinitely long square
pipe.

Flow through a cubic array of overlapping spheres The accuracy of the model in a more

complicated geometry was tested by computing the flow through a cubic array of overlapping

spheres of radius r and centre-to-centre spacing L as previously illustrated in figure 3.4. First,

the effective media parameter was set to σ(r ) = 0 for the pores and σ(r ) = 1 for the spheres.

This makes the spheres impermeable and replicates the media studied in section 3.1. The

size of the system was varied while keeping the porosity constant at circa 20%. The analytical

permeability is given by equation 3.21. The analytical and numerical permeabilities and the

relative error in permeability are shown in figure 3.12. There is a very good agreement. With

increasing resolution, the error decreases and the calculated permeability converges to the

analytical value. Moreover, the numerical error is comparable to that previously obtained

using conventional finite difference schemes [76] and lattice Boltzmann solvers with single

[76] and multiple (this work, section 3.1, figure 3.13) relaxation times collision operators.
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Figure 3.11: Relative error in permeability ε vs. the side length h of a 3D infinitely long square
pipe as obtained with (1) a standard algorithm with an MRT collision operator and an external
body-force and (2) an effective media algorithm with an SRT collision operator and pressure
boundary conditions.

(a) (b)

Figure 3.12: (a) Analytical and numerical permeabilities κ and (b) relative error in permeability
ε vs. the size L of a system of overlapping spheres with 20% porosity.

We note, however, as for the results obtained using the MRT collision operator, the error does

not decrease monotonically, presumably due to the discretization of the spheres as previously

observed in section 3.1 and in [76].

Effective media algorithm

Homogeneous media To validate the partial bounce-back algorithm, the permeability of

a medium of size L3 = 103 uniformly filled with grey nodes of effective media parameter

σ(r ) = σ∀r was calculated as a function of σ. Figure 3.14 compares the simulation results

to analytical predictions (equation 3.32). The relative error in permeability ε is smaller than
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Figure 3.13: Relative error in permeability ε vs. the size L of a system of overlapping spheres
as obtained with (1) a standard algorithm with an MRT collision operator and an external
body-force and (2) an effective media algorithm with an SRT collision operator and pressure
boundary conditions.

1% for homogeneous media with permeability κ > 8.10−7∆x2 and on the order of 5% for

κ> 8.10−17∆x2.

(a) (b)

Figure 3.14: (a) Analytical and numerical permeabilities κ and (b) relative error in permeability
vs. the effective media parameter σ of a 3D homogeneous system filled with grey nodes. In (b),
the relative error for σ= 0.1 and σ= 0.4 is smaller than 10−8.

The permeability results are in excellent agreement with the corresponding two-dimensional

simulations performed by Walsh et al. [91] since, for homogeneous media, the number of

spatial dimensions does not matter because σ(r ) =σ∀r . Indeed, it is worth noting that one of

the methods that can be used to derive equation 3.32 starts by projecting the 3D lattice onto a

1D lattice (see appendix C and appendix A of [91]).

The case of σ= 0.5 is a special case and may be interpreted as a checkerboard structure with
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(a) (b)

Figure 3.15: A comparison of results from literature with the results obtained in this work and
previously shown in figure 3.14. (a) Analytical and numerical permeabilities κ vs. the “solid
fraction” ns of a 2D homogeneous system filled with grey nodes. The analytical results are
obtained with equation 3.32. Model 1 is the extension of the Dardis and McCloskey [84] model
to a D2Q9 lattice. Model 2 is the model proposed by Thorne and Sukop [88]. Model 3 is the
model proposed by Walsh et al. [91]. Figure adapted from [91]. (b) Reproduction of the results
of this work, as previously shown in figure 3.14, for the range of σ investigated by Walsh et al.
[91] and shown in part (a) of this figure.

50% impermeable solids and 50% pores. Indeed, the permeability of a checkerboard structure

equals the permeability of a homogeneous medium for which σ(r ) = 0.5∀r . In this case,

κchecker boar d = κσ=0.5 = 0.0833∆x2. Additionally, the pressure drop is found to be linear inside

homogenous samples with a coefficient of determination of R2 > 0.99 (figure 3.16).

Figure 3.16: Pressure drop across a homogenous medium filled with grey nodes. The first and
last five layers correspond to the inlet and outlet, respectively.
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Flow through a cubic array of permeable overlapping spheres To investigate the effect

of the permeability of the spheres on the overall permeability of the system of overlapping

spheres, the effective media parameter of the spheres was varied from σ(r ) = 1 to σ(r ) = 0.1.

This increases the intrinsic permeability of the spheres from zero to 0.75∆x2. Figure 3.17

shows the permeability of the system as a function of the effective media parameter and the

permeability of the spheres. As expected, the permeability of the system increases with the

permeability of the spheres.

(a) (b)

Figure 3.17: Permeability κ of a system of permeable overlapping spheres vs. (a) the effective
media parameter of the spheres σspher es and (b) the permeability of the spheres κspher es . The
size of the system is L3 = 313 and the porosity is 20.7%.

Clips of the velocity in the flow direction are shown in figure 3.18 for multiple configurations.

In all cases, the size of the system is L3 = 513 and the porosity is 66.4%. The remaining volume,

33.6%, is filled with nodes of effective media parameters σspher e = [1.0,0.012,0.005,0.001].

As expected, for an impermeable solid sphere (σspher e = 1), the flow goes around the sphere

through the pores located at the corners of the sample. As the effective media parameter of

the sphere is decreased (σspher e = 0.012−0.001), the intrinsic permeability of the grey nodes

of the sphere increases, and consequently an increasing fraction of the flow goes through the

sphere. At even lower effective media parameters, the sphere stops behaving like an obstacle

to the flow and the flow becomes homogeneous in the sample.

Layered media In this section, the permeability of structures built from layers of different

permeability materials is calculated (figure 3.19). Analytical expressions may be derived

by analogy with the resistance of parallel and series networks of electrical resistors. In the

simplified case where the structure is formed of two equal layers of permeability κ1 and κ2,

the equivalent permeabilities for the parallel and series configurations are:

κpar al l el =
κ1 +κ2

2
(3.33)
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(a) (b)

(c) (d)

Figure 3.18: Clips of the velocity in the flow direction in a system of overlapping spheres where
the effective media parameter of the sphere is (a) 1.0, (b) 0.012, (c) 0.005 and (d) 0.001. The
size of the system is L3 = 513 and the porosity is 66.4%.

and

κser i es = 2κ1κ2

κ1 +κ2
. (3.34)

The equivalent permeabilities were computed while varying the configurations, the permeabil-

ities, and the ratio between the permeabilities of the two layers. Table 3.1 shows the relative

error in permeability for the various scenarios. The simulations and the analytical predictions

are in excellent agreement for the series configurations and in good agreement for the parallel

configurations. The larger error in the latter case is attributed to non-linearity of the pressure

field.
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(a) (b)

Figure 3.19: 2D schematic illustration of media composed of two equal layers and setup in
(a) parallel and (b) serial configurations. The effective media parameters are (σ1,σ2) and the
corresponding permeabilities (κ1,κ2) are calculated with equation 3.32.

Table 3.1: Relative error in permeability for structures built from layers of different effective
media parameter.

σ1 −σ2 0.1–0.2 0.5–0.6 0.5–0.8 0.1–0.9 0.9–0.99 0.99–0.999

εpar al l el −3.9×10−2 −4.9×10−3 −4.4×10−2 −2.7×10−1 −7.0×10−2 −6.5×10−2

εser i es −3.4×10−2 −1.8×10−2 −5.2×10−2 −8.1×10−2 −6.4×10−6 9.6×10−6

Other tests The flow was computed inside a cubic sample of size L3 = 313 composed of very

low permeability grey nodes (σ1,κ1) surrounding a hollow sphere of effective media parameter

σ2 as shown in figure 3.20. Since the flow is conserved and κspher e À κsample , the pressure

drop is not linear throughout the sample. Rather, as expected, an extremely small pressure

drop was observed inside the sphere (figure 3.21).
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Figure 3.20: 2D schematic illustration of a medium composed of very low permeability grey
node surrounding a hollow sphere.

Figure 3.21: Pressure drop inside the medium described in the text and illustrated in figure 3.20.

Comment on Zhu and Ma findings on the discontinuity of the velocity In a recent paper,

Zhu and Ma [92] compared their partial bounce-back model to their implementation of the

Walsh et al. model [91]. In most of the test cases, they reported that the results obtained using

both models matched closely. However, for one particular case labelled case 3, the authors

reported that in the Walsh et al. model the “velocity appear to be discontinuous at the two

interfaces, an unphysical behaviour, whereas the velocity of the proposed model remains smooth”

(sic). In their case 3, as described in section 4.3 and figure 2 of [92], the flow is simulated “along

three layer strata of porous media, where the top and bottom layers are the same but different

from the middle one” and the three layers are sandwiched between solid walls in the directions

parallel to the flow (figure 3.22).

The partial bounce-back algorithm as described in section 3.2 is a 3D implementation of the

Walsh et al. model. It uses the same master equation of the Walsh et al. model implemented by
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Figure 3.22: Schematic illustration of the test case 3 as described in [92]. The porous media
model parameters λ are equivalent to the term σ used in this work. Figure adapted from [92].

Figure 3.23: Normalized velocity profile along the y axis for test “case 3” as described in
figure 3.22 and in section 4.3 of [92]. The porous media model parameters λ are equivalent to
the term σ used in this work. Figure adapted from [92].

Zhu and Ma but employs (1) pressure boundary conditions acting inside injection chambers

instead of forcing to drive the fluid and (2) a relaxation time τ= 1 instead of τ= 2. Using this

implementation, the flow was computed for test case 3 of [92]. No discontinuity was observed

in the velocity profile at the interfaces as reported in [92]. Furthermore, the implementation

was modified in order to match the exact setup of Zhu and Ma by using a force to drive the

fluid and a relaxation time of τ= 2. The results are essentially the same. Figure 3.24 shows

the normalized velocity profile in the direction of the flow along the y axis for the setup of
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case 3. Clearly, using the 3D LB model implemented in this work, the velocity profile is smooth

and displays no discontinuity as shown in figure 5 of [92] and figure 3.23. It is concluded that

the discontinuity reported by Zhu and Ma is not a property or a limitation of the Walsh et

al. model. Rather, it may be due to an artefact specific to the implementation of the Walsh

et al. model by Zhu and Ma (e.g. initialization of the system, definitions of microscopic and

macroscopic moments).

Figure 3.24: Normalized velocity profile along the y axis for test “case 3” as described in
figure 3.22.

Finally, it is noted that in all tests, mass was conserved up to the numerical accuracy of the

simulation. Moreover, in all the validation tests described above, a very good agreement

was observed between numerical and analytical results. This suggests that the implemented

algorithm can be trusted to compute the flow in more complex media composed of pores,

grey nodes and solids.
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4.1 Standard methods

4.1.1 Overview

Numerical simulation of complex non-ideal fluids is rather challenging. In addition to the

theoretical framework that is required to describe the interactions between the multiple physi-

cal and chemical phases of the fluid, a numerical algorithm is needed to track the interfaces

between the phases. The latter part usually requires unrealistic computational costs. Notwith-

standing, lattice Boltzmann methods offer an implicit tracking of the interfaces. The creation,
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movement and annihilation of interfaces are tracked automatically. Consequently, LB meth-

ods have been successful in simulating complex fluids for a wide variety of applications.

Three conceptually different algorithms have been developed to describe complex fluids:

Gunstensen et al. [94] developed a color-fluid algorithm particularly adapted for strong

phase separation, Shan and Chen [55] introduced an inter-particle potential that mimics

microscopic interactions, and Swift et al. [56] implemented a pressure tensor to incorporate a

free energy in the lattice Boltzmann algorithm. In the color-fluid model [94, 95], two fluids,

typically labelled red and blue, are introduced and phase separation is achieved by a forcing

particles to regions of the same colour. This model is particularly adapted for multi-fluid

applications with strong phase separation such as is the case for oil and water. The inter-

particle potential model of Shan and Chen [55] is based on the concept of interactions between

nearest-neighbours. In this model, the equilibrium velocity is modified in order to include an

interactive force that causes phase separation and creates surface tension. The main draw-

back is the dependency of both surface tension and equation of state on one single parameter.

Recently, this problem was addressed by Sbragaglia et al. [96] by extending the inter-particle

interactions to include the next-nearest-neighbours. While the two models described above

are based on phenomenological descriptions of the interface and dynamics, the free-energy

model of Swift et al. [56] uses equilibrium functions that can be defined more consistently,

based on thermodynamics. This makes it possible to implement an equation of state that

describes both liquid and gas phases, as well as their coexistence curve.

4.1.2 Free energy approach for non-ideal fluids

The equilibrium properties of a one-component non-ideal fluid with no solid surfaces can be

described by a Landau free energy functional [56, 97, 98]:

Ψ=
∫

V
dV

[
ψ

(
T,ρ

)+ χ

2

(
∂αρ

)2
]

. (4.1)

In this case,
∫

V dV ρ is the total mass of the fluid, ψ
(
T,ρ

)
the free energy density of the bulk

phase and T the temperature of the fluid. The second term of the RHS of equation 4.1 describes

the liquid – vapour interfaces and χ is a constant related to the surface tension between the

liquid and vapour phases.

This free energy can be incorporated in the lattice Boltzmann algorithm via the pressure tensor

[99, 100]:

Pαβ =
[

p0 −χ
(
ρ∇2ρ+ 1

2

∣∣∇ρ∣∣2
)]
δαβ+χ∂αρ∂βρ (4.2)

where p0 is the equation of state of the fluid and the other terms, dependent on χ, describe

the liquid – vapour interfaces. The symbols ∂α, ∇ and ∇2 refer to the derivative with regards to

α, the gradient and the Laplacian operators, respectively. Summation over repeated indices is
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assumed.

The pressure can be scaled by a factor ξ in order to improve the numerical stability of the

system without affecting its equilibrium behaviour [100]. Equation 4.2 becomes:

Pαβ = ξ
{[

p0 −χ
(
ρ∇2ρ+ 1

2

∣∣∇ρ∣∣2
)]
δαβ+χ∂αρ∂βρ

}
. (4.3)

The water can be described by a van der Waals fluid in a limited range of (P,V ). The equation

of state can be written under the form:

p0 = RT

V −b
− a

V 2 (4.4)

where p0 is the bulk pressure, V the specific volume, T the temperature and R the universal

gas constant. The constants a and b are dependent on the fluid. The volume term V can be

substituted with the density 1/ρ. This leads to:

p0 = ρT

1−ρb
−aρ2. (4.5)

Figure 4.1 shows a schematic illustration of the P −V phase diagram of a van der Waals fluid.

The phase separation occurs when the areas under (shown in yellow) and over (shown in

green) the curve become equal. The densities of the liquid and vapour phases can be obtained

from the corresponding volumes VL and VG .

Figure 4.1: Schematic illustration of the phase diagram P −V of a van der Waals fluid.

In reduced units, the equation of state becomes:

p0 = ρ

3−ρ − 9

8
θcρ

2 (4.6)

where the temperature is θ = 1/3 and the critical temperature is θc . The critical density ρc

defines the liquid – vapour phase transition and is set to unity.

According to this model, and under the assumptions that ∆x =∆t = 1, the equilibrium distri-
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butions are [101]:

f eq
i (r , t ) =ωi

[
ρ (ei .u)+ 3

2ρ (ei .u)2 − 1
2ρ (u.u)+

3
2λ

[
2(ei .u)

(
ei .∇ρ)+ (ei .ei −1)

(
u.∇ρ)] ]

+ωp
i p0 −χ

(
ωt

iρ∇2ρ+ ∑
α=x;y ;z

ωααi ∂αρ∂αρ+ ∑
α,β=x,y ;y,z;z,x

ω
αβ

i ∂αρ∂βρ

) (4.7)

where the stationary equilibrium distribution function is chosen in order to conserve mass:

f eq
1 (r , t ) = ρ (r , t )−

Q∑
i=2

f eq
i (r , t ) . (4.8)

The coefficientsωi are the lattice weights. The term involving the parameterλ ensures Galilean

invariance [102]:

λ=
(
τ− 1

2

)(
1

3
− d p0

dρ

)
. (4.9)

The last line of equation 4.7 gives the contribution of the pressure tensor. The coefficients

ω
p,t ,αα,αβ
i are free adjustable parameters and can be found in [101].

It is worth noting that in addition to the macroscopic moments ρ and u, the equilibrium func-

tions require several derivative forms of the density. These operations make the computation

of the equilibrium functions very expensive, especially when compared to the operations

that are required to calculate the equilibrium functions of isothermal fluids (equation 3.11).

Additional information about the numerical algorithms that are used to calculate the gradients

in the bulk can be found in appendix D.

4.1.3 Wetting dynamics

The contact angle Θ quantifies the wettability of a solid surface by a liquid via the Young’s

equation [103]. Hence, the wetting dynamics can be incorporated in the lattice Boltzmann

simulations by creating a boundary condition that reproduces Young’s equation in equilibrium

[98]. The solid – liquid and solid – vapour surface tensions can be incorporated in the Landau

free energy functional by the addition of a surface term [98]. Cahn [104] assumed that the

fluid – solid interactions are short ranged so that they contribute to the total free energy of the

system with a surface integral:

Ψs =
∫

S
dSΦ

(
ρs

)
. (4.10)

The total free energy becomes:

Ψ=
∫

V
dV

[
ψ

(
θ,ρ

)+ χ

2

(
∂αρ

)2
]
+

∫
S

dSΦ
(
ρs

)
(4.11)
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where S is the surface bounding V . The surface free energy density Φ
(
ρs

)
depends only on

the fluid density at the surface ρs .

Following some assumptions described in [98], the desired contact angleΘ can be imposed in

the simulation by calculating the required wetting potential φ where

Φ
(
ρs

)=−φρs . (4.12)

The wetting potential that should prescribed in the algorithm (see appendix D) is:

φ=Ω
(
1− θ

θc

) √
2χ

χ
(4.13)

whereΩ is a dimension-less wetting potential that should satisfy the equation:

cos(Θ) =
(
1+Ω)

3
2 − (1−Ω)

3
2

)
2

. (4.14)

Additional information about the numerical methods that are used to calculate the gradients

near solid boundaries and to define the contact angle can be found in appendix D.

4.1.4 Implementation

A free energy lattice Boltzmann algorithm was previously written in MATLAB by McDonald as

reported in [10]∗. The algorithm was re-cast and optimized by the author in C by extending

the effective media algorithm that was initially developed for isothermal fluids in chapter 3

section 3.2†. The effective media parameter was restricted to σ = 0 and σ = 1 in order to

disallow the presence of grey nodes and to recover a standard LB model. The effective media

parameter will be relaxed to σ= [0,1] so as to include grey nodes in section 4.2.

As part of this work, the following model was implemented. The equilibrium distribution

functions were set according to equation 4.7 in order to implement a pressure tensor in the

algorithm and to describe the fluid with a van der Waals equation of state. A single-relaxation-

time collision operator was used where, for numerical efficiency, the relaxation time was set

to τ = 1. The no-slip fluid-solid boundary condition was taken into account in an implicit

way with equation 3.24 on solid boundaries marked with σ= 1. The wetting dynamics were

incorporated via equation 4.10. Systems were equilibrated in the absence of external forces.

Closed systems had periodic boundary conditions in the three spatial directions to minimize

boundary effects. Open systems were connected to a source at a controlled density (vapour

relative humidity) and periodic boundary conditions were applied in the two remaining spatial

directions.

∗[10] was a collaborative study where the present author was primarily responsible for the permeability simula-
tions and Peter McDonald was primarily responsible for the desorption simulations.

†The author would like to acknowledge the help of Dr. Cyrille Dunant with the performance aspects of the code.
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4.1.5 Methods for modelling adsorption and desorption

The adsorption and desorption isotherms are usually obtained by plotting the water content

at equilibrium vs. the relative humidity (RH) of the surrounding environment. To model

adsorption and desorption using a lattice Boltzmann algorithm, the test structures are first

put in contact with a source of vapour at a controlled RH. As a result of periodic boundary

conditions, the source is effectively in contact with the test structure from two sides. For

optimal stability, the source is given a width of 1+2($+1) where $ is the width of the liquid –

vapour interface and the RH is fixed only in the middle layer. The maximum relative humidity,

100%, corresponds to the gas density ρg as of the Van der Waals fluid. Hence, the density, and

consequently the RH, can be fixed by using the equation of state of the fluid (equation 4.6).

To model the isotherms, all the pores are initially saturated with liquid
(
ρ = ρl i qui d

)
and the

source is initialized to 100% RH
(
ρ = ρg as

)
. Once the system is equilibrated, the RH of the

source is progressively reduced and the system re-equilibrated at each RH step. Afterwards,

the RH is progressively increased back to 100%. At each RH step, the convergence is considered

to be achieved when the relative mass change per 5000 time steps is less than 10−5. Finally,

the isotherms are obtained by plotting the average density in the fluid nodes as a function of

the relative humidity.

4.1.6 Validation

Previous validation by McDonald

A free energy algorithm, similar to the one implemented above, was previously validated

by McDonald as reported in [10]. It was shown that the contact angle varies approximately

linearly with the surface normal fluid density (figure 4.2). It was also shown that the pressure

decrease across the interface of a spherical liquid drop in vapour varies inversely with its

radius (figure 4.3) and that the simulated interfacial tension is within 6% of the input.

Figure 4.2: Contact angleΘ vs. the surface-normal fluid density gradient.

It was also noted that for a system that comprises a liquid reservoir maintained full by a
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Figure 4.3: Pressure drop across the liquid – vapour interface of a droplet vs. the inverse of the
radius r of the droplet.

liquid source and coupled to a large vapour reservoir by a capillary, the liquid rose in the

capillary with the square root of time (figure 4.4). Finally, it was observed that at reduced

vapour pressures, liquid pendular rings condensed between the near points of a cubic array of

liquid-wetting spheres (figure 4.5).

Figure 4.4: Capillary rise vs. the square root of time.

The simulations described above were carried out at reduced temperatures θ
/
θc ranging

from 0.8 to 0.96. The resulting liquid to vapour density ratio ranges between 8.1 and 2.3.

This relatively small liquid to vapour density ratio is a key limitation of LB models. Wagner

and Pooley [100] have shown how relatively large density differences, corresponding to a low

temperature θ, can be achieved by introducing a pressure scaling factor ξ as shown in equation

4.3. However, McDonald reported that the required computational times became prohibitive

in the case of large density ratios in porous media [10]. Nonetheless, it can be shown that the

equilibrium fluid distributions obtained at reduced temperatures ranging from 0.5 to 0.96

(correspond to density ratios of 113 to 2.3) are broadly similar [10] (figure 4.6).

Another difficulty in diffuse interface models is to adequately characterize the liquid – vapour
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Figure 4.5: 2D snapshot of pendular rings formed between packed liquid-wetting spheres.
Liquid is shown in blue, vapour in cyan and solids in black.

(a) (b) (c)

Figure 4.6: Equilibrium fluid distributions obtained at three different reduced temperatures
(liquid to vapour density ratios) of (a) 0.95 (2.3), (b) 0.8 (8.1) and (c) 0.5 (113) for a constant
bulk liquid volume fraction of 2/3. Liquid is shown in blue, vapour in cyan and solids in black.
The microstructure is the same in each case but the resolution varies by a factor of 10 between
the first and last. The computation time increases by a factor of approximately 10000. The key
observation, however, is that the essential fluid distribution is similar for the three reduced
temperatures.

interfaces. When working on the mesoscale, the lattice space ∆x of the simulation, and

therefore the interface width, will be on the order of micrometres. Hence, the interface width

will be around 1000 times larger than its correct physical value. The effect of the large interface

is that, for example, a liquid drop moves quicker than observed experimentally [105]. However,

there is no evidence that the drop does not follow the correct dynamical pathway [105] or that

the equilibrium distribution of the fluid is affected.
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Consequently, for the simulations to be feasible, the simulated liquid – vapour density ratio

and interface width are always smaller and larger, respectively, than their correct physical

values. These limitations are expected to have a relatively limited impact on the overall results

[10, 105].

Further validation

All the following simulations were carried out at a reduced temperature θ
/
θc = 0.96 yielding a

liquid density of ρl i qui d = 1.41 and a gas density of ρg as = 0.62. The pressure scaling factor

was set to ξ= 0.5. The parameter describing the liquid – vapour interfaces χ was calculated in

order to return the desired interface width $ following [100]:

χ= $2

2

(
θc

θ
−1

)
. (4.15)

The interfacial tension is then given by:

γ= 4

3

√
16χ

3

(
1− θ

θc

) 3
2

. (4.16)

The simulations were considered to be converged when the maximum density variation per

5000 time steps was smaller than 10−6.

Young-Laplace equation The Laplace pressure is the difference in pressures between the

inside and the outside of a curved surface. It is caused by the surface tension at the interface

between the liquid and gaseous phases and can be expressed with:

∆P = 2γ

r
(4.17)

where γ is the surface tension and r is the radius of the droplet.

To validate the multi-phase algorithm, cubic boxes of different side lengths L were initialized

with centred liquid
(
ρl i qui d

)
spheres of radius r = L

3 , surrounded by vapour of density ρg as ,

and left to equilibrate. The interface width was set to $= 1. Snapshots of the liquid density

contours are shown in figure 4.7 at initialization and at equilibrium for a system of size L3 = 513.

The relative error between the input (equation 4.16) and output (calculated from the slope

of the fit line to the data of figure 4.8) is ∼6%, as previously observed by McDonald [10]. In

the implemented LB algorithm, the surface tension increases linearly with the interface width

(equations 4.15 – 4.16). Figure 4.9 shows the Laplace pressure as a function of the inverse of

the radius for an interface width of $= 2. The slope of the linear fit, and consequently the

simulated surface tension, is, as expected, twice larger than that obtained with $= 1. Again,

the relative error in the simulations is ∼6%.
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Figure 4.7: Contour of the liquid phase at (left) initialization and (right) equilibrium. Liquid is
shown in blue and vapour in white.

Figure 4.8: Pressure drop across the liquid – vapour interface of a droplet vs. the inverse of the
radius r of the droplet. The interface width is $= 1.

Spinodal decomposition To investigate phase separation, cubic boxes of different side

lengths L were randomly initialized with fluid nodes with densities in the range ρ = 1±0.05

close to the critical density ρc = 1. Phase separation must take place in order to minimize the

surface energy. There are two acceptable physical solutions. The first is the formation of a

sphere since a sphere has the lowest surface to volume ratio. The second solution, which exists

only because of the periodic boundary conditions, is the formation of two parallelepipeds. In

this particular case, the surface to volume ratio is lower than that of the sphere because the pe-

riodic boundary conditions can cancel the surface in one of the spatial directions. Figure 4.10

shows the fluid distribution at equilibrium for two different random initial distributions in

boxes of size L2 = 212 for an interface width of$= 1. It is clear that the liquid – vapour interface

is much smaller in the case of parallelepipeds.
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Figure 4.9: Pressure drop across the liquid – vapour interface of a droplet vs. the inverse of the
radius r of the droplet. The interface width is $= 1 or $= 2.

Figure 4.10: Fluid distribution at (left) initialization and (right) equilibrium. Liquid is shown in
blue and vapour in cyan.

Spinodal decomposition in solid-bound environments To investigate phase separation in

solid-bound environments, cubic boxes of different side lengths L were randomly initialized

with fluid nodes with densities in the range ρ = 1±0.05 close to the critical density ρc = 1

and surrounded by solid walls. In addition to the tendency of the system to minimize the

interfaces, the equilibrium fluid distribution is dependent on the interactions between the

fluid and solid nodes as described by the contact angle. Figure 4.11 shows the equilibrium

53



Chapter 4. Lattice Boltzmann Methods for non-Ideal Fluids

distributions of the fluid for wetting and non-wetting solid boundaries for a system of size

L3 = 713 for an interface width of $= 1. As expected, spherical shapes of vapour and liquid

develop in the centre of the boxes for wetting and non-wetting solid boundaries, respectively.

Figure 4.11: Fluid distribution at equilibrium for a liquid – solid contact angle of (left) 45 and
(right) 135. Liquid is shown in blue, vapour in cyan and solids in black.

Contact angles To investigate the formation of contact angles on solid surfaces, boxes of

different sizes Lx ×Ly ×Lz were initialized with centred liquid
(
ρl i qui d

)
semi-spheres of radius

r = 2
3 Ly , surrounded by vapour of density ρg as , set on a solid impermeable surface, and left to

equilibrate. The interface width was set to $= 1. The wetting potentials were set to φ= 0.187

and φ = −0.187 to obtain contact angles of Θ = 45◦ and Θ = 135◦, respectively. Figure 4.12

shows the fluid distribution at initialization and at equilibrium for a system of size 70×30×70

and contact angles of 45 and 135 degrees.

The contact angles were calculated with the tangent method by fitting the liquid drop to

the arcs of imaginary circles. Table 4.1 shows the simulated contact angles for a wide range

of system sizes and for different initial shapes of the liquid drop. In general, the simulated

contact angle is within ∼ 5◦ of the input value. In some cases, the initial quantity of liquid

in the system was too large so that the liquid spread over all of the surface and the contact

angle could not be calculated (it is effectively 0◦). It is worth noting that the accuracy of the

algorithm was not affected by the initial shape of the liquid as proven in the few test cases

where the liquid drop was initialized with a cubic shape.

Kelvin’s equation The Kelvin equation describes the changes in vapour pressure due to the

curvature of a liquid – vapour interface of radius r with:

RH = exp

(
−2γM∗ cos(Θ)

r RTρ

)
(4.18)
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(a)

(b) (c)

Figure 4.12: Fluid distribution at (a) initialization and (b-c) equilibrium for a liquid – solid
contact angle of (b) 45 and (c) 135 degrees. Liquid is shown in blue, vapour in white and solids
in black.

Table 4.1: Simulated equilibrium contact angles between liquid and solid.

Lx ×Ly ×Lz Initial liquid drop radius 45◦ 135◦

50×20×50 12 48.0◦ 135.8◦

70×30×70 18 42.8◦ 138.4◦

100×40×100 25 43.0◦ 140.7◦

50×30×50 18 N.A. 139.9◦

70×40×70 25 N.A. 140.1◦

70×40×70 Cube of side length 30 N.A. 142.1◦

120×40×120 25 43.0◦ 140.7◦

70×30×70 Cube of side length 20 46.4◦ 146.0◦

where RH is the relative vapour pressure, R the universal gas constant, T the absolute temper-

ature, Θ the contact angle, M∗, ρ and γ the molar mass, density, and surface tension of the

fluid, respectively. The Kelvin equation is often used to estimate, for a certain set of parame-

ters
{
γ, M∗,ρ,Θ,R,T

}
, the relative humidity at which pores of a certain radius r will become

devoid of liquid water. To test this, desorption curves were modelled for spherical pores of

different radii as illustrated in figure 4.13. The simulation parameters were θ
/
θc = 0.96, $= 1

andΘ= 30◦.
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Figure 4.13: 2D slice of a spherical pore in contact with a vapour source at a controlled RH.
Liquid is shown in blue, vapour in cyan and solids in black.

Figure 4.14: Natural logarithm of the RH at which a pore of radius r empties from liquid water
vs. the inverse of the radius.

Figure 4.14 shows the natural logarithm of the relative humidity at which a pore of radius r

empties from liquid water vs. the inverse of the radius. The natural logarithm of the RH varies

approximately linearly with the inverse of the radius, in agreement with equation 4.18.

Ink-bottle effect Caution is required when using the Kelvin equation to check whether, for

a certain set of parameters {RH ,γ, M∗,ρ,Θ,R,T }, a pore of radius r is devoid of liquid water.

Figure 4.15 shows a 2D system of size 125 x 75 composed of three serial pores of radii 12, 36

and 12 lattice units. The system is connected to a vapour source at a controlled RH.

Simulations show that for a contact angle ofΘ= 30◦, 2D pores of radii 36 and 12 should empty

at ∼96.9 and 96.2% RH, respectively. However, when set up as in figure 4.15, the large pore

does not have a direct access to the vapour source. Consequently, it cannot empty at 96.9%

RH. Rather, it has to wait until a liquid-free access to the vapour source becomes available.

This happens at 96.2% RH, when the small pore on the LHS empties (figure 4.16).

This phenomenon is known as the ink-bottle effect and plays a critical role in complex multi-
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Figure 4.15: Illustration of the ink-bottle effect: Three pores of different radii in contact with a
vapour source at a controlled RH. Liquid is shown in blue, vapour in cyan and solids in black.

Figure 4.16: Equilibrium fluid distributions during desorption at 100%, 96.3% and 96.2% RH.
Liquid is shown in blue, vapour in cyan and solids in black.

scale porous materials like cement paste. Figure 4.17 shows the non-equilibrium fluid distri-

bution in the system at different simulation time steps between 96.3 and 96.2% RH.

Finally, it is worth noting that this particular system, with a contact angle ofΘ= 30◦, did not

re-fill with liquid when the RH was increased back to 100%. This is because the equilibrium

at 100% RH consists of a system filled with vapour. However, for a contact angle of Θ = 0◦,

the system re-filled with liquid and the inkbottle effect was not observed during adsorption

(figure 4.18). In this case, the small pore on the RHS refilled with liquid water before the larger

pore, as expected from the Kelvin equation (figure 4.19).
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Figure 4.17: Non-equilibrium fluid distributions during desorption between 96.3 and 96.2%
RH. Liquid is shown in blue, vapour in cyan and solids in black.
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Figure 4.18: Equilibrium fluid distributions during adsorption at 98.4%, 98.5% and 98.6% RH.
Liquid is shown in blue, vapour in cyan and solids in black.

Figure 4.19: Non-equilibrium fluid distributions during adsorption between 98.5 and 98.6%
RH. Liquid is shown in blue, vapour in cyan and solids in black.
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4.2 Effective media methods for the transport and wetting proper-

ties

4.2.1 Overview

The methodology introduced in chapter 3 section 3.2 allows the introduction of grey nodes

with effective transport properties. This allows, as will be shown in chapter 5 section 5.2 to

overcome the difficulty of modelling the flow in microstructures where the porosity spans

several length scales. The approach introduced in section 4.1 makes it possible to describe

the fluid with an equation of state. This is necessary, as will be shown in chapter 6, to study

desorption and adsorption of water in unsaturated cement paste model microstructures. The

question that arises is whether the two methods can be combined to tackle both problems

simultaneously, that is, whether it is possible to define grey nodes with effective transport and

wetting properties.

In this section, the novel step is made of interpreting the effective wetting within a free energy

framework. This is done without rigorous mathematical derivation and perhaps, such a

derivation is not possible. However, this approach has great merit as will be shown below

and in chapter 6. The method combines two independent parameters, the effective media

parameter σg r e y that describes the intrinsic permeability of the grey nodes, with the internal

wetting parameter φg r e y that describes the wetting behaviour of the grey nodes. Having two

independent parameters enables the model to be tuned so as to reasonably characterize both

permeability and adsorption and desorption isotherms. Neither of the previous models could

do this alone. In particular, it will be shown that the sorption isotherms are independent of

the permeability (as long as the grey nodes are permeable). It will also be shown that two-step

isotherms can be obtained for media composed of pores, grey nodes, and solids.

4.2.2 Free energy approach for effective wetting properties

The free energy functional was previously defined for fluid nodes (σ= 0) in bulk (equation

4.1) and near solid surfaces (equation 4.10). The presence of grey nodes (0 <σ< 1) creates an

additional class of bulk nodes. Thus, the volume term of equation 4.1, originally including only

the fluid nodes V ⊂ {σ= 0}, should henceforth include the grey nodes so that: V ⊂ {0 ≤σ< 1}.

Moreover, the presence of grey nodes creates additional classes of surfaces. Accordingly,

equation 4.10,
∫

S dSΦ
(
ρs

)
, is extended to:

∑
ς

∫
Sς

dSςΦς
(
ρς

)
(4.19)
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where the sum is over the classes of surfaces ς. In the simplest case, the surfaces are:

ς⊂


fluid over solid nodes

fluid over grey nodes

grey over solid nodes

 . (4.20)

Lastly, it is assumed that the grey nodes contribute an effective energy to the total free energy

through their internal wetting via:∫
Vg r e y

dVg r e yΦg r e y
(
ρg r e y

)
(4.21)

whereΦg r e y
(
ρg r e y

)
characterizes the internal wetting of the grey nodes. The total free energy

therefore becomes:

Ψ=
∫

V
dV

[
ψ

(
θ,ρ

)+ χ

2

(
∂αρ

)2
]
+∑

ς

∫
Sς

dSςΦς
(
ρς

)+∫
Vg r e y

dVg r e yΦg r e y
(
ρg r e y

)
. (4.22)

The effective media parameter σg r e y defines the grey nodes in terms of intrinsic transport

properties andΦg r e y defines them in terms of internal wetting. The characteristic features of

this effective free energy will be demonstrated in the next sections.

4.2.3 Implementation

The effective media free energy algorithm was implemented as an extension to the standard

free energy algorithm as previously discussed in section 4.1.4.

4.2.4 Methods for modelling adsorption and desorption

The isotherms are modelled in a similar fashion to that discussed in section 4.1.5. However, in

addition to the pores, the grey nodes are initialized with liquid water and are included in the

calculation of the average mass of adsorbed fluid.

4.2.5 Validation

For the validation of the effective media algorithm for non-ideal fluids, the interactions

between fluid and grey nodes, between grey and solid nodes, and inside grey nodes were

analysed. All the following simulations were carried out at a reduced temperature θ
/
θc = 0.96

yielding a liquid density of ρl i qui d = 1.41 and a gas density of ρg as = 0.62. The pressure

scaling factor was set to ξ= 0.5. The parameter describing the liquid – vapour interfaces χ was

calculated using equation 4.15 in order to return an interface width $= 1.

61



Chapter 4. Lattice Boltzmann Methods for non-Ideal Fluids

Spinodal decomposition inside grey nodes

To test the liquid – vapour phase separation in systems composed of grey nodes, simulation

boxes of size L2 = 212 were initialized with grey nodes with densities in the range ρ = 1±0.05

close to the critical density ρc = 1. Phase separation takes place, as previously observed in

section 4.1.6, in order to minimize the interfaces and independently of the value of the imposed

internal wetting potentialφg r e y or intrinsic permeability κg r e y . However, when the simulation

boxes are surrounded by solid walls, the results of the phase separation, i.e. where the liquid

condensates and which phase wets the solid boundaries, depend on a complex interplay

between the wetting potentials φg r e y/sol i d and φg r e y . Figure 4.20 shows the equilibrium fluid

distribution for different values of the wetting potentials φg r e y/sol i d and φg r e y .

(a) (b)

(c) (d)

Figure 4.20: Fluid distribution at (a) initialization and (b-d) equilibrium for systems com-
posed of grey nodes and bound by solids. In (b) (φg r e y/sol i d ,φg r e y ) = (0.19,0.13), in (c)
(φg r e y/sol i d ,φg r e y ) = (0.19,0.07) and in (d) (φg r e y/sol i d ,φg r e y ) = (−0.19,0.13). Liquid is shown
in blue, vapour in cyan and solids in black.

Figure 4.20 shows that even when the grey nodes are defined to wet the solid (φg r e y/sol i d > 0)

as shown in parts (b) and (d), the equilibrium distribution of the fluid, i.e. if the grey nodes

do indeed wet the solid, depends on the degree of internal wetting of the grey nodes. This is

expected as for high values of φg r e y , the grey nodes would prioritize wetting themselves. In

figure 4.20(c), the wetting potential between the grey and solid surfaces (φg r e y/sol i d ) is larger

than the internal wetting potential φg r e y . In this case, the grey nodes do wet the solid surfaces.
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Contact angles on grey surfaces

To investigate the formation of contact angles on weakly-permeable grey surfaces, the contact

angle test of section 4.1.6 was repeated and the solid nodes where replaced with liquid-

saturated grey nodes. The wetting potentials were set to φ f lui d/g r e y = 0.187 and φ f lui d/g r e y =
−0.187 to obtain contact angles ofΘ f lui d/g r e y = 45◦ andΘ f lui d/g r e y = 135◦, respectively. The

effective media parameter of the grey nodes was set to σg r e y = 0.9 and their wetting potential

was set to φg r e y = 0.267. Table 4.2 shows the calculated equilibrium contact angles for a wide

range of system sizes and for different initial shapes of the liquid drop. It is clear that the

presence of liquid in the grey nodes has not affected the ability of the model to recover an

equilibrium contact angle.

Table 4.2: Simulated equilibrium contact angles between liquid and grey nodes.

Lx ×Ly ×Lz Initial liquid drop radius 45◦ 135◦

50×20×50 12 45.0◦ 142.0◦

70×30×70 18 44.4.8◦ 142.4◦

100×40×100 25 43.0◦ 140.7◦

70×40×70 25 N.A. 140.7◦

120×40×120 25 44.2◦ 140.7◦

70×30×70 Cube of side length 20 41.7◦ 135.5◦

Figure 4.21 shows the fluid distribution at initialization and at equilibrium for a system of size

70×30×70 and contact angles between the liquid and the grey nodes of 45 and 135 degrees.

Internal wetting of the grey nodes

To better understand the wetting behaviour of grey nodes, water isotherms were modelled

for homogenous systems composed of grey nodes only. The size of the systems was L3 = 103

and the effective media parameter of the grey nodes was set to σg r e y = 0.01. Figure 4.22 shows

the desorption and adsorption curves for different numerical values of the internal wetting

potential φg r e y ranging from 0.067 to 1.6.

As described in section 4.2.4, regardless of the internal wetting potential, the grey nodes

are initially saturated with liquid and their density is ρg r e y = ρl i qui d = 1.41. Figure 4.22(b)

shows that as the internal wetting potential φg r e y is increased, the amount of liquid adsorbed

at equilibrium, when the external RH is 100% RH, increases. This is consistent with the

expectations from the definition of the internal wetting potential. Moreover, the system with

the highest wetting potential retains the liquid fluid for longer when the surrounding RH is

decreased and starts adsorbing the liquid fluid earlier when the surrounding RH is increased.

All the tested systems show considerable hysteresis. For the lowest value of internal wetting

potential, φg r e y = 0.067, the potential was not large enough to allow the fluid to condense

when the RH of the source was increased back to 100%. For the highest value of internal
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(a)

(b) (c)

Figure 4.21: Fluid distribution at (a) initialization and (b-c) equilibrium for a liquid – grey
contact angle of (b) 45 and (c) 135 degrees. Liquid is shown in blue and vapour in white. The
grey nodes are saturated with liquid and thus appear blue.

(a) (b)

Figure 4.22: Mass of adsorbed fluid vs. the RH for different values of internal wetting potential
of the grey nodes φg r e y . In (a) φg r e y = 0.27. In (b) φg r e y ranges from 0.067 to 1.6.

wetting, φg r e y = 1.6, the wetting potential was very high and the system held the liquid water

down to the smallest tested RH, 7%. Lastly, it is worth noting that for φg r e y = 0, the algorithm

recovers the standard free energy model without grey nodes. In this case, because of the

periodic boundary conditions in two of the spatial directions, the system is effectively infinite
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and consequently does empty at 100% RH and does not refill.

Figure 4.23 shows the effect of varying multiple parameters while keeping the internal wetting

potential constant at φg r e y = 0.267. First, the internal wetting was verified to be independent

of the transport properties of the grey nodes. This was confirmed by varying the intrinsic

permeability of the grey nodes by a factor 891
(
σg r e y = 0.01 toσg r e y = 0.9

)
. This was expected

as the isotherms are obtained at mass equilibrium and should be independent of the dynamics.

Second, the isotherms were verified to be independent of the size of the system. This was

tested by increasing the size of the system by 16 times from 10×10×10 to 10×40×40 and

keeping constant the size of the surface exposed to the vapour source. The results of figure 4.23

show that the grey nodes possess intrinsic isotherms that are only dependent on the wetting

potential φg r e y , and thus could be ultimately linked with a characteristic pore size.

Figure 4.23: Mass of adsorbed fluid vs. the RH for different system sizes and intrinsic perme-
abilities.

4.2.6 Application to a 2D characteristic microstructure

To better understand the effect of the inclusion of grey nodes on the isotherms of a porous

medium, two 2D pseudo-random systems of size 67×30 were created out of pores, grey, and

solid nodes as illustrated in figure 4.24.

First, the isotherms of system A were modelled. The grey nodes were characterized with a

wetting potential φg r e y = 0.27 and an effective media parameter σg r e y = 0.01. It is worth

noting that the water isotherms were proven to be independent of the permeability of the grey

nodes in section 4.2.5. The interface wetting potentials were set to φ f lui d/sol i d =φ f lui d/g r e y =
φg r e y/sol i d = 0.27 to return contact angles ofΘ f lui d/sol i d =Θ f lui d/g r e y =Θg r e y/sol i d = 0◦. Sec-

ond, the isotherms of system B were modelled. The grey nodes were treated as impermeable

solids (σg r e y = 1) with no internal wetting (φg r e y = 0). The fluid – solid wetting potential was

set to φ f lui d/sol i d = 0.27 to return a contact angle ofΘ f lui d/sol i d = 0◦.

The isotherms of systems A and B are shown in figure 4.25. There are several important
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(a) (b)

Figure 4.24: (a) System A: a 2D characteristic system composed of pores (white), grey nodes
(grey) and solid nodes (black). The system is connected to a vapour source from the LHS. (b)
System B: a modified version of system A where the grey nodes are considered impermeable
solids with no internal wetting (like a standard LB algorithm).

observations. First, system A empties in two different regimes. The first regime (∼100 – 85%

RH) can be attributed to the fluid pores and the second regime (∼85 – 75% RH) to the grey

nodes. This division can be confirmed by separately plotting the average densities in fluid

pores and in grey nodes as shown in figure 4.26.

(a) (b)

Figure 4.25: Water isotherms of systems (a) A and (b) B.

The second observation is that the average density in the fluid pores of System A is remarkably

similar to the average density in system B (figure 4.27). The small difference can be attributed

to the internal wetting of the grey nodes which increases the ability of the system to retain water

during desorption and to attract water during adsorption as previously seen in figure 4.22(b).

Moreover, the average mass at 75% RH is slightly higher in system B compared to system A.

This is because there is a liquid-saturated pore in the right-bottom corner of the structure

which is isolated and cannot empty in system B, but do empty in system A by means of

transport through the grey nodes (figure 4.28). Furthermore, this specific pore illustrates the
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Figure 4.26: Water isotherms of system A split into two parts: pores and grey nodes.

Figure 4.27: Water isotherms of the pores (without grey nodes) of system A and of system B.

inkbottle effect that was previously demonstrated in section 4.1.6 where during desorption, a

pore could be blocked from emptying (at the RH expected from the Kelvin equation) until a

direct liquid-free access to the vapour source is provided. However, in this case, the pore is not

blocked by smaller-sized pores, but by the internal wetness of the grey nodes (figure 4.28).
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Figure 4.28: Equilibrium fluid distribution in system A (figure 4.27(a)) at critical values of the
RH. Liquid is shown in blue, vapour in cyan and solids in black.

Figure 4.29: Equilibrium fluid distribution in system B (figure 4.27(b)) at critical values of the
RH. Liquid is shown in blue, vapour in cyan and solids in black.
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4.2.7 Conclusions

In this section, a novel lattice Boltzmann model was proposed, implemented within a free en-

ergy framework, and validated. The model combines the advantages of the methods presented

in chapter 3 section 3.2 and in section 4.1.2 of this chapter. The model allows successful:

1. Description of the fluid with an equation of state and an implicit tracking of the liquid –

vapour interfaces.

2. Description of the fluid / solid boundaries with a wetting potential that defines the

contact angle.

3. Introduction of grey nodes with:

(a) Effective transport properties: the effective media parameter σg r e y is mathemati-

cally linked with the intrinsic permeability κg r e y of the grey nodes.

(b) Effective wetting properties: the internal wetting potential φg r e y is linked with

the water isotherms of the grey nodes. This wetting potential could ultimately be

mathematically linked with a characteristic pore size, just as the effective media

parameter was mathematically linked with the intrinsic permeability.

4. Description of the interactions that arise following the introduction of grey nodes: the

fluid / grey and the grey / solid boundaries are characterized with wetting potentials

that define the corresponding contact angles.

Finally, the ability of the method was demonstrated in section 4.2.6 where it was applied to

study the water isotherms of pseudo-random systems. The simulations captured a two-step

isotherm (figure 4.25(a)) and the ink-bottle effect during desorption (figure 4.28). This ability

will be further demonstrated in chapter 6 where the method will be used to model the water

isotherms of 3D model microstructures of cement paste.
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5.1 Saturated permeability of cement paste∗

5.1.1 Cement paste model microstructures

Cement paste model microstructures (100µm)3 in size were created using the vector model

µic [45, 106]. Structures were generated with water-to-cement (w/c) ratios ranging from 0.3

∗The following results were published by the author in: M. Zalzale and P.J. McDonald, Lattice Boltzmann
simulations of the permeability and capillary adsorption of cement model microstructures, Cement and Concrete
Research, vol. 42, no. 12, pp. 1601–1610, 2012.

71



Chapter 5. Permeability of Cement Paste

to 0.7 as a function of degree of hydration. The smallest and largest anhydrous particle sizes

were set to 0.25 and 18 µm respectively. The model cement clinker comprised 69% alite, 10%

belite, 8% ferrite, 7% aluminate, and 6% gypsum by solid mass. The reaction kinetics were

defined according to Rietveld analysis results reported by Kocaba [107] for a similar cement

composition. The reactant and hydrate (except C-S-H) densities were set to standard literature

values [108] and are shown in table 5.1. Calculations based on the Powers-Brownyard model

[109] as reported by Taylor [108], predict that for a water-to-cement ratio of 0.4 at 85 and 95%

degree of hydration, the capillary porosity is 10.7 and 5.4%, respectively. In order to match

these porosities within the µic framework described above, the density of C-S-H including the

gel porosity was set to ρC−S−H = 1.965 g.cm−3.

Table 5.1: Densities of the reactants and hydrates used for the simulation of the cement paste
model microstructures.

Phase Alite Belite Alumi- Ferr- Gyp- Port- C-S-H Ettrin- Mono-
nate ite sum landite gite sulfate

Density 3.15 3.25 3.15 3.73 2.32 2.24 1.965 1.78 1.9
(g.cm−3)

The resolution-free microstructures were subsequently translated onto cubic grids with lattice

spacings of 1 µm by taking the phase present at the voxel centre as representative of the voxel

(figure 5.1). The effect of this discretization on the calculated permeability will be discussed

in subsequent sections. All the solids phases, including C-S-H, were treated as impermeable

solids with no inherent porosity. The permeability simulations were carried out with the lattice

Boltzmann algorithm presented in chapter 3 section 3.1.

Figure 5.2 shows the solid and pore volumes in aµic model cement paste with water-to-cement

ratio of 0.4 at 0 and 85% degree of hydration. The capillary porosity has a significantly larger

fraction of large pores than is typically measured in cement paste with, for example, mercury

intrusion porosimetry. This is partly a resolution issue associated with the transfer of the

resolution-free output of µic onto a discrete grid with a resolution of 1 µm.

5.1.2 Reproducibility of the permeability

The model microstructures were first verified to be representative elementary volumes (REV)

by calculating the permeability of cubic structures of different side lengths (50, 100 and 120

µm). Then, to test the effect of the random initial position of the cement particles on the simu-

lated permeability, the flow was computed in multiple test microstructures generated from

different initial configurations. The resulting model microstructures have similar porosities (±
0.1%) and the corresponding calculated permeabilities have a normalized standard deviation

(standard deviation divided by average permeability) below 2%. Additionally, the isotropy of

the samples was tested by computing the permeability in each of the three spatial directions.

The normalized standard deviation is again less than 2%. Finally, as expected, the intrinsic
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(a) (b)

Figure 5.1: Model cement paste microstructure generated with µic (a) before and (b) after
discretization with a resolution of 1 µm. The side length is 100 µm. The solid phases (including
C-S-H) are shown in grey and the pores in black.

(a) (b)

Figure 5.2: (a) Solid and (b) pore volumes in a µic model cement paste with a water-to-cement
ratio of 0.4. The pore sizes were determined using a porosimetry algorithm developed by Do
et al. [110].

permeability was verified to be independent of the value of the applied pressure gradient g .

5.1.3 Permeability of cement paste model microstructures

The permeability was computed for model cement pastes with water-to-cement ratios ranging

from 0.3 to 0.7 as a function of degree of hydration (figure 5.3) and porosity (figure 5.4). The
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simulations were considered converged when the mean velocity change per voxel per time

step averaged over 100 time steps was smaller than 10−6 or after 500000 lattice time steps. This

latter criterion was only required for porosities less than 11% where, in the worst case, the

convergence criterion was smaller than 10−4.

Figure 5.3: Calculated permeability vs. the degree of hydration for different water-to-cement
ratios.

Figure 5.4: Calculated permeability vs. the porosity for different water-to-cement ratios.

The permeability is determined by the size and connectivity of the pores. In cement paste, on

the one hand, the greater the initial water-to-cement ratio, the smaller the fraction of space

occupied by hydrates, and hence the greater the permeability. On the other hand, the higher

the degree of hydration, the lower the porosity, and consequently, the smaller the permeability.

The permeability evolution can be divided into two regimes: above and below 20% porosity

(figure 5.4). Above 20% porosity, the simulated permeabilities of all four water-to-cement ratio

systems show similar behaviour. The permeabilities decrease exponentially with the degree of

hydration and with broadly similar rate constants. Below 20% porosity (applicable for w/c 0.3

and 0.4), the permeability decrease is noticeably sharper. This latter dependence is attributed

to the beginning of the depercolation of the capillary pores.
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Although the overall trends agree with expectations, the computed permeability is larger than

most experimental measurements (table 2.1). Multiple factors contribute to this:

1. The fact that the smallest pore size is only one pixel wide

2. The relatively coarse microstructural resolution of the model cement pastes

3. The influence of diagonal leaks in the lattice Boltzmann method

4. The assumption that the model cement pastes are fully saturated with water.

The first three topics are addressed in the following two sections. The last argument will be

addressed in section 5.2.

5.1.4 Lattice magnification and microstructural resolution

In well-hydrated cement paste model microstructures, a large fraction of the pores have a

diameter of one pixel (which in the previous simulations equated to 1 µm). As shown in

chapter 3 section 3.1.7, the calculated permeability is overestimated by 36% in 3D pipes with

side lengths of one pixel (figure 3.3).

To avoid permeability overestimation and accurately recover the hydrodynamics, the pipes

should have a minimum width of four nodes (figure 3.3 and [53]). Otherwise, in complex

geometries, the overestimation errors might not cancel and can add up to produce perme-

abilities several orders of magnitude too big. To guarantee a minimum width of four nodes,

the lattice resolution should be increased four times in each of the three spatial directions

(figure 5.5). This can be done without affecting the morphology or physical resolution of the

microstructure simply by dividing every voxel into 43 identical voxels. The resulting lattice is

64 times larger. This modification is termed lattice magnification by a factor 4.

(a) (b)

Figure 5.5: Illustration of the lattice magnification of a 2D pipe. Both structures have the same
physical size but in (b) the system is magnified four times: every pixel is divided into four
pixels. Pores are shown in white and solids in blue.
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In parallel to the lattice magnification, the microstructure should be generated at the highest

possible resolution. Since µic is intrinsically resolution-free, the resolution limit derives from

the discretization of the microstructure, and thus from the computational resources available

to run the LB algorithms. This is termed microstructural resolution.

(a) (b)

(c) (d)

Figure 5.6: 2D illustration of the microstructural resolution: (a-b) relatively coarse and (c-d)
fine discretization of a resolution-free circle. Pores are shown in white and solids in blue.

To investigate the combined effects of the lattice magnification and microstructural resolution,

the permeability of a model cement paste with a water-to-cement ratio of 0.4 and a degree of

hydration of 65% was computed for several lattice magnifications (1, 2 and 4) and microstruc-

tural resolutions (1, 0.5 and 0.25 µm). The porosity was kept constant at circa 21.5%. The

results are shown in table 5.2.

As expected, the lattice magnification artificially widens the channels, allowing the LB algo-

rithm to recover more accurate hydrodynamics. The permeability decreases as expected and

as previously observed by Ferréol and Rothman on Fontainebleau sandstones [6]. The effect

of the lattice magnification could not be tested for values above 4 because of computational

limits. However, a lattice magnification of 4 is likely to be sufficient as previously observed

on simpler geometries (figure 3.3). Also, increasing the microstructural resolution increases

the structural complexity. The minimum pore diameter and thus the permeability are de-

creased. This too may have been expected and was previously observed in [22, 9]. What is
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Table 5.2: Computed permeabilities (×10−16 m2) for different lattice magnifications (1, 2
and 4) and microstructural resolutions (1, 0.5 and 0.25 µm). The model cement paste has a
water-to-cement ratio of 0.4, a degree of hydration of 65% and a porosity of 21.5%.

Lattice magnification
1 2 4

Microstrutural 1 28.5 10.8 2.66
resolution (µm) 0.5 14.7 5.48

0.25 7.43

less expected is that, in the range of tested parameters, both actions result in similar scaling

of the permeability and that the effects are multiplicative. The same test was performed on

a microstructure with a higher degree of hydration and hence a lower porosity. In this case,

the effect of the lattice magnification holds but the dependence of the permeability on the

microstructural resolution becomes smaller and is not quantifiable.

5.1.5 Diagonal leaks

At around 10% capillary porosity, and with a microstructural resolution of 1 µm, the capillary

porosity of the µic microstructures is believed to be depercolated [111]. However, it is still

possible to calculate permeability because standard lattice Boltzmann models allow diagonal

leaks. Diagonal leaks allow fluid to pass between neighbouring lattice points with a single

edge in common as illustrated in figure 5.7. Indeed, Manwart et al. [76] reported a non-zero

permeability for a 3D checker-board structure.

Figure 5.7: 2D illustration of diagonal leaks in a checkerboard structure. Pores are shown in
white and solids in blue. The red arrows illustrate possible leaky paths for the fluid.

At high porosities, diagonal leaks have a negligible effect on the overall connectivity. However,

near the percolation threshold, it is unclear if the diagonal leaks, or at least a fraction of the

diagonal leaks, should be stopped. This can be done by applying the bounce-back rule on
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leaky edges. An efficient algorithm based on look-up tables was developed to control the leaks.

The algorithm successfully reduced the permeability of the checkerboard structure to zero but

was not exploited any further due the choice of developing an alternative approach that will

be described in section 5.2.

To conclude, in all the cement paste permeability simulations shown above, but especially

at low porosities, diagonal leaks have effectively increased the pore connectivity and hence

the calculated permeability. Nonetheless, with the current state-of-the-art, it is reasonable to

assume that the capillary porosity of all microstructural models lacks complexity and fineness

that is partially compensated by diagonal leaks in the lattice Boltzmann method, and by

additional connectivity provided by gel pores in experimental measurements.

5.1.6 Comparison of µic and CEMHYD3D

It is interesting to compare the permeabilities calculated for µic microstructures with those

reported for CEMHYD3D by Garboczi and Bentz [9]. Taking data at the same physical res-

olution (1 µm) and lattice size (1003) from figure 14 of [9], permeabilities of circa 8×10−15

and 6×10−15 m2 are estimated at 28 and 26% capillary porosity, respectively. This is in good

agreement with the permeabilities computed for µic structures of 7×10−15 and 4.4×10−15 m2

at 27.4 and 24.1% capillary porosity, respectively (figure 5.4). This good agreement, however,

diminishes as the capillary porosity is reduced as will be shown below.

A CEMHYD3D [44] cement paste model microstructure that mimics the lowest porosity µic

structure was obtained. The microstructure is based on the Cement and Concrete Reference

Laboratory Cement 152 and comprises 73.44% alite, 9.38% belite, 4.07% ferrite and 13.11%

aluminate by solid volume [112]. The water-to-cement ratio is 0.4, the degree of hydration is

93.5% and the capillary porosity is 10.58%. The calculated LB permeability is 4.67×10−17 m2.

The calculated permeability for a similar µic structure with 10.64% porosity is 1.62×10−18 m2.

Clearly, while the porosities of the µic and CEMHYD3D microstructures are very similar, the

permeability of the µic microstructure is one order of magnitude smaller. This is in contrast to

the comparison at higher porosity (24 – 28%) where the permeabilities were very similar. One

of the possible reasons for this discrepancy is the difference in the pore size distributions as

CEMHYD3D has a significantly larger number of bigger pores compared to µic (figure 5.8).

Also, the CEMHYD3D microstructure has around 10% more diagonal leaks. This is probably

due to the discrete nature of the CEMHYD3D model where the resolution is imposed before

the hydration and development of the microstructure.

5.1.7 Comparison of µic and HYMOSTRUC3D

As subsequently became apparent, Zhang et al. [12] were working on a parallel lattice Boltz-

mann study where they used a multiple-relaxation-time LB model to calculate the permeability

of cement pastes simulated with the model HYMOSTRUC3D [43]. The model microstructures
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(a) (b)

Figure 5.8: Model microstructures generated with (a) µic and (b) CEMHYD3D. Pores are shown
in blue and all the solid phases in red. The microstructural resolution is 1 µm.

are (100 µm)3 in size, the microstructural resolution is 0.5 µm and there is no lattice magni-

fication. Taking data from figure 13 of [12] at ∼21.5% porosity, a permeability κ∼ 10−17 m2

is estimated. This is two orders of magnitude smaller than the permeabilities computed at a

similar porosity for a µic microstructure with the same microstructural resolution and lattice

magnification (table 5.2). This discrepancy is rather surprising as in both cases the flow is

simulated with an MRT lattice Boltzmann model through a microstructure essentially formed

of overlapping spheres. Without the opportunity to run the lattice Boltzmann code developed

in this work on the microstructures of Zhang et al., or vice versa, it is very hard to explain this

major discrepancy.

5.1.8 Conclusions

In general, the permeabilities calculated with lattice Boltzmann models are systematically

larger than experimental measurements (table 2.1). There are three different problems.

First, scaling studies show the importance of the microstructural resolution [9, 10] and lattice

magnification [10]. Although the LB simulations are carried out on representative elementary

volumes, the required resolutions are not achieved. Consequently, the model microstructures

fail to capture the pore break-through diameter [110] which is probably the most critical

factor in determining permeability. The dilemma is to satisfactorily exploit the resolution-

free character of the microstructural models within a discrete LB simulation. The required

computational resources may become prohibitive. The issue is additionally complicated

by the necessity to achieve a lattice magnification of four in order to guarantee an accurate
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recovery of the hydrodynamics.

Second, the permeability is critically dependent on the overall size and connectivity of the

micron-sized capillary pores. These variables are dependent on the density of the C-S-H

which remains a point of active discussion. The main question concerns the assignment of

porosity either to the nano-scale gel pores or to the larger micron-scale capillary pores. There

is recent nuclear magnetic resonance evidence for smaller fractions of capillary porosity than

traditionally thought [3]. Fewer capillary pores place a greater fraction of the water in the gel

porosity, reduce the overall capillary porosity, and hence decrease the model permeability.

However, at realistic microstructural resolutions, a lower capillary porosity would result in a

depercolated pore network and hence an unmeasurable permeability. Therefore, to be able to

calculate permeability at lower capillary porosities, the C-S-H gel pores must be taken into

account. However, in addition to the unrealistic computational requirements, there is the

immediate limitation that experimental techniques and microstructural models do not reveal

the 3D structure of the C-S-H [113, 114, 3, 115]. To bypass this problem, a different approach

may be to include the C-S-H as an effective medium with effective transport properties as will

be shown in section 5.2.

Finally, all the simulations shown above and in [9, 12] do not take into account the degree

of water saturation of the samples. This parameter was proven to be critical in experimental

measurements of the gas permeability of cementitious materials [31, 33, 32] and will be further

discussed in section 5.2.

5.2 Unsaturated permeability of cement paste†

5.2.1 Cement paste model microstructures

New cement paste model microstructures (100 µm)3 in size were created using the vector

model µic [45, 106]. The structures had an initial water-to-cement ratio of 0.4 and were

generated as a function of the degree of hydration. Except when stated otherwise, the small-

est and largest anhydrous particle sizes were set to 0.5 and 20 µm respectively, the former

corresponding to the microstructural resolution and the latter to 20% of the structure size.

The phase composition of the model cement clinker was 51.9% alite, 23.1% belite, 8.1% ferrite,

9.8% aluminate, and 7.1% gypsum by solid mass. The reaction kinetics were defined according

to the hydration model of Parrot and Killoh [116]. The densities of the reactants and hydrates

were set to standard literature values [108] as previously shown in table 5.1. It is worth noting

that the density of the C-S-H, previously calculated in order to match the capillary porosity

of the Powers-Brownyard’s model [109], do match the recent findings of Muller et al. [3]

as measured using 1H nuclear magnetic resonance (NMR) relaxation analysis. The phase

†The following results were published by the author in: M. Zalzale, P.J. McDonald, and K.L. Scrivener, A 3D
lattice Boltzmann effective media study: understanding the role of C-S-H and water saturation on the permeability
of cement paste, Modelling and Simulation in Materials Science and Engineering, vol. 21, no. 8, p. 085016, 2013.
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composition of the hydrated microstructure was verified and found to be in good agreement

with thermodynamic calculations determined using the Gibbs Energy Minimization Software

for Geochemical Modeling [117].

Muller et al. [3] recently measured the total capillary porosity of a 28 days old white cement

paste with a water-to-cement of 0.4 using a combination of 1H NMR relaxation analysis and

chemical shrinkage experiments. They reported a total capillary porosity of 9.2%, consistent

with the capillary porosity predicted by Powers and used in section 5.1. Accordingly, the model

microstructures with 9.2% total capillary porosity, corresponding to a degree of hydration of

89%, were selected for further analysis and subsequent permeability simulations.

First, these resolution-free microstructures were discretized onto cubic grids of 2003 voxels

with a microstructural resolution of 0.5 µm by taking the phase present at each voxel centre as

representative of that voxel. Second, as shall be seen below, the model structures were adapted

in order to have reduced degrees of water saturation. Third, the penetrating fluid (liquid water

or gas) was chosen and the permeability of the C-S-H was set accordingly. Finally, the lattice

Boltzmann model described in chapter 3 section 3.2 was used to simulate the flow through

the partially-saturated cement paste model microstructures that contained capillary pores,

weakly-permeable or impermeable C-S-H, and solid inclusions.

5.2.2 Model microstructures at reduced degrees of water saturation

The capillary porosity of mature cement pastes can be largely devoid of liquid water. For

example, Muller et al. [3] recently showed by 1H NMR relaxation analysis that for a sealed-

cured 28 days old white cement paste with a water-to-cement ratio of 0.4, out of the 9.2% total

porosity, only 1.4% is water-filled. The remaining 7.8% are empty chemical shrinkage voids.

They further showed that it is difficult to subsequently refill these voids [35].

The modelling platform µic generates the microstructure of the solid phases. It is usually

assumed that the remaining space is filled with water. This is equivalent to an ideal underwater

curing. To model permeability as a function of capillary water saturation, water was removed

progressively from the model microstructures, starting from the largest pores according to

the Kelvin-Laplace law, as illustrated in figure 5.9. The largest pores were determined using

a porosimetry algorithm developed by Do et al. [110]. To avoid systematic bias due to the

pore-emptying algorithm, multiple repeats of the algorithm were run, in which the order that

pores of any given size were emptied was randomly chosen. This process yielded multiple

partially saturated structures with the same saturated pore size distribution originating from a

given saturated parent structure. The process was repeated for different parent structures all

with the same overall capillary porosity (9.2%).
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(a) (b) (c)

Figure 5.9: A 402 pixels slice of a 2003 voxelsµic model cement paste microstructure at different
degrees of water saturation. Solid impermeable phases are shown in black, C-S-H in grey,
emptied capillary pores in cyan and water-filled capillary pores in blue. In (a) the capillary
porosity is fully saturated with water; in (b) it is partially saturated and in (c) it is empty of
water and fully saturated with gas.

5.2.3 Permeating fluid: accessible pore network and permeability of the C-S-H

For the simulation of permeability with water as the penetrating fluid, the solid phases and

emptied pores were considered impermeable to liquid water, so that the degree of water

saturation remains constant during the flow simulations. Powers gave the coefficient of water

permeability of the C-S-H gel as 7×10−23 m2 [118]. This permeability was assigned to all the C-

S-H nodes by considering them as grey nodes, as defined in chapter 3 section 3.2, and through

application of equation 3.32 so that the effective media parameter is σC−S−H = 1−3.36×10−9

when the microstructural resolution and the LB lattice unit ∆x are equal to 0.5 µm. As this is

the only value that could be found in literature, the dependency of the bulk permeability on

the C-S-H permeability was investigated by increasing and decreasing the latter by a factor of

10. For the simulation of permeability with gas as the penetrating fluid, the solid phases and

liquid water were considered impermeable to gas. Additionally, the C-S-H was considered wet

and hence impermeable to gas. Table 5.3 summarizes the setup of the simulations.

Table 5.3: Permeability to water and gas of the different cement paste phases.

Permeating Solid Water-filled Empty C-S-H
fluid phases capillary pores capillary pores

Water Impermeable Calculate with LB Impermeable 70, 7 and 0.7
(×10−23m2)

Gas Impermeable Impermeable Calculate with LB Impermeable
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5.2. Unsaturated permeability of cement paste

5.2.4 Apparent permeability of cement paste model microstructures

Figure 5.10(a) shows the cement paste apparent intrinsic permeability with water as the

permeating fluid as a function of the degree of water saturation of the capillary porosity for

κC−S−H = 7×10−23 m2. The graph also shows the gas permeability for the structures in which

the fluid-accessible pore space comprises the larger emptied capillary pores and the C-S-H

is impermeable, mimicking a gas permeability experiment. Figure 5.10(b) shows selected

experimental cement paste permeabilities taken from table 2.1 and the references therein.

(a) (b)

Figure 5.10: (a) Simulated apparent intrinsic permeability κ vs. the degree of water saturation.
The penetrating fluid is water or gas. The model cement paste water-to-cement ratio is 0.4
and the capillary porosity corresponding to full saturation is 9.2%. An exemplar error bar
(mean ± standard deviation) is shown close to the depercolation threshold. Away from the
depercolation threshold, water-filled porosity less than 0.035 or greater than 0.05, the error bar
is smaller than the symbol size. (b) Experimental cement paste permeabilities from table 2.1,
from top to bottom: Wong et al. [4], Banthia & Mindess [21], Ye [22], Vichit-Vadakan & Scherer
[25, 26], Vichit-Vadakan & Scherer [25, 26] and Powers [118].

Close to 50% water saturation, the convergence criterion, as defined in chapter 3 section 3.2.4,

was not always reached. In these cases, the simulations were stopped after one million

time steps and the relative change in permeability per 1000 time steps was typically 10−4.

The standard deviation of the water permeability was calculated from multiple runs of the

simulation. It comprises two parts: the first is variability in the parent structure (initial

anhydrous cement particles positions) and the second is variability in the water distribution

within a given structure. The variation is negligible when the structures are highly saturated

with a fluid and highest near the depercolation threshold. An exemplar standard deviation is

shown on figure 5.10(a) near the depercolation threshold for a confidence interval of 68.2%

(mean ± standard deviation). The distribution width of the simulated water permeability of

nominally similar samples is comparable to what is observed experimentally (table 2.1).

To test the effect of microstructural resolution on permeability, further structures were gener-
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ated with a smaller minimum anhydrous cement particle size and a microstructural resolution

and lattice spacing of 0.25 µm. As discussed in section 5.1.4, the structural complexity in-

creases when the minimum particle size decreases. At full water saturation, the water perme-

ability decreases by circa 3.5 times in agreement with previous observations [10, 9]. However,

compared to the six orders of magnitude spanned by the data, this now seems a small factor.

Moreover, the water permeability is insensitive to resolution for structures with no water-filled

capillary porosity.

To test the effect of the C-S-H permeability on the water permeability of the paste, simula-

tions were re-run using κC−S−H = 7×10−22 m2 and κC−S−H = 7×10−24 m2. The results are

shown in figure 5.11. As expected, changing the C-S-H permeability has no effect on the

water permeability for structures with high water saturation since the water-filled capillary

porosity is percolated and κC−S−H ¿ κpaste . The effect of the C-S-H permeability on the water

permeability of the paste amplifies with decreasing water saturation. At 1.5% water-filled

capillary porosity, increasing the C-S-H permeability by a factor of 10 increases the water

permeability by a factor ∼ 7, while decreasing the C-S-H permeability by 10 decreases the

water permeability by ∼ 3 times only. At zero water-saturation, the effect of the C-S-H perme-

ability on the paste permeability becomes linear so that the modelled water permeabilities are

3.7×10−22, 3.7×10−23 and 3.7×10−24 m2 for structures with C-S-H permeabilities of 7×10−22,

3.7×10−22 and 3.7×10−22 m2 respectively. These values are consistent with the idea that the

C-S-H occupies approximately half of the volume of the cement paste and could have been

calculated by assuming a parallel flow in a medium composed of 50% C-S-H and 50% solids as

shown in chapter 3 section 3.2.5.

Figure 5.11: Simulated apparent intrinsic permeability κ vs. the degree of capillary water
saturation for different values of the C-S-H permeability. The penetrating fluid is water.
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5.2.5 Discussion

The intrinsic permeability of the structure fully saturated with water is conceptually‡ the same

as the intrinsic permeability of a completely dried cement paste saturated with gas in an

ideal gas permeability experiment. It is therefore not surprising that, at high degrees of water

saturation, the water permeability is comparable to the oxygen permeability results of Wong et

al. [4]. Practically, a better comparison is with the simulation of the sister structure saturated

with gas (zero water saturation) since, in most laboratory gas experiments, the C-S-H is not

fully dried and is therefore impermeable to gas. In both cases, when the capillary porosity is

highly saturated with a fluid, the role of water within the C-S-H in determining permeability is

minimal as the flow is mainly controlled by the percolated fluid-filled capillary pores.

By gradually reducing the water saturation, the water permeability decreases. Initially the

decrease is slow. Below 60% capillary water saturation, the water permeability decreases

more rapidly as the water-filled capillary porosity starts to depercolate. A very sharp drop

in water permeability is observed between 50 and 40% water saturation regardless of the

C-S-H permeability. This is in agreement with the findings of Elam et al. [119] who reported

depercolation of the void regions between mono-sized overlapping spheres at around 3.2%

void. When the water-filled capillary porosity is depercolated, the influence of flow through

the weakly-permeable C-S-H is amplified because the flow is then mainly controlled by the

weakly-permeable C-S-H. The water permeability ranges from approximately 10−19 to 10−22

m2. This agrees well with the range of experimental water permeability measurements as

shown in table 2.1. It is therefore interesting to consider the likely degree of water saturation

of the samples in those experiments.

In the case of Ye [22], paste samples were sealed cured for 28 days and then vacuum saturated

with water for 4 to 8 hours before the water permeability measurement. Muller [35] reports

that for a 28 day sealed cured sample that was subsequently vacuum saturated for 24 hours,

the water-filled capillary porosity rose from 1.4 to 5.5% as measured by NMR. Since Ye’s

samples were vacuum saturated for a shorter time, a slightly smaller water-filled fraction

should be expected. In agreement with this expectation, the water permeability measurement

of Ye, 9.0×10−21 m2, is matched by a water permeability simulation with approximately 4.3%

water-filled capillary porosity for Powers measured value κC−S−H = 7×10−23 m2.

Vichit-Vadakan and Scherer [25] used the beam-bending method to measure water permeabil-

ity in a range of samples of different sizes that were cured sealed for 48 hours and then further

cured underwater. Permeability is derived from the rate of relief of pressure required to bend a

water saturated sample. To verify that the samples were fully saturated, they compared the

permeability before and after pressurization underwater at 2 MPa for 24 hours. The authors

concluded that small samples were fully saturated prior to pressurization on the basis of con-

stancy of the permeability but that this was not the case for larger samples. However, a careful

examination of their figure 4 reveals that permeability decreased after pressurization by about

‡The intrinsic permeability is independent of the permeating fluid.
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20% for the smallest samples (5.7 mm) and by about 60% for slightly larger samples (7.7 mm).

As they suggest, one possible interpretation for higher permeability values before pressure

saturation is the relief of internal pressure by water flow into nearby air voids. We suggest that

even the small samples may not have been fully saturated before pressurization. Moreover,

those few samples that were subjected to pressurization may not have been fully saturated

either. Using the experimentally measured permeability and a pressure of 2 MPa, Darcy’s law

suggests that several days are required to fill the void spaces created during the preliminary

48 hours of sealed curing, rather than the single day allowed, even for the small samples.

In the LB simulations, the water permeability matches the experimental measurements of

Vichit-Vadakan and Scherer 5×10−22 to 10−21 m2 between 4 and 4.2% water-filled capillary

porosity again for κC−S−H = 7×10−23 m2.

Overall, the effect of the C-S-H on the simulated permeability is partially seen in the detail

of the asymmetry of the liquid and gas curves in figure 5.10(a). This is because the C-S-H is

considered permeable in the former case, and impermeable in the latter. However, it is not

the full story, since the asymmetry is also due to the fact that at water saturation Sw , the liquid

occupies a different pore network (predominantly small pores) compared to the gas (large

pores) at saturation (1 – Sw ). The role of the C-S-H amplifies as the capillary porosity starts

to depercolate. This is unequivocally seen by comparing the current results with previous

LB water permeability simulations that treated the C-S-H as impermeable solid as seen in

section 5.1 and in [10, 9, 12]. In those calculations, as the porosity decreased by increasing

the degree of hydration, the permeability decreased monotonically and catastrophically

close the percolation threshold, below which it could not be calculated accurately and was

mainly a result of diagonal leaks. Now, however, the asymptotic approach towards a plateau

permeability dictated by the C-S-H is clearly seen.

5.2.6 Conclusions

This chapter addressed the shortcomings of the standard lattice Boltzmann methods as dis-

cussed in the conclusions of section 5.1. This chapter also allowed insights to be gained on the

possible reasons behind the large scatter in experimental measurements of the permeability

of cement paste.

First, the effective media lattice Boltzmann approach proved to be well suited to numerical

calculation of permeability within complex multi-scale 3D cement paste microstructures

including capillary pore regions of defined geometry, calcium silicate hydrate regions of

defined permeability, and impermeable solid inclusions. This is an advance over previous

numerical simulations of permeability in cement paste where only the capillary pore network

was considered, and further this was fully saturated.

The simulation of apparent intrinsic permeability at different degrees of water saturation

provides a very plausible explanation for the enormous range of experimental results. The

results also explain the apparently large values of water permeability reported in previous
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simulations without invoking earlier arguments of limited spatial resolution either in the

microstructure or in the lattice Boltzmann solver. It is now clear that the large permeability is

a direct consequence of the percolation of the capillary pore network at full water saturation.

The suggestion is that most experimental measurements with water are not conducted on

fully saturated samples. The presence of air voids in nominally water saturated samples could

lower dramatically their apparent intrinsic permeability. It is further concluded that the role

of the weakly-permeable C-S-H, omitted in earlier modelling studies, is critical and has a

non-linear effect on the permeability of cement paste.

Finally, while both liquid water and gas permeabilities were calculated, a multi-phase fluid

with an equation of state that links liquid water and vapour is yet to be incorporated in the

lattice Boltzmann model. This modification would remove the necessity for the assumption

that the degree of water saturation remains constant during the flow simulations. A multi-

phase model was introduced in chapter 4 and is the subject of the following chapter where

the objective is to study the adsorption and desorption of water and vapour in model cement

pastes.
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6.1 Water isotherms of cement paste

The water isotherms are obtained by plotting the water content in the material vs. the relative

humidity (RH) at equilibrium and constant temperature. For cement paste, the time to reach

each equilibrium step depends on many factors including the specimen thickness and the RH

gradient and ranges to well over a year [120] even for thin sub-centimetre samples. Figure 6.1

shows the desorption and adsorption isotherms of a white cement paste with a w/c ratio of

0.4 as obtained using 1H NMR analysis. The isotherms of cement paste display considerable

hysteresis between desorption (drying) and adsorption (wetting). The hysteresis is often

attributed to the capillary condensation and the ink-bottle effect (see chapter 4 section 4.1.6

for a discussion on the ink-bottle effect).

Recently, Muller et al. [121] used 1H NMR relaxation analysis to split the desorption isotherm

into several pore-type resolved isotherms. In summary, the capillary pores empty in the RH

range 100−85%. The C-S-H gel pores follow over a wider range of RH such that by about

30% RH, cement paste is considered to be dry, save for some residual water adsorbed on the

surfaces of the C-S-H. This too is removed at still lower RH. From an engineering perspective,

it is the transport and condensation occurring over the middle and upper ranges of RH

conditions that are important because they correspond to many temperate parts of the world.
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(a) (b)

Figure 6.1: (a) Water desorption and adsorption isotherms and (b) pore-resolved desorption
isotherm for a cement paste with a w/c ratio of 0.4 as obtained using 1H NMR analysis. Data
from Agata Gajewicz.

6.2 Model water isotherms of the capillary pores

6.2.1 Previous work

A standard free energy lattice Boltzmann algorithm, similar to the one described in chapter 4

section 4.1, was previously used in [10]∗ to study the desorption and adsorption of water and

vapour in three-dimensional model cement pastes generated with the platformµic. The model

cement paste had a water-to-cement ratio of 0.4 and the same chemical composition and

parameters as those used in chapter 5 section 5.1. The test microstructures were 16×7.5×7.5

µm3 in size, had a microstructural resolution of 0.5 µm, a lattice magnification of two, and a

capillary porosity of 22%. The reduced temperature was θ
/
θc = 0.96 leading to a liquid density

of ρl i qui d = 1.41 and a gas density of ρg as = 0.62. The liquid – vapour interfaces had a width

of $= 1 and the liquid – solid interfaces were characterized with a contact angle of Θ= 45◦.

The desorption and adsorption isotherms are shown in figure 6.2 where the shaded region

shows the variation (standard error in the mean) in simulations carried out on different test

microstructures.

The isotherms show considerable hysteresis indicating the occurrence of capillary conden-

sation [10]. There are a number of steps at which pores of a specific size empty. Small pore

throats retain liquid water down to ∼87% RH at which point they dry out and the liquid water

in larger pores behind rapidly follows. On the adsorption path branch, these pores do not refill

until circa 96% RH. The simulations show that there are a handful of isolated pores which do

not empty.

∗[10] was a collaborative study where the present author was primarily responsible for the permeability simula-
tions and Peter McDonald was primarily responsible for the desorption simulations.
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Figure 6.2: Simulated desorption and adsorption isotherm for a model cement paste generate
with µic with a microstructural resolution of 0.5 µm. The shaded region shows the variation
(standard error in the mean) in simulations carried on different test microstructures.

It was confirmed in [10] that there are several issues that need to be addressed in order to

quantitatively match the experimental measurements. Most importantly, the width of the

pore size distribution must be increased in order to avoid the dramatic desorption step at

around 90%. Also, the C-S-H gel porosity needs to be resolved within the microstructural

model in order to avoid the false conclusion that the sample is devoid of liquid water by circa

80% RH [10]. Hence, it was concluded that although the model can qualitatively reproduce

the early part of the water isotherms related to the capillary porosity as reported in literature

[122, 120, 114], considerable work is required to parameterize it in order to quantitatively

match the experiments.

6.2.2 Reproduction of previous work

In this section, the cement paste water isotherms calculated in [10] are compared with those

calculated in this work by the present author. Hence, the free energy model described in

chapter 4 section 4.1.4 was used to calculate the water isotherms of model cement pastes. The

cement paste and LB parameters were described in [10] and in section 6.2.1. Figure 6.3 shows

the isotherms calculated in this work and in [10]. The two isotherms are not identical and

there are several reasons for that.

First, the isotherms in [10] were calculated on test structures that were randomly selected

from one larger microstructure. Hence, in this work, the isotherms were calculated on similar,

but not strictly the same, microstructures.

Second, figure 6.3 shows a substantial difference in the mass of adsorbed fluid. This is because

the mass of adsorbed fluid was calculated in [10] as the total liquid mass divided by the volume

of pores. This is slightly different to the method used in this work, as explained in chapter 4

section 4.1.5, where the mass of adsorbed fluid is calculated as the average density in the
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Figure 6.3: Comparison of the water isotherms as calculated in [10] (MATALB) and with the
version implemented by the author and used in this work (C).

fluid nodes. It is believed that the approach used in this work is more appropriate for later

comparisons with experimental data where the measurable quantity is the total mass of the

system.

Third, figure 6.3 shows a difference in the relative humidity at which the main drying and

wetting steps take place. The difference in the drying step is within the scatter but the dif-

ference in the wetting step is not. This is because in [10], the term describing the liquid –

vapour interfaces, χ, was erroneously divided by two. Figure 6.4 shows that re-running the

simulations with χ′ =χ/
2 leads to an isotherm with the main wetting step occurring at higher

relative humidities. However, it is uncertain why the change in χ affects only the adsorption

branch of the curve. It seems very likely that in such a complex structure, the desorption is

highly perturbed and mostly controlled by the ink-bottle effect.

Figure 6.4: Effect of χ on the simulated water isotherms

Finally, because of major performance improvements, the isotherms calculated in this work

have a better (lower) convergence criterion. This results in a more step-like curve when

compared to [10].
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6.3 Model water isotherms of the capillary and C-S-H gel pores

The water isotherms calculated in [10] and shown in figure 6.2 are, to the best knowledge of

the authors, the first numerical isotherms calculated for an explicitly-resolved microstructure

of cement paste. However, these simulations were limited to the capillary pores. The aim of

this section is to extend the previous simulations to include the C-S-H gel pores. This is done

by using the lattice Boltzmann free energy effective media approach developed in chapter 4

section 4.2. The novel contribution of this section is the treatment of the C-S-H as a grey

material with effective transport and wetting properties.

Three-dimensional model cement pastes, as previously described in chapter 5 section 5.2,

were used. The test microstructures were 30× 30× 15 µm3 in size, had a microstructural

resolution of 0.5 µm, a lattice magnification of two, and a capillary porosity of 9.2%. The test

structures were 15 times bigger than those investigated in [10] following major performance

improvements of the code. Figure 6.5 shows a 2D slice of the 3D µic microstructure described

above. The reduced temperature was θ
/
θc = 0.96 leading to a liquid density of ρl i qui d = 1.41

and a gas density of ρg as = 0.62. The liquid – vapour interfaces had a width of $ = 1. The

pressure scaling factor was set to ξ= 0.3 in order to improve numerical stability. To accelerate

the convergence of the simulations, the samples were surrounded with sources of RH in the

three spatial dimensions.

Figure 6.5: Two-dimensional slice of a 3D µic microstructure. The capillary pores are shown in
white, the C-S-H in grey and the solids in black.

Each C-S-H node was considered a grey node with an effective media parameter of σC−S−H =
0.01† and an internal wetting potential φC−S−H = 0.27. The fluid – solid wetting potential

was set to φ f lui d/sol i d = 0.23 in order to return a liquid – solid contact angle ofΘ= 30◦. This

is believed to be the upper limit for the contact angle which is usually assumed to be be-

tween 0 and 30◦ [123]. The additional interface wetting potentials were set to φ f lui d/C−S−H =
0.23 and φC−S−H/sol i d = 0.27 in order to return contact angles of Θ f lui d/C−S−H = 30◦ and

ΘC−S−H/sol i d = 0◦, respectively.

†It was previously shown in chapter 4 section 4.2.5 that the effective media parameter (and hence the perme-
ability) of the grey nodes has no effect on the simulated isotherms as long as the nodes are permeable.
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Figure 6.6 shows the calculated desorption and adsorption isotherms where the mass of

adsorbed fluid is normalized by the pore volume. The figure also shows the contribution of

each of the two pore networks separately (capillary pores and C-S-H nodes).

The isotherms have two main steps as it can also be seen from the equilibrium fluid distri-

butions shown in figures 6.9 and 6.10. The capillary pores start emptying at 100% but the

most considerable step happens between 90 and 75% RH. The C-S-H gel pores empty between

80 and 70% RH and the isotherms are remarkably similar to the intrinsic isotherms of grey

nodes characterized with the same internal wetting potential as previously shown in chapter 4

figure 4.22. This suggests that the degree of internal wetting φC−S−H can indeed characterize

the C-S-H with a relatively intrinsic isotherm that is, as it should be, only very slightly affected

by the presence of neighbouring solid and fluid nodes.

Figure 6.6: Model water isotherms of the capillary and gel pores of cement paste. The mass of
adsorbed fluid is normalized the pore volume (capillary pores and C-S-H nodes). The internal
wetting potential of the C-S-H is φC−S−H = 0.27.

Figure 6.7: Model water isotherms of the capillary and gel pores of cement paste. The mass of
adsorbed fluid is normalized the pore volume (capillary pores and C-S-H nodes). The internal
wetting potential of the C-S-H is φC−S−H = 0.54.
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Figure 6.8: Effect of the internal wetting of the C-S-H on the model isotherms of cement paste.
Data from figures 6.6 and 6.7.

Figure 6.7 shows the water isotherms for the system described above but with an increased

C-S-H wetting potential from φC−S−H = 0.27 to φC−S−H = 0.54. Figure 6.8 shows the effect of

the internal wetting potential of the C-S-H on the water isotherms by comparing figures 6.6

and 6.7. When the internal wetting potential of the C-S-H is increased, the RH’s of desorption

and adsorption of the C-S-H decrease. This is because, as previously discussed in chapter 4

section 4.2.5, the C-S-H with the highest wetting potential retains the liquid fluid for longer

when the surrounding RH is decreased and starts adsorbing the liquid fluid earlier when the

surrounding RH is increased. However, the internal wetting of the C-S-H has a negligible effect

on the isotherms of the capillary pores. This is because at 9.2% capillary porosity, save for very

few isolated pores, most of the capillary pores are percolated.
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Chapter 6. Water Isotherms of Cement Paste

Figure 6.9: Two-dimensional slices showing the equilibrium fluid distribution during desorp-
tion in a 3D µic microstructure at critical values of the RH. The microstructure was previously
shown in figure 6.5. The system is connected to a vapour source in the three spatial directions.
The internal wetting potential of the C-S-H is φC−S−H = 0.27. Liquid is shown in blue, vapour
in cyan and solids in black.
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6.3. Model water isotherms of the capillary and C-S-H gel pores

Figure 6.10: Two-dimensional slices showing the equilibrium fluid distribution during adsorp-
tion in a 3D µic microstructure at critical values of the RH. The microstructure was previously
shown in figure 6.5. The system is connected to a vapour source in the three spatial directions.
The internal wetting potential of the C-S-H is φC−S−H = 0.27. Liquid is shown in blue, vapour
in cyan and solids in black.
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6.4 Discussion: Kelvin’s equation, a critical limitation in the model

isotherms

The water isotherms calculated in section 6.3 addressed the limitations that were previously

exposed in [10]. Specifically, the test structures were bigger, had a wider pore size distribution,

and the C-S-H was taken into account via the novel lattice Boltzmann free energy effective

media method. However, there is a further critical problem related to the parametrization of

the LB model with regards to the Kelvin equation (see chapter 4 section 4.1.6 for a discussion

on the Kelvin equation). Taking data from figure 4.14 in section 4.1.6, it is found that in

the LB simulations, a 3D spherical pore with a radius of six lattice units empties at 90.4%

RH. The microstructural resolution of the model cement pastes is ∼0.5 µm and the lattice

magnification is 2. Therefore, in the cement paste microstructures, a pore with a radius of

six lattice units would have a physical radius of 1.5 µm. However, using the Kelvin equation

(equation 4.18) and the following standard experimental parameters:

γ= 0.073 N.m−1

Θ= 30◦

R = 8.314 J.mol−1K−1

T = 300 K

Tc = 647 K

M∗ = 0.018 m3.mol−1

ρ = 1003 Kg.m−3

it is found that a spherical pore that empties from liquid water at 90.4% RH should have a

physical radius of ∼9 nm. This means that the six lattice units of the LB simulations represent

∼9 nm in terms of physical units and not 0.25 µm as imposed by the resolution and magnifica-

tion of the microstructure. One could think that the discrepancy may arise from the fact that

water at room temperature has a reduced temperature of θ
/
θc = 300/647 ' 0.47 whereas the

fluid in the LB model was characterized with a reduced temperature of θ
/
θc = 0.96. However,

further tests revealed that decreasing the simulation temperature does decrease, not increase,

the RH at which the pore emptied (table 6.1).

Table 6.1: RH at which a pore of radius six lattice units empties from liquid water for different
values of the reduced simulation temperature.

θ/θc ρl i qui d /ρg as RH(%±0.5%)

0.99 1.5 96.5
0.96 2.27 90.5
0.92 3.3 80.5

To the best of the author’s knowledge, the practical problem of linking the spatial dimension
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of the structure to the RH of desorption has not been discussed nor solved. At present, it is

unclear how to parameterize the free energy lattice Boltzmann algorithm in order to adjust

the physical size of the lattice unit‡. There are several governing parameters (e.g. contact

angle, interface width) but none of them is sufficient to link the spatial dimension to the

RH of desorption without affecting the physics or the stability of the simulation. Hence, at

present, the only quick-fix consists of magnifying the structure. For the reduced temperature

θ
/
θc = 0.96, the magnification that is needed in order to adjust the physical resolution is ∼28

times. Unfortunately, this is hopeless from a computational point of view.

6.5 Conclusions

In this chapter, a novel lattice Boltzmann algorithm was used to model the desorption and

adsorption of water in cement paste. The novelties of the numerical model were previously

described in chapter 4 section 4.2.7. From the cement paste perspective, this chapter pre-

sented, to the best knowledge of the author, the first numerical isotherms of cement paste

that is based on an explicitly-resolved microstructure and includes the contribution of both

capillary and C-S-H gel pores.

At present, the lattice spacing in the simulations is on the order of few nanometres and cannot

be matched to the characteristic dimensions of the cement paste model microstructures.

Hence, the algorithm was used to study qualitatively the effect of the inclusion of the gel pores

on the calculated isotherms of cement paste. The algorithm was also used to test hypotheses

like the ink-bottle effect. Thus, unlike chapter 5, this chapter does not end with a quantitative

comparison of the model with experiments. However, the model is only one step away from

such comparisons.

‡This was not the case for the permeability simulations shown in chapter 5 where the simulation and physical
units were fully controlled.

99





7 Conclusions

Contents

7.1 Main findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2.1 Water isotherms of cement paste . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.2 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2.3 Microstructural resolution . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.4 Downscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.5 Upscaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1 Main findings

The objective of this thesis was to develop a model that can predict the permeability of cement

paste based on an explicit microstructure. To achieve this, three-dimensional model mi-

crostructures were generated using the platform µic which allows the simulation of resolution-

free structures based on, amongst others, input laws for reactions, kinetics and nucleation.

The lattice Boltzmann (LB) method was selected for solving the equations of flow because of

its ability to handle solid boundaries in complex porous media like cement paste.

Two main lattice Boltzmann permeability models were developed. The first model was mo-

tivated by the general consensus that the permeability is governed by the flow through the

fully saturated capillary pores. Hence, a relatively standard LB model was developed and used

to compute the flow in fully saturated microstructures where the calcium silicate hydrate

(C-S-H) was treated as an impermeable solid. In this study, the main parameters were the

water-to-cement ratio, the degree of hydration and the capillary porosity. The calculated per-

meabilities were several orders of magnitude larger than most experimental measurements. At

first, this discrepancy was associated with the limited spatial resolution in the microstructures

and diagonal leaks in the LB method. However, during the comparison of the results with

experimental data, a large unexplained scatter in literature was discovered.
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A careful study of the available experimental data suggested that the reason behind this scatter

might be the variation in the degree of water saturation of the samples caused by different

conditioning procedures. Consequently, a second LB model was developed where, in addition

to the improved resolution, the capillary pores were not fully saturated. However, the problem

that arose was that at middle to low degrees of water saturation, the water-filled capillary pores

would depercolate and the permeability would become zero. Hence, the gel pores of the C-S-H

had to be considered in the flow simulation. The issue is that the porous nature of the C-S-H

is uncertain and is not revealed by microstructural models. Thus, it was decided to consider

the C-S-H as an effective medium and to characterize it with an effective permeability. In this

study, the main parameters were the degree of water saturation of the capillary porosity and

the intrinsic permeability of the C-S-H.

The simulation of apparent permeability at different degrees of water saturation provided

a very plausible explanation for the enormous range of experimental results (10−16 −10−22

m2). It was found that when the capillary porosity was completely saturated with a fluid

(either water or gas), the calculated intrinsic permeability was in good agreement with mea-

surements of gas permeability on dried samples (10−16 −10−17 m2). However, as the water

saturation was reduced, the calculated apparent water permeability decreased and span the

full range of experimentally measured values (10−16 −10−22 m2). It was concluded that the

degree of capillary water saturation is very likely to be the cause for variation in experimental

permeability measurements. Based on the modelling results and the analysis of the available

experimental data, it was suggested that most experimental measurements with water are

not conducted on fully saturated samples. In such experiments, the presence of air voids in

nominally water-saturated samples dramatically lowers their apparent permeability.

It was further concluded that the role of the weakly-permeable C-S-H, omitted in earlier

modelling studies, is critical for determining the water permeability at low capillary saturation

or porosity. The role of the C-S-H becomes more important as the saturated capillary porosity

starts to depercolate. This is seen by comparing the results with previous LB permeability

simulations that treated the C-S-H as an impermeable solid. In those calculations, as the

capillary porosity decreased by increasing the degree of hydration, the permeability decreased

monotonically and catastrophically close the percolation threshold, below which it could not

be calculated accurately. In the effective media model, however, an asymptotic approach

towards a plateau permeability dictated by the C-S-H is seen.

7.2 Outlook

This thesis provided insights on the link between the microstructure and the permeability of

cement paste. There are several possible ways to continue and improve on this work.
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7.2.1 Water isotherms of cement paste

A multi-phase model of non-ideal fluids is required to simulate the desorption and adsorption

of liquid water and vapour in partially-saturated samples. The development of a multi-phase

LB model was already started in chapter 4. Preliminary results were shown in chapter 6

section 6.2 where the model was used to calculate the water isotherms of the capillary pores

of model cement paste. The calculated isotherms were narrow, as expected from the pore

size distribution. Hence, it was decided to include the smaller C-S-H gel pores with a novel

effective media approach, similar to the one used in the permeability simulations in chapter 5

section 5.2. To do so, the effective media approach was extended to include, in addition

to the transport properties, the wetting properties of the C-S-H. This model was applied to

simulate the water isotherms of the capillary and C-S-H gel pores of cement paste in chapter 6

section 6.3. In agreement with experiments, the calculated isotherms have two main steps,

the first corresponding to the capillary pores and the second to the smaller gel pores.

However, at present, the model still has one major limitation. The lattice spacing in the

simulations is on the order of few nanometers and it is unclear how to scale it up to match the

characteristic size of the capillary pores. Hence, the model can be used to simulate phenomena

that are either on the nanometre scale (characteristic pore radii of ∼ 1 to 20 nm), or that are

scale independent (e.g. phase separation, contact angle). Unfortunately, at present, the model

cannot be used to predict in a quantitative manner phenomena that are scale dependent

and have characteristic size larger than few nanometres, like the desorption in cement paste.

However, the developed model is only one parametrization step away from such simulations.

Afterwards, the calculated water isotherms can be compared quantitatively with experimental

data.

7.2.2 Experimental validation

The main result of the thesis is a hypothesis that links the permeability to the degree of capillary

saturation of cement paste. The comparison between the modelling results and experimental

data was done on the basis of matching the degree of saturation in the model microstructures

with the probable degree of saturation in the experiments. The latter was estimated from

the conditioning procedure of the samples. A well-thought-out experiment would be very

valuable to validate the hypothesis regarding saturation in a more definitive manner. The

problem is that it is very hard to ensure full water saturation throughout the curing of the

sample and the permeability experiment. A promising approach may consist of using the

beam bending method on very thin samples that are cured underwater immediately after

mixing. The dilemma in this case is that the effective water-to-cement ratio of the paste will

increase as the water is drawn into the forming air voids during underwater curing. In this

case, nuclear magnetic resonance relaxation analysis could be used to check if the additional

water is uniformly distributed throughout the sample.
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7.2.3 Microstructural resolution

The dependency of the permeability on the microstructural resolution was a major issue in

chapter 5 section 5.1. This is because treating the C-S-H as an impermeable solid makes

the percolation of the pore network, and thus the permeability, critically dependent on the

resolution of the model microstructures. This issue was largely addressed in chapter 5 sec-

tion 5.2 where in addition to a slightly improved resolution, the C-S-H was treated as a weakly-

permeable material. These improvements decreased the dependency of the percolation of the

pore network on the microstructural resolution. Hence, the dependency of the permeability

on the microstructural resolution was also decreased. However, it would be interesting to

improve the performance of the code to take full advantage of the resolution-free nature of

the hydration model µic. Moreover, an increased computing power can be used to run the

simulations with a higher lattice magnification and guarantee a better numerical accuracy.

7.2.4 Downscaling

The C-S-H gel pores have to be taken into account to accurately predict the transport properties

of cement paste. In this work, this was done with an effective media approach where the

C-S-H was assigned intrinsic transport and wetting properties. The primary motivation for

this choice was the unavailability of a three-dimensional C-S-H structure. However, there is a

lack of readily available data for the C-S-H transport properties as well. In the permeability

simulations, the C-S-H was characterized with an intrinsic permeability of κC−S−H = 7×10−23

m2. This is the only value that was found in literature and it is extracted from the work of

Powers [118] where he says that ”measurements show that the coefficient of permeability of

the gel itself is about 7×10−11 darcys”. However, it is unclear how these measurements were

made. Hence, in chapter 5 section 5.2.4, the permeability of the C-S-H was increased and

decreased by a factor 10. It was found that the permeability of the C-S-H has a non-linear

effect on the permeability of cement paste. In future work, it may be possible to decide the

intrinsic transport and wetting properties of the C-S-H based on newly available experimental

data or atomistic simulations.

7.2.5 Upscaling

The simulations in this work were carried out on a cement paste representative elementary

volume (REV) of (100 µm)3. This relatively small size is a good starting point to understand the

link between the microstructure and transport properties. However, as important as it may be

to understand the fundamentals at the nano- and micro-scales, the ultimate goal is to improve

the properties at the macroscopic scale of concrete structures where the REV is on the order of

cubic centimetres. Fortunately, the developed lattice Boltzmann models are very appropriate

for such upscaling. In particular, the simulation of the flow is easier and less prone to errors

in concrete structures because their permeability is several orders of magnitude larger than

that of cement paste. Moreover, the LB models that incorporate effective media are appealing
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to use in a hierarchial manner. In this thesis, the effective media lattice Boltzmann model

was used to simulate the flow in the capillary pores while treating the C-S-H as an effective

medium of known permeability. In future work, the model could be used to calculate the

permeability of concrete where the flow is solved in the micro-cracks and interfacial transition

zones while treating the bulk cement paste as an effective medium of known permeability, as

calculated in this work.
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A MRT Collision Operator

The multi-relaxation-time collision operator is implemented in the hydraulic modes of the

problem instead of the space of discrete velocities. The first term of the RHS of equation 3.2

becomes [63]:

Q∑
j=1

Si j

(
f j (r , t )− f eq

j (r , t )
)
=−M−1 ·S · (m (r , t )−meq (r , t )

)
(A.1)

where M is a 19×19 transformation matrix and S is the corresponding diagonal relaxation

matrix. The distributions functions are linked with the hydraulic modes via the transformation

matrix M with:

m = M · f (A.2)

f = M−1 ·m (A.3)

The diagonal relaxation matrix is:

S = di ag (0, s2, s3,0, s5,0, s5,0, s5, s10, s11, s10, s11, s14, s14, s14, s17, s17, s17) (A.4)

and the kinematic viscosity is calculated with:

υ= c2
s (s10 − ∆t

2
) (A.5)

= c2
s (s14 − ∆t

2
) (A.6)
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The transformation matrix is [63]:

M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8

12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1

0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1

0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2

0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0

0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0

0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1

0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1



(A.7)

and the moments are:

m = (
ρ,e,ε, jx , qx , jy , qy , jz , qz ,3pxx ,3πxx , pw w ,πw w , px y , py z , , pxz ,mx ,my ,mz

)T (A.8)

where T denotes the transverse operator. Finally, in the notation of the reference, the equilib-

rium moments are:

ρeq =
Q∑

i=1
fi (A.9)

j eq =
Q∑

i=1
fi ei (A.10)

eeq =−11ρ+19 j . j (A.11)

εeq = 3ρ− 11

2
j . j (A.12)

qeq
x =−2

3
jx (A.13)

qeq
y =−2

3
jy (A.14)

qeq
z =−2

3
jz (A.15)
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peq
xx = 1

3

[
2 j 2

x −
(

j 2
y + j 2

z

)]
(A.16)

π
eq
xx =−1

2
peq

xx (A.17)

peq
w w = j 2

y − j 2
z (A.18)

π
eq
w w =−1

2
peq

w w (A.19)

peq
x y = jx jy (A.20)

peq
y z = jy jz (A.21)

peq
xz = jx jz (A.22)

meq = 0 (A.23)

109





B Pressure Boundary Conditions

As discussed in chapter 3 section 3.1.3, pressure boundary conditions can be set in isothermal

lattice Boltzmann simulations by taking advantage of the equation of state that links the

pressure P to the density ρ with P = c2
s ρ.

For the following D3Q19 vector base:
i

ei x

ei y

ei z

=


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0

0 0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1

 (B.1)

the density and momentum equations (equations 3.3 and 3.4) are:

ρ = f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 + f9 + f10 (B.2)

+ f11 + f12 + f13 + f14 + f15 + f16 + f17 + f18 + f19

ρux = f2 + f8 + f9 + f10 + f11 −
(

f3 + f12 + f13 + f14 + f15
)

(B.3)

ρuy = f4 + f8 + f12 + f16 + f17 −
(

f5 + f9 + f14 + f18 + f19
)

(B.4)

ρuz = f6 + f10 + f14 + f16 + f18 −
(

f7 + f11 + f15 + f16 + f18
)

(B.5)

As discussed in section 3.1.3, it is possible to fix only three of the four macroscopic variables. If

the density is set to ρ = ρi nlet and the velocities to uy = uz = 0, the set of equations become:

f2 + f8 + f9 + f10 + f11 = ρi nlet (B.6)

− (
f1 + f3 + f4 + f5 + f6 + f7 + f12 + f13 + f14 + f15 + f16 + f17 + f18 + f19

)
f2 + f8 + f9 + f10 + f11 = ρi nlet ux (B.7)

− (
f3 + f12 + f13 + f14 + f15

)
In order to obtain the five unknown components

{
f2, f8, f9, f10, f11

}
, three additional equations

are needed. These equations can be obtained by assuming that the half-way bounce-back
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is valid for the non-equilibrium part of three of the unknown distribution functions [66] so

that fi − f eq
i = f ĩ − f eq

ĩ
where ĩ is the direction opposite to i and the equilibrium distribution

functions f eq
i and f eq

ĩ
are calculated with equation 3.11. However, to keep the symmetry

of the problem, this condition must be assumed for all of the five unknown components{
f2, f8, f9, f10, f11

}
. By doing so, the system becomes over-determined with two variables. In

order to close the system, two variables, termed transverse momentum corrections, were

introduced by Hecht and Harting [71]. Finally, the following equations are obtained for the

inlet:

ux = 1− 1

ρi nlet

[
f1 + f4 + f5 + f6 + f7 + f16 + f17 + f18 + f19 +2

(
f3 + f12 + f13 + f14 + f15

)]
(B.8)

f2 = f3 + 1

3
ρi nlet ux (B.9)

f8 = f13 + 1

6
ρi nlet ux −N x

y (B.10)

f9 = f12 + 1

6
ρi nlet ux +N x

y (B.11)

f10 = f15 + 1

6
ρi nlet ux −N x

z (B.12)

f11 = f14 + 1

6
ρi nlet ux +N x

z (B.13)

where N x
y and N x

z are the transverse momentum corrections as introduced in [71]:

N x
y = 1

2

[
f4 + f16 + f17 −

(
f5 + f18 + f19

)]
(B.14)

N x
z = 1

2

[
f6 + f12 + f16 −

(
f7 + f17 + f19

)]
(B.15)

Similarly, for at the outlet:

ux =−1+ 1

ρoutlet

[
f1 + f4 + f5 + f6 + f7 + f16 + f17 + f18 + f19 +2

(
f2 + f8 + f9 + f10 + f11

)]
(B.16)

f3 = f2 − 1

3
ρoutlet ux (B.17)

f12 = f9 − 1

6
ρoutlet ux −N x

y (B.18)

f13 = f8 − 1

6
ρoutlet ux +N x

y (B.19)

f14 = f11 − 1

6
ρoutlet ux −N x

z (B.20)

f15 = f10 − 1

6
ρoutlet ux +N x

z (B.21)

112



C Effective permeability

In this appendix, the analytical expression given in equation 3.32 that relates the effective

media parameter to the intrinsic permeability of a grey node is derived∗. To do so, the

three-dimensional lattice is projected onto a one-dimensional lattice with three velocities:

a stationary velocity e0, a velocity in the positive direction e+, and a velocity in the negative

direction e−. The equations governing the equilibrium fluid densities become:

f eq
0 = ρ

(
2

3
−u2

)
(C.1)

f eq
+ = 1

6
ρ

(
1+3u +3u2) (C.2)

f eq
− = 1

6
ρ

(
1−3u +3u2) (C.3)

The stationary fluid packed density is constant under steady-state conditions. Consequently:

f0 = ρ
(

2

3
−u2

)
(C.4)

f+2 = (1−σ) f+1 +σ f−1 (C.5)

f−1 = (1−σ) f−2 +σ f+2 (C.6)

where the additional subscripts refer to the fluid packets for two neighbouring nodes 1 and 2.

By introducing the following variables:

p = f++ f− = ρ− f0 (C.7)

m = f+− f− = ρu (C.8)

We obtain:

p2 +m2 = p1 + (1−2σ)m1 (C.9)

p1 −m1 = p2 − (1−2σ)m2 (C.10)

∗The derivation is largely inspired by the work of Walsh et al. [91].
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Combining equations C.1, C.9 and C.10 yeilds an expression for the change in p across a

one-dimensional lattice comprising N +1 nodes numbered from 0 to N :

∆p = ρ0

(
1

3
+u2

0

)
−ρN

(
1

3
+u2

N

)
= 2σρ0u0N (C.11)

Equation C.11 can be written under the form:

u2
0 +

2σρN N

ρ0 −ρN
u0 − ρN

3ρ0
= 0 (C.12)

Thus,

u0 =− σρN N

ρ0 −ρN
+

√(
σρN N

ρ0 −ρN

)2

+ ρN

3ρ0

' ∆ρ

6σρ0N
(C.13)

where the change in density, ∆ρ = ρ0 −ρN , is related to the pressure drop ∆P across the lattice

by:

∆P = 1

3
∆ρ (C.14)

Finally, the permeability κ of a grey node of effective media parameter σ can be obtained from

equations 3.29, 2.1, C.13 and C.14:

κ= (1−σ)υ

2σ
(C.15)
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D Mathematical Operators

The gradient and Laplacian stencils can be calculated with:

∂x =


 0 0 0

−B 0 B

0 0 0

 ,

 −B 0 B

−A 0 A

−B 0 B

 ,

 0 0 0

−B 0 B

0 0 0


 (D.1)

and

∇2 =


 0 D 0

D C D

0 D 0

 ,

 D C D

C E C

D C D

 ,

 0 D 0

D C D

0 D 0


 (D.2)

where E =−6C −12D, 2A+8B = 1 and C +4D = 1 [101]. The left, middle, and right matrices

show slices of the stencils for ei = (0,0,−1), ei = (0,0,0) and ei = (0,0,1), respectively. The

coefficients A,B ,C and D can be tuned to reduce the spurious velocities at equilibrium. Their

values are chosen following the work of Pooley and Furtado [101] so that: A = 1
6 ,B = 1

12 ,C =
1
3 ,D = 1

6 and E = −4. The parameters ωp,t ,αα,αβ
i can be adjusted to reduce the spurious

velocities as well and their values can be found in [101].

In the numerical algorithm, the following expressions were used for the bulk nodes:

∂xρ(x,y,z) =
ρ(x+1,y,z) −ρ(x−1,y,z)

6

+ ρ(x+1,y−1,z) +ρ(x+1,y+1,z) +ρ(x+1,y,z−1) +ρ(x+1,y,z+1)

12

− ρ(x−1,y−1,z) +ρ(x−1,y+1,z) +ρ(x−1,y,z−1) +ρ(x−1,y,z+1)

12
(D.3)
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Appendix D. Mathematical Operators

∂yρ(x,y,z) =
ρ(x,y+1,z) −ρ(x,y−1,z)

6

+ ρ(x+1,y+1,z) +ρ(x−1,y+1,z) +ρ(x,y+1,z−1) +ρ(x,y+1,z+1)

12

− ρ(x+1,y−1,z) +ρ(x−1,y−1,z) +ρ(x,y−1,z−1) +ρ(x,y−1,z+1)

12
(D.4)

∂zρ(x,y,z) =
ρ(x,y,z+1) −ρ(x,y,z−1)

6

+ ρ(x+1,y,z+1) +ρ(x−1,y,z+1) +ρ(x,y+1,z+1) +ρ(x,y−1,z+1)

12

− ρ(x+1,y,z−1) +ρ(x−1,y,z−1) +ρ(x,y+1,z−1) +ρ(x,y−1,z−1)

12
(D.5)

and

∇2ρ(x,y,z) =
ρ(x+1,y,z) +ρ(x−1,y,z) +ρ(x,y+1,z) +ρ(x,y−1,z) +ρ(x,y,z+1) +ρ(x,y,z−1)

3

+ ρ(x+1,y−1,z) +ρ(x−1,y−1,z) +ρ(x+1,y+1,z) +ρ(x−1,y+1,z) +ρ(x+1,y,z−1) +ρ(x−1,y,z−1)

6

+ ρ(x+1,y,z+1) +ρ(x−1,y,z+1) +ρ(x,y+1,z−1) +ρ(x,y−1,z−1) +ρ(x,y+1,z+1) +ρ(x,y−1,z+1)

6

−4ρ(x,y,z) (D.6)

On surface nodes near the solid boundaries, the following expressions were used:

∂xρ(x,y,z) = 1

2

[
ρ′σ(x+1,y,z) +ρ(x+1,y,z)

[
1−σ(x+1,y,z)

]
−ρ′σ(x−1,y,z) −ρ(x−1,y,z)

[
1−σ(x−1,y,z)

]]
(D.7)

∂yρ(x,y,z) = 1

2

[
ρ′σ(x,y+1,z) +ρ(x,y+1,z)

[
1−σ(x,y+1,z)

]
−ρ′σ(x,y−1,z) −ρ(x,y−1,z)

[
1−σ(x,y−1,z)

]]
(D.8)

∂yρ(x,y,z) = 1

2

[
ρ′σ(x,y,z+1) +ρ(x,y,z+1)

[
1−σ(x,y,z+1)

]
−ρ′σ(x,y,z−1) −ρ(x,y,z−1)

[
1−σ(x,y,z−1)

]]
(D.9)

116



and

∇2ρ(x,y,z) =ρ′
[
σ(x+1,y,z) +σ(x−1,y,z) +σ(x,y+1,z) +σ(x,y−1,z) +σ(x,y,z+1) +σ(x,y,z−1)

]
+ρ(x+1,y,z)

[
1−σ(x+1,y,z)

]+ρ(x−1,y,z)
[
1−σ(x−1,y,z)

]
+ρ(x,y+1,z)

[
1−σ(x,y+1,z)

]+ρ(x,y−1,z)
[
1−σ(x,y−1,z)

]
+ρ(x,y,z+1)

[
1−σ(x,y,z+1)

]+ρ(x,y,z−1)
[
1−σ(x,y,z−1)

]
−6ρ(x,y,z)

[
1−σ(x,y,z)

]
(D.10)

where

σ(x,y,z) =
{

0 if (x,y,z) is a fluid node

1 if (x,y,z) is a solid node
(D.11)

ρ′ = ρ(x,y,z)
[
1−σ(x,y,z)

]+φ (D.12)

and φ is the wetting potential.
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[46] O. Švec, J. Skoček, H. Stang, J. F. Olesen, P. N. Poulsen, Flow simulation of fiber reinforced

self-compacting concrete using lattice boltzmann method, in: International Congress

on the Chemistry of Cement 2011.

[47] U. Frisch, D. d’Humieres, B. Hasslacher, P. Lallemand, Y. Pomeau, J.-P. Rivet, Lattice gas

hydrodynamics in two and three dimensions, Complex systems 1 (1987) 649–707.

[48] G. R. McNamara, G. Zanetti, Use of the boltzmann equation to simulate lattice-gas

automata, Physical Review Letters 61 (1988) 2332–2335.

[49] F. J. Higuera, J. Jiménez, Boltzmann approach to lattice gas simulations, Europhysics

Letters 9 (1989) 663–668.

[50] S. Succi, E. Foti, F. Higuera, Three-dimensional flows in complex geometries with the

lattice boltzmann method, Europhysics Letters 10 (1989) 433.

[51] H. Chen, S. Chen, W. H. Matthaeus, Recovery of the navier-stokes equations using a

lattice-gas boltzmann method, Physical Review A 45 (1992) 5339–5342.

[52] S. Chen, G. D. Doolen, Lattice boltzmann method for fluid flows, Annual Review of Fluid

Mechanics 30 (1998) 329–364.

[53] S. Succi, The lattice Boltzmann equation for fluid dynamics and beyond, Clarendon

Press, Oxford, 2001.

122



Bibliography

[54] C. K. Aidun, J. R. Clausen, Lattice-boltzmann method for complex flows, Annual Review

of Fluid Mechanics 42 (2010) 439–472.

[55] X. Shan, H. Chen, Lattice boltzmann model for simulating flows with multiple phases

and components, Physical Review E 47 (1993) 1815–1819.

[56] M. R. Swift, E. Orlandini, W. R. Osborn, J. M. Yeomans, Lattice boltzmann simulations of

liquid-gas and binary fluid systems, Physical Review E 54 (1996) 5041–5052.

[57] R. Benzi, S. Succi, Two-dimensional turbulence with the lattice boltzmann equation,

Journal of Physics A: Mathematical and General 23 (1990) L1.

[58] S. Chen, H. Chen, D. Martnez, W. Matthaeus, Lattice boltzmann model for simulation of

magnetohydrodynamics, Physical Review Letters 67 (1991) 3776.

[59] M. Mendoza, B. Boghosian, H. Herrmann, S. Succi, Fast lattice boltzmann solver for

relativistic hydrodynamics, Physical Review Letters 105 (2010) 014502.

[60] J. Wang, M. Wang, Z. Li, A lattice boltzmann algorithm for fluid–solid conjugate heat

transfer, International Journal of Thermal Sciences 46 (2007) 228–234.

[61] C. Körner, M. Thies, T. Hofmann, N. Thürey, U. Rüde, Lattice boltzmann model for free

surface flow for modeling foaming, Journal of Statistical Physics 121 (2005) 179–196.

[62] X. He, L.-S. Luo, Theory of the lattice boltzmann method: From the boltzmann equation

to the lattice boltzmann equation, Physical Review E 56 (1997) 6811–6817.

[63] D. D’ Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, L.-S. Luo, Multi-

ple–relaxation–time lattice boltzmann models in three dimensions, Philosophical Trans-

actions of the Royal Society of London. Series A: Mathematical, Physical and Engineering

Sciences 360 (2002) 437–451.

[64] C. Pan, L.-S. Luo, C. T. Miller, An evaluation of lattice boltzmann schemes for porous

medium flow simulation, Computers and Fluids 35 (2006) 898–909.

[65] D. D’ Humières, I. Ginzburg, Viscosity independent numerical errors for lattice boltz-

mann models: From recurrence equations to "magic" collision numbers, Computers

and Mathematics with Applications 58 (2009) 823–840.

[66] X. He, Q. Zou, L.-S. Luo, M. Dembo, Analytic solutions of simple flows and analysis of

nonslip boundary conditions for the lattice boltzmann bgk model, Journal of Statistical

Physics 87 (1997) 115–136.

[67] Z. Guo, C. Zheng, B. Shi, Discrete lattice effects on the forcing term in the lattice boltz-

mann method, Physical Review E 65 (2002) 046308.

[68] Q. Zou, X. He, On pressure and velocity boundary conditions for the lattice boltzmann

bgk model, Physics of Fluids 9 (1997) 1591–1598.

123



Bibliography

[69] A. Narváez, T. Zauner, F. Raischel, R. Hilfer, J. Harting, Quantitative analysis of numerical

estimates for the permeability of porous media from lattice-boltzmann simulations,

Journal of Statistical Mechanics: Theory and Experiment 11 (2010) P11026.

[70] M. E. Kutay, A. H. Aydilek, E. Masad, Laboratory validation of lattice boltzmann method

for modeling pore-scale flow in granular materials, Computers and Geotechnics 33

(2006) 381–395.

[71] M. Hecht, J. Harting, Implementation of on-site velocity boundary conditions for d3q19

lattice boltzmann simulations, Journal of Statistical Mechanics: Theory and Experiment

2010 (2010) P01018.

[72] http://www.accelereyes.com.

[73] A. Narváez, J. Harting, Evaluation of pressure boundary conditions for permeability

calculations using the lattice-boltzmann method, Advances in Applied Mathematics

and Mechanics 2 (2010) 685–700.

[74] T. W. Patzek, D. B. Silin, Shape factor and hydraulic conductance in noncircular capil-

laries: I. one-phase creeping flow, Journal of Colloid and Interface Science 236 (2001)

295–304.

[75] R. E. Larson, J. J. L. Higdon, A periodic grain consolidation model of porous media,

Physics of Fluids A 1 (1989) 38–46.

[76] C. Manwart, U. Aaltosalmi, A. Koponen, R. Hilfer, J. Timonen, Lattice-boltzmann and

finite-difference simulations for the permeability for three-dimensional porous media,

Physical Review E 66 (2002) 016702.

[77] H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense

swarm of particles, Applied Scientific Reseach 1 (1949) 27–34.

[78] M. A. A. Spaid, J. F. R. Phelan, Lattice boltzmann methods for modeling microscale flow

in fibrous porous media, Physics of Fluids 9 (1997) 2468–2474.

[79] D. M. Freed, Lattice-boltzmann method for macroscopic porous media modeling, Inter-

national Journal of Modern Physics C 09 (1998) 1491–1503.

[80] N. S. Martys, Improved approximation of the brinkman equation using a lattice boltz-

mann method, Physics of Fluids 13 (2001) 1807–1810.

[81] N. Martys, J. Hagedorn, Multiscale modeling of fluid transport in heterogeneous materi-

als using discrete boltzmann methods, Materials and Structures 35 (2002) 650–658.

[82] K. Balasubramanian, F. Hayot, W. F. Saam, Darcy’s law from lattice-gas hydrodynamics,

Physical Review A 36 (1987) 2248–2253.

124



Bibliography

[83] Y. Gao, M. M. Sharma, A lga model for fluid flow in heterogeneous porous media,

Transport in Porous Media 17 (1994) 1–17.

[84] O. Dardis, J. McCloskey, Lattice boltzmann scheme with real numbered solid density for

the simulation of flow in porous media, Physical Review E 57 (1998) 4834–4837.

[85] O. Dardis, J. McCloskey, Permeability porosity relationships from numerical simulations

of fluid flow, Geophysical Research Letters 25 (1998) 1471–1474.

[86] J. Kozeny, Ueber kapillare leitung des wassers im boden, Wien, Akad. Wiss 136 (1927)

271.

[87] P. Carman, Fluid flow through granular beds, Transactions-Institution of Chemical

Engineeres 15 (1937) 150–166.

[88] D. Thorne, M. Sukop, Lattice boltzmann model for the elder problem, in: XVth Interna-

tional Conference on Computational Methods in Water Resources (CMWR XV), Elsevier,

2004, pp. 1549–1557.

[89] M. Sukop, D. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists

and Engineers, Springer, 2006.

[90] Y. Chen, K. Zhu, A study of the upper limit of solid scatters density for gray lattice

boltzmann method, Acta Mechanica Sinica 24 (2008) 515–522.

[91] S. D. C. Walsh, H. Burwinkle, M. O. Saar, A new partial-bounceback lattice-boltzmann

method for fluid flow through heterogeneous media, Computers and Geosciences 35

(2009) 1186–1193.

[92] J. Zhu, J. Ma, An improved gray lattice boltzmann model for simulating fluid flow in

multi-scale porous media, Advances in Water Resources 56 (2013) 61–76.

[93] S. D. C. Walsh, M. O. Saar, Macroscale lattice-boltzmann methods for low peclet number

solute and heat transport in heterogeneous porous media, Water Resources Research 46

(2010) W07517.

[94] A. K. Gunstensen, D. H. Rothman, S. Zaleski, G. Zanetti, Lattice boltzmann model of

immiscible fluids, Physical Review A 43 (1991) 4320.

[95] A. K. Gunstensen, D. H. Rothman, Microscopic modeling of immiscible fluids in three

dimensions by a lattice boltzmann method, Europhysics Letters 18 (1992) 157.

[96] M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, F. Toschi, Generalized lattice

boltzmann method with multirange pseudopotential, Phys. Rev. E 75 (2007) 026702.

[97] C. M. Pooley, H. Kusumaatmaja, J. M. Yeomans, Contact line dynamics in binary lattice

boltzmann simulations, Physical Review E 78 (2008) 056709.

125



Bibliography

[98] A. J. Briant, P. Papatzacos, J. M. Yeomans, Lattice boltzmann simulations of contact

line motion in a liquid-gas system, Philosophical Transactions of the Royal Society of

London. Series A: Mathematical, Physical and Engineering Sciences 360 (2002) 485–495.

[99] A. Briant, A. Wagner, J. Yeomans, Lattice boltzmann simulations of contact line motion.

i. liquid-gas systems, Physical Review E 69 (2004) 031602.

[100] A. J. Wagner, C. M. Pooley, Interface width and bulk stability: Requirements for the

simulation of deeply quenched liquid-gas systems, Physical Review E 76 (2007) 045702.

[101] C. M. Pooley, K. Furtado, Eliminating spurious velocities in the free-energy lattice

boltzmann method, Physical Review E 77 (2008) 046702.

[102] D. Holdych, D. Rovas, J. Georgiadis, R. Buckius, An improved hydrodynamics formula-

tion for multiphase flow lattice-boltzmann models, International Journal of Modern

Physics C 9 (1998) 1393–1404.

[103] T. Young, An essay on the cohesion of fluids, Philosophical Transactions of the Royal

Society of London (1805) 65–87.

[104] J. W. Cahn, Critical point wetting, The Journal of Chemical Physics 66 (1977) 3667–3672.

[105] J. Yeomans, Mesoscale simulations: Lattice boltzmann and particle algorithms, Physica

A: Statistical Mechanics and its Applications 369 (2006) 159–184.

[106] S. Bishnoi, K. L. Scrivener, µic: A new platform for modelling the hydration of cements,

Cement and Concrete Research 39 (2009) 266–274.

[107] V. Kocaba, Development and evaluation of methods to follow microstructural devel-

opment of cementitious systems including slags, Ph.D. thesis, Ecole Polytechnique

Fédérale de Lausanne (2009).

[108] H. Taylor, Cement chemistry, 2nd Edition, Thomas Telford, London, 1997.

[109] T. C. Powers, T. Brownyard, Studies of the physical properties of hardened portland

cement paste (1948).

[110] Q. H. Do, S. Bishnoi, K. L. Scrivener, Numerical simulation of porosity in cements,

Transport in Porous Media 99 (2013) 101–117.

[111] Q. H. Do, Personal communication: Depercolation of the porosity inµic microstructures

(2013).

[112] http://ciks.cbt.nist.gov/bentz/phpct/database/images.

[113] R. Feldman, P. Sereda, A new model for hydrated portland cement and its practical

implications, Engineering Journal 53 (1970) 53–59.

126



Bibliography

[114] H. M. Jennings, Refinements to colloid model of c-s-h in cement: Cm-ii, Cement and

Concrete Research 38 (2008) 275–289.

[115] M. A. Etzold, P. J. McDonald, A. F. Routh, Growth of sheets in 3d confinements—a model

for the c–s–h meso structure, Cement and Concrete Research 63 (2014) 137–142.

[116] L. J. Parrot, D. C. Killoh, Prediction of cement hydration, Proc. Br. Ceram. Soc. 35 (1984)

41–53.

[117] http://gems.web.psi.ch/.

[118] T. C. Powers, Structure and physical properties of hardened portland cement paste,

Journal of the American Ceramic Society 41 (1958) 1–6.

[119] W. T. Elam, A. R. Kerstein, J. J. Rehr, Critical properties of the void percolation problem

for spheres, Physical Review Letters 52 (1984) 1516–1519.

[120] V. Baroghel-Bouny, Water vapour sorption experiments on hardened cementitious

materials: Part i: essential tool for analysis of hygral behaviour and its relation to pore

structure, Cement and Concrete Research 37 (2007) 414–437.

[121] A. C. A. Muller, K. L. Scrivener, A. M. Gajewicz, P. J. McDonald, Use of bench-top nmr to

measure the density, composition and desorption isotherm of c–s–h in cement paste,

Microporous and Mesoporous Materials 178 (2013) 99–103.

[122] R. Feldman, Helium flow characteristics of rewetted specimens of dried hydrated port-

land cement paste, Cement and Concrete Research 3 (1973) 777–790.

[123] H. Chen, M. Wyrzykowski, K. Scrivener, P. Lura, Prediction of self-desiccation in low

water-to-cement ratio pastes based on pore structure evolution, Cement and Concrete

Research 49 (2013) 38–47.

127





List of Publications

Peer-reviewed journal publications

1. M. Zalzale & P.J. McDonald, Lattice Boltzmann simulations of the permeability and

capillary adsorption of cement model microstructures, Cement and Concrete Research

42 (2012) 1601–1610

2. M. Zalzale, P.J. McDonald & K.L. Scrivener, A 3D lattice Boltzmann effective media study:

understanding the role of C-S-H and water saturation on the permeability of cement

paste, Modelling and Simulations in Materials Science and Engineering 21 (2013) 085016

Conference and non-peer-reviewed publications

1. K.L. Scrivener, A.C.A. Muller, M. Zalzale, Q.H. Do & P.J. McDonald, New insights on the

mechanisms controlling kinetics and implications for pore structure, Understanding

the fundamental properties of concrete, Trondheim, Norway, 25 – 26 April 2013

2. M. Zalzale, P.J. McDonald & K.L. Scrivener, A Three-dimensional partial bounce-back

method applied to cementitious materials, 22nd International Conference on the Dis-

crete Simulation of Fluid Dynamics (DSFD2013), Yerevan, Armenia, 15 – 19 July 2013

3. M. Zalzale, P.J. McDonald & K.L. Scrivener , TRANSCENDing the pore structure of a

cement paste: a 3D effective media lattice Boltzmann approach, Proceedings of the

7th International Conference on Concrete under Severe Conditions – Environment and

Loading (CONSEC13), Nanjing, China, 23 – 25 September 2013

4. M. Zalzale, P.J. McDonald & K.L. Scrivener, TRANSCENDing the pore structure of cement

paste with the lattice Boltzmann method, Water transport in cementitious materials,

Guildford, United Kingdom, 3 – 6 November 2013

5. M. Zalzale, P.J. McDonald & K.L. Scrivener, Numerical modelling of water isotherms of

cement paste: bridging the gap between the capillary and C-S-H gel pores, Concrete

Modelling 2014 (CONMOD14), Beijing, China, 12 – 14 October 2014 (abstract accepted)

129

http://dx.doi.org/10.1016/j.cemconres.2012.09.003
http://dx.doi.org/10.1016/j.cemconres.2012.09.003
http://dx.doi.org/10.1016/j.cemconres.2012.09.003
http://iopscience.iop.org/0965-0393/21/8/085016/
http://iopscience.iop.org/0965-0393/21/8/085016/
http://iopscience.iop.org/0965-0393/21/8/085016/




Mohamad Zalzale
Ph.D.

Work Experience
2014 – FEI Trondheim, Norway

Digital Rock Technology
Research & development engineer

2011 – 2014 École Polytechnique Fédérale de Lausanne Lausanne, Switzerland
Laboratory of Construction Materials
Assistant researcher in materials science

– Research on water dynamics in cement paste
– Taught construction materials practicals for materials science and civil
engineering students

– Organized multiple outreach activities

Education & Internships
2011 – 2014 Ph.D. in Materials Science École Polytechnique Fédérale de Lausanne, Switzerland

Water dynamics in cement paste: insights from lattice Boltzmann modelling

2013 Project Management École Polytechnique Fédérale de Lausanne, Switzerland
Course given by CRPM Lausanne (4 days)

2010 Cisco Certified Network Associate New Horizons, Lebanon

2008 – 2010 M.Sc. in Computational Physics University of Montpellier II, France

2010 Research Internship Air Liquide, France
Development of a lung ventilation model (6 months)

2009 Research Internship Institut d’Electronique du Sud, France
Simulation of quantum heterostructures (2 months)

2005 – 2008 B.Sc. in Fundamental Physics University of Montpellier II, France

2005 French Baccalauréat specialized in Mathematics College Elite, Lebanon

Skills & Abilities
Versatile, project manager, analytical, results-driven, self-starter, team-oriented

Interests
Outdoor activities, travelling, football, watch and automotive industries

Jun 2014

Lebanese
01/05/1987

Contact
Rue Valentin 22
1004 Lausanne

Switzerland

+41 (0)78 615 70 02
m.zalzale@gmail.com

Languages
English: fluent
French: fluent

Arabic: mother tongue

Programming
C, MATLAB, LATEX




	Cover page

	Abstracts
	Abstract
	Résumé

	Contents
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Concrete
	From concrete to cement paste
	Indicators of durability
	Statement of the problem

	Permeability of Cement Paste: State-of-the-art
	Darcy's law
	Experimental techniques
	Modelling techniques
	Empirical models
	Numerical models

	Experiments and models: a mismatch ?

	Lattice Boltzmann Methods for Isothermal Fluids
	Standard methods
	Overview
	Collision operators and equilibrium functions
	Boundary conditions
	Definition of a lattice Boltzmann algorithm
	Implementation
	Methods for calculating permeability
	Validation

	Effective media methods for the transport properties
	Overview
	Theory
	Implementation
	Methods for calculating permeability
	Validation


	Lattice Boltzmann Methods for non-Ideal Fluids
	Standard methods
	Overview
	Free energy approach for non-ideal fluids
	Wetting dynamics
	Implementation
	Methods for modelling adsorption and desorption
	Validation

	Effective media methods for the transport and wetting properties
	Overview
	Free energy approach for effective wetting properties
	Implementation
	Methods for modelling adsorption and desorption
	Validation
	Application to a 2D characteristic microstructure
	Conclusions


	Permeability of Cement Paste
	Saturated permeability of cement paste
	Cement paste model microstructures
	Reproducibility of the permeability
	Permeability of cement paste model microstructures
	Lattice magnification and microstructural resolution
	Diagonal leaks
	Comparison of ic and CEMHYD3D
	Comparison of ic and HYMOSTRUC3D
	Conclusions

	Unsaturated permeability of cement paste
	Cement paste model microstructures
	Model microstructures at reduced degrees of water saturation
	Permeating fluid: accessible pore network and permeability of the C-S-H
	Apparent permeability of cement paste model microstructures
	Discussion
	Conclusions


	Water Isotherms of Cement Paste
	Water isotherms of cement paste
	Model water isotherms of the capillary pores
	Previous work
	Reproduction of previous work

	Model water isotherms of the capillary and C-S-H gel pores
	Discussion: Kelvin's equation, a critical limitation in the model isotherms
	Conclusions

	Conclusions
	Main findings
	Outlook
	Water isotherms of cement paste
	Experimental validation
	Microstructural resolution
	Downscaling
	Upscaling


	MRT Collision Operator
	Pressure Boundary Conditions
	Effective permeability
	Mathematical Operators
	Bibliography
	List of Publications
	Curriculum Vitae

