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Stochastic optimization

Static Problems
Formulation based on decision theory: utility and expected utility.
(Hypothesis: uncertainty is not influenced by the decisions.)
Shortcomings. Computation of expectation as multidimensional
integrals
Incomplete information on the distributions

Dynamic problems
Recourse decisions as functions of past history
Explosion of the complexity.
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Optimization problem with uncertain coefficients

For simplicity we limit the presentation to linear programming with
uncertain coefficients.

min
∑

j

cjxj∑
j

aijxj ≤ 0,∀i

The coefficients a are uncertain.
The focus is on maintaining feasibility in the constraints. Always?
Most of the time? What if we know little about the uncertainties?
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Model for the uncertain constraint

Model for aj (we drop the index i of the constraint in the LP).

aj = a0
j +

∑
k

ak
j ξk

a0
j is the nominal value and ξ is the uncertainty factor acting through

ak
j .

The LP constraint is∑
j

a0
j xj︸ ︷︷ ︸

+
∑

k

(
∑

j

ak
j xj )ξk︸ ︷︷ ︸

≤ 0.

certain uncertain

(1)

From now on we focus on the uncertain term and on its possible large
values.
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Capturing the knowledge on uncertainty

Suppose the decision-maker can only provide a range of variation for
each aj

aj ≤ aj ≤ āj .

Define

a0
j =

āj + aj

2

ak
j =

āj − aj

2
for k = 1, 0 otherwise

ξk ∈ [−1,1]
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Worst possible situation according to the D-M

The worst value of the uncertain term when
ξk = 1 if

∑
j ak

j xj > 0

ξk = −1 if
∑

j ak
j xj ≤ 0

ξk is such that ∑
j

ak
j xj

 ξk = |
∑

j

ak
j xj |.

∑
j

a0
j xj︸ ︷︷ ︸

+
∑

k

|
∑

j

ak
j xj |︸ ︷︷ ︸

≤ 0.

certain immunization

(2)
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Summary

Model for the uncertain parameters
Knowledge on uncertainty is captured in an uncertainty set

U = {ξ | −1 ≤ ξk ≤ 1,∀k}

The robust counterpart of the uncertain constraint is∑
j

a0
j xj +

∑
k

(
∑

j

ak
j xj )ξk ≤ 0,∀ξ ∈ U (3)

A solution of (3) is called robust for the uncertainty set U
Derive the equivalent of the robust counterpart∑

j

a0
j xj +

∑
k

|
∑

j

ak
j xj | ≤ b
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More sophisticated uncertainty sets

In addition to the range information, the D-M believes that not all
uncertain factors ξj can achieves simultaneously large absolute
values.
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More sophisticated uncertainty sets

1 Ellipsoidal uncertainty set

U = {ξ : (
∑

i

ξ2
i )

1
2 ≤ κ, −1 ≤ ξi ≤ 1}

2 Polyhhedral uncertainty set

U = {ξ :
∑

i

|ξi | ≤ κ, −1 ≤ ξi ≤ 1}

κ is an immunization factor. The larger κ, the larger the uncertainty
set, and the larger the worst case value of the uncertain component
of the constraint.
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Equivalent robust counterpart with an ellipsoidal set

Set zk =
∑

i ak
i xi . The robust counterpart of the uncertain constraint is∑

i

a0
i xi + max

ξ
{
∑

k

zkξk : ||ξ||2 ≤ κ, −1 ≤ ξk ≤ 1} ≤ 0.

The dual of the inner maximization problem is

min
u

(||u||1 + κ||z − u||2) .

The equivalent robust counterpart of the uncertain constraint is∑
i

a0
i xi + min

u
(||u||1 + κ||z − u||2) ≤ 0.

If the constraint is embedded in an optimization problem, we can drop the min
operator and let the overall optimization scheme manage the auxiliary variable u∑

i a0
i xi + ||u||1 + κ||z − u||2 ≤ 0.
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Equivalent robust counterpart with a polyhedral set

Set zk =
∑

i ak
i xi . The robust counterpart of the uncertain constraint is∑

i

a0
i xi + max

ξ
{
∑

k

zkξk : ||ξ||∞ ≤ κ, −1 ≤ ξk ≤ 1} ≤ 0.

The dual of the inner maximization problem is

min
u

(||u||1 + κ||z − u||∞) .

The equivalent robust counterpart of the uncertain constraint is∑
i

a0
i xi + min

u
(||u||1 + κ||z − u||∞) ≤ 0.

If the constraint is embedded in an optimization problem, we can drop the min
operator and let the overall optimization scheme manage the auxiliary variable u∑

i a0
i xi + ||u||1 + κ||z − u||∞ ≤ 0.
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More complex uncertainty sets
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Probabilistic justification of the RO scheme

Theorem

Let ξk ∈ [−1,1], k = 1, . . . ,p, be independent random variables with:
E(ξk ) = 0. For any deterministic zk , k = 1, . . . ,p

Prob

{
ξ |

p∑
k=1

zkξk > κ||z||2

}
≤ exp(−κ

2

2
).

and

Prob

{
ξ |

p∑
k=1

zkξk > κ||z||1

}
≤ exp(− κ

2

2p
).
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Probabilistic justification of the RO scheme

Let zk =
∑

j ak
j xj , k = 0, 1, . . . , p.

The robust counterpart of the uncertain constraint

z0 +
∑

k

zkξk ≤ b, ∀||ξ||2 ≤ κ

is equivalent to
z0 + κ||z||2 ≤ b.

Property of the robust solution

The robust solution x satisfies z0(x) + κ||z(x)||2 ≤ 0. It follows

Prob(
∑

j

a0
j xj +

∑
k

(
∑

j

ak
j xj)ξk ) > 0) ≤ ε = exp(−κ

2

2
).

By appropriate choice of the immunization factor κ =
√

2 ln(1/ε), the robust
solution guarantees the satisfaction of the chance-constrained formulation of
the uncertain constraint.

κ = 2.5 guarantees ε ≤ 0.05.
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The same with the 1-norm (Linear Programming)

Let zk =
∑

j ak
j xj , k = 0, 1, . . . , p.

The robust counterpart of the uncertain constraint

z0 +
∑

k

zkξk ≤ b, ∀||ξ||1 ≤ κ

is equivalent to
z0 + κ||z||∞ ≤ 0.

Property of the robust solution

The robust solution x satisfies z0(x) + κ||z(x)||∞ ≤ 0. It follows

Prob(
∑

j

a0
j xj +

∑
k

(
∑

j

ak
j xj)ξk ) > 0) ≤ ε = exp(− κ

2

2p
).

By appropriate choice of the immunization factor κ =
√

2p ln(1/ε), the robust
solution guarantees the satisfaction of the chance-constrained formulation
with p uncertain factors

κ = 2.5
√

p guarantees ε ≤ 0.05.
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Long-Term Energy Planning
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Long-Term Energy Planning models (LTEP) are global technology models that
represents the entire energy system of a region. It has generally a detailed
representation of technologies, energy sources, energy trade, and demand
sectors (residential, industry, agriculture, electrical, ...).

LTEP represents the electric sector (power plants, renewables, demand services,
etc).

LTEP are used to assess the impact of regional and global energy and climate
policies. They simulate the evolution of the energy system under those policies.
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Long-Term Energy Planning

LTEP are large scale linear flow problems (or nonlinear models).

Database includes techno parameters (input/output, efficiency and availability for
all day periods and seasons, life duration, costs, etc), demands, etc

Examples of models:
TIAM is a worldwide model divided in 16 regions,
ETEM models are regional/national models used to analyse smart-grids penetration,
regional climate change impacts.
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Uncertainty in Long-Term Energy Planning

Uncertainty is everywhere: renewable intermittency, energy prices, future
technology costs and efficiencies, energy reserves, energy supplies, impacts of
climate change on power generation, etc.

Uncertainty modeling is challenging: large model size, demand elasticities, etc.

Literature: Stochastic programming and minimax approaches on small event
trees, scenario analysis, etc

Robust optimization: Applications at Ordecsys

European energy supply in the EU FP7 project Ermitage,
Climate change impacts in the French Midi-Pyrénées region (French energy
agency),
Smart-grids and renewables in the Swiss arc Lémanique region (Swiss
Federal Office of Energy).
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Robust Optimization applied to the EU Energy
Security problem
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European Energy Security

EU is strongly dependent on energy imports
Some foreign energy sources are prone to interruptions, cost
fluctuations, and other random events
Increasing energy security might include:

Selection of less risky energy suppliers
Diversification of sources, for each energy form: oil, gas, uranium,
biomass, electricity
Diversification of energy forms (e.g. smaller dependence on oil)
Reduction of energy imports
Reduction of total energy consumption

Questions: Which measures to implement ? and how ?
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Trade route constraints in TIAM

EU+ is one region, linked to the other 15 regions via 67 trade
routes
Each trade route is a technology, endowed with an investment
variable, an activity variable, and several technical and economic
parameters

Import via a single corridor

ACTk,t ≤ AFk,t × CAPk,t

k is an import corridor (from ROW to EU)
ACT is the activity of the corridor (decision variable)
CAP is the capacity of the corridor (decision variable)
AF ∈ [0,1] is the availability factor (random)
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A global view for EU energy security

We are not interested in a particular corridor but in the total energy import.

We add new constraints representing total EU energy import for each period t .

Total EU energy imports at period t∑
k

(ACTk,t − AFk,t × CAPk,t ) ≤ 0

⇒We robustify those new constraints.
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Uncertainty model

Uncertain availability factors

We assume that AFk is random

AFk = 1− dkξk

0 ≤ dk ≤ 1 is a measure of the severity of the risk of corridor k

ξ is the set of independent random variables with support [0, 1] and mean µ

[1− dk , 1] is the range of uncertainty of the factor AFk

A small dk means that the corridor has little variability, and conversely when
dk = 1, there is the possibility of a complete corridor shutdown

Uncertain total EU energy import constraint∑
k

(ACTk − CAPk )

︸ ︷︷ ︸
+

∑
k

dk · CAPk · ξk︸ ︷︷ ︸
≤ 0.

certain uncertain

(4)
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Uncertainty set

Recall that RO looks for solutions that remain feasible for all events in the uncertainty
set. We consider an uncertainty set that is the intersection of balls l1 and linf

With this definition,
1 all uncertainties can take their worst value but not simultaneously,
2 we remain in the realm of linear programming.
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Robust energy constraints

Proposition

Skipping all technical details, the equivalent of the robust counterpart∑
k

(ACTk − CAPk ) +
∑

k

dk · CAPk · ξk ≤ 0, ∀ξ ∈ U

is given by deterministic system of inequalities∑
k

(ACTk − CAPk ) + dkµk CAPk +
∑

k

(1− µk )uk +

√
K
2

ln
1
ε
· v ≤ 0 (5a)

uk + v − CAPk · dk ≥ 0, k = 1, . . . ,K (5b)

uk ≥ 0, v ≥ 0, k = 1, . . . ,K (5c)

The solution of (5) satisfies the energy constraint with probability at least (1− ε).
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Application to EU via TIAM model

In TIAM, there are 67 import corridors, for 4 energy forms (Oil, Gas, Coal,
Electricity).

We assumed that all corridors can be totally closed (they have the same domain
of uncertainty with dk = 1 )

We also assumed that all corridors have the same average availability factor
ĀF = 0.6 (i.e. µk = 0.4) that is quite pessimistic

Five robust constraints were created, for the 5 periods 2020, 2025, 2035, 2045,
2055.

We tested three satisfaction probability levels 0.72, 0.90, and 0.95 and the
reference scenario.
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Cost-reliability trade-offs
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The extra costs for improving reliability range from 175 B$ to 230 B$, i.e. from 0.52% to
0.68% of total EU cost.
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Conclusions on energy security

1 The supply of energy can be guaranteed with a known probability, under a very
mild assumption.

2 Such reliability is achieved at a moderate extra cost (not exceeding 0.7% of the
total EU energy cost).

3 The results show a significant reduction of the concentration of supply sources, a
feature that is desirable in itself. RO favors combination of several actions

Decrease imports selectively
Build extra corridor capacity (again in selective manner)
Equalize the market shares



Robust Optimization: concepts Application: Prospective energy models Multi-stage problems under uncertainty Application: Expansion of telecommunication networks Conclusion

Other applications of Robust Optimization for Energy
planning problems
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Other recent analysis

Analyzing smart grids, electricity storage and nuclear
phase-out for the Swiss Federal Office of Energy

What roles for smart-grids and electricity storage combined to
nuclear phase-out decision in Switzerland? What evolution for
the energy system?

ETEM model of the Swiss Arc-Lémanique region

Uncertainties: energy prices, costs and efficiencies of future
technologies in the transport and electricity sectors, capacity of
the network to integrate renewables production with and
without smart-grids, acceptability of smart-grids for demand
responses.

Analyzing impacts of climate change for the French Energy
Agency (ADEME)

What impacts of climate change on power generation, heating
and cooling demands? What evolution for the energy system?

ETEM model of the French Midi-Pyrénées region

Uncertainties: energy prices, renewables acceptability, impacts
of CC on availability of nuclear and hydro power plants,
impacts of CC on heating and cooling demands
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Decision based on revealed information

Décision
initiale

Recours

aléa aléa

In a multistage decision problem under uncertainty

L’incertitude est révélée graduellement.
La décision de recours peut et doit exploiter la connaissance
acquise de la réalisation du premier aléa
Le recours est par essence une fonction incertaine
La décision initiale doit anticiper la nature du recours.
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Affine decision rules

A two-stage constraint

aT
1 x1 + aT

2 x2 ≤ b

with the uncertain parameters

a1 = a0
1 + A1ξ1

b = b0 + B1ξ1 + B2ξ2.

a2 is certain (fixed recourse)
Decision x2 is a recourse, and thus adjustable. We restrict the set of
possible recourses to the affine function

x2 = x0
2 + X2ξ1

(a0
1)T x1 + aT

2 x0
2 + (AT

1 x1 + X2
T a2 − B1)T ξ1 − B2ξ2 ≤ 0
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Deterministic path-flow formulation

min
f≥0,c≥0

∑
a∈A

raca

∑
k∈K

∑
i∈Ik

fikπa
ik ≤ ca, a ∈ A

∑
i∈Ik

fik = dk , k ∈ K

A: set of arcs,

K: set of commodities.

Ik : set of available paths for the commodity k.

f: vector of flows

c: vector of capacities.

r: unit installation cost

d: demand.
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MIP contraints

We introduce binary variables y ∈ {0, 1} to limit the number of active paths per
commodity and we add the contraints :∑

i∈Ik

yik ≤ lk , k ∈ K

fik ≤ Mk yik , k ∈ K, i ∈ Ik .

The objective is now twofold:

Compute capacity expansions.

Propose a reduced list of active paths.
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Demand uncertainty

We assume the demand to be independent with a symmetric
distribution such that

dk = d̄k + ξk d̂k ,

where ξk ∈ [−1,1] represents the random factor and d̂k a demand
dispersion.

Two-stage problem with recourse
1 Select capacities
2 Observe demand and select routing on the paths (recourse

action).
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Linear decision rules (LDR)

Using LDR, the second decision variables are defined as linear
functions of the revealed uncertainty. We define

fik = α0ik +
∑
k∈K

αikξk .

LDR converts 2-stage into static
1 Select capacities and the LDR coefficients
2 Observe demand.

Drawback
Large number of additional variables α
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Simplified LDR

Goal: decrease problem size
Technique: use restricted LDR (with neighborhoods)

fik = α0ik + α1ikξk + α2ik

∑
k ′∈Vk

ξk ′ + α3ik

∑
k ′∈Rk

ξk ′ .

A neighborhood for a commodity k is set of all commodities whose
the shortest path has at least a common arc with the shortest path of
the commodity k .
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Capacity expansion problem with LDR

Replacing the flow variables by their LDR leads to

min
α,ξ,c≥0,y

∑
a∈A

raca

∑
k∈K

∑
i∈Ik

πa
ik (α0ik + α1ikξk + α2ik

∑
k′∈Vk

ξk′ + α3ik
∑

k′∈Rk

ξk′ ) ≤ ca, a ∈ A

∑
i∈Ik

(α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k ) = d̄k + ξk d̂k , k ∈ K

yik Mk ≥ α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k ≥ 0, k ∈ K, i ∈ Ik∑

i∈Ik

yik ≤ lk , k ∈ K

yik ∈ {0, 1}, k ∈ K, i ∈ Ik .

with ξv
k =

∑
k′∈Vk

ξk′ et ξr
k =

∑
k′∈Rk

ξk′ .
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LDR and demand satisfaction

To meet the demand k ∈ K in all circumstances, the following identity
must hold∑

i∈Ik

(α0ik + α1ikξk + α2ikξ
v
k + α3ikξ

r
k ) ≡ d̄k + ξk d̂k , ∀ξk , ξ

v
k and ξr

k .

If the random components ξk , ξ
v
k , ξ

r
k belong to open sets, the

coefficients must satisfy the equations∑
i∈Ik

α0ik = d̄k ,
∑
i∈Ik

α1ik = d̂k∑
i∈Ik

α2ik = 0,
∑
i∈Ik

α3ik = 0.
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Applying RO to capacity and bounds constraints

Constraints to be robustified

Bound constraints Replace the non-negativity and upper bound robust
constraints with respect to U = B1(0,

√
n) ∩ B∞(0, 1) by the

appropriate inequalities.

Capacity constraints Replace the robust constraint with respect to
U = B1(0, κ

√
n) ∩ B∞(0, 1) by the appropriate inequalities.

Study the impact of different immunization factors kcap.

Size of the robust equivalent problem:

na(2nk + 1) + 7np + 4nk continuous contraints instead of na + nk

8np + na(nk + 2) continuous variables instead of na + np
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Optimization and validation

Optimization

A LP whose output is a set of capacities and a selection of active
paths (plus a LDR on those paths).

Validation
Assume independent demands distributed according to a
triangular distribution with mode d̄ and on the support
[d̄ − d̂ ; d̄ + d̂ ]

Generate a set of 100 scenarios of demands.
For each scenario, solve a concurrent flow problem on active
paths to minimize the demand violation.
Output: number of scenarios with at least one violation and
relative conditional expected value of violation.
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Test problems

http://sndlib.zib.de/home.action

Version robuste
Problem #nodes #arcs #commodities #paths #const. #var.

di-yuan 11 42 22 81 2545 1656
polska 12 36 66 342 7446 5184
nobel-us 14 42 91 627 12439 8922
france 25 90 300 1889 68513 42292

Demand dispersion : 50%

http://sndlib.zib.de/home.action
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Results without integrality constraints

Total Robust solutions with 1 − ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

di-yuan

Solutions 5.95E+006 5.81E+006 5.59E+006 5.07E+006 4.74E+006 3.97E+006
% of violations 0.00% 0.00% 0.50% 24.20% 75.10% 100.00%
Rel. cond. viol. 0.00% 0.00% 1.54% 0.64% 1.04% 7.30%

polska

Solutions 7.00E+006 6.56E+006 6.10E+006 5.44E+006 5.27E+006 4.69E+006
% of violations 0.00% 0.00% 0.10% 16.40% 34.90% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.48% 0.51% 0.58% 3.97%

nobel-us

Solutions 1.28E+008 1.22E+008 1.16E+008 1.03E+008 9.92E+007 8.60E+007
% of violations 0.00% 0.00% 0.00% 1.60% 12.30% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.25% 0.27% 4.39%

france

Solutions 6.18E+008 5.86E+008 5.56E+008 5.08E+008 4.92E+008 4.44E+008
% of violations 0.00% 0.00% 0.00% 0.90% 9.80% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.16% 0.14% 3.10%
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Results with integrality constraints (2 paths)

Total Robust solutions with 1 − ε for capacity constraints Deterministic
Protection 85% 50% 10% 5% solution

di-yuan

Solutions 5.95E+006 5.81E+006 5.59E+006 5.07E+006 4.74E+006 3.97E+006
% of violations 0.00% 0.00% 0.10% 30.70% 74.90% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.84% 0.69% 1.06% 7.32%

polska

Solutions 7.01E+006 6.58E+006 6.13E+006 5.45E+000 5.27E+006 4.69E+006
% of violations 0.00% 0.00% 0.00% 14.80% 30.20% 100.00%
Rel. cond. viol. 0.00% 0.00% 0.00% 0.50% 0.60% 4.39%

nobel-us

Solutions 1.28E+008 >5h >5h 1.03E+008 9.94E+007 8.60E+007
% of violations 0.00% - - 2.40% 7.90% 100.00%
Rel. cond. viol. 0.00% - - 0.22% 0.29% 4.55%
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Robust optimization vs classical approaches

Classical approaches

1 Stochastic programming, chance
constrained programming, etc

2 Posit the existence and the
knowledge of a probability
distribution.

3 Approximate the distribution to
generate a tractable model (Event
tree of moderate size for stochastic
programming, Computable
probabilities and expectations for
chance constrained programming,
...).

Robust Optimization

1 Use a simplified, non probabilistic model, of
the uncertainty (Uncertainty set).

2 Look for solutions that remain feasible for all
events within the uncertainty set.

The optimization model is tractable
(linear or conic-quadratic).
No probability assumption but it exists
strong results on lower bounds on the
probability of constraint satisfaction.

3 Dynamic problems: Decision rules
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