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Abstract

In modern information processing tasks we often need to deal with complex and “multi-view”
data, that come from multiple sources of information with structures behind them. For example,
observations about the same set of entities are often made from different angles, or, individual
observations collected by different sensors are intrinsically related. This poses new challenges in
developing novel signal processing and machine learning techniques to handle such data efficiently.

In this thesis, we formulate the processing and analysis of multi-view data as signal processing
and machine learning problems defined on graphs. Graphs are appealing mathematical tools for
modeling pairwise relationships between entities in datasets. Moreover, they are flexible and adapt-
able to incorporate multiple sources of information with structures. For instance, multiple types of
relationships between the same entities in a certain set can be modeled as a multi-layer graph, where
the layers share the same set of vertices (entities) but have different edges (relationships) between
them. Alternatively, information from one source can be modeled as signals defined on the vertex
set of a graph that corresponds to another source. While the former setting is an extension of the
classical graph-based learning in machine learning, the latter leads to the emerging research field
of signal processing on graphs. In this thesis, we bridge the gap between the two fields by studying
several problems related to the clustering, classification and representation of data of various forms
associated with weighted and undirected graphs.

First, we address the problem of analyzing multi-layer graphs and propose methods for clustering
the vertices by efficiently combining the information provided by the multiple layers. To this end,
we propose to combine the characteristics of individual graph layers using tools from subspace
analysis on a Grassmann manifold. The resulting combination can be viewed as a low dimensional
representation of the original data, which preserves the most important information from diverse
relationships between entities. We use our algorithm in clustering methods and demonstrate that
the proposed method is superior to baseline schemes and competitive to state-of-the-art techniques.

Next, we approach the problem of combining different layers in a multi-layer graph from a
different perspective. Specifically, we consider the eigenvectors of the graph Laplacian matrix
of one layer as signals defined on the vertex set of another layer. We propose a novel method
based on a graph regularization framework, which produces a set of “joint eigenvectors”, or a “joint
spectrum”, shared by the two layers. We use this joint spectrum in clustering problems on multi-
layer graphs. Compared to our previous approach and most of the state-of-the-art techniques,
a unique characteristic and potential advantage of this method is that, it allows us to combine
individual layers based on their respective importance in a convincing way.

Third, we build on the setting in the second approach and study in general the classification
problem of signals on graphs. To this end, we adopt efficient signal representations defined in
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the graph spectral domain, and analyze theoretically their potential for the classification of graph
signals under a generic signal model. We then propose discriminative spectral features and test their
performances in synthetic classification tasks compared to features extracted in the spatial domain.
We apply the proposed spectral classification framework to applications such as the inference of
mobility patterns in traffic and social media data.

Finally, given the crucial role of a meaningful graph, which is not always naturally defined from
the application domains, in efficient signal representations, we are interested in learning a graph
topology that well explains the observed signals on graphs. In this problem, to address the key
challenge of understanding the relationships between the signal and the graph topology, we propose
to adopt a factor analysis model for the graph signals and impose a Gaussian probabilistic prior on
the latent variables that control these signals. Due to the properties of the graph Laplacian and
the Gaussian prior, the proposed approach learns graphs that enforce the smoothness properties of
the graph signals.

In summary, this thesis addresses several emerging research problems in modern information
processing on graphs. We show that graphs of various forms can be used for the representations
of complex and multi-view data, and novel signal processing and machine learning techniques can
be combined to solve the associated learning and representation problems in efficient ways. The
research efforts in this thesis would benefit applications such as community detection in mobile and
social networks, mobility inference from traffic and social media data, and urban dynamics analysis.

Keywords: Multi-layer graphs, signals on graphs, clustering, classification, graph learning.



Résumé

Les récents algorithmes de traitement de l’information doivent souvent manipuler des données multi-
vues complexes, qui proviennent de plusieurs sources d’information avec des structures spécifiques.
Par exemple, les observations d’un même ensemble d’entités sont souvent effectuées depuis plu-
sieurs angles, dans d’autres cas, des observations collectées individuellement par plusieurs senseurs
sont intrinsèquement liées. L’objectif de traiter de telles données efficacement, ouvre de nouvelles
problématiques en traitement du signal et en techniques d’apprentissage.

Dans cette thèse, nous formulons le traitement et l’analyse de données multi-vues comme des
problèmes de traitement du signal et d’apprentissage définis sur des graphes. Les graphes consti-
tuent un outil mathématique attrayant pour modéliser des relations entre paires d’entités dans une
collection de données. De plus, cet outil est flexible et adaptable afin d’introduire plusieurs sources
d’information avec leurs structures. Par exemple, plusieurs types de relations entre des mêmes en-
tités dans un certain ensemble peuvent être modélisés par un graphe à plusieurs niveaux, où les
niveaux partagent le même ensemble de noeuds (entités) mais ont différentes connections (relations)
entre eux. D’un autre côté, l’information d’une source peut être modélisée comme des signaux dé-
finis sur l’ensemble des noeuds d’un graphe, celui-ci correspondant à une autre source. Alors que la
première approche constitue une extension des méthodes usuelles d’apprentissage basées graphes,
la dernière s’inscrit dans un thème de recherche émergent : le traitement du signal sur les graphes.
Dans cette thèse, nous ferons le lien entre ces deux visions en étudiant plusieurs problèmes liés au
clustering, à la classification et à la représentation, pour des données de types variés associées à des
graphes pondérés et non orientés.

Dans un premier temps, nous étudions le problème d’analyse de graphes multi-niveaux et nous
proposons des méthodes pour le clustering des noeuds en combinant efficacement l’information
fournie par les différents niveaux. Pour cela, nous proposons de combiner les caractéristiques de
chaque niveau du graphe en utilisant des outils d’analyse de sous-espaces de variétés de Grass-
mann. La combinaison obtenue peut être vue comme une représentation de faible dimension des
données originales, qui préserve une grande partie de l’information importante à partir des diverses
relations entre les entités. Nous utilisons notre algorithme dans des méthodes de clustering et nous
démontrons que notre méthode est meilleure que les algorithmes de référence et compétitive par
rapport aux techniques de l’état de l’art.

Ensuite, nous nous penchons sur le problème qui consiste à combiner les différents niveaux en
graphes multi-niveaux depuis différentes perspectives. Plus particulièrement, nous considérons les
vecteurs propres de la matrice Laplacienne du graphe d’un niveau comme signaux sur le graphe d’un
autre niveau. Nous proposons une approche de régularisation de graphe, qui produit un ensemble
de “vecteurs propres joints”, ou de “spectre joint”, partagés entre deux niveaux. Nous utilisons ce
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spectre joint dans des problèmes de clustering sur des graphes multi-niveaux. Par rapport à notre
approche précédente et à la plupart des techniques de l’état de l’art, une caractéristique unique et
donc un avantage potentiel de cette méthode, est qu’elle permet de combiner des niveaux, d’une
manière convaincante, en se basant sur leur importance respective.

Troisièmement, à partir de l’approche précédente, nous étudions le problème de classification de
signaux sur les graphes d’un point de vue général. Pour cela, nous adoptons des représentations de
signaux efficaces définis dans le domaine spectral du graphe, et nous analysons théoriquement leur
potentiel pour la classification des signaux du graphe sous un modèle de signaux génériques. Nous
proposons ainsi des caractéristiques spectrales discriminantes et testons leurs performances pour des
tâches de classification synthétiques, en les comparant à des méthodes extrayant les caractéristiques
dans le domaine spatial. Nous étudions l’approche proposée de classification spectrale dans des
applications telles que la déduction de modèles de mobilité dans les données de traffic ou de média
sociaux.

Enfin, étant donné le rôle crucial d’un graphe significatif, qui n’est pas toujours naturellement
défini suivant les domaines d’applications, dans les représentations de signal, nous nous intéressons
à l’apprentissage de la topologie des graphes qui explique bien les signaux observés sur ceux-ci.
Dans ce problème, pour résoudre le défi clef de la compréhension des relations entre le signal et la
topologie du graphe, nous proposons d’adopter un modèle d’analyse de facteurs pour les signaux
de graphes et nous imposons un a priori de gaussianité de la probabilité des variables latentes
qui contrôlent ces signaux. Etant donné les propriétés du Laplacien de graphe et l’hypothèse de
gaussianité, l’approche proposée apprend les graphes qui forcent les signaux à être lisses.

En résumé, cette thèse traite plusieurs problèmes de recherche émergents et actuels, pour le trai-
tement de l’information sur les graphes. Nous montrons que des graphes de types variés peuvent
être utilisés pour la représentation de données multi-vues complexes, et que des techniques nouvelles
de traitement du signal et d’apprentissage peuvent être combinées pour résoudre les apprentissages
et représentations correspondantes de manière efficace. Les efforts de recherche de cette thèse ap-
portent un bénéfice aux applications comme la détection de communauté dans les réseaux sociaux
mobiles, la déduction de mobilité dans les données de traffic ou de média sociaux, et enfin dans
l’analyse de dynamiques urbaines.

Mots Clés : Graphes multi-niveaux, signaux définis sur des graphes, clustering, classification,
apprentissage de graphes.
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Chapter 1

Introduction

1.1 Motivation

Modern information processing inevitably involves an extremely large volume of increasingly com-
plex data. The complexity comes, in particular, from the fact that we often need to deal with
“multi-view” data, which usually come from multiple sources of information at the same time, with
many relationships and structures among them. First, relationships between the same set of entities
are often evaluated in different respects. For example, in a document database, similarities between
documents can be defined in terms of their titles, abstracts, or citations. In a social network, there
usually exist multiple types of relationships among the same group of persons, such as friendship,
family relationship, having the same professions, and so on. Second, data observed by different
sensors could be intrinsically related by some structures, where the data and the structures corre-
spond to different sources of information. For instance, temperatures observed at different regions
are related to their geographical proximities, traffic volumes at different locations in a transporta-
tion network depends on the topology of the network, and behaviors of a group of persons may be
influenced by the friendships among them. To handle such multi-view data efficiently, we need to
understand the interactions between different sources of information as well as the relationships
and structures among them.

Graphs are powerful mathematical tools to model relationships and structures in the data. In
a graph representation, the vertices represent the entities and the edges represent the pairwise
relationships between these entities. More importantly, graph-based data representations are flexi-
ble and adaptable to incorporate multiple sources of information with relationships and structures
among them, yet remaining sufficiently simple for efficient processing. For example, multiple types
of relationships between the same set of entities can be conveniently represented by a set of weighted
and undirected graphs that form a global multi-layer graph, where the common vertex set rep-
resents the entities and the edges on different layers capture the similarities of the entities in term
of the different sources of information. Furthermore, data with structures can be modeled as a
signal defined on the vertex set of a weighted and undirected graph, often referred to as signals
on graphs or graph signals1, where the signal value associated with each vertex represents the
observation, and the graph captures the relationships between these observations. Both multi-layer

1Throughout this thesis, we use “signals on graphs” and “graph signals” interchangeably.
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Figure 1.1: A three-layer graph in a mobile social network (figure from [42]), where vertices at the same
position in the three figures represent a unique mobile user. On the left, two mobile users are connected
with an edge if they were close physically to each other during one Saturday night. In the middle, two are
linked together if they made the same series of cell tower transitions at relatively similar timestamps. On
the right, an edge is assigned between each pair of users who had ever interacted by phone communication.

graphs and signals on graphs can be considered as representations for multi-view data in a general
sense (since they both contain multiple sources of information), hence are the two data represen-
tations of interest in this thesis. Moreover, these graph-based representations highlight the close
connections between traditionally different fields in the processing and analysis of multi-view data.
Indeed, while a multi-layer graph can be considered as an extension to a single graph that has been
extensively studied in machine learning [112], graph signals are the central focus of the emerging
research field of signal processing on graphs [119, 109]. The main effort of this thesis is thus devoted
to developing novel techniques in the intersection of signal processing and machine learning in order
to solve several problems related to the representation, clustering, classification, and learning of
multi-layer graphs and signals on graphs.

Graph-based learning techniques have been studied extensively in the machine learning com-
munity and widely applied in various domains in the last two decades. Compared to the traditional
setting of a single graph in these techniques, multi-layer graphs present attractive advantages in
representing and analyzing multiple types of relationships in the data. As an example in mobile and
social network analysis, consider the cell phone data from the MIT Reality Mining project [40, 41]
illustrated in Fig. 1.1, where three different types of relationships between the same group of mobile
users can be captured at the same time by a three-layer graph, namely, Saturday night proximity,
similarity in cell tower transitions, and phone communication. Intuitively, each layer corresponds
to a certain type of human interaction, and a proper combination of these three layers is likely to
provide a better understanding of the relationships between the mobile users than any layer taken in
isolation. Our objective is thus to analyze such multi-layer graphs to gain insight into the intrinsic
relationships between the entities in the dataset by properly combining the information in the indi-
vidual layers. Compared to the traditional case of graph-based learning, the analysis of multi-layer
graphs brings several new challenges. First, we need to define a principled and generic framework
to study learning problems related to multi-layer graphs. Second, we need to analyze the multiple
layers simultaneously, in order to efficiently merge the information contained in the individual lay-
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ers. Ideally, we also would like to take into account the respective importance of these layers in the
merging framework. In addition to the research challenges, we also need to demonstrate that the
outcome of our learning framework is indeed beneficial in terms of specific learning tasks. In this
thesis, we first propose a generic framework for learning with multi-layer graphs [36, 38]. We then
propose a second framework that takes into account the respective importance of the individual
layers in a unique learning process [35]. We show that the proposed frameworks lead to novel
clustering algorithms with applications in mobile and social network analysis such as community
detection. We believe that our frameworks are beneficial not only to specific learning problems such
as clustering, but also to many other information processing tasks based on multi-layer graphs or
data that contain multiple sources of information in general.

Signal processing on graphs as an emerging research field has recently attracted growing interests
in the signal processing community. In this setting, the vertices of the graph represent entities and
the edge weights reflect the pairwise relationships between them, while a graph signal assigns a
scalar value to each vertex based on some observation associated with the entities. On the one
hand, graph signals capture the relationships between the observations, thus reflect the structures
in the data. On the other hand, the signals and the graphs are usually defined using different sources
of information. Numerical examples of graph signals can be found in geographical, transportation,
biomedical and social networks, such as temperatures within a geographical area, traffic capacities
at hubs in a transportation network, or human behaviors in a social network. In particular, in
many applications, various patterns of practical interest are present in the graph signals. For
example, consider data collected from the Flickr social network, where the aggregated number of
distinct Flickr users that have taken photos at different locations in a city is a signal defined on
a city-scale geographical graph. In this case, it is clear that the signals in the local regions of the
graph are related to mobility patterns of the Flickr users in those areas, as illustrated in Fig. 1.2.
Our objective is thus to infer various patterns of interest present in such observations, by studying
the classification problem of graph signals. Compared to traditional signal classification, the main
research challenge in this new problem is, to introduce efficient and discriminative representations
and appropriate models for graph signals, which are defined in irregular domains and are less
studied than traditional signals. Furthermore, we need to demonstrate in real world applications the
meaningfulness and efficiency of graph signal classification. In this thesis, we analyze the potential
of signal representations defined in the graph spectral domain for classifying graph signals under a
generic signal model, and then design discriminative spectral features for graph signal classification.
We apply our framework to real world applications such as the inference of mobility patterns in
traffic and social media data [37]. The proposed graph signal classification framework not only
sheds new lights in the research of learning problems related to graph signals, but will also benefit
a wide range of applications that involve structured data.

The efficiency of most of the graph-based learning and signal processing techniques rely on a
meaningful graph that captures the relationships between the entities in the dataset. However, such
a meaningful graph is not always readily available or easy to define. In practice, the graph is either
assumed to be given a priori or defined based on heuristics. For example, a similarity graph is
usually defined using a Gaussian radial basis function (RBF) based on Euclidean distances between
the feature vectors. In graph signal processing research, graph signals are usually defined on natural
graphs from the applications domain, such as a geographical graph or a social friendship graph.
Although these choices are meaningful to some extent, they may not be able to explain the intrinsic
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Figure 1.2: An example of the graph signal classification problem: This figure shows the aggregated
number of distinct Flickr users that have taken photos at different locations in the central area of London
from January 2010 to June 2012, as a signal defined on a geographical graph based on the physical distances
between these locations. The size and color of the balls indicate the number of distinct users associated with
the corresponding geographical positions. In this example, the signals observed in different local regions of
the geographical graph correspond to different mobility patterns of the Flickr users.

relationships between entities in the data. Furthermore, there could be scenarios where there is no
information for defining a suitable graph, such as network inference problems. Therefore, there is
certainly a need for searching for a most appropriate graph representation given the observations.
This is especially true in graph signal processing, given the crucial role of a meaningful graph in
most of the state-of-the-art techniques in the field. Based on this understanding, we are interested
in learning a meaningful graph topology given the observed graph signals. The key challenge
here is twofolds, (i) to propose a learning criteria based on the understanding of the interactions
between the signal values and the graph topologies, (ii) to show that the learned graph topology
would enforce certain desirable properties of the observed signals. In this thesis, we propose to
use a factor analysis model to understand the role of the graph in representing graph signals,
and develop a framework to learn graphs that enforce the smoothness property of the signals.
The proposed graph learning framework and the learning algorithm would surely lead to new
theoretical development in the research field of signal processing on graphs, and are useful for
learning similarities or relationships between data samples in general. It will also open possibilities
in emerging real world applications, such as network analysis where it is beneficial to infer some
hidden relationships between the entities based on observed data.
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1.2 Thesis outline

The outline of this thesis is as follows.
In Chapter 2, we provide an extensive review of the related works in the literature that are

related to this thesis. First, we summarize the state-of-the-art techniques in graph-based learning
problems, with a special emphasis on recent advances in the analysis of multi-view data. Next, we
report recent developments in the field of signal processing on graphs, and discuss especially those
that concern the learning problems related to graph signals. Finally, we present existing methods
for learning graph topologies given observed data.

In Chapter 3, we study the problem of learning with multi-layer graphs, where we are interested
in efficiently combining the information provided by multiple graph layers for learning tasks such as
clustering. To this end, we propose to model individual graph layers as subspaces on a Grassmann
manifold, and combine their characteristics by seeking for a representative subspace on the manifold
whose average distance to the individual subspaces is minimized. We consider the resulting subspace
as a summarization of the information contained in the multi-layer graph, and use it for designing a
novel clustering algorithm that partitions the vertex set of the graph into disjoint clusters. We justify
our framework theoretically using results form statistical learning theory, and test the performance
of the proposed clustering algorithm on several synthetic and real world datasets. Our algorithm
is shown to be superior to baseline schemes and competitive to a state-of-the-art method, with a
much simplified implementation and lower computational complexity.

In Chapter 4, we investigate the same learning problem on multi-layer graphs from a signal
processing perspective. Our approach is motivated by the observation that, a set of smooth signals
on the graphs, such as the eigenvectors of the graph Laplacian matrix, tends to contain the most
important information in the graph. Therefore, in order to combine the information of two different
graph layers, we propose to search for a set of signals that are jointly smooth on the two layers.
Specifically, we consider the eigenvectors of the graph Laplacian from one layer as signals defined on
another layer, on which their regularities are enforced by a novel graph regularization framework.
The proposed framework leads to a set of “joint eigenvectors” shared by the two layers, which we
call a “joint spectrum”, that captures the characteristics of both layers. We then generalize this
framework to multiple layers via a greedy information-theoretic approach. We use the proposed
approach to design a novel clustering algorithm and show that it achieves competitive clustering
performance compared to our previous approach in Chapter 3. More importantly, a unique char-
acteristic of our method is that, individual layers play different roles in the merging process. This
presents a potential advantage in multi-layer graph learning since it allows us to take into account
the respective importance of the individual layers.

In Chapter 5, we follow the direction towards graph signal processing initiated in Chapter 4
and study the problem of classification of graph signals. To this end, we adopt efficient represen-
tations of graph signals defined in the graph spectral domain, especially via the recently proposed
spectral graph wavelet transform [62], and analyze their potential for graph signal classification
under a generic signal model, namely, the random walk model. We then propose discriminative
spectral features and test their performances in synthetic classification tasks compared to PCA-
based spectral features as well as features extracted in the spatial domain. As a concrete example,
we study the problem of inference of mobility patterns, where we design synthetic models tailored
for different signal patterns of interest, and apply the proposed spectral classification framework.
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Both experiments on synthetically generated data and on real world mobility data demonstrate
that localized spectral features have great potential in the classification of graph signals with no-
ticeable local variations, such as those under the random walk model. The proposed classification
framework is an important step towards solving learning problems related to graph signals in the
field of signal processing on graphs.

Finally, in Chapter 6, we address the problem of learning meaningful graph topologies given ob-
served signals. To understand the interaction between the signal and the graph, and the important
role of the graph in representing the graph signals, we adopt a factor analysis model and establish
connections between signal representations in the traditional setting and graph setting. By revisit-
ing the representation learning theory [10], we show that a Gaussian probabilistic prior imposed on
the latent variables in the factor analysis model leads to smooth signals on the graph. This allows us
to design a framework for learning graph topologies given the assumption that the observed signals
follow a multivariate Gaussian distribution. We apply the proposed graph learning framework to
both synthetic and real world data, and demonstrate that it achieves better performance compared
to a learning algorithm for estimating a sparse inverse covariance matrix for Gaussian graphical
models. We further establish connections between graph learning and the problems addressed in
the previous chapters.

In summary, we address in this thesis several important problems related to the processing and
analysis of complex, multi-view, and structured data. Specifically, we first propose new methods
for learning the intrinsic relationships between the entities given observations in the form of multi-
layer graphs. We then propose a graph signal classification framework to capture various patterns
of interest from graph signals. Finally, we introduce a framework for learning meaningful graph
topologies given observed signals. On the one hand, the research effort presented in this thesis
provides insight into developing novel signal processing and machine learning techniques for pro-
cessing multi-view data on graphs. On the other hand, we show that it already benefits real world
applications in transportation, mobile, and social network analysis.

1.3 Summary of contributions

We summarize the main contributions of this thesis as follows.

• We develop a principled and generic framework for analyzing and efficiently merging informa-
tion contained in the different layers of a multi-layer graph. The proposed framework leads
to a novel clustering algorithm that produces a unified clustering of the vertices in the graph,
and achieves competitive performance compared to a state-of-the-art approach with a much
simpler implementation and low computational complexity.

• We further propose a second framework for combining multiple graph layers, where individual
layers play different roles in the merging process. Different from the approach in Chapter 3
and most of the state-of-the-art techniques, this allows us to take into account the respective
importance of the individual layers in a unique and convincing way.

• We study the graph signal classification problem, where we show the potential of representa-
tion in the graph spectral domain for the classification of graph signals. We design a novel
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algorithm for classifying graph signals that correspond to different patterns of interest and
demonstrate its efficiency in real world applications such as the inference of mobility patterns.

• We propose a framework and an algorithm for learning graph topologies given observed sig-
nals. We establish theoretical connections between signal representations in the traditional
setting and graph setting, by adopting a factor analysis model and a Gaussian probabilistic
prior on the latent variables. We demonstrate in real world applications the meaningfulness
of the proposed framework as well as the superior performance of our algorithm compared to
a state-of-the-art approach.

This thesis provides solutions to several important research problems in processing and analyzing
multi-view data on graphs, which would not only help meet the research challenges in modern
information processing with complex data, but also benefit numerous emerging applications in
transportation, biomedical and social network analysis.





Chapter 2

State of the art

2.1 Overview

In 1736, Swiss mathematician Leonhard Euler published a paper on the Königsberg Bridge problem,
which is widely considered as the birth of graph theory. Originally a vibrant subject in discrete
mathematics, graphs have been of increasing importance in computer science and modern infor-
mation processing tasks, since they provide powerful mathematical tools for modeling pairwise
relationships between a set of entities. Such relationships usually help in the understanding of
networked data hence provide benefits to various analysis tasks. Over the last two decades, graph-
based techniques in data mining, pattern recognition and machine learning have become extremely
popular. The applications of these graph-based analysis are numerous, noticeably in transporta-
tion, biomedical and social network analysis. Recently, traditional signal processing techniques
have also been generalized to handle signals defined on the vertex set of graphs. This brings new
ingredients to traditional graph-based processing and analysis techniques, making graphs one of
the most important analysis tools in the intersection of different research fields in modern data
analysis.

At the heart of the techniques presented in this thesis is one particular branch of graph theory,
namely, the spectral graph theory [29], which utilizes tools from matrix theory and linear algebra
to study graph theory and its applications. Specifically, spectral graph theory focuses on the
“spectrum” of the graph, namely, the eigenvalues of the adjacency matrix or the Laplacian matrix
of the graph. In this thesis, we are particularly interested in the eigenvalues and eigenvectors
of the Laplacian matrices of the graph. As we will see, they are of central importance to many
graph-based machine learning and signal processing techniques, in particular, unsupervised learning
(clustering and dimensionality reduction), semi-supervised and supervised learning (classification
and regression), and spectral filtering in graph signal processing.

In this chapter, we review some of the most important techniques developed in the areas of
graph-based signal processing and learning in the literature. First, we start in Section 2.2 with
machine learning approaches on graphs, from the traditional setting of a single graph to more recent
analysis problems on multi-layer graphs. Next, we move onto the emerging field of signal processing
on graphs in Section 2.3, where we survey the latest developments for solving the approximation,
reconstruction and learning problems related to the graph signals. Finally, given the central role
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of the graph in these techniques, we present related works in the literature that propose to learn
graph topologies from the observed data in Section 2.4.

2.2 Learning with graphs and multi-view data

2.2.1 Unsupervised and supervised learning on graphs

Graph-based unsupervised and supervised learning has been extensively studied in the machine
learning and data mining communities since the last two decades, due to their numerous applications
in various domains where pairwise relationships between entities are of special interest. In this
section, we first describe some important works in the literature regarding learning techniques
developed on graphs.

First, as a typical instance of unsupervised learning problems, clustering analysis have been
studied extensively due to its numerous applications in different domains, and has benefited sig-
nificantly from tools developed on graphs. The works in [112] and [48] have given comprehensive
reviews of the state-of-the-art techniques and recent advances in graph-based clustering, ranging
from hierarchical clustering to graph cuts, spectral methods and Markov chain based methods,
and their applications to the problem of community detection. Clustering methods derived based
on spectral analysis on the graph are of particular interest in this thesis. As a typical example,
spectral clustering algorithms [116, 99, 134, 141] have become one of the most popular graph-based
clustering techniques. These methods propose to embed the vertices of the graph into subspaces
spanned by the first k eigenvectors, which correspond to the k smallest eigenvalues, of various
graph Laplacian matrices. Due to the properties of the graph Laplacian matrix, this transforma-
tion reveals the intrinsic relationships between the original vertices. Consequently, clusters can be
eventually detected in the resulting low dimensional space by many common clustering algorithms,
such as the k-means algorithm [86]. Due to promising performance and close connections to other
well-studied mathematical problems, a large number of variants of the original algorithm have been
proposed, such as the constrained spectral clustering algorithms [138, 85, 81, 80, 135]. In general,
these works have suggested different ways to incorporate prior constraints in the clustering tasks.
It is worth noting that the graph Laplacian matrices are not the only choices for the embedding
matrix. In fact, Newman has also proposed clustering methods based on modularity maximization
via spectral methods [97, 98], which, instead of the graph Laplacian matrices, essentially use the
first k eigenvectors of the modularity matrix of the graph as the embedding matrix.

Second, graphs have often been linked with another instance of the unsupervised learning prob-
lem, which is dimensionality reduction. As we have seen above, the success of spectral clustering
algorithms can actually be attributed to a dimensionality reduction procedure, where data in the
original space has been projected to a low dimensional space spanned by the first k eigenvectors
of the graph Laplacian matrix. Another example is an interpretation of Principal Component
Analysis (PCA) on graphs described in [108], which again links the graph structure to a subspace
spanned by the top eigenvectors of the graph Laplacians. In [100], the authors have proposed to
use dimensionality reduction to help improve the performance of spectral clustering by removing
the noisy dimensions in the data. All these approaches show the close connections between tools
developed on graphs and techniques proposed for unsupervised learning problems.

Third, graphs have also played an important role in supervised and semi-supervised learning



2.2 Learning with graphs and multi-view data 11

tasks, such as classification. As a reference, in [148] the author has discussed in detail semi-
supervised learning approaches on graphs, from the label propagation algorithm and learning using
Gaussian fields and harmonic functions, to active learning and kernel approaches. One of the basic
assumptions in this problem is that the labels of data samples are in some way consistent with
the way the corresponding vertices are connected in the graph. Algorithms like label propagation
can then be applied to classify unlabeled vertices. Many semi-supervised learning techniques on
graphs have been closely related to the regularization theory on graphs [123]. In [145, 144, 146],
the authors have defined a family of differential operators on graphs, and used them to propose a
“smoothness” measure of functions defined on graphs based on the graph Laplacian matrix. They
have then proposed a discrete regularization framework for classification based on the proposed
smoothness measure. In addition to regularization in the spatial (vertex) domain, the authors of
[81] have also proposed a regularization framework in the graph spectral domain.

In summary, graphs have been an integral part of many classical machine learning and data
mining algorithms developed in the last decade for solving various unsupervised and supervised
learning problems. These algorithms have been widely applied in numerous application domains
ranging from transportation and biomedical network analysis to social science. However, most of
these techniques focus on a single graph that captures a certain type of relationships between the
entities. To handle multiple types of relationships between the entities considered in this thesis, we
need to generalize traditional graph models to the new setting.

2.2.2 Learning with multi-view data

Compared to a single graph representation, multi-layer graphs are convenient tools for representing
multiple types of relationships between the entities, or more generally for representing multi-view
data. These data form multi-layer graph representations (or multi-view representations), and ap-
pear sometimes in the context of learning with multiple kernels, which generally refer to data that
can be analyzed from different viewpoints. Multi-view data usually provide a more complete pic-
ture about the entities in the dataset through multiple angles. Therefore, by combining data from
different views we expect to gain an improved understanding of the intrinsic relationships between
the entities or the true causes of the observations. In this section, we survey recent works in the
literature that aims at solving learning problems related to multi-layer graphs or multi-view data in
general. The key challenge in this problem is to combine efficiently the information from multiple
graphs (or multiple views) for the learning objectives. The research effort towards this direction
can be roughly grouped into the following categories.

First, the most straightforward way to combine multi-view data is to form a linear combination of
the information from the individual views or graphs. For example, in [5], the authors have developed
a method to learn an optimal convex combination of Laplacian kernels from different graphs. In
[143], the authors have proposed a Markov mixture model for supervised and unsupervised learning,
which can essentially be interpreted as a convex combination of the normalized adjacency matrices
of the individual graphs. In [127], the authors have presented several averaging techniques for
combining information from the individual graphs for clustering. Finally, in [90], the authors have
proposed to combine multiple kernels by forming summations of weighted or projected kernels. As
a straightforward idea, averaging or linear combinations can be efficient in some cases, but may not
be able to capture the specificities in the individual views.
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Second, built on the intuitive approach of a linear combination of information layers, many
existing works aim at finding a unified representation of the multiple graphs (or multiple views), by
using more sophisticated models and methods. For instance, several authors have developed joint
matrix factorization approaches to combine matrix representations of the individual views of data,
such as the adjacency matrix [128] or the Laplacian matrix [46] of the graph, through a unified
optimization framework. In [137], the authors have proposed to find a unified spectral embedding
of the original data by integrating information from different views. Similarly, clustering algorithms
based on Canonical Correlation Analysis (CCA) first project the data from different views into a
unified low dimensional subspace, and then apply simple algorithms like single-linkage or k-means to
achieve the final clustering [14, 24]. In [136], the authors have proposed to consider the eigenspaces
of the graph Laplacian of the individual graph layers as points on a Grassmann manifold and studied
the distances between them for the possible combination. In [21], the authors have proposed to
find a pair of closest commuting operators (CCO) to a given pair of graph Laplacian matrices,
which are a pair of commuting matrices and thus have the same eigenbasis. They have further
showed that their approach is equivalent to joint diagonalization but allows explicitly preserving
the properties of the Laplacian matrices. The approaches in this category can potentially be more
meaningful than a simple averaging scheme, if the learned unified representation better captures
the relationships between different views in the multi-view data.

Third, unlike the previous methods that try to find a unified representation before applying
learning techniques, another strategy in the literature is to integrate the information from individual
graphs (views) directly into the optimization problem for the learning purposes. Examples include
the co-EM clustering algorithm proposed in [13], and the clustering approaches proposed in [71, 73]
based on the frameworks of co-training [15] and co-regularization [122], respectively. These methods
can be useful when a unified representation for the multiple views is not easy to find from the data.

Last but not least, other representative approaches include (i) the works in [11] where the
authors have generalized several concepts on a single graph, such as the degrees and neighbors, to
a multidimensional (multi-layer) graph, (ii) the works in [61, 33, 92, 133] where the authors have
defined additional graph representations to incorporate information from the original individual
graphs, (iii) the works in [91, 111] where the authors have worked with coupled graphs (a set of
graphs that have the same vertex set with possible links between the same vertex across different
graphs) or paths defined in multigraphs (graphs that allow multiple edges between the same vertex
pair, which is essentially the same as a multi-layer graph in our terminology), and finally (iv)
the works in [126, 22, 56, 26] where the authors have proposed ensemble clustering approaches by
integrating clustering results from individual views.

To summarize, the above mentioned works for learning with multi-layer graphs or multi-view
data have tackled the problem of combining information contained in multiple graphs or views from
different perspectives, usually based on different learning criteria. Such criteria can be driven by
specific forms of optimization problems, or based on some prior knowledge about the interactions
between different views or graphs. However, a principled and generic framework is still needed
for learning multi-view data. The proposed approach in Chapter 3 of this thesis is motivated
by this observation, and belongs to the second category mentioned above, where we first find a
representative subspace for the information provided by a multi-layer graph, and then we implement
clustering or other learning tasks. We believe that this type of approaches is intuitive, yet remaining
flexible and generic enough to be applied to different types of data. Furthermore, most of the
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methods in the literature treat the individual views of the data in an equal manner. This motivates
us to propose a graph regularization framework in Chapter 4 to better take into account the
respective importance of the individual layers in a multi-layer graph.

2.3 Signal processing on graphs

2.3.1 Representation and approximation of signals on graphs

Many real world signals are intrinsically structured, such as temperatures in different geographical
areas, traffic volumes at different locations in transportation networks, or human behaviors in social
networks. Such structures can usually be represented by networks or graphs, which explain the
intrinsic relationships between the observations made from individual sensors. It is thus beneficial
to take into account such structures in the processing of the signals. Motivated by this observation,
the understanding, representation and processing of signals defined on the vertex set of weighted
and undirected graphs (namely, graph signals) have recently attracted increasing attention in the
signal processing community, leading to the emerging field of signal processing on graphs [119, 109].
The main challenge in this field is to deal with the irregular and discrete support of the signals;
tools from spectral graph theory have proved crucial in such treatment.

The fundamental analogy between traditional signal processing and graph signal processing is
established through the eigenvalues and eigenvectors of the graph Laplacian matrix, which carry a
notion of frequency for graph signals and leads to the generalization of traditional signal processing
techniques to the setting of graph signal processing. In [62], the authors have first proposed the
concept of a graph Fourier transform, which generalizes the traditional Fourier analysis to the graph
setting. Some properties of the graph Fourier transform have been analyzed in [149]. In [120], the
authors have generalized the fundamental concepts of traditional signal processing techniques, such
as the convolution, translation and modulation operators, to graph signal processing. Based on
the generalization of these operators, they have proposed a windowed graph Fourier transform,
analogous to the classical short-time Fourier transform. They have then analyzed the localization
of the proposed transform in the vertex-frequency domain, similarly to the classical time-frequency
analysis. Along the same line of ideas, the authors of [4] have proposed a spectral graph uncertainty
principle that provides a tradeoff between the localization of graph signals in the graph (vertex)
and spectral (frequency) domain. Their work has been followed by the work in [102] where the
authors have studied the same localization property through the uncertainty curves.

The generalization of the wavelet-like and multiscale transforms to the graph setting is of
particular interests in the graph signal processing community. Classical wavelet transforms have
proved to be appealing in many signal processing tasks due to their properties of being localized
in both time and frequency, and of providing a notion of multiscale representation of the signals.
Therefore, a large amount of effort has been devoted to the designs of wavelet transforms on graphs,
both in the vertex domain and graph spectral domain. Representative examples in the former
case include the wavelet transform based on the shortest path distance between vertices proposed
in [31], the lifting-based transforms proposed in [93], and the tree-based transforms proposed in
[50, 103, 104, 107]. The examples in the latter case are of special interest in this thesis, especially
the spectral graph wavelets proposed in [62]. The spectral graph wavelet transform is defined in
precise analogy to the classical continuous wavelet transform, based on the dilation of a series of
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band-pass filters defined in the graph spectral domain. These filters provide a clear interpretation
of wavelets at different scales and are computationally efficient to implement. The idea has then
been generalized to adapt to the spectrum of a particular graph in [121] and to form a tight frame
for multislice (multi-layer) graphs in [77]. Other noticeable examples include the diffusion wavelets
proposed in [87, 30] and the diffusion wavelets packets in [19], which are constructed based on
a diffusion operator; the graph-QMF filterbanks proposed in [94] and its biorthorgonal extension
in [95], which are constructed based on two-channel filterbanks on graphs; and the multiscale
transform proposed in [118] based on operators for signal filtering, graph downsampling and graph
reduction. These transforms, like their highly-successful counterparts in the Euclidean domain, are
demonstrated to be efficient in analyzing theoretically the behaviors and properties of graph signals
with respect to the graph topology.

Most of the transforms mentioned above are defined based on the structure of the graph topology,
and do not adapt specifically to the observed signals. In particular, they do not necessarily guarantee
a sparse representation of the signals. Dictionaries [131], on the other hand, are representations
that are usually learned from and adapted to the observations; they are aimed at providing sparse
representations of the signals. Therefore, in order to adapt to the behaviors of a particular set of
graph signals and achieve sparse representations, several works have tried to generalize dictionary
representations on graphs. In particular, in [140], the authors have proposed a way to learn a set
of modified spectrums to form structured graph dictionaries that are adapted to the given graph
signals. In [129], the authors have proposed a form of dictionaries that are polynomials of the
normalized graph Laplacian matrix, which guarantees the localization of the atoms in the vertex
domain.

The design of efficient transforms and dictionaries has been the focus of the research in graph
signal processing. In particular, compared to the traditional focus of mathematical transforms,
dictionary representation on graphs has attracted an increasing attention in the field, due to its
flexibility and adaptivity to the observed signals. On the one hand, these transforms and dic-
tionaries are mainly aimed at solving classical signal processing problems on graphs, such as the
representation, approximation and reconstruction of graph signals. Applications of them can al-
ready be found in various fields, such as wireless and sensor network analysis [79, 150] and image
and video processing, in particular depth map coding [115, 114], predictive transform coding [139]
and multi-view image coding [89]. On the other hand, relatively less research effort has been de-
voted to the learning problems related to graph signals and their potential applications. This is
the motivation behind the graph signal classification problem considered in this thesis.

2.3.2 Learning with signals on graphs

As we have mentioned, the methods discussed in the previous section have mainly been developed for
solving classical approximation and reconstruction problems related to the graph signals. It is thus
particularly interesting to notice that the graph transforms and dictionaries have also been applied
to graph-based learning problems. For example, in [132], the authors have exploited the properties
of spectral graph wavelets to study the cluster relationships between vertices at different scales.
Of particular interest in this thesis are the works that apply these graph signal processing tools
in the context of regression and classification. For instance, in [117] the authors have proposed
to use spectral graph wavelets for regression via semi-supervised learning, by imposing a sparse
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representation of the label signal under the spectral graph wavelet transform through a L1-norm
penalty on the wavelet coefficients. Similarly, in [96], the authors have proposed two methods for
interpolation of graph signals with partial observations based on localized graph filtering. In [110]
the authors have defined total variation of a signal on the graph and use it as a way of regularization
in learning the class labels. Similarly, in [44] the authors have proposed a regularization framework
for learning the label function. Specifically, they have imposed a sparsity regularizer constraint
on the wavelet decomposition of the label function. Finally, in [25], the authors have proposed
to use adaptive graph filters for data classification by learning the filter coefficients through a
semi-supervised optimization framework. The common aspect in these approaches is that they
consider a representation graph to capture the pairwise relationships between the entities or data
samples, and model the regression or label function as a graph signal. Therefore, they essentially
solve the typical graph-based classification problems in the same spirit as approaches in [146, 148]
where similar samples are assumed to have similar labels. The difference with the approaches in
Section 2.2.1 is that the regression or label function is learned by using some graph-based filters
and transforms, which might be more adaptable to the specific behaviors of these functions.

From another perspective, very few works in the literature have tackled the classification problem
of graph signals, in which the graph signals are considered as data samples to classify. This can
be beneficial in real world applications where the observed graph signals carry different patterns
of interest, such as the example shown in Fig. 1.2. From this aspect, the classification frameworks
proposed in [65] and [32] are the most closely related works in the literature, for that they also
aim at distinguishing data samples that are graph signals in a broad sense. Specifically, the former
approach uses the graph Fourier transform for matched signal detection through hypothesis tests,
which is essentially a two-class classification problem based on the Fourier coefficients of the graph
signal. The latter approach uses the spectral graph wavelet transform in shape analysis, where
the features for classification are defined by simply taking a low-dimensional projection of all the
wavelet coefficients.

Learning problems related to graph signals are important research problems to study, as the
developed learning techniques help us leverage graph signal processing tools to handle the learning of
structured data, which is sometimes not easy via traditional means. It would also benefit numerous
applications in networked data analysis. However, in the field of signal processing on graphs, a large
amount of works has been devoted to the representation and approximation of the graph signals,
while the learning aspects have been relatively overlooked. Especially, problems related to the
classification and clustering of graph signals have not been much studied. Preliminary works in the
literature, such as [65] and [32], have not provided a complete analysis and generic framework for
classifying graph signals. These are the main motivations behind the classification studies presented
in Chapter 5.

2.4 Learning graphs from data

In the graph-based machine learning and signal processing techniques mentioned above, the graph
provides a similarity measure between the entities in the dataset, which is crucial for the learning
and data processing objectives. This is especially true in the field of signal processing on graphs,
where the edges in the graph and their weights usually influence the signal values associated with
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the vertices. Ideally, the graph should capture the true causes behind the relationships of the
observed signals; therefore, different choices of the graph lead to different interpretations of the
signals. For example, a smooth graph signal may become highly non-smooth if the graph topology
has been changed. Given the central role of a meaningful graph for efficient signal representations,
there is clearly a need for defining or choosing the graph appropriately.

However, most of the research effort in the signal processing community so far has been devoted
to the representation and processing of the signals, while the graph is either given a priori, or
chosen naturally form the application domain. Given the graph signals, relatively less research
effort has been devoted to the analysis and learning of the graph topologies. One of the most
closely related works in learning graph topologies has been proposed in [64], where a regression
framework is proposed to learn a sparse graph topology based on a fitness metric between the
signals and the graph. Another two examples are the works of [76] and [78], where the authors have
proposed to use correlations between wavelet coefficients of the time-series of brain signals, and
Principal Component Analysis, respectively, to estimate functional connectivities of distinct brain
regions, which can be considered as the learning of an activity graph between the brain regions.
These examples all focus on medical analysis applications. Finally, in [139] the authors have tried
to make the link between the precision matrix in a Gaussian Markov Random Field and the graph
Laplacian matrix. They however have not considered explicitly the structure of the graph Laplacian
and have not proposed specifically an algorithm to learn a graph topology.

In the meantime, there is a large amount of work from the statistical machine learning commu-
nity that aims at solving similar problems, but from a slightly different perspective. For example,
one topic in the research of learning graphical models is to estimate a full-rank inverse covariance
matrix from the observed data for Gaussian graphical models [6, 49], especially in the case when the
number of observations is smaller than the sample dimension and the sample covariance becomes
singular; or, to infer the graph structure for discrete Markov Random Fields [82]. It is known that
in case of a Gaussian graphical model, there is an exact correspondence between the location of
the non-zero entries in the precision matrix and the existence of partial correlations between the
random variables [106]. In this case, a maximum-likelihood estimator turns out to be the solution
to a log-determinant program. The estimated precision matrix is therefore considered to carry in-
formation about the partial corrections between the random variables. However, it is worth noting
that the learned precision matrix, which is full-rank and usually has both positive and negative
correlations between the random variables, is not a valid graph Laplacian matrix. The overall
process cannot thus be interpreted precisely as learning a graph topology. Another line of works is
metric and kernel learning, whose objective is to learn the similarities or dissimilarities between a
set of entities. For example, in [66] the authors have proposed a general optimization framework
for learning metrics via linear transformations, and analyzed as a special case the minimization
of the log-determinant divergence subject to linear constraints. Given the statistical nature of
these problems (for instance, in a graphical model the graph denotes the conditional independence
structure between the random variables), most of the approaches tackle the problem either from a
statistical point of view, for example based on a maximum-likelihood estimation (MLE), or from
an information-theoretic point of view, for example based on the Bayesian information criterion
(BIC). An essential difference with graph learning in graph signal processing is, however, that these
approaches do not study the learning problem from the viewpoint of the processing of the graph
signals. Specifically, they focus on the correlations between random variables, but do not pay much
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attention to the analysis of the characteristics and properties of signals defined on the graph, such
as the smoothness or sparsity of the data on the estimated graph. The latter is however the central
and ultimate objective in the field of graph signal processing.

To summarize, compared to the representation and processing of the graph signals, the problem
of learning graph topologies is an important area that has been relatively overlooked in the signal
processing community. Although approaches for solving similar problems exist in the statistical
machine learning community, these approaches do not learn graph topologies that are linked to
the desired properties of the observed signals. The proposed learning framework in Chapter 6 is
motivated by these observations, and is designed to enforce such property of the signals in their
representations through the learned graph topology.

2.5 Summary

Based on the review above we would like to point out the following limitations of the related works
in the literature, which are the main motivations of the approaches presented in the next four
chapters:

• A principled and generic framework is needed for formulating and solving learning problems
with multi-layer graphs.

• In most of the state-of-the-art algorithms for combining multiple graphs, different graphs are
either treated equally or combined simply through a weighted summation. A novel framework
is needed for taking into account the different roles and importance of the individual graphs
in the combination.

• The influence of the relationships between the individual graph layers and their respective
importance have not been much studied.

• Most of the works related to classification in graph signal processing model the label function
as a graph signal. A complete analysis and generic framework for classifying data samples
that are graph signals is clearly needed.

• There is little work in the literature that discusses the modeling of graph signals, which is
crucial in theoretical classification analysis.

• Most of the research effort in graph signal processing have been devoted to the representation
and approximation of the signals. Given the central role of a meaningful graph topology,
there is clearly a need for more complete studies about learning optimal graph topologies
given observed graph signals.





Chapter 3

Learning with multi-layer graphs:

Subspace-based methods

3.1 Introduction

In this chapter, we consider the problem of learning with multi-layer graphs, where the individual
layers share a common set of vertices but have different edge weights depending on the type of
information in each layer. Assuming that all the graph layers are informative, they are likely to
provide complementary information and thus to offer richer information than any single layer taken
in isolation. We thus expect that a proper combination of the information contained in the different
layers leads to an improved understanding of the structure of the data and the relationships between
entities in the dataset.

Specifically, we consider a M -layer graph G with individual graph layers Gi = {V,Ei,!i},
i = 1, . . . ,M , where V represents the common vertex set and Ei represents the edge set in the
i-th individual graph Gi with associated edge weights !i. An example of a three-layer graph is
shown in Fig. 3.1(a), where the three graph layers share the same set of 12 vertices but with
different edges (we assume unit edge weights for the sake of simplicity). Clearly, different graph
layers capture different types of relationships between the vertices, and our objective is to find a
method that properly combines the information in these different layers. We first adopt a subspace
representation for the information provided by the individual graph layers, which is inspired by
the spectral clustering algorithms [116, 99, 134]. We then propose a novel method for combining
the multiple subspace representations into one representative subspace. Specifically, we model
each graph layer as a subspace on a Grassmann manifold. The problem of combining multiple
graph layers is then transformed into the problem of efficiently merging different subspaces on a
Grassmann manifold. To this end, we study the distances between the subspaces and develop a new
framework to merge the subspaces where the overall distance between the representative subspace
and the individual subspaces is minimized. We further show that our framework is well justified by
results from statistical learning theory [60, 57]. The proposed method is a dimensionality reduction
algorithm for the original data; it leads to a summarization of the information contained in the
multiple graph layers, which reveals the intrinsic relationships between the vertices in the multi-layer
graph.
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(a) (b)

Figure 3.1: (a) An illustration for a three-layer graph G, whose three layers {Gi}3i=1 share the same set
of vertices but with different edges. (b) A potential unified clustering {Ck}3k=1 of the vertices based on the
information provided by the three layers.

Various learning problems can then be solved using these relationships, such as classification or
clustering. Specifically, we focus in this chapter on the clustering problem: we want to find a unified
clustering of the vertices (as illustrated in Fig. 3.1(b)) by utilizing the representative subspace,
such that it is better than clustering achieved on any of the graph layers Gi independently. To
address this problem, we first apply our generic framework of subspace analysis on the Grassmann
manifold to compute a meaningful summarization (as a representative subspace) of information
contained in the individual graph layers. We then implement a spectral clustering algorithm based
on the representative subspace. Experiments on synthetic and real world datasets demonstrate
the advantages of our approach compared to baseline algorithms, like the summation of individual
graphs [128], as well as state-of-the-art techniques, such as co-regularization [73]. Finally, we believe
that our framework is beneficial not only to clustering, but also to many other data processing tasks
based on multi-layer graphs or multi-view data in general.

Subspace-based methods have been widely used in clustering and classification problems since
the last two decades, most notably in image processing and computer vision. Due to the grow-
ing interests in this field, there is an increasingly large number of works that use tools from the
Grassmann manifold theory, which provides a natural tool for subspace-based analysis. In [43], the
authors have given a detailed overview of the basics of the Grassmann manifold theory, and devel-
oped new optimization techniques on the Grassmann manifold. In [27], the author has presented
statistical analysis on the Grassmann manifold. Both works study the distances on the Grassmann
manifold. In [59, 60], the authors have proposed learning frameworks based on distance analysis
and positive semidefinite kernels defined on the Grassmann manifold. These subspace-based meth-
ods on the Grassmann manifold are certainly the inspirations behind the work presented in this
chapter.

This chapter is organized as follows. In Section 3.2, we briefly review the spectral clustering
algorithms, and describe the subspace representation inspired by spectral clustering, which captures
the characteristics of a single graph. In Section 3.3, we introduce the main ingredients of Grassmann
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manifold theory, and propose a new framework for combining information from multiple graph
layers. We then propose our novel algorithm for clustering on multi-layer graphs in Section 3.4,
and compare its performance with other clustering methods on multiple graphs in Section 3.5.
Finally, we conclude in Section 3.6.

3.2 Spectral clustering and subspace representation for graphs

In this section, we give a very brief review of the spectral clustering algorithms applied on a single
graph, which inspired us to define a subspace representation for graphs. Spectral clustering has
become increasingly popular due to its simple implementation and promising performance in many
graph-based clustering problems. It can be described as follows. Let us consider a weighted and
undirected graph1 G(V,E,w), where V represents the vertex set of n vertices, E represents the edge
set, and w : E ! R+ associates each edge with a positive weight. Without loss of generality, we
assume that the graph is connected. The adjacency matrix W of the graph is an n⇥ n symmetric
matrix defined as:

Wij =

⇢

wij if there is an edge between i and j
0 otherwise. (3.1)

The degree of a vertex i, denoted as d(i), is defined as the sum of weights of all the edges incident
to i in the graph. The degree matrix D is then defined as:

Dij =

⇢

d(i) if i = j
0 otherwise. (3.2)

Based on W and D, the Laplacian matrix of the graph L is defined as:

L = D �W. (3.3)

In the literature, L is usually called the unnormalized or combinatorial graph Laplacian matrix.
There are two normalized versions of the graph Laplacian defined as follows:

Lsym = D� 1
2
(D �W )D� 1

2 , (3.4)
Lrw = D�1

(D �W ). (3.5)

The graph Laplacian is of broad interests in the studies of spectral graph theory [29]. Although
closely related to each other, different versions of the graph Laplacian have different properties
that are desirable in different applications, as we shall see in the different chapters of this thesis2.
For example, L and Lsym are real and symmetric matrices, therefore they both have a complete
set of orthonormal eigenvectors with the associated eigenvalues. In the meantime, Lrw is not
symmetric but has close connection to the random walk process on graphs. Different choices of the
graph Laplacian correspond to different versions of the spectral clustering algorithm and detailed

1Throughout Chapter 3 and Chapter 4, the notation G (without a superscript or subscript) is used for a single
graph unless it is clearly indicated that a multi-layer graph is considered.

2Throughout this thesis, we use L, L
sym

, and L
rw

as the unnormalized graph Laplacian, the symmetric normalized
graph Laplacian, and the graph Laplacian closely related to a random walk, respectively.
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discussion on these choices is given in von Luxburg [134]. In this Chapter, we use the normalized
graph Laplacian Lsym defined above, since it has orthogonal eigenvectors and the eigenvalues are
bounded between 0 and 2, a property favorable in comparing different graph layers in the following
sections.

We now consider the problem of clustering the vertices i of G into k distinct subsets such that
the vertices in the same subset are similar, i.e., they are connected by edges of large weights. This
problem can be efficiently solved by the spectral clustering algorithms. Specifically, we focus on
the algorithm proposed in [99], which solves the following trace minimization problem:

min

U2Rn⇥k
tr(UTLsymU), s.t. UTU = I, (3.6)

where n is the number of vertices in the graph, k is the target number of clusters, and (·)T denotes
the matrix transpose operator. It can be shown by a version of the Rayleigh-Ritz theorem [134]
that the solution U to the problem of Eq. (3.6) contains the first k eigenvectors (which correspond
to the k smallest eigenvalues) of Lsym as columns. The clustering of the vertices in G is then
achieved by applying the k-means algorithm [86] to the normalized row vectors of the matrix3 U .
This algorithm is summarized in Algorithm 1. As shown in [134], the behavior of spectral clustering
can be explained theoretically with analogies to several well-known mathematical problems, such
as the normalized graph-cut problem [116], the random walk process on graphs [83], and problems
in perturbation theory [125, 12].

Algorithm 1 Normalized Spectral Clustering [99]
1: Input:

W : the n⇥ n weighted adjacency matrix of graph G
k: target number of clusters

2: Compute the degree matrix D and the normalized graph Laplacian matrix Lsym = D� 1
2
(D �

W )D� 1
2 .

3: Let U 2 Rn⇥k be the matrix containing the first k eigenvectors u1, . . . , uk of Lsym as columns
(solution of (3.6)). Normalize each row of U to get Unorm.

4: Let yj 2 Rk (j = 1, . . . , n) be the transpose of the j-th row of Unorm.
5: Cluster yj in Rk into k clusters C1, . . . , Ck using the k-means algorithm.
6: Output:

C1, . . . , Ck: the cluster assignment

We provide an illustrative example of Algorithm 1. Consider a single graph in Fig. 3.2(a) with
ten vertices that belong to three distinct clusters (i.e., n=10 and k=3). For the sake of simplicity,
all the edge weights are set to 1. The low dimensional matrix U that solves the problem of Eq. (3.6),
which contains k orthonormal eigenvectors of the graph Laplacian Lsym as columns, is shown in
Fig. 3.2(b). The matrix U is usually called the spectral embedding of the vertices, as each row
of U can be viewed as the set of coordinates of the corresponding vertex in the k-dimensional
space. More importantly, due to the properties of the graph Laplacian matrix, such an embedding

3The necessity for row normalization is discussed in [134] and we omit this discussion here. However, the normal-
ization does not change the nature of spectral embedding, hence, it does not affect our derivation later.



3.3 Merging subspaces via analysis on the Grassmann manifold 23

(a) (b)

Figure 3.2: An illustration of spectral clustering. (a) A graph with three clusters (color-coded) of vertices;
(b) Spectral embedding of the vertices computed from the graph Laplacian matrix. The vertices in the same
cluster are mapped to coordinates that are close to each other in R3.

preserves the connectivity of the vertices in the original graph. In other words, two vertices that
are strongly connected in the graph are mapped to two vectors (i.e., rows of U) that are close too in
the k-dimensional space. As a result, a simple k-means algorithm can be applied to the normalized
row vectors of U to achieve the final clustering of the vertices.

Inspired by the spectral clustering theory, one can define a meaningful subspace representation
of the vertex connectivity in a graph using its k-dimensional spectral embedding, which is driven
by the matrix U built on the first k eigenvectors of the graph Laplacian Lsym. Each row being
the coordinates of the corresponding vertex in the low dimensional subspace, this representation
contains the information on the connectivity of the vertices in the original graph. Such information
can be used for finding clusters of the vertices, as shown above, but it is also useful for other
analysis tasks on graphs. By adopting this subspace representation that “summarizes” the graph
information, multiple graph layers can naturally be represented by multiple such subspaces (whose
geometrical relationships can be quite flexible). The task of multi-layer graph analysis can then be
transformed into the problem of effective combination of the multiple subspaces. This is the focus
of the next section.

3.3 Merging subspaces via analysis on the Grassmann manifold

We now discuss the problem of effectively combining multiple graph layers by merging multiple
subspaces. The theory of Grassmann manifold provides a natural framework for such a problem.
In this section, we first review the main ingredients of the Grassmann manifold theory, and then
move onto our generic framework for merging subspaces.

3.3.1 Ingredients of Grassmann manifold theory

By definition, a Grassmann manifold G(k, n) is the set of k-dimensional linear subspaces in Rn,
where each unique subspace is mapped to a unique point on the manifold. The advantage of using
tools from Grassmann manifold theory is thus two-fold: (i) it provides a natural and intuitive
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Figure 3.3: An example of two 2-dimensional subspaces span(Y1) and span(Y2) in R3, which are mapped
to two points on the Grassmann manifold G(2, 3).

representation for our problem: the subspaces representing the individual graph layers can be
considered as individual points on the Grassmann manifold4; (ii) the analysis on the Grassmann
manifold permits to use efficient tools to study the distances between points on the manifold,
namely, distances between different subspaces. Such distances play an important role in the problem
of merging the information from multiple graph layers.

Mathematically speaking, each point on G(k, n) can be represented by an orthonormal matrix
Y 2 Rn⇥k whose columns span the corresponding k-dimensional subspace in Rn; it is thus denoted
as span(Y ). As an example, Fig. 3.3 shows two subspaces, represented by two orthonormal matrices
Y1 and Y2, as two points on the Grassmann manifold G(2, 3). The distance between two points
on the manifold, or between two subspaces span(Y1) and span(Y2), is then defined based on a
set of principal angles {✓i}ki=1 between these subspaces [53]. Specifically, ✓1 is defined as the
smallest possible angle between all pairs of unit vectors zi and zj that come from span(Y1) and
span(Y2) respectively. The other principal angles are defined recursively as the smallest possible
angle between all pairs of unit vectors that (i) come from span(Y1) and span(Y2) and (ii) are
orthogonal to all the previously selected zi and zj . By definition, the principal angles measure
how the subspaces are geometrically close to each other, and are the fundamental measures used to
define various distances on the Grassmann manifold, such as the Riemannian (geodesic) distance
or the projection distance [43, 59]. In this chapter, we use the projection distance, which is defined
as:

dproj(Y1, Y2) = (

k
X

i=1

sin2✓i)
1
2 , (3.7)

where Y1 and Y2 are the orthonormal matrices representing the two subspaces under comparison5.
The reason for choosing the projection distance is two-fold: (i) the projection distance is defined as
the L2-norm of the vector of sines of the principal angles. Since it uses all the principal angles, it
is therefore an unbiased definition. This is favorable as we do not assume prior knowledge on the

4Different graph layers naturally lead to different points on the manifold; However, we do not specifically exclude
the case where there exist two graph layers that are exactly the same.

5In the special case where Y1 and Y2 represent the same subspace, we have d
proj

(Y1, Y2) = 0.
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importance of specific principal angles, and we consider that all of them carry meaningful infor-
mation; (ii) the projection distance can be interpreted using a one-to-one mapping that preserves
distinctness: span(Y )! Y Y T 2 Rn⇥n. Note that the squared projection distance can be rewritten
as:

d2proj(Y1, Y2) =

k
X

i=1

sin2✓i = k �
k

X

i=1

cos2✓i

= k � tr(Y1Y1
TY2Y2

T
) (3.8)

=

1

2

[2k � 2tr(Y1Y1
TY2Y2

T
)]

=

1

2

[tr(Y1
TY1) + tr(Y2

TY2)� 2tr(Y1Y1
TY2Y2

T
)]

=

1

2

||Y1Y1T � Y2Y2
T ||2F , (3.9)

where the third equality comes from the definition of the principal angles and the fifth equality uses
the fact that Y1 and Y2 are orthonormal matrices, and the operator || · ||F denote the Frobenius
norm. It can be seen from Eq. (3.9) that the projection distance can be related to the Frobenius
norm of the difference between the mappings of the two subspaces span(Y1) and span(Y2) in Rn⇥n.
Because the mapping preserves distinctness, it is natural to take the projection distance as a proper
distance measure between subspaces. Moreover, Eq. (3.8) provides an explicit way of computing
the projection distance between two subspaces from their matrix representations Y1 and Y2. We
are going to use it in developing the generic merging framework in the following section.

3.3.2 Layer merging framework

Equipped with the subspace representation for individual graphs and with a distance measure to
compare different subspaces, we are now ready to present our generic framework for merging the
information from multiple graph layers. Given a multi-layer graph G with M individual layers
{Gi}Mi=1, we first compute the graph Laplacian matrix Lsymi for each Gi and then represent each
Gi by the spectral embedding matrix Ui 2 Rn⇥k from the first k eigenvectors of Lsymi, where n
is the number of vertices and k is the target number of clusters. Recall that each of the matrices
{Ui}Mi=1 defines a k-dimensional subspace in Rn, which can be denoted as span(Ui). The goal is
to merge these multiple subspaces in a meaningful and efficient way. To this end, our philosophy
is to find a representative subspace span(U) that is close to all the individual subspaces span(Ui),
and at the same time the representation U preserves the information about vertex connectivity
in each graph layer. For notational convenience, in the rest of the chapter we simply refer to the
representations U and Ui as the corresponding subspaces, unless indicated specifically.

The squared projection distance between subspaces defined in Eq. (3.9) can be naturally gen-
eralized for analysis of multiple subspaces. More specifically, we can define the squared projection
distance between the target representative subspace U and the M individual subspaces {Ui}Mi=1 as
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the sum of squared projection distances between U and each individual subspace given by Ui:

d2proj(U, {Ui}Mi=1) =

M
X

i=1

d2proj(U,Ui)

=

M
X

i=1

[k � tr(UUTUiUi
T
)]

= kM �
M
X

i=1

tr(UUTUiUi
T
). (3.10)

The minimization of the distance measure in Eq. (3.10) enforces the representative subspace U to be
close to all the individual subspaces {Ui}Mi=1 in terms of the projection distance on the Grassmann
manifold. At the same time, we want U to preserve the information about vertex connectivity in
each graph layer. This can be achieved by minimizing the Laplacian quadratic form evaluated on
the columns of U , as also indicated by the objective function in Eq. (3.6) for spectral clustering.
Therefore, we finally propose to merge multiple subspaces by solving the following optimization
problem that integrates Eq. (3.6) and Eq. (3.10):

min

U2Rn⇥k

M
X

i=1

tr(UTLsymiU) + ↵[kM �
M
X

i=1

tr(UUTUiUi
T
)],

s.t. UTU = I,

(3.11)

where Lsymi and Ui are the graph Laplacian and the subspace representation for Gi, respectively.
The regularization parameter ↵ balances the trade-off between the two terms in the objective
function.

The problem of Eq. (3.11) can be solved in a similar manner as Eq. (3.6). Specifically, by
ignoring constant terms and rearranging the trace form in the second term of the objective function,
Eq. (3.11) can be rewritten as

min

U2Rn⇥k
tr[UT

(

M
X

i=1

Lsymi � ↵
M
X

i=1

UiUi
T
)U ], s.t. UTU = I. (3.12)

It is interesting to note that this is the same trace minimization problem as in Eq. (3.6), but with
a “modified Laplacian”6:

Lmod =

M
X

i=1

Lsymi � ↵
M
X

i=1

UiUi
T . (3.13)

6A “modified Laplacian” is adopted here as an intuitive terminology. Strictly speaking, L
mod

does not satisfy
the conditions of being a valid Laplacian matrix. In fact, Eq. (3.13) can be rewritten as L

mod

=
PM

i=1 Lsymi �
↵
PM

i=1 UiUi
T =

PM
i=1 Ui(⇤i � ↵I)Ui

T , where ⇤i is a diagonal matrix that contains the eigenvalues of L
symi along

the diagonal. It is interesting to notice that ⇤i � ↵I can be considered as a filtering function applied on the
eigenvalues; therefore, it is possible to choose other filtering functions so that the resulting “modified Laplacian” is a
valid Laplacian matrix, or, to learn such functions in certain applications (see for example the work in [3] on learning
diffusion kernels in shape analysis). We leave these directions for future work.
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Therefore, by the Rayleigh-Ritz theorem, the solution to the problem of Eq. (3.12) is given by
the first k eigenvectors of the modified Laplacian Lmod, which can be computed using efficient
algorithms for eigenvalue problems [124, 75].

In the problem of Eq. (3.11) we try to find a representative subspace U from the multiple
subspaces {Ui}Mi=1. Such a representation not only preserves the structural information contained
in the individual graph layers, which is encouraged by the first term of the objective function in
Eq. (3.11), but also keeps a minimum distance between itself and the multiple subspaces, which is
enforced by the second term. Notice that the minimization of only the first term itself corresponds
to simple averaging of the information from different graph layers, which usually leads to suboptimal
clustering performance as we shall see in the experimental section. Similarly, imposing only a small
projection distance to the individual subspaces {Ui}Mi=1 does not necessarily guarantee that U is
a good solution for merging the subspaces. In fact, for a given k-dimensional subspace, there
are infinitely many choices for the matrix representation, and not all of them are considered as
meaningful summarizations of the information provided by the multiple graph layers. However,
under the additional constraint of minimizing the trace of the quadratic term UTLsymiU over all
the graphs (which is the first term of the objective function in Eq. (3.11)), the vertex connectivity
in the individual graphs tends to be preserved in U . In this case, the smaller the projection distance
between U and the individual subspaces, the more representative it is for all graph layers.

Finally, we note that the proposed merging framework can be easily extended to take into
account the relative importance of each individual graph layer with respect to the specific learning
purpose. For instance, when prior knowledge about the importance of the information in the
individual graphs is available, we can adapt the value of the regularization parameter ↵ in Eq. (3.11)
to the different layers such that the representative subspace is closer to the most informative
subspace representations. Also, we do not incorporate specific prior knowledge about vertex pairs
that must, or must not be linked in the design of the merging framework. That could be done by
introducing additional graph layers that only consist of such connections, which would certainly be
emphasized by the spectral (subspace) representations computed from these graph layers. We can
then choose rather large regularization parameters for these layers in the optimization problem to
enforce such constraints.

3.3.3 Discussion of the distance function

Interestingly, the choice of projection distance as a similarity measure between subspaces in the
optimization problem of Eq. (3.11) can be well justified from information-theoretic and statistical
learning points of view. The first justification is from the work of Hamm et al. [60], in which
the authors have shown that the Kullback-Leibler (K-L) divergence [70], which is a well-known
similarity measure between two probability distributions in information theory, is closely related
to the squared projection distance. More specifically, the work in [60] suggests that, under certain
conditions, we can consider a linear subspace Ui as the “flattened” limit of a Factor Analyzer
distribution pi [51]:

pi : N (ui, Ci), Ci = UiUi
T
+ �2In, (3.14)

where N stands for the normal distribution, ui 2 Rn is the mean, Ui 2 Rn⇥k is a full-rank matrix
with n > k > 0 (which represents the subspace), � is the ambient noise level, and In is the identity
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matrix of dimension n. For two subspaces Ui and Uj , the symmetrized K-L divergence between the
two corresponding distributions pi and pj can then be rewritten as:

dKL(pi, pj) =
1

2�2
(�2

+ 1)

(2k � 2tr(UiUi
TUjUj

T
)), (3.15)

which is of the same form as the squared projection distance when we ignore the constant factor
(see Eq. (3.8)). This shows that, if we take a probabilistic view of the subspace representations
{Ui}Mi=1, then the projection distance between subspaces can be considered consistent with the K-L
divergence.

The second justification is from the recently proposed Hilbert-Schmidt Independence Criterion
(HSIC) [57], which measures the statistical dependence between two random variables. Given
KX1 ,KX2 2 Rn⇥n that are the centered Gram matrices of some kernel functions defined over two
random variables X1 and X2, the empirical estimate of HSIC is given by

dHSIC(X1,X2) = tr(KX1KX2). (3.16)

That is, the larger the dHSIC(X1,X2), the stronger the statistical dependence between X1 and X2.
In our case, using the idea of spectral embedding, we can consider the rows of the individual
subspace representations Ui and Uj as two particular sets of sample points in Rk, which are drawn
from two probability distributions governed by the information on vertex connectivity in Gi and
Gj , respectively. In other words, the sets of rows of Ui and Uj can be seen as realizations of two
random variables Xi and Xj . Therefore, we can define the Gram matrices of linear kernels on Xi

and Xj as:

KXi = (Ui
T
)

T
(Ui

T
) = UiUi

T ,KXj = (Uj
T
)

T
(Uj

T
) = UjUj

T . (3.17)

Combining Eq. (3.16) and Eq. (3.17), we can see that:

dHSIC(Xi,Xj) = tr(UiUi
TUjUj

T
) = k � d2proj(Ui, Uj). (3.18)

This shows that the projection distance between subspaces Ui and Uj can be interpreted as the neg-
ative dependence between Xi and Xj , which reflect the information provided by the two individual
graph layers Gi and Gj .

Therefore, from both information-theoretic and statistical learning points of view, the smaller
the projection distance between two subspace representations Ui and Uj , the more similar the
information in the respective graphs that they represent. As a result, the representative subspace
(the solution U to the problem of Eq. (3.11)) can be considered as a subspace representation that
“summarizes” the information from the individual graph layers, and at the same time captures the
intrinsic relationships between the vertices in the graph. As one can imagine, such relationships
are of crucial importance in our multi-layer graph analysis.
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3.4 Clustering on multi-layer graphs

In Section 3.3, we introduced a novel framework for merging subspace representations from the
individual layers of a multi-layer graph, which leads to a representative subspace that captures the
intrinsic relationships between the vertices of the graph. This representative subspace provides a
low dimensional form that can be used in several applications involving multi-layer graph analysis.
In particular, we study now one such application, namely the problem of clustering vertices in a
multi-layer graph7. We further analyze the behavior of the proposed clustering algorithm with
respect to the properties of the individual graph layers (subspaces).

3.4.1 Clustering algorithm

As we have already seen in Section 3.2, the success of the spectral clustering algorithm relies on
the transformation of the information contained in the graph structure into a spectral embedding
computed from the graph Laplacian matrix, where each row of the embedding matrix (after nor-
malization) is treated as the coordinates of the corresponding vertex in a low dimensional subspace.
In our problem of clustering on a multi-layer graph, the setting is slightly different, since we aim
at finding a unified clustering of the vertices that takes into account information contained in all
the individual layers of the multi-layer graph. However, the merging framework proposed in the
previous section can naturally be applied in this context. In fact, it leads to a natural solution to
the clustering problem on multi-layer graphs. In more details, similarly to the spectral embedding
matrix in the spectral cluttering algorithm, which is a subspace representation for one individual
graph, our merging framework provides a representative subspace that contains the information
from the multiple graph layers. Using this representation, we can then follow the same steps of
spectral clustering to achieve the final clustering of the vertices with a k-means algorithm. The
proposed clustering algorithm is summarized in Algorithm 2.

It is clear that Algorithm 2 is a direct generalization of Algorithm 1 in the case of multi-layer
graphs. The main ingredient of our clustering algorithm is the merging framework proposed in
Section 3.3, in which information from individual graph layers is summarized, prior to the actual
clustering process (i.e., the k-means step) is implemented. This provides an example that illustrates
how our generic merging framework can be applied to specific learning tasks on multi-layer graphs.

3.4.2 Analysis of the proposed algorithm

We now analyze the behavior of the proposed clustering algorithm under different conditions.
Specifically, we first outline the link between subspace distance and clustering quality, and then
compare the clustering performances in two scenarios where the relationships between the individual
subspaces {Ui}Mi=1 are different. Finally, we discuss about the relationships between the choice of
the number of clusters and the clustering performance.

As we have seen in Section 3.3, the rows of the subspace representations {Ui}Mi=1 can be viewed
as realizations of random variables {Xi}Mi=1 governed by the graph information. At the same time,

7In addition to clustering, which is in an unsupervised fashion, the proposed framework can also be applied in a
semi-supervised fashion, to problems such as classification or manifold alignment (see for example the work in [61]).
It can also be useful in ranking where the intrinsic relationships between entities, which are summarized from the
individual graph layers, would certainly help.
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Algorithm 2 Spectral Clustering on Multi-Layer Graphs (SC-ML)
1: Input:

{Wi}Mi=1: n⇥ n weighted adjacency matrices of individual graph layers {Gi}Mi=1
k: target number of clusters
↵: regularization parameter

2: Compute the normalized Laplacian matrix Lsymi and the subspace representation Ui for each
Gi.

3: Compute the modified Laplacian matrix Lmod =

PM
i=1 Lsymi � ↵

PM
i=1 UiUi

T .
4: Compute U 2 Rn⇥k that is the matrix containing the first k eigenvectors u1, . . . , uk of Lmod as

columns. Normalize each row of U to get Unorm.
5: Let yj 2 Rk (j = 1, . . . , n) be the transpose of the j-th row of Unorm.
6: Cluster yj in Rk into C1, . . . , Ck using the k-means algorithm.
7: Output:

C1, . . . , Ck: The cluster assignment

spectral clustering directly utilizes Ui for the purpose of clustering. Therefore, {Xi}Mi=1 can be
considered as random variables that control the cluster assignment of the vertices8. Since the
projection distance can be understood as the negative statistical dependence between such random
variables, the minimization of the projection distance in Eq. (3.11) is equivalent to the maximization
of the dependence between the random variable from the representative subspace U and the ones
from the individual subspaces {Ui}Mi=1. The optimization in Eq. (3.11) can then be seen as a solution
that tends to produce a clustering with the representative subspace that is consistent with those
computed from the individual subspace representations.

We now discuss how the relationships between the individual subspaces possibly affect the
performance of our clustering algorithm SC-ML. Intuitively, since the second term of the objective
function in Eq. (3.11) represents the distance between the representative subspace U and all the
individual subspaces {Ui}Mi=1, it tends to drive the solution towards those subspaces that themselves
are close to each other on the Grassmann manifold. To show it more clearly, let us consider two
toy examples. The first example is illustrated in Fig. 3.4, where we have a 3-layer graph with
the individual layers G1, G2 and G3 sharing the same set of vertices. For the sake of simplicity,
all the edge weights are set to one. In addition, three groundtruth clusters are indicated by the
colors of the vertices. Table 3.1(a) shows the performances of Algorithm 1 with individual layers
as well as Algorithm 2 for the multi-layer graph9, in terms of the Normalized Mutual Information
(NMI) [88] with respect to the groundtruth clusters. Table 3.1(b) shows the projection distances
between various pairs of subspaces. It is clear that the layers G1 and G2 produce better clustering

8The columns of U are a rotation of the columns of a cluster indicator matrix by D
1
2 . It has been discussed in

[134] that if there exist vertices of particularly low degrees, this rotation would make the columns of U differ from
the indicator vectors. However, according to [134], one can argue that such low-degree vertices can be considered
as outliers anyway, which does not affect much the global clustering quality. Therefore, the columns of U are quite
informative about the global clustering structure.

9We choose the value of the regularization parameter ↵ that leads to the best possible clustering performance. For
the results presented in both Table 3.1 and Table 3.2, the regularization parameter is set to be 0.5. More discussions
about the choices of this parameter are presented in Section 3.5.
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Figure 3.4: A 3-layer graph with unit edge weights for toy example 1. The colors indicate the groundtruth
clusters.

Table 3.1: Analysis of toy example 1.

(a) clustering performances for toy example 1

(b) subspace distances for toy example 1

quality, and that the distance between the corresponding subspaces is smaller. However, the vertex
connectivity in layer G3 is not very consistent with the groundtruth clusters and the corresponding
subspace is further away from the ones from G1 and G2. In this case, the solution found by SC-
ML is enforced to be close to the consistent subspaces from G1 and G2, hence provides satisfactory
clustering results (NMI = 1 represents perfect recovery of groundtruth clusters). Let us now
consider a second toy example, as illustrated in Fig. 3.5. In this example we have two layers G2

and G3 with relatively low quality information with respect to the groundtruth clustering of the
vertices. As we see in Table 3.2(b), their corresponding subspaces are close to each other on the
Grassmann manifold. The most informative layer G1, however, represents a subspace that is quite
far away from the ones from G2 and G3. At the same time, we see in Table 3.2(a) that the clustering
results are better for the first layer than for the other two less informative layers. If the quality of
the information in the different layers is not considered in computing the representative subspace,
SC-ML enforces the solution to be closer to two layers of relatively lower quality, which results in
unsatisfactory clustering performance in this case.

The analysis above implies that the proposed clustering algorithm works well under the following
assumptions: (i) the majority of the individual subspaces are relatively informative, namely, they
are helpful for recovering the groundtruth clustering, and (ii) they are reasonably close to each
other on the Grassmann manifold, namely, they are expected to provide complementary but not
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Figure 3.5: A 3-layer graph with unit edge weights for toy example 2. The colors indicate the groundtruth
clusters.

Table 3.2: Analysis of toy example 2.

(a) clustering performances for toy example 2

(b) subspace distances for toy example 2

contradictory information. When this is the case, the majority of informative views tend to agree
with each other, and the information contained in these informative views is likely to be mainly
captured by k-dimensional subspaces. The global clustering structure will then mainly be defined by
the informative views that admit a value of k for clustering, even though k might not be optimal for
each individual view independently (in fact we do not assume that k is optimal for each individual
view. Therefore, without loss of generality, it is reasonable for the proposed framework to consider
a universal k for the subspace dimension across different views).

In Algorithm 2 we assume that the target number of clusters k is known a priori. Although
this is a reasonable assumption done in many popular clustering algorithms, there are practical
situations where k is not defined a priori. Traditionally, in spectral methods we could use the
eigen-gap of the graph Laplacian matrices as a heuristic to choose the number of clusters [134]. In
the case of Algorithm 2, if the majority of the informative views agree with each other, one could
estimate the number of clusters k such that the gap between the k-th and the (k+1)-th eigenvalues
is reasonably large for all these views. We remark, however, that after the merging of multiple
layers a particular value of k could emerge as a good choice, which is not necessarily optimal for
all the individual views, as in the first toy example illustrated in Fig. 3.6.

Finally, we note that we could use the information about the disagreement between views to
tune the regularization parameters in the optimization problem to promote better final clustering
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Figure 3.6: Clustering performances of Algorithm 1 on the individual graph layers and Algorithm 2 on
the multi-layer graph in the first toy example, under different values of k (number of clusters).

quality. For example, if one view is significantly different or contradictory from other views, we
tend to discard it or choose a rather small regularization parameter to attenuate its influence on
the final clustering quality.

3.5 Experimental results

In this section, we evaluate the performance of the SC-ML algorithm presented in Section 3.4
on one synthetic and two real world datasets. We first describe the datasets that we use for the
evaluation, and then explain the various clustering algorithms that we adopt in the performance
comparisons. We finally present the results in terms of three evaluation criteria as well as some
discussions.

3.5.1 Datasets

The first dataset that we use is a synthetic dataset, where we have three point clouds in R2 forming
the English letters “N”, “R” and “C” (shown in Fig. 3.7). Each point cloud is generated from a
five-component Gaussian mixture model with different values for the mean and covariance of the
Gaussian distributions10, where each component represents a class of 500 points with specific color.
A 5-nearest neighbor graph is then constructed for each point cloud by assigning the weight of the
edges connecting two vertices (points) as the reciprocal of the Euclidean distance between them.
This gives us a 3-layer graph of 2500 vertices, where each graph layer is from a point cloud forming

10For letter “N”, the mean and covariance of the five components are [-1 0], [1 3], [3 2], [6 3], [4 0], and [1 0.3;
0.3 1], [0.6 0.1; 0.1 0.5], [0.5 -0.1; -0.1 1.5], [0.8 0.3; 0.3 0.4], [0.5 0.2; 0.2 1.5], respectively. For letter “R”, the mean
and covariance of the five components are [1 0], [0 2], [2 4], [4 3], [4 0], and [0.8 -0.2; -0.2 0.8], [0.3 0.1; 0.1 0.7], [1
0.3; 0.3 0.2], [0.5 -0.1; -0.1 1.5], [1.2 -0.4; -0.4 0.6], respectively. For letter “C”, the mean and covariance of the five
components are [1 0], [0 1], [2 3], [4 3], [5 -1], and [1.2 -0.6; -0.6 0.8], [0.6 0.1; 0.1 0.5], [1.2 0.3; 0.3 0.2], [1.5 -0.3; -0.3
0.5], [1.6 0.3; 0.3 0.2], respectively.
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Figure 3.7: Three five-class point clouds in R2 forming English letters “N”, “R” and “C”.

a particular letter. The goal with this dataset is to recover the five clusters (indicated by five colors)
of the 2500 vertices using the three graph layers constructed from the three point clouds.

The second dataset contains data collected during the Lausanne Data Collection Campaign [67]
by the Nokia Research Center (NRC) in Lausanne. This dataset contains the mobile phone data
of 136 users living and working in the Lake Léman region in Switzerland, recorded over a one-year
period. Considering the users as vertices in the graph, we construct three graphs by measuring
the proximities between these users in terms of GPS locations, Bluetooth scanning activities and
phone communication. More specifically, for GPS locations and Bluetooth scans, we measure how
many times two users are sufficiently close geographically (within a distance of roughly 1 km), and
how many times two users’ devices have detected the same Bluetooth devices, respectively, within
30-minute time windows. Aggregating these results for a one-year period leads to two weighted
adjacency matrices that represent the physical proximities of the users measured with different
modalities. In addition, an adjacency matrix for phone communication is generated by assigning
edge weights depending on the number of calls between any pair of two users. These three adjacency
matrices form a 3-layer graph of 136 vertices, where the goal is to recover the eight groundtruth
clusters that have been constructed from the users’ email affiliations.

The third dataset is a subset of the Cora bibliographic dataset11. This dataset contains 292
research papers from three different fields, namely, natural language processing, data mining and
robotics. Considering papers as vertices in the graph, we construct the first two graphs by measuring
the similarities among the title and the abstract of these papers. More clearly, for both title and
abstract, we represent each paper by a vector of non-trivial words using the Term Frequency-Inverse
Document Frequency (TF-IDF) [88] weighting scheme, and compute the cosine similarities between
every pair of vectors as the edge weights in the graphs. Moreover, we add a third graph which
reflects the citation relationships among the papers, namely, we assign an edge with unit weight
between papers A and B if A has cited or been cited by B. This results in a 3-layer graph of 292
vertices, and the goal in this dataset is to recover the three clusters corresponding to the different
fields the papers belong to.

The adjacency matrices of the graphs are visualized as the spy plots shown in Fig. 3.8(a), (b)
11Available online at “http://people.cs.umass.edu/~mccallum/data.html” under category “Cora Research Paper

Classification”.



3.5 Experimental results 35

(a)

(b)

(c)

Figure 3.8: Spy plots of three adjacency matrices in (a) the synthetic dataset, (b) the NRC dataset, and
(c) the Cora dataset.

and (c) for the synthetic, NRC and Cora dataset, respectively, where the orderings of the vertices
are made consistent with the groundtruth clusters12. A spy plot is a global view of a matrix where
every non-zero entry in the matrix is represented by a blue dot. As shown in these figures, we see
clearly the clusters in the synthetic and Cora datasets, while the clusters in the NRC dataset are
not very clear. The reason for this is that, in the NRC dataset, the email affiliations used to create
the groundtruth clusters only provide approximative information.

12The adjacency matrix for GPS proximity in the NRC dataset is thresholded for better illustration.
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3.5.2 Clustering algorithms

We now explain briefly the clustering algorithms in our comparative performance analysis along
with some implementation details. We adopt three baseline algorithms as well as a state-of-the-art
technique, namely the co-regularization approach introduced in [73]. As we shall see, there are
interesting connections between the competitor clustering schemes and the proposed algorithm.
First of all, we describe some implementation details of the proposed SC-ML algorithm and the
co-regularization approach in [73]:

• SC-ML: Spectral Clustering on Multi-Layer graphs, as presented in Section 3.4. The im-
plementation of SC-ML is pretty straightforward, and the only parameter to choose is the
regularization parameter ↵ in Eq. (3.11). In our experiments, we choose the value of ↵ through
multiple empirical trials and report the peak and average performances of 20 test runs13. We
will discuss the choice of this parameter later in this section.

• SC-CoR: Spectral Clustering with Co-Regularization proposed in [73]. We follow the same
practice as in [73] to choose the most informative graph layer to initialize the alternating
optimization scheme in SC-CoR. The stopping criteria for the optimization process is chosen
such that the optimization stops when changes in the objective function are smaller than 10

�5.
Similarly, we choose the value of the regularization parameter ↵ in SC-CoR through multiple
empirical trials. As in [73], the parameter ↵ is fixed in the optimization steps for all graph
layers.

Next, we introduce three baseline comparative algorithms that work as follows:

• SC-Single: Spectral Clustering (Algorithm 1) applied on a single graph layer, where the
graph is chosen to be the one that leads to the best clustering results.

• SC-Sum: Spectral clustering applied on a global matrix W that is the summation of the
normalized adjacency matrices of the individual layers:

W =

M
X

i=1

D
� 1

2
i WiD

� 1
2

i . (3.19)

• SC-KSum: Spectral clustering applied on the summation K of the spectral kernels [128] of
the adjacency matrices:

K =

M
X

i=1

Ki with Ki =

d
X

m=1

uimuim
T , (3.20)

where n is the number of vertices, d⌧ n is the number of eigenvectors used in the definition
of the spectral kernels Ki, and uim represents the m-th eigenvector of the Laplacian Lsymi
for graph Gi. To make it more comparable with spectral clustering, we choose d to be the
target number of clusters in our experiments.

13The values of ↵ that achieve the peak performances are 0.695, 0.42 and 0.44 for the synthetic, NRC and Cora
datasets, respectively.
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3.5.3 Clustering results

We evaluate the performance of the different clustering algorithms with three different criteria,
namely Purity, Normalized Mutual Information (NMI) and Rand Index (RI) [88]. Specifically, let
⌦ = {!1, . . . ,!k} be the computed clusters and C = {c1, . . . , ck} be the intended groundtruth
classes. First, Purity is defined as:

Purity(⌦, C) =

1

n

X

k

max
j

|!k \ cj |, (3.21)

where n is the total number of entities, and |!k\cj | denotes the number of entities in the intersection
of !k and cj . Next, Normalized Mutual Information is defined as:

NMI(⌦, C) =

I(⌦;C)

[H(⌦) +H(C)]/2
, (3.22)

where I is the mutual information between clusters ⌦ and classes C , and H(⌦) and H(C) represent
the entropies of the clusters and classes, respectively. Finally, when interpreting clustering as a series
of binary decisions on each pair of entities, Rand Index is defined as:

RI(⌦, C) =

TP + TN
TP + FP + FN + TN

, (3.23)

where TP,TN,FP,FN represent true positive, true negative, false positive and false negative deci-
sions, respectively.

The clustering results are summarized in Table 3.3 and Table 3.4 for the peak and average
performances of all the algorithms out of 20 test runs, respectively. For each scenario, the best
result is highlighted in bold font. First, as expected, we see that the clustering performances for
the synthetic and Cora datasets are higher than that for the NRC dataset, which indicates that
the latter one is indeed more challenging due to the approximative groundtruth information. Sec-
ond, it is clear that SC-ML and SC-CoR generally outperform the baseline approaches for the
three datasets. More specifically, although both SC-Sum and SC-KSum indeed improve the
clustering quality compared to clustering with individual graph layers, they only provide limited
improvement, and the potential drawback for both of the summation methods is that they can
be considered as similar to building a simple average graph for representing the different layers of
information. Therefore, depending on data characteristics in specific datasets, this might smooth
out the particular information provided by individual layers, and thus penalize the clustering per-
formance. In comparison, SC-ML and SC-CoR always achieve significant improvements in the
clustering quality compared to clustering using individual graph layers. Third, SC-ML achieves
very competitive performance compared to SC-CoR for all the three evaluation criteria on the
three datasets, with a much simpler implementation scheme and lower computational complexity,
which we will explain in more details in the following section. Moreover, the standard deviations
shown in Table 3.4 help demonstrate the statistical significance of the clustering results obtained
by SC-ML, especially in the case of the NRC and Cora datasets where the graphs are of relatively
smaller sizes.

In addition to the clustering results provided above, we have computed and shown in Table 3.5
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Table 3.3: Peak performances of different clustering algorithms out of 20 test runs on one synthetic and
two real world datasets.

Table 3.4: Average performances of different clustering algorithms out of 20 test runs on one synthetic and
two real world datasets. The numbers in parenthesis are the standard deviations.

the confusion matrices based on the outcomes of the five clustering algorithms on the NRC dataset,
as an illustrative example of the clustering qualities. The columns of the confusion matrices rep-
resent the predicted clusters while the rows represent the intended classes. The diagonal entries
represent the numbers of entities that have been correctly identified for each class. By summing up
the diagonal entries, it is clear that overall SC-ML best reveals the eight classes in the groundtruth
data.

Finally, the eigen-gap is considered as a heuristic indicator of the clusterability of the vertices
into k subsets. To understand better the benefits of multi-layer graph clustering compared to
clustering with individual graph layers, we have computed the gap between the k-th and the (k+1)-
th eigenvalues of the graph Laplacian matrices corresponding to individual and merged graph layers,
where k is the target number of clusters. Specifically, although the proposed merging framework
does not lead directly to a graph topology, but rather a representative subspace, we created a
“virtual” graph by using a Gaussian kernel together with the Euclidean distances between the
low dimensional representations of every pair of vertices in the representative subspace. The same
method can be used to create a “virtual” graph in the co-regularization approach. We then compared
the eigen-gaps of the individual graph Laplacian matrices and the eigen-gaps computed using the
“virtual” graphs, and the results for different datasets are shown in Table 3.6. As we can see,
clustering on multi-layer graphs always leads to larger eigen-gaps, which is indicative of better
clustering structures.
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Table 3.5: Confusion matrices for different clustering algorithms on the NRC dataset.

3.5.4 Further discussions

We now present some discussions on parameter selection in SC-ML and its connections to the
competitor clustering schemes. First of all, we discuss the influence of the choice of the regular-
ization parameter ↵ on the performance of SC-ML. In Fig. 3.9, we compare the performances of
SC-ML and SC-CoR in terms of NMI under different values of parameter ↵ in the corresponding
implementations. As we can see, in our experiments, SC-ML achieves the best performances when
↵ is chosen between 0.4 and 0.6, and it outperforms SC-CoR for a large range of ↵ for the synthetic
and NRC datasets. For the Cora dataset, the two algorithms achieve very similar performances at
different values of ↵, but SC-ML permits a larger range of parameter selection. Furthermore, it is
worth noting that the optimal values for ↵ in SC-ML lie in similar ranges across different datasets,
thanks to the adoption of the normalized graph Laplacian matrix whose spectral norm is upper
bounded by 2. In summary, this shows that the performance of SC-ML is reasonably stable with
respect to the parameter selection.

The role of the parameter ↵ can also be understood by comparing SC-ML with SC-Sum and
SC-KSum. Specifically, SC-Sum can be considered as taking an average of the graph Laplacian
matrices of the individual graph layers, while SC-KSum takes the average of the corresponding low-
dimensional spectral representations. These are exactly the two parts of the objective function in
the optimization problem of Eq. (3.11), whose relative importance is weighted by ↵. Theoretically,



40 Chapter 3. Learning with multi-layer graphs: Subspace-based methods

Table 3.6: Eigen-gap between the k-th and the (k + 1)-th eigenvalues of the graph Laplacian matrices
from the individual graph layers and the “virtual” graphs computed by SC-CoR and SC-ML on different
datasets.

Figure 3.9: Comparison of performances (in terms of NMI ) of SC-ML and SC-CoR under different
values of parameter ↵ in the corresponding implementations.

on the one hand, if we set ↵ to be zero, the solution of the problem becomes equivalent to the
one found by SC-Sum; on the other hand, if we let ↵ go to infinity, then the solution becomes
equivalent to the one found by SC-KSum. This intuition is confirmed by the results shown in
Fig. 3.10. As we can see, SC-ML achieves the same performances as SC-Sum and SC-KSum
when ↵ is chosen to be 0 and very large, respectively. More importantly, for a wide and stable
range of choices of ↵, it leads to better clustering performance than these two baseline schemes.

Finally, we take a closer look at the comparisons between SC-ML and SC-CoR. Although
the latter is not developed from the viewpoint of subspace analysis on the Grassmann manifold, it
can actually be interpreted as a process in which individual subspace representations are updated
based on the same distance analysis as in our framework. In this sense, SC-CoR uses the same
distance as ours to measure similarities between subspaces. The merging solution however leads
to a different optimization problem than that of Eq. (3.11), which is based on a slightly different
merging philosophy. Specifically, it enforces the information contained in the individual subspace
representations to be consistent with each other. An alternating optimization scheme optimizes, at
each step, one subspace representation, while fixing the others. This can be interpreted as a process
in which one subspace at each step becomes closer to other subspaces in term of the projection
distance on the Grassmann manifold. Upon convergence, all initial subspaces are “brought” closer to
each other and the final subspace representation from the most informative graph layer is considered
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Figure 3.10: Comparison between performances (in terms of NMI ) of SC-ML, SC-Sum and SC-KSum

under different values of parameter ↵.

(a) (b)

Figure 3.11: Illustrations of graph layer merging. (a) SC-CoR: iterative update of the individual subspace
representations. The superscript [N ] represents the number of iterative steps on each individual subspace
representation. The final update of the subspace representation for the most informative graph layer (U [N ]

1 ,
shown as a star) is considered as a good merging solution; (b) SC-ML: the representative subspace (U ,
shown as a star) is found in one step.

as the one that combines information from all the graph layers efficiently. Two illustrations of SC-
CoR and SC-ML are shown in Fig. 3.11(a) and (b), respectively. Therefore, on the one hand,
results for both approaches demonstrate the benefit of using our distance analysis on the Grassmann
manifold for merging information in multi-layer graphs. Indeed, for both approaches, since the
distances between the solutions and the individual subspaces are minimized without sacrificing too
much of the information from individual graph layers, the resulting combinations can be considered
as good summarizations of the multiple graph layers. On the other hand, however, SC-ML differs
from SC-CoR mainly in the following aspects. First, the alternating optimization scheme in SC-
CoR focuses only on optimizing one subspace representation at each step, and it requires a sensible
initialization to guarantee that the algorithm ends up at a good local minimum for the optimization
problem; it also does not guarantee that all the subspace representations converge to one point on
the Grassmann manifold (it uses the final update of the most informative layer for clustering)14.
In contrast, SC-ML directly finds a single representation through a unique optimization of the
representative subspace with respect to all graph layers jointly, which does not need alternating
optimization steps and careful initializations. These are the possible reasons why SC-ML performs

14In [73], the authors have also proposed a “centroid-based co-regularization approach” that introduces a consensus
representation. However, such a representation is still computed via an alternating optimization scheme, which needs
a sensible initialization and keeps the same iterative nature.
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slightly better than SC-CoR for the synthetic and NRC datasets in our experiments. Second, it is
worth noting from a computational point of view that, the performance improvements are achieved
with lower computational complexity, since the optimization process involved in SC-ML is much
simpler than that in SC-CoR. Specifically, the iterative nature of SC-CoR requires solving an
eigenvalue problem for MN times, where M and N are the number of individual graphs and the
number of iterations needed for the algorithm to converge, respectively. In contrast, since SC-ML
aims at finding a globally representative subspace without modifying the individual ones, it needs
to solve an eigenvalue problem only once.

3.6 Conclusions

In this chapter, we provided a framework for analyzing information provided by multi-layer graphs
and for clustering vertices of graphs in rich datasets. Our generic approach is based on the trans-
formation of information contained in the individual graph layers into subspaces on the Grassmann
manifold. The estimation of a representative subspace can then be essentially considered as the
problem of finding a good summarization of multiple subspaces using distance analysis on the
Grassmann manifold. The proposed framework can be applied to various learning tasks where
multiple subspace representations are involved. Under appropriate and realistic assumptions, we
show that it leads to a novel clustering algorithm on multi-layer graphs that is competitive to the
state-of-the-art techniques.

The analysis presented in this chapter can be extended in the following directions. First, the
subspace representation inspired by spectral clustering is certainly not the only valid representation
for the graph information. For example, one alternative can be the subspace derived from the
modularity matrix of the graph as suggested in [97, 98]. Other possibilities can be subspaces
defined via various kernels or dictionaries defined on graphs based on specific low-pass and high-pass
filterings of the eigenvalues of the graph Laplacian in the graph spectral domain. The latter choice
is more from the viewpoint of signal processing on graphs, which we will discuss in more details in
Chapter 5. It is thus an interesting problem to find the most appropriate subspace representation for
the data available. Second, instead of finding a k-dimensional representative subspace in one shot
by solving an optimization problem (in this chapter the problem of Eq. (3.11)), it might be possible
to define such a representative subspace in an iterative fashion, where k 1-dimensional subspaces
are defined recursively, each one being orthogonal to the previously chosen subspace(s). Third,
although the proposed framework in this chapter can be easily extended to take into account prior
knowledge about the respective importance of the individual layers, these layers are still treated
in an equal manner in the optimization problem. It would be interesting to see whether one can
define a framework where the individual layers play different roles in the merging framework. In
the next chapter, we propose an alternative solution that goes along this third direction.



Chapter 4

Learning with multi-layer graphs:

Spectral regularization

4.1 Introduction

In the previous chapter, we proposed a framework for merging the information from individual
layers of the multi-layer graph, based on the analysis of subspace distances on the Grassmann
manifold. This can be considered as a machine learning approach to the problem of learning of
multi-layer graphs. As we have seen before in the optimization problem of Eq. (3.11), different
layers are treated in an equal manner and are combined in a linear fashion, where the respective
importance of the individual layers is controlled by the regularization parameter for each layer in
the linear combination. This approach however might be limited in challenging scenarios where
individual layers do not have strong agreement with each other and an optimal solution could be
difficult to find by a weighted averaging scheme. In such cases, we may need a better way to take
into account the respective importance of the layers. This motivates us to propose in this chapter
an alternative solution to the problem of merging multiple graph layers, in which individual layers
play different roles in the merging framework based on their respective importance.

To enable such a framework, we propose to model the information contained in the different
layers in different forms. Our idea is based on a more detailed understanding of the behaviors of the
eigenvectors of the graph Laplacian matrix from a signal processing perspective. Specifically, we
observe that the first k eigenvectors of the graph Laplacian contain the graph information, and at
the same time they can be considered as smooth signals defined on the vertex set of the graph. This
inspired us to seek for a set of smooth signals that are jointly smooth on the individual layers, hence
capture the information contained in all the layers. In more details, given two graph layers, we
propose a spectral regularization framework in which we consider the eigenvectors of the Laplacian
matrix from one graph layer as signals defined on another layer. By enforcing the “smoothness”
of such signals on the graph through a novel regularization framework, we are able to find a set
of “joint eigenvectors” that forms a joint low dimensional embedding of the vertices in the graph,
which captures the characteristics of both layers. We call such an embedding a “joint spectrum”1

1Strictly speaking, the spectrum of the graph is usually defined as the set of eigenvalues of the Laplacian matrix
or the adjacency matrix of the graph [29]. In this chapter, we use the intuitive terminology of a “joint spectrum” to
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of the two individual layers. We then propose an information-theoretic approach to generalize this
framework to the case in which we have more than two graph layers, where the multiple layers are
combined in a recursive way.

The concept of a “joint spectrum” is generally helpful in the analysis of data that can be
conveniently modeled as a multi-layer graph. For example, it can lead to the generalization of the
classical spectral analysis frameworks to multi-dimensional cases. In this chapter, we introduce a
novel method based on the proposed spectral regularization framework for clustering vertices in the
multi-layer graph. We evaluate the performance of the proposed clustering method on the same
datasets used in the previous chapter, and demonstrate its competitive clustering performance.
The main difference with the approach proposed in the previous chapter is that, the spectral
regularization framework permits to taking into account the respective importance of individual
layers in a unique and convincing way. This is potentially helpful in challenging clustering tasks
on multi-layer graphs where an optimal clustering solution might be difficult to find by a weighted
averaging scheme.

The rest of the chapter is organized as follows. In Section 4.2, we describe in details the proposed
spectral regularization approach for merging multiple graph layers. In Section 4.3, we introduce
our novel clustering method based on spectral regularization. We show experimental results of our
clustering method in Section 4.4 and conclude the chapter in Section 4.5.

4.2 Spectral regularization

In this section, we describe the proposed spectral regularization framework for merging individual
layers in the multi-layer graph, where we treat the individual layers based on their respective
importance. As a consequence, this method helps preserve specificities of each layer in the merging
framework.

4.2.1 Intuition

Our idea is based on a more detailed understanding of the behavior of the eigenvectors of the graph
Laplacian matrix. Consider a weighted and connected graph G with n vertices.. From spectral
graph theory [29], we know that the eigenvectors u1, . . . , un of the graph Laplacian matrix L has
the following properties:

1. The first eigenvalue �1 is 0 and the corresponding eigenvector u1 is a constant vector;

2. For i = 2, . . . , n, ui satisfies: ui ? 1 and ||ui|| = 1.

Now consider the problem of mapping the vertices of graph G on a 1-dimensional line such that
connected vertices stay as close as possible on the line, with the condition that the mapping vector
satisfies the second property above. In other words, we want to find a 1-dimensional mapping,

denote a joint spectral embedding of the individual graph layers.
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namely, a scalar signal f : V ! Rn, that minimizes the following term:

arg min

f2Rn

n

n
X

i,j

wi,j(f(i)� f(j))2
o

,

s.t. f ? 1, ||f || = 1,

(4.1)

where f(i) and f(j) represent the mappings of vertices i and j respectively, and wi,j is the weight
of the edge between the two vertices. The constraints on the norm of f and the orthogonality
to the constant one vector 1 are introduced to make the solution nontrivial and unique, and can
be explained from a graph-cut point of view [134]. Moreover, since eigenvectors of the Laplacian
matrix can be viewed as signals defined on the vertices of the graph, these conditions suggest that
they can be considered as candidate solutions to the problem of Eq. (4.1). In fact, we can rewrite
Eq. (4.1) in terms of the graph Laplacian matrix L so that an equivalent problem is:

arg min

f2Rn
fTLf, s.t. f ? 1, ||f || = 1. (4.2)

It can be shown by the Rayleigh-Ritz theorem [134] that the solution to the problem of Eq. (4.2) is
u2, the eigenvector that corresponds to the second smallest eigenvalue of L, which is usually called
the Fiedler vector of the graph.

As an illustrative example of such a mapping, a weighted graph G constructed from a 3-
dimensional point cloud and its mapping onto the Fiedler vector u2 are shown in Fig. 4.1(a)
[63, 68, 113]. It can be seen that this mapping indeed keeps the strongly connected vertices as
close as possible on the line. More importantly, it is shown in Zhou et al. [144] that the quadratic
objective in Eq. (4.2) can be viewed as a smoothness measure of the signal f defined on the vertices
of the graph G, that is, f has similar values on the vertices that are strongly connected in the
graph. Therefore, the fact that it minimizes this objective implies that the Fiedler vector u2 is a
smooth signal on the graph. In fact, since we have

uTi Lui = �i, for i = 1, . . . , n, (4.3)

all the first k eigenvectors tend to be smooth on the graph G provided that the first k eigenvalues
are sufficiently small. This is illustrated in Fig. 4.1(b), (c), (d) for u3, u4 and u8, and we can
see that closely related points stay quite close on the mappings they represent. Since these first k
eigenvectors are used to form the low dimensional embedding U in the spectral clustering algorithm,
such smoothness property implies that a set of smooth signals on the graph, such as eigenvectors
of the graph Laplacian matrix, can well represent the graph connectivity.

This inspires us to combine information from multiple graph layers, with the help of a set of
joint eigenvectors that are smooth on all the layers, hence capture all their characteristics. However,
instead of treating all the layers equally, we try to highlight the specificities of different layers.
Therefore, we propose the following methodology. Consider two individual graph layers G1 and G2.
From the smoothness analysis above, we observe that the eigenvectors of the Laplacian matrix from
G1 are smooth signals on G1; in the meantime, since they can also be viewed as signals defined
on G2, we try to enforce their smoothness on G2 as well. This leads to a set of eigenvectors that
are smooth on both layers, namely a jointly smooth spectrum shared by G1 and G2; this spectrum
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(a) mapping onto the eigenvector u2 (b) mapping onto the eigenvector u3

(c) mapping onto the eigenvector u4 (d) mapping onto the eigenvector u8

Figure 4.1: Examples of 1-dimensional mappings of the vertices of a 3-dimensional point cloud graph onto
four eigenvectors of the graph Laplacian (figure from [63]).

captures the characteristics of both graph layers.

4.2.2 Jointly smooth spectrum computation

We propose a spectral regularization framework to compute a jointly smooth spectrum of two graph
layers G1 and G2 by solving the following optimization problem:

arg min

fi2Rn

n

||fi � ui||22 + ↵ · �fi

o

for i = 2, . . . , k, (4.4)

where fi : V ! Rn is a signal defined on the graph, ui is the i-th eigenvector from G1, �fi =

fT
i Lsym2fi is a quadratic term from G2 which measures the smoothness of fi on G2, and the

operator || · ||2 denote the L2-norm. We provide two remarks here. First, since the smoothness
analysis in Section 4.2.1 can be easily generalized from L to Lsym, we follow Zhou et al. [144] to
use Lsym instead of L to define the quadratic smoothness term �fi . Second, we propose to define
ui as the i-th eigenvector of the random walk graph Laplacian Lrw1 from G1. The reason behind
this choice is that the first k eigenvectors of both L and Lrw are the cluster indicator vectors, where
those of Lsym are not [134]. Therefore, although Lsym can also be used here, we choose Lrw to
compute ui, which is more desirable in our framework (more discussions on this will be presented
in Section 4.3). After all, such a choice will not incur an extra eigen-decomposition process, since
the eigenvectors of Lrw is a rotation of those of Lsym by D� 1

2 , where D is the degree matrix of the
graph.
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In the problem of Eq. (4.4), we seek for a signal fi such that it is not only close to the eigenvector
ui that comes from G1, but also sufficiently smooth on G2 in terms of the quadratic smoothness
measure. This promotes the smoothness property of our solution fi on both of the layers, so that
fi can be considered as a joint eigenvector of G1 and G2. The regularization parameter ↵ is used
to balance the trade-off between the data fidelity term and the regularization term in the objective
function. The problem of Eq. (4.4) can be solved efficiently, since it is shown in [144] that it has a
closed form solution:

f⇤
i = µ(Lsym2 + µIn)

�1ui, (4.5)

where µ =

1
↵ and In represents the identity matrix of dimension n. Furthermore, notice that for

each {ui}ki=2 there is an associated optimization problem (except for i = 1 since the first eigenvector
u1 of Lrw is a constant vector), hence by solving all these problems we get a set of approximate
joint eigenvectors2 fi for i = 2, . . . , k. Therefore, they together can be viewed as a jointly smooth
(or a joint) spectrum of G1 and G2. Such a jointly smooth spectrum captures characteristics of
both graph layers.

It is worth noting that G1 and G2 play different roles in our merging framework. Specifically,
G1 is used for the eigen-decomposition process to get the eigenvectors, and G2 is used as the graph
structure for the regularization process3. It is natural to choose the more informative layer as G1.
Therefore, the proposed framework is able to promote specificities of the individual layers in the
merging process by treating them differently. Moreover, we can generalize the above framework
to multi-layer graphs with more than two layers. Specifically, we propose to start with the most
informative graph layer G1, and search for the next layer G2 that maximizes the mutual infor-
mation between G1 and G2. More clearly, the mutual information between two graph layers is
introduced by interpreting clustering from each individual layer as a discrete distribution of the
cluster memberships of the vertices. Therefore, it can be calculated by measuring the mutual infor-
mation between two distributions using Eq. (3.22). Next, after having the combination of the first
two layers, we can repeat the process by maximizing the mutual information between the current
combination and the next selected layer, until we include all the layers in the end. This provides a
greedy approach to compute a jointly smooth spectrum of all layers in the multi-layer graph.

Finally, compared to the approach proposed in Chapter 3, which is along the lines of machine
learning approaches, it is clear that the spectral regularization framework is designed from a signal
processing perspective. Specifically, the graph information in different layers are considered as
signals defined on graphs, and the combination is done by enforcing some desired properties of

2We adopt here the terminology of a set of “approximate joint eigenvectors”, since the precise definition for
“joint eigenvectors” are usually only for commuting matrices with simple spectrum; we also do not require fi to be
orthogonal to each other in our framework.

3As a result, the solution of the problem of Eq. (4.4) would change if we exchange the roles of G1 and G2.
However, if L

sym1 is used for computing ui, then, with the additional constraint that fi are orthogonal to each other,
one can also interpret the problem of Eq. (4.4) as a kind of joint diagonalization, where the exchange of the roles
of G1 and G2 would not bring much difference. To see this more clearly, denote F 2 Rn⇥k and U1 2 Rn⇥k as the
matrices that contain fi and ui as columns, and suppose that there exists an orthogonal matrix A 2 Rk⇥k that
satisfies F = U2A, where U2 2 Rn⇥k contains the top k eigenvectors of L

sym2. In this case, since tr(FTL
sym2F ) =

tr(ATU2
TL

sym2U2A) = tr(AT⇤2A) = tr(⇤2AAT ) which is a constant, the second term of the objective in Eq. (4.4)
can be dropped and one would find an orthogonal matrix A that minimizes ||U2A�U1||2F . This can thus be considered
as an eigenvector alignment problem (which is a special case of the optimization problem in [69]), where exchanging
U1 and U2 would not bring much difference.
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the signals, in this case the smoothness property. In the next section, we apply the spectral
regularization framework to the clustering problem considered in the previous chapter.

4.3 Clustering on multi-layer graphs via spectral regularization

The joint spectrum found by the proposed spectral regularization framework can be applied to
various learning tasks on the multi-layer graph. Especially, it leads to a straightforward method for
clustering the vertices in the multi-layer graph. More specifically, the joint eigenvectors can be used
to define a joint spectral embedding matrix, similarly to that in the spectral clustering algorithms,
based on which we perform clustering. The proposed clustering algorithm for two graph layers is
summarized in Algorithm 3.

Algorithm 3 Spectral Clustering with Spectral Regularization (SC-SR)
1: Input:

{Wi}2i=1: n⇥ n weighted adjacency matrices of individual graph layers {Gi}2i=1
k: target number of clusters
↵: regularization parameter

2: Compute the random walk graph Laplacian Lrw1 = D1
�1

(D1 �W1).
3: Compute U 2 Rn⇥k that is the matrix containing the first k eigenvectors u1, . . . , uk of Lrw1 as

columns.
4: For i = 2, . . . , k, solve the spectral regularization problem of Eq. (4.4) for each ui and replace

it with the solution fi in U to form the new low dimensional embedding U 0.
5: Let yj 2 Rk (j = 1, . . . , n) be the transpose of the j-th row of U 0.
6: Cluster yi in Rk into C1, . . . , Ck using the k-means algorithm.
7: Output:

C1, . . . , Ck: The cluster assignment

In practice, given more than two graph layers, we use the procedure described in Section 4.2.2
to combine all the layers in a recursive way. It can be seen that our clustering algorithm is a direct
generalization of the spectral clustering algorithm proposed in [116], where, instead of operating
on a single graph, it computes a joint low dimensional embedding of all the individual graph layers
via the spectral regularization framework. To show that the proposed method can indeed lead to
improved clustering performance, in addition to the intuition provided in the previous section, we
further explain as follows the reasons why the spectral regularization framework can be considered
as a good way of combining the spectrum of individual graph layers for clustering.

We first interpret the combination of multiple layers from the viewpoint of label propagation
[146, 151, 16, 147], which is proven to be an effective approach for graph-based semi-supervised
learning. In label propagation, one usually has a similarity graph whose vertices represent entities
and edges reflect the pairwise relationships between them. We let the initial labels of the vertices
propagate towards their neighboring vertices to make inference, based on the strength of relation-
ships between them and their neighbors. This is exactly what the spectral regularization framework
in Eq. (4.4) does. More clearly, the optimization problem of Eq. (4.4) can be solved through an
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Figure 4.2: Illustration of the label propagation interpretation of the spectral regularization framework:
The solution fk

⇤ is found by letting the values of the eigenvector uk from G1, which is a cluster indicator
vector, propagate linearly on the topology of G2. In this figure, the values of uk and fk

⇤ associated with
the vertices are color-coded.

iterative process, where in each iteration we have for every vertex v 2 V :

(fi(v))
[t+1]  �((In � Lsym2)f

[t]
i )(v) + (1� �)ui(v), (4.6)

where ui contains the initial values at the vertices and f
[t]
i represents fi at iteration t [144]. The

parameter � is defined as � =

↵
1+↵ while ↵ is the regularization parameter in Eq. (4.4). In other

words, the value at each vertex is updated by a convex combination of the initial value ui(v) and
the values at its neighboring vertices at the current iteration, where the parameter � balances the
trade-off between the two. Notice that the initial values {ui}ki=1 from G1 form the continuous-valued
solver of a relaxed discrete graph-cut problem [134]. Therefore, {ui}ki=1 can be viewed as labels
indicating the cluster memberships derived from G1. Consequently, the spectral regularization
framework in Eq. (4.4) can be interpreted as a label propagation process, where the cluster labels
derived from G1 are linearly propagated on G2. In this way, both of the graph structures have
been taken into account hence making the resulting combination meaningful. An illustration of
this interpretation is shown in Fig. 4.2.

Another interpretation is based on disagreement minimization [33, 72], which has been proposed
for the task of learning with multi-view data. The basic idea is to minimize the disagreement
between information from the multiple views so that we get a good combination of all the views.
For example, Kumar et al. [72] suggests a clustering algorithm that minimizes the disagreement
between information from multiple graphs. Similarly, since we aim at finding a unified clustering
result from multiple graph layers, it is natural to enforce the consistency between the clustering
result and the information from all the graph layers, or in other words, to minimize the disagreement
between them. Such a disagreement is again reflected in the objective function of the optimization
problem of Eq. (4.4). More specifically, the data fidelity term explicitly measures the disagreement
between the solution fi and the initial vector ui that comes from G1, while the regularization term
implicitly represents the inconsistency of the information contained in fi with the structure of G2.
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Indeed, the regularization term �f can be expressed in the following form:

�f =

1

2

n
X

i,j

wi,j

⇣ f(i)
p

d(i)
� f(j)

p

d(j)

⌘2
, (4.7)

where d(i) and d(j) are the degrees of i and j, respectively. This means that �fi will only be small if
the two end-point vertices of a large-weight edge in G2 have similar signal values normalized by their
respective degree. Therefore, minimizing the objective function in Eq. (4.4) can be considered as
minimizing the overall disagreement between the solution fi and the information from the two graph
layers. Notice that in this formation the disagreement is modeled from two different viewpoints for
the two individual layers, whose respective importance is controlled by the parameter ↵.

4.4 Experimental results

In this section, we test the performance of the proposed clustering algorithm SC-SR using the
same evaluation criteria, namely Purity, Normalized Mutual Information (NMI), and Rand Index
(RI), on the same datasets presented in Chapter 3. We first describe some implementation details
of SC-SR. Since SC-SR is a recursive approach, we need to select two graph layers to fit in the
regularization framework at each time. As discussed in Section 4.2.2, we investigate the mutual
information between different graph layers. As an example, in the Cora dataset, the “Title” and
“Abstract” layers have the highest mutual information between them. Therefore we choose to first
combine these two layers. We select the “Abstract” layer to act as G1 in the spectral regularization
framework, as it is considered more informative than the “Title” layer. After the first combination,
the third layer “Citation” is incorporated to get the final solution. In addition, at each combination
step, there is a regularization parameter ↵ in the optimization problem of Eq. (4.4) to control the
relative importance of the two graph layers. Intuitively, the choice of this parameter at each step
should loosely reflect the mutual information between the two layers being considered. We use
this as a rule of thumb to set the parameters in the first and second combination steps, which are
denoted by ↵1 and ↵2, respectively. As an example, we set ↵1 = 1.9 and ↵2 = 0.9 for the Cora
dataset.

The clustering results for the baseline methods and SC-ML in Section 3.5.2, as well as for
SC-SR using the first two layers and using all the three layers in each dataset, are summarized
in Table 4.1 and Table 4.2 for the peak and average performances of all the algorithms out of 20
test runs, respectively. For each scenario, the two best results are highlighted in bold font. First of
all, it is clearly shown that proper combinations of the individual graph layers via SC-SR indeed
lead to improved clustering results compared to the baselines. In most of the scenarios, SC-SR
outperforms the two baseline methods SC-Sum and SC-KSum on the evaluation criteria we
consider. On the real world NRC and Cora datasets, SC-SR achieves overall better performance
than the two baseline methods even when only two layers are considered. This demonstrates
the advantages of SC-SR, which is able to preserve specificities of the individual layers via the
regularization framework, over these baselines that are based on simple averaging of the information
from different layers. Second, we can see that the regularized combinations in SC-SR consistently
lead to better clustering results as more layers are combined, particularly in terms of the NMI
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Table 4.1: Peak performances of different clustering algorithms out of 20 test runs on one synthetic and
two real world datasets.

Table 4.2: Average performances of different clustering algorithms out of 20 test runs on one synthetic and
two real world datasets. The numbers in parenthesis are the standard deviations.

scores.
Compared to SC-ML, SC-SR does not always perform as well but it still achieves impressive

clustering results, especially in terms of the peak performance in NMI. To further compare the
clustering results obtained by these two methods, we show in Table 4.3 the confusion matrices
for them on the three datasets, based on the peak performance out of 20 test runs. The rows of
the confusion matrices represent the groundtruth classes and the columns represent the predicted
clusters. As we can see from the diagonal entries of the confusion matrices, which are the number of
entities that have been correctly identified for each class, the performance of SC-SR is comparable
to that of SC-ML on all the three datasets. In particular, the former outperforms the latter on
the NRC dataset. One reason for this is that, the quality of the graph layers in this dataset is lower
than that in the other two datasets, and the agreement between different layers is weaker as well,
as we can observe from the spy plots shown in Fig. 3.8(b). In such cases, we might need to pay
more attention to the specficities of different graph layers to get the best combination, rather than
weighting the importance of each layer in a linear fashion. This is where the regularization scheme
in SC-SR could help.

However, we also notice from the standard deviations shown in Table 4.2 that, the performance
of SC-SR is statistically less stable than that of SC-ML. One explanation for this behavior is
that, there are more flexibilities in the implementation of SC-SR with more parameter selection
procedures involved. Indeed, compared to SC-ML, we observe in our experiments that the per-
formance of SC-SR is more sensitive to parameter selections. In a scenario where we wish to use
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Table 4.3: Confusion matrices for SC-ML and SC-SR on the (a,d) Synthetic, (b,e) NRC, and (c,f) Cora
dataset.

(a) (b) (c)

(d) (e) (f)

cross validation to select the optimal set of parameters, SC-SR might thus be more costly than
SC-ML. Nevertheless, the experimental results demonstrate that SC-SR provides an interesting
alternative to SC-ML in merging multiple graph layers.

Finally, to investigate the potential influence of different orderings of the individual layers in
the recursive combination on the clustering performance, we test the performance of SC-SR on
the synthetic and the Cora datasets with all the six possible orderings of the layers. In more
details, in Table 4.4, we first combine layer 1 and layer 2, where layer 1 is used for computing
the eigenvectors (G1 in SC-SR), and then include layer 3 in the combination. We implement
SC-SR with both regularization parameters ↵1 and ↵2 chosen as 10

[�2:0.5:2], and report the best
performance4 in Table 4.4. As we can see, in both cases, the ordering of the layers does influence
the quality of the result of the recursive combination, particularly so when the layers are of more
different qualities, as in the case of the Cora dataset. Moreover, it seems that the choice of layer
1 is a more important factor than the choices of layer 2 and 3. For example, the choice of the
“Citation” layer as layer 1 leads to suboptimal performance due to the lower quality of this layer

4These results are only based on the discrete values of 10[�2:0.5:2] for ↵1 and ↵2, and are thus illustrative examples
that are not necessarily optimal.
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Table 4.4: Performance of SC-SR on the (a) Synthetic and (b) Cora dataset with different orderings of
the layers in the recursive combination.

(a)

(b)

because of the extreme sparsity of the graph (as shown in Fig. 3.8(c)). These observations could
help guide the implementation of SC-SR in practice.

4.5 Conclusion

In this chapter, we study the problem of merging multiple graph layers from a signal processing
perspective. Specifically, we have designed a framework based on a more detailed understanding of
the behavior of the eigenvectors of the graph Laplacian matrix, where information from different
layers are combined in a graph regularization process. This way, we are able to treat individual
graph layers differently based on their respective importance in a unique and convincing way, which
is a potential advantage compared to the approach in Chapter 3. In addition to the clustering
performance we achieve in the experiments, we believe that (i) the concept of a joint spectrum
shared by multiple graphs is of broad interest in graph-based multi-view data processing tasks, and
(ii) the proposed approach is an example that shows how traditional machine learning problems
can be approached from a signal processing perspective. In the next chapter, we will follow this
direction to study specifically learning problems in the field of signal processing on graphs.





Chapter 5

Graph signal classification: A

wavelet-based approach

5.1 Introduction

We consider in this chapter the processing and learning of signals defined on graphs, which we
referred to as graph signals. Broadly speaking, a graph signal assigns a scalar value to each vertex
(entity) of a graph, based on some information of interest that is related to the entities. The edges
of the graph capture the pairwise relationships between these entities. In many applications, various
patterns are present in the graph signals; these patterns often carry relevant information about the
data. For example, in Fig. 1.2 we see that the graph signals observed in different local regions of the
geographical graph correspond to different mobility patterns. In this chapter, we study the problem
of classification of graph signals in order to distinguish different information patterns. That is, given
a set of signals, each of which is defined on a different weighted and undirected graph, we would
like to classify the graph signal patterns into several categories corresponding to different behavior
or type of data on the graph.

While the classification problem has been extensively studied in the signal processing, machine
learning and pattern recognition communities, the classification of graph signals brings new research
challenges: (i) since the graph signals reside in a structured and irregular space, we need to adapt
traditional signal processing and learning techniques for efficient signal representation and feature
construction on irregular signal structures; (ii) graph signals are less studied than traditional signals
such as images and videos and it is necessary to introduce appropriate and meaningful models of
graph signals for theoretical analysis of classification problems. From the application side, we also
need to demonstrate in real world applications the meaningfulness and efficiency of graph signal
classification. These are exactly the challenges that we address in this chapter.

We propose in this chapter to design classification approaches that exploit the characteristics of
graph signals in the graph spectral domain. More specifically, we analyze the benefits of adopting
spectral representations in graph signal classification. We focus on spectral graph wavelets [62],
which are particularly attractive because of their ability to detect local signal variations on graphs.
We focus our studies on a generic model for graph signals, namely, the random walk model, and
show that the spectral graph wavelets are able to capture local properties of graph signals, which
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are of crucial importance in the classification of data that follow this model. As a concrete example
of graph signal classification, we then focus on the problem of inference of mobility patterns.
Specifically, we design mobility models, which can be considered as specific instances of the generic
random walk model. These are tailored for graph signals that correspond to different mobility
patterns in local regions of the graph. We then distinguish these patterns by applying the proposed
classification framework in the spectral domain. We later present experiments on two sets of real
world data, namely, freeway traffic congestion in Alameda County in California and activities
of Flickr users in the central area of London. We show that the proposed approach permits to
efficiently infer the mobility patterns of both freeway vehicles and Flickr users, by classifying the
movements in different geographical locations into one of the proposed mobility patterns. In both
synthetic and real world experiments, the proposed spectral features outperform similar features
defined using information from the spatial domain only.

The graph signal classification framework proposed in this chapter sheds new lights in studying
learning problems related to graph signals, and will benefit in general the understanding and analysis
of structured data. It will also open possibilities in a wide range of real world applications, such as
mobility, social media and urban dynamics analysis.

The rest of the chapter is organized as follows. In Section 5.2, we formally define the classification
problem of graph signals. In Section 5.3, we present the proposed classification framework based on
signal representations defined in the graph spectral domain. In Section 5.4, we analyze the efficiency
of adopting the representation of spectral graph wavelets for feature construction in the classification
of graph signals that follow the random walk model. We start with the generic random walk model,
and move onto synthetic models for the mobility patterns. We then present experimental results
on synthetic data. In Section 5.5, we apply the proposed classification approach to the problem of
inference of mobility patterns on real world traffic and social media data. We conclude the chapter
in Section 5.6.

5.2 Problem formulation

We first define formally the graph signal classification problem of this chapter. Specifically, we
consider the following problem:

Graph signal classification. Given a set of graph signals {fi, Gi}Mi=1 where the signal fi is defined
on the vertex set of weighted and undirected graph Gi, and a set of classes {Cs}Ss=1 that correspond
to S different graph signal patterns, the graph signal classification problem is to classify each graph
signal {fi, Gi} into one of the classes, Cs, such that it corresponds to the pattern indicated by Cs.

An illustrative example of the graph signal classification problem is shown in Fig. 5.1, where we are
given three graph signals, and the task is to classify them into two classes: the class of smooth graph
signals and non-smooth graph signals, respectively. In this case, it is clear that the signal defined on
G1 is a smooth graph signal, since its values vary smoothly along the edges. The other two graph
signals are less smooth, because there exist edges between vertices that have quite different signal
values. As we can see from this example, we need to take into account the irregular support of the
signals, and analyze both the signal values and the graph topologies to do proper classification. To
this end, we choose to work with signal representation defined in the graph spectral domain, which
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Figure 5.1: Illustration of the graph signal classification problem (this figure is inspired by the one in
[119]). In these figures, the red bars pointing upwards and the blue bars pointing downwards represent
positive and negative signal values, respectively. The length of the bars reflects the magnitude of the values.
In this example, we would like to classify three graph signals into two classes C1 and C2, namely, smooth
and non-smooth graph signals, respectively.

is able to capture the local variations of the signal with respect to the graph topology. Our goal
in this chapter is therefore to build robust and discriminative spectral feature representations that
help classify the graph signals according to their similarities with different patterns of interest.

It is important to notice that we consider a very generic setting of the graph signal classification
problem, namely, we would like to distinguish a set of graph signals {fi, Gi}Mi=1 in which both the
signal values and the graph topologies can vary. Real world applications usually lead us to deal
with graph signals that differ in both signal values and graph topologies, or even those of different
dimensions, as we see in the example shown in Fig. 1.2 and in the real world experiments presented
later on. Therefore, the feature representations for different graph signals should be defined in a
generic way, that does not require the graphs to be identical, and does not depend on the exact
dimensions of the signals.

5.3 Framework

5.3.1 Spectral representations of graph signals

Efficient representations of graph signals is of key importance in developing signal processing and
learning techniques on graphs. While traditional techniques cannot be directly applied in the
graph spatial domain due to its structured and irregular nature, recent development of spectral
graph theory [29] permits to define the notion of frequency spectrum for signals defined on graphs.
This provides a convenient way to study the characteristics of graph signals, since it allows the
generalization of well-understood concepts in signal processing from the traditional setting to the
graph setting. In this section, we briefly review the representation of graph signals in the graph
spectral domain.

Let us consider a weighted and undirected graph G of n vertices with the unnormalized graph
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Laplacian L. Since L is a real and symmetric matrix, it has a complete set of orthonormal eigen-
vectors1 {�l}n�1

l=0 (without loss of generality we assume that the eigenvectors are real), with the
associated eigenvalues 0 = �0 < �1  . . .  �n�1. This enables the generalization of the classical
Fourier transform for graph signals. Specifically, let f : V ! Rn be a signal defined on V , where
each entry of the vector f corresponds to the signal value associated with a vertex in V . The graph
Fourier transform (GFT) [62] can then be defined as the inner product of the signal f and the
eigenvectors {�l}n�1

l=0 of the graph Laplacian L:

ˆf(�l) = hf,�li =
n
X

i=1

�l(i)f(i). (5.1)

As we can see, similarly to the classical setting, the eigenvalues and eigenvectors of the graph
Laplacian carry a notion of frequency for graph signals, and the GFT decomposes the graph signals
into different frequency components, where low frequency components correspond to less oscillation
with respect to the graph topology than high frequency components.

Based on the frequency notion and the GFT, it becomes possible to generalize well-developed
signal processing techniques in the traditional setting, such as the classical wavelet transform, for
graph signals. Several works in the literature have proposed wavelet transforms defined on graphs,
for example the lifting-based and tree-based transforms proposed in [93] and [50], respectively, the
diffusion wavelets proposed in [30] which are constructed based on a diffusion operator, and the
graph-QMF filterbanks proposed in [94] which are constructed based on two-channel filterbanks on
graphs. However, of particular interest is the recently proposed spectral graph wavelet transform
(SGWT) [62], which has several convenient properties for the analysis proposed in this chapter.
First, the SGWT is defined in precise analogy to the classical continuous wavelet transform, which
is easy to understand and implement. Second, the SGWT brings an explicit notion of scales in the
signal decomposition. Third, the SGWT can be computed in a computationally efficient manner,
without the need for computing a full eigendecomposition of the graph Laplacian matrix. This is
crucial for dealing with large scale graphs. Specifically, for a bandpass filter g that satisfies the
admissibility condition for wavelets, the spectral graph wavelets defined at scale {tj}Jj=2 can be
written as:

 tj = �g(tj⇤)�
T , (5.2)

where ⇤ is the diagonal matrix that contains the eigenvalues {�l}n�1
l=0 of the graph Laplacian along

the diagonal, � is the matrix that contains the eigenvectors {�l}n�1
l=0 as columns, and J is the total

number of scales. For a discrete set of scales2 {tj}Jj=1, the spectral graph wavelets constitute a
frame in Rn. The SGWT is then computed by taking the inner product between the signal and
each atom in the wavelet frame.

1From this chapter onwards we will denote � as the eigenvectors of the graph Laplacian, and use the indexes from
0 to n� 1 for the eigenvectors and eigenvalues, which are more commonly adopted in signal processing.

2In the construction of SGWT, the wavelets at scale t1 (which are called spectral graph scaling functions in [62])
are defined via a low pass filter h, which covers the low frequencies in the spectrum.
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5.3.2 Graph signal classification framework

The key ingredient of the proposed classification framework is the representation of graph signals
using features extracted in the graph spectral domain. Once spectral features are defined and
computed, the classification is implemented via traditional learning models such as the support
vector machines (SVMs). The proposed framework is summarized in Algorithm 4.

Algorithm 4 Spectral Classification of Graph Signals
1: Input:

{fm, Gm}Mm=1: M graph signals, where fm is defined on the vertex set of weighted and undi-
rected graph Gm of n vertices
I1: Training indexes
L: Training labels
I2: Testing indexes

2: Training phase: For each i 2 I1, compute the spectral features �i using fi and Gi.
3: Train the classifier with the features {�i} and L.
4: Testing phase: For each j 2 I2, compute the spectral features �j using fj and Gj .
5: Apply the trained classifier to the features {�j} to classify the testing signals {fj , Gj}.
6: Output: Predicted class for each graph signal {fj , Gj} where j 2 I2.

As we have explained, both the GFT and the SGWT coefficients at different scales can be
considered for representation of the graph signal in the graph spectral domain. However, for the
classification of graph signals, we would like to build discriminative features � from the spectral
representation for separating signals belonging to different classes. For signals that have localized
information, SGWT is a more attractive representation than GFT because of its ability to detect
local signal variations on graphs. In the next section, we analyze the efficiency of adopting the
spectral representation of SGWT for feature construction in graph signal classification applications,
for graph signals that follow a random walk model. We will later propose specific forms of features
� in our classification experiments, which are conducted for synthetic signals as well as real world
data.

5.4 Analysis of the random walk model

To analyze the efficiency of adopting spectral representations and SGWT for feature design in
classification tasks, we first need to introduce meaningful models for graph signals. In this section,
we discuss the following random walk model. Given a graph signal {f,G}, we consider f to be the
stationary distribution of a random walk process defined on a weighted and undirected graph G.
A random walk on a graph can be considered as a Markov process whose transition probabilities
are determined by the adjacency matrix of the graph. This model is interesting to study because
(i) random walks on graphs are generic and common models, and (ii) they are closely related to
diffusion processes associated with graphs in physics, and can potentially be applied to analyze
information propagation in social networks and mobility patterns in transportation networks. In
this section, we first present classification analysis of graph signals that follow the generic random
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walk model, and then move onto analyzing specific instances of this model that are related to
mobility patterns.

5.4.1 Classification analysis of the generic random walk model

Assuming that the state of the random walk, namely, the probabilities of staying at any of the n
vertices in the graph, at a discrete time stamp t is captured by a vector p(t) 2 Rn. Then, the state
at the next time stamp t+ 1 is computed as:

p(t+ 1) = Wtran
T p(t), (5.3)

where Wtran = D�1W is the transition probability matrix. Denote the stationary distribution of a
random walk on the graph as ⇡ 2 Rn, where ⇡(i) is the probability of staying at vertex i when the
random walk process converges. We have the following lemma.

Lemma 1 (Chung [29]). The stationary distribution ⇡ 2 Rn of a random walk on a connected
graph G is:

⇡(i) =
d(i)

vol(G)

, (5.4)

where d(i) is the degree of vertex i, and vol(G) is the volume of the graph (sum of degrees of all the
vertices).

Note that the existence of a stationary distribution does not guarantee that the random walk
will converge to that stationary distribution starting from any initial distribution. However, if
the graph is non-bipartite, then the stationary distribution ⇡ in Eq. (5.4) is unique, and for any
initial distribution, the random walk eventually converges to ⇡, which is proportional to the degree
sequence of the graph.

The stationary distribution of a random walk usually cannot be described by a single probability
distribution, since the degree sequence of the graph can possibly follow many different probability
distributions, depending on the connectivity and edge weights. In this case, the SGWT possesses
important properties that leads to discriminative features in classification. Consider two graph
signals {f1, G1} and {f2, G2}, where f1 and f2 are defined as the degree sequence of G1 and G2,
according to the random walk model. Consider that the only difference between the two graphs
G1 and G2 is the edge weight between a specific vertex pair i and j. In this case, a local change,
namely, the change of one edge weight between G1 to G2, leads to different local variations around
vertices i and j in f1 and f2. To distinguish these two graph signals, it is thus important to adopt
representations that are able to capture such local variations. From this viewpoint, the SGWT is
attractive because of its ability to detect local signal variations with respect to the graph topology.

To see this more clearly, let us consider the example of two graph signals {f1, G1} and {f2, G2}
shown in Fig. 5.2. These signals are defined as the degree sequences of the graphs, according to the
random walk model. In G1, apart from the unitary edge weights, there is an edge with a rather
large weight of 3 between v3 and v4, while in G2 there are three edges with an intermediate weight of
2. We would like to distinguish these two graph signals by analyzing their local properties. To this
end, we compute the GFT coefficients, and the SGWT coefficients corresponding to high frequency
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(a) (b)

Figure 5.2: Two graph signals: (a) {f1, G1} and (b) {f2, G2}. The signal values are shown in the circles,
and the edge weights are shown alongside the edges.

Table 5.1: The GFT coefficients, and the SGWT coefficients corresponding to high frequency components
in a 3-scale decomposition, for the signals f1 and f2 shown in Fig.(5.2).

components in a 3-scale decomposition3, as shown in Table 5.1. We see clearly that in case of f1,
due to a large edge weight between v3 and v4, the signal variations are large between these vertices
and their neighbors, resulting in much larger wavelet coefficients at v3 (1.78) and v4 (0.92) than at
other vertices. This is an example of an edge with large weight leading to local signal variations.
Compared to f1, we see in f2 that three edges of weight 2 lead to increasing local variations around
v1, v2 and v3, which are indicated by the larger wavelet coefficients at these vertices; in contrast, the
variation around v4 decreases relatively, as a smaller wavelet coefficient suggests. While the SGWT
coefficients capture such information about local variations of the signals, it is neither reflected in
the GFT coefficients, which only evaluates the signal variations in a global manner, nor in the signal
values in the spatial domain, which happen to be exactly the same with two different graphs in
Fig. 5.2. Therefore, to distinguish the two graph signals in this example, the SGWT coefficients is
a better representation than the GFT coefficients or the signal values. This example demonstrates
the importance of adopting representations that are able to detect local signal variations, such as
the SGWT, in classifying graph signals that follow the random walk model.

5.4.2 Classification analysis of the mobility models

To analyze quantitatively the benefit of adopting the SGWT in graph signal classification, we focus
now on specific instances of the generic random walk model, namely, models that are related to
mobility patterns. We are interested in such mobility models because (i) they can be naturally
defined based on the generic random walk model, since mobility patterns can be described as

3Throughout this chapter, we follow the configurations proposed in [62] to implement the SGWT.
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(a) (b)

(c) (d)

Figure 5.3: The four mobility models: (a) Random, (b) Spreading, (c) Gathering and (d) Bi-directional.

random walk processes on graphs, and (ii) they can be used for solving real world problems, such
as mobility inference from traffic and social media data.

We propose below specific models that correspond to four mobility patterns, which are defined
based on random walk processes on graphs, with different sets of edge weights determining the
transition probabilities of different random walk processes. Specifically, we consider a local 3 ⇥ 3
region in a two-dimensional lattice (namely, a four-nearest neighbor regular grid), and we define
four mobility patterns based on the graphs shown in Fig. 5.3. For the sake of simplicity, we only
have one parameter c in our analysis. This parameter is assumed to be greater than 2 so that the
transition probabilities in different random walk processes would be different4. In more details:

(a) the Random pattern represents a uniform random walk in all directions. This is suitable for
areas where walkers follow any path at random.

(b) the Spreading pattern represents flows increasing smoothly from top right vertex v7 to bottom
left vertex v3. This pattern represents situations where walkers emerge at certain locations and
move towards a specific point nearby.

(c) the Gathering pattern represents strong movements towards the central vertex v5. This repre-
sents the case where walkers converge to the same location from different directions.

4We note that the settings shown in Fig. 5.3 are illustrative examples, which have been extended in the experiments
in Section 5.4.3.
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(d) the Bi-directional pattern represents dominant movements along two lines connecting vertices
v2, v5, v8 and vertices v3, v6 and v9. Walkers in this case move preferably with clear direction-
alities.

The graphs shown in Fig. 5.3 are connected and non-bipartite. Therefore, according to Lemma 1,
the random walk processes defined on these graphs will converge to different stationary distribu-
tions. These distributions are proportional to the respective degree sequences and can be expressed
analytically in terms of the parameter c. For example, for the Spreading pattern, the stationary
distribution is proportional to the degree sequence [4 2 +

3
2c 2 + 2c 4 2 + c 2 +

3
2c 4 4 4]

T . Clearly,
under the random walk model, the resulting graph signals become quite different for large values of
c, and their spectral representations become quite distinctive. More specifically, Fig. 5.4 shows the
signals in column 1 and their SGWT coefficients in three subbands in column 2 (low frequency), 3
(middle frequency), and 4 (high frequency), for the four proposed mobility patterns where c = 10.
As expected, in the Random pattern, the spectrum is flat in all subbands, with most of the energy
of the coefficients being contained in the low frequency subband. In the Gathering pattern, the
peak of the signal is reflected by the peak in the high frequency subband. In Spreading, the smooth
increase of the signal results in a spectrum in the low frequency subband that is not flat, and leads
to a ramp-shape spectrum in the middle frequency subband, with increased energy in this subband.
Finally, in Bi-directional, the movements along two preferred paths on the graph can be observed
by the shape of the spectrum in the middle and high frequency subbands. In terms of energy
distribution, the low and middle frequency subbands contain an intermediate percentage of energy
compared to Random and Spreading, but the high frequency subband clearly contains a larger
percentage of energy. In summary, for the four types of mobility patterns we consider, the SGWT
provides a representation that is pretty different in the different patterns. Such differences mainly
lie in the shape of the spectrum in different subbands, namely in the magnitude of the SGWT
coefficients. This motivates us to consider this representation to design features for classification.
Specifically, we consider spectral features that capture the behaviors of the SGWT coefficients in
all the three subbands.

5.4.3 Experiments on synthetic data

In this section, we show the efficiency of features built on the SGWT representation for graph
signal classification in synthetic data representing simple mobility patterns. Based on the spectral
characteristics shown in Fig. 5.4, and on the understanding that statistical information about the
SGWT coefficients can serve as discriminative features in the classification task, we propose to
construct a 6-dimensional feature vector �spectral, which is computed with a 3-scale SGWT of the
graph signal:

�spectral(s) =

8
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:

mean(Clow)/Cmax, s = 1,
{max(Clow)�min(Clow)}/Cmax, s = 2,
mean(Cmid)/Cmax, s = 3,
{max(Cmid)�min(Cmid)}/Cmax, s = 4,
mean(Chig)/Cmax, s = 5,
{max(Chig)�min(Chig)}/Cmax, s = 6,

(5.5)
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Figure 5.4: Random walk signals and their SGWT coefficients in three subbands for the four proposed
mobility patterns: (a) Random, (b) Spreading, (c) Gathering and (d) Bi-directional. The vertices are color-
coded according to the associated values of the signals or coefficients. Note that the colors of the edges are
linear interpolations of the colors of their end vertices and do not represent the edge weights.
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where Clow, Cmid, Chig denote the magnitudes of wavelet coefficients in low, middle and high
frequency subbands, respectively, Cmax denotes the maximum magnitude of all wavelet coefficients,
and mean(·), max(·) and min(·) denote the operators taking the mean, maximum and minimum
values, respectively. We use a 3-scale SGWT since it can be considered as a standard choice where
we capture the low, middle and high frequency components of the signal. Intuitively, the feature
vector �spectral captures the variations of the SGWT coefficients in three different subbands, which
together reflect both the global and local variations of the graph signals, hence it is likely to be
discriminative in the classification task. We notice that the features defined as in Eq. (5.5) are an
example choice that capture important characteristics of graph signals, namely, the local variations
reflected by the magnitude changes of the SGWT coefficients in different subbands. Other features
can certainly be useful if they are more suitable for the specific models of interest; however, feature
optimization is not the main objective here.

In our experiments, we also propose one set of features defined similarly in the spatial domain.
Specifically, although it is less straightforward to have the notion of scales in the spatial domain,
we can define a 6-dimensional spatial feature vector as follows, for the purpose of comparison:

�spatial(s) =
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:

mean(�1)/�max, s = 1,
{max(�1)�min(�1)}/�max, s = 2,
mean(�2)/�max, s = 3,
{max(�2)�min(�2)}/�max, s = 4,
mean(�3)/�max, s = 5,
{max(�3)�min(�3)}/�max, s = 6,

(5.6)

where �k 2 Rdk is a vector that contains absolute differences in signal values between vertices
that have a shortest path of length k (with dk being the number of such vertex pairs)5, and �max
represents the maximum absolute difference in the values of the original signal. Therefore, �spatial
is designed with a similar philosophy as �spectral to capture signal variations, which are important
in classification as discussed above, but only using information obtained directly from the graph
spatial domain. Furthermore, �spatial defined in this way do not have a frequency interpretation.
It is important to notice that, since both �spectral and �spatial are specific choices, the comparison
between them do not serve as a general comparison between any spectral or spatial features in an
attempt to show that one is always better than the other. Our purpose here is rather to demonstrate
the differences between the two types of features that are similarly defined in both domains. In
addition to the proposed features �spectral and �spatial, we also include a 6-dimensional feature vector
that is based on the Laplacian quadratic form:

�spatialLQ(s) = fTLsf, for s = 1, . . . , 6. (5.7)

�spatialLQ can be considered as a spatial feature vector that measures the s-hop signal variations
with respect to the graph; however, it also has a frequency interpretation. Specifically, fTLsf can
be interpreted as the weighted sum of the squared GFT coefficients (since fTLsf = fT�⇤s�T f =

Pn�1
l=0 �s

l
ˆf (�l)

2). We nevertheless include it in our experiments for a more complete comparison.
5Notice here that we only consider the shortest-path distance between vertex pairs and do not consider the edge

weights.
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(a) (b)

Figure 5.5: Pairwise cosine distances between (a) the features �spectral and (b) the features �spatial of
different mobility patterns.

Finally, we consider two standard PCA-based features. Specifically, we define �G
PCA and �W

PCA as
the 6-dimensional projections of the GFT and SGWT coefficients of the graph signals, respectively,
onto their principal components computed via PCA.

We first test the efficiency of the spectral features �spectral of Eq. (5.5) in classifying graph
signals that correspond to the mobility models proposed above. We first investigate how the choice
of parameter c in Fig. 5.3 influences the discriminating power of the spectral features �spectral. To
this end, we analyze the separability of �spectral computed based on the four mobility models, for
different values of the parameter c. Specifically, for a given c, we consider the graph signals as
the stationary distributions of the random walks on the respective graphs. We then compute the
spectral representation via a 3-scale SGWT and the feature vector �spectral for each signal class.
Finally, we compute the pairwise cosine distances between feature vectors of different classes. The
results are shown in Fig. 5.5(a). As expected, the separability of �spectral increases when the value
of c increases, as the differences in the proposed patterns become prominent. Interestingly, while
the distances between Random and other patterns keep increasing, the distances among the other
three patterns start decreasing when c gets relatively large. One explanation for this behavior is
that, when c gets relatively large, the edges with large weights become dominant and their specific
locations within the graph become less relevant. As a comparison, similar separability performance
results are shown in Fig. 5.5(b) for the spatial features �spatial of Eq. (5.6). Clearly, �spectral presents
better separability between the four mobility patterns than �spatial when the value of c is reasonably
large, that is, when the random walk signals get quite different.

Next, we test the performance of �spectral and �spatial, together with the other three features
�spatialLQ, �G

PCA and �W
PCA, in simple classification tasks. In our experiments, we first extend the four

basic mobility models defined in Fig. 5.3 to generate more realistic graph signals for classification.
Specifically, we consider a 10 ⇥ 10 eight-nearest neighbor regular grid, where the edges have unitary
weights for the Random pattern. For the Spreading pattern, we randomly select a local area in the
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Table 5.2: Classification performances of the five classifiers in the synthetic experiments based on the
random walk model.

graph with 10 vertices. We set the weights of the edges between these vertices to increase from 2
to 4 towards a certain direction. For the Gathering pattern, we define an edge weight of 5 for the
eight edges surrounding a certain vertex chosen at random. Finally, for the Bi-directional pattern,
we randomly choose two adjacent parallel paths in the graph, and we set the edges between the
vertices to have a weight of 2, except for two vertices that have connecting edges with a weight of
4. The main motivation for the setting in this pattern is to enable more complex mobility patterns
that might appear in real world applications. We create many instances of such graph models for
both training and testing6. We also add zero-mean Gaussian noise with standard deviation 0.1 to
all the edge weights.

We then associate random walk processes to the above graphs where the transition probabilities
are defined as in Eq. (5.3). The synthetic graph signals are finally generated by aggregating 100
random walk instances of up to 50 steps with random starting points in the graphs. Such aggregate
signals are more realistic than the stationary distributions of the random walks on graphs; real world
observations do not necessarily correspond to the stationary state of the random walk process. Each
synthetic signal counts how many times a random walker has passed by each vertex of the graph.
In our experiments, we generate 1000 synthetic signals, 250 for each mobility model. In each case,
we take 125 signals for training and the rest for testing.

We train five SVM classifiers on the above training signals using the feature vectors �spectral,
�spatial, �spatialLQ, �G

PCA and �W
PCA, with the LIBSVM library [23]. For the latter three feature

vectors, we scale each feature in the vector to the range of [0 1]. The hyperparameters in SVM are
optimized in the training stage using 5-fold cross validation and grid search. We then apply the
trained classifiers to the testing data and evaluate their performances. We adopt three evaluation
criteria in our experiments, namely, Accuracy, Normalized Mutual Information (NMI) defined in
Eq. (3.22) and Rand Index (RI) defined in Eq. (3.23). Specifically, Accuracy measures the percent-
age of the data samples that have been correctly classified, and NMI and RI evaluate the quality of
the obtained labels from an information-theoretic and information retrieval point of view, respec-
tively. The classification results are shown in Table 5.2 for the five different types of features. As we

6Notice that these graphs are example choices created for the four mobility patterns. Other ways of generating
graphs are certainly possible.
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Table 5.3: Confusion matrices for classifiers based on (a) �spectral, (b) �spatial, (c) �spatialLQ, (d) �G
PCA and

(e) �W
PCA in the synthetic experiments based on the random walk model.

(a) �
spectral

(b) �
spatial

(c) �
spatialLQ

(d) �G

PCA

(e) �W

PCA

can see, the classifier based on the spectral features �spectral outperforms the other four classifiers
in terms of all the three evaluation criteria. To further investigate the performance in terms of
the individual classes, the confusion matrices for the five classifiers are shown in Table 5.3, whose
columns represent the predicted classes and the rows represent the groundtruth classes. Looking
at the diagonal of the confusion matrices, which are the number of signals that have been correctly
identified for each class, we see the superiority of the spectral features �spectral over the other four
features in the comparison. Next, the performance of the classifier based on the features �spatialLQ
is slightly worse in Table 5.2 and Table 5.3, possibly due to the fact that the GFT coefficients only
capture the global signal variations, while the SGWT coefficients are able to capture the local signal
changes. Indeed, from Table 5.3 we see that the misclassified data samples by the classifier based
on �spatialLQ are mainly those that correspond to the Spreading and Bi-directional patterns, which
are the two mobility patterns that most likely have similar global signal variations. For the same
reason, the performance of the spatial features �spatial is less satisfactory, which suggests that these



5.5 Mobility inference experiments 69

spatial features are inefficient in separating random walk signals that might have similar global
but different local variations. Finally, the experimental results regarding the PCA-based features
�G

PCA and �W
PCA suggest that, although the spectral representation of graph signals is meaningful in

general, the feature construction process is still important in the classification applications. In par-
ticular, it is important that the features are adapted to the application and task at hand, like those
of �spectral proposed in Eq. (5.5). PCA-based features, as in the traditional signal processing and
learning problems, are efficient for the representation of the data, but not reliable and consistent
enough for discrimination [39].

5.4.4 Discussion

The random walk model considered in this section is a model where we observe local variations of the
graph signals. Such local properties are of crucial importance in the classification tasks. Wavelet-
based features, such as the proposed features �spectral based on the SGWT, are particularly efficient
in this case. Other signal models can be of interest in the classification studies as well. For example,
we can also consider a Gaussian Markov Random Field (GMRF) model for the graph signal {f,G},
which assumes that f is a GMRF with respect to G, with the precision matrix in the GMRF
chosen as the graph Laplacian L. This model essentially assumes that the graph signal follows a
multivariate Gaussian distribution, and turns out to be a smooth signal model on graphs. In such
case, the graph signals are globally smooth and do not have significant local variations, and the
benefits of wavelet-based features are less obvious. We leave a detailed classification studies of this
model in Appendix A.

5.5 Mobility inference experiments

5.5.1 Experimental settings

In this section, we evaluate the performance of the classifiers based on the spectral and spatial
features in the classification of two real world datasets. The task that we propose to solve is the
inference of mobility patterns at different geographical locations, by classifying the graph signals
extracted from the neighborhood of each vertex in a geographical graph into one of the mobility
models proposed earlier. The classification algorithm is summarized in Algorithm 5. It is worth
noting that, first, since the K-hop neighborhoods around different vertices in an irregular graph
are usually of different sizes, in Algorithm 5 we are able to deal with graph signals of different
dimensions. This can be considered as a potential benefit of the proposed framework. Second,
these graph signals are real world observations in the local regions of the geographical graph, hence
do not necessarily follow strictly a random walk model. However, there are still links between
these real world observations and the random walk signals that we considered in the synthetic
experiments, as we will explain below. Third, Algorithm 5 can scale to real world graphs with
large numbers of vertices, since the computation is done only on local patches of the graph. In our
experiments, we compare Algorithm 5 with the same classification procedure but using the spatial
features �spatial. We focus on the comparison between �spectral and �spatial since they are similarly
defined in the respective domains. Similarly to the synthetic experiments, we use the LIBSVM
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library for classification and the hyperparameters in SVM are optimized in the training stage using
5-fold cross validation and grid search.

Algorithm 5 Mobility Inference via Spectral Classification
1: Input:

{f,G}: A graph signal where f is defined on the vertex set of a weighted and undirected
geographical graph G of n vertices
I1: Training indexes
L: Training labels (mobility patterns)
I2: Testing indexes

2: Training phase: For each vertex i 2 I1 in G, generate a subgraph Gi that contains the K-hop
neighbors of i. Generate the truncated signal fi that corresponds to Gi.

3: Compute the spectral features �spectrali using fi and Gi.
4: Train the classifier with the features {�spectrali} and L.
5: Testing phase: For each vertex j 2 I2 in G, generate a subgraph Gj that contains the K-hop

neighbors of j. Generate the truncated signal fj that corresponds to Gj .
6: Compute the spectral features �spectralj using fj and Gj .
7: Apply the trained classifier to the features {�spectralj} to classify the testing signals {fj , Gj}.
8: Output: Predicted mobility patterns for the K-hop neighborhood of each j 2 I2.

We consider two sets of data from traffic networks and social media platforms, respectively. In
the first dataset, the graph signals correspond to the aggregated numbers of distinct Flickr users
that have taken photos at different geographical locations in the central area of London between
January 2010 and June 2012. Specifically, the map of central London is fractioned into geographical
cells of 10 meters by 10 meters, each of which corresponds to a vertex in our graph. The graph
is constructed by assigning an edge between two vertices when the geographical distance between
them is shorter than 30 meters; the edge weight is set to be inversely proportional to the distance.
In the second dataset, the graph signals correspond to the accumulated traffic delays (in minutes)
at different locations of the freeways in Alameda County in California between January 2007 and
May 2013. Again, a geographical graph is built by connecting every pair of locations whose distance
is smaller than a threshold, with the edge weight being inversely proportional to the geographical
distance. The signals and graphs in both examples are shown in Fig. 5.6. It is clear that, in both
cases, the observed graph signal is a global aggregation of individual mobility traces at different
local regions of the geographical graph, thus it can be considered as a real world observation that
is related to the mobility models proposed in Section 5.4.2. We remark that in the case of Flickr
data, the “mobility” of a Flickr user is defined as a sequence of discrete points on the map where
photos were taken; we acknowledge that this is only an approximation of the actual dynamics of
the movement of the user.

It is important to notice that, contrarily to the random walk models, the edge weights in
these real world graphs are defined based on geographical distances, which do not reflect directly
the underlying transition probabilities. Nevertheless, we can still consider that these geographical
graphs contain partial knowledge about the transition probabilities underlying the observed signals.
In particular, transitions only happen between vertices that are connected by a path, for example
road, street or bridge. We would like to remark that, (i) this setting still fits our generic classification
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(a)

(b)

Figure 5.6: (a) The aggregated number of distinct Flickr users that have taken photos at different locations
in the central area of London from January 2010 to June 2012. (b) The accumulated traffic delays (in
minutes) at different locations of the freeways in Alameda County in California between January 2007 and
May 2013. The size and color of the balls indicate the number of distinct users in (a) and the delays (in
minutes) in (b) associated with the corresponding geographical positions.
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problem, where we are given signals that are defined on some graphs, and we would like to classify
them using the proposed features; (ii) unlike the synthetic settings, in real world applications a
“perfectly” meaningful graph is usually not directly observable. In this case, experiments in this
setting tests the efficiency of the proposed spectral features for real world graphs that are only
partially meaningful.

5.5.2 Mobility inference from Flickr data

For the classification experiments on the Flickr data, we select 400 out of 9629 vertices in the graph
and manually label the graph signals corresponding to their neighborhoods with one of the mobility
models, namely Random, Spreading, Gathering, and Bi-directional7. We have 100 training signals
for each model. We then apply Algorithm 5 with K = 3 to classify the 3-hop neighborhoods of the
rest of the vertices, using both �spectral and �spatial as features. The results are shown in Fig. 5.7(a)
and Fig. 5.7(b), respectively. In both figures, the dark blue labels represent vertices that have less
than ten 3-hop neighbors, so that their neighborhoods are not of significant interest. The light
blue, green, orange and red labels represent vertices whose neighborhoods are classified as those
that have the Random, Spreading, Gathering, and Bi-directional mobility patterns, respectively.
As we can see in Fig. 5.7(a), the red vertices are mostly streets or bridges over the river, which
corresponds well to the assumptions we made in the Bi-directional pattern. The orange vertices
clearly represent landmarks or locations of significant interest, whose neighborhoods fit well in the
Gathering pattern. The green vertices stand for regions similar to the ones in the Spreading pattern,
where we expect movements of Flickr users from certain directions to the points of interest nearby.
Therefore, they are usually located in the areas surrounding the orange vertices. Finally, the light
blue vertices represent areas where the numbers of Flickr users are quite uniform, for example
squares with no particularly interesting landmarks. These results show that the labels obtained by
the classifier based on spectral features are indeed meaningful. In contrast, the labels obtained by
the classifier based on spatial features are visually less accurate. As we can see in Fig. 5.7(b), not
all streets are correctly identified, with some of them labeled with the Random pattern. Moreover,
some landmarks and their surrounding areas are not indicated by the orange and green vertices,
especially for areas around the Piccadilly Circus tube station.

The quality of the labels obtained in Fig. 5.7 can be evaluated from another perspective. Specif-
ically, once the features are computed, we can apply clustering techniques to the features to divide
the signals into different classes in an unsupervised fashion. Fig. 5.8 shows the class labels obtained
by such an unsupervised approach using both �spectral and �spatial as features and the k-means algo-
rithm [86] for clustering. The number of clusters is chosen to be 4 in the k-means implementation,
which is the same as the number of expected mobility patterns. As can be seen in Fig. 5.8, there is
a reasonably good match between the labels obtained by supervised classification and unsupervised
clustering using the spectral features, while the labels obtained by these two approaches using the
spatial features are quite different. This implies that the proposed spectral features defined in

7We manually label the training signals based on the similarity between their spectral representations and the
spectral representations of the mobility models shown in Fig. 5.4. An alternative is to use the classifier trained in the
synthetic experiments to select a set of training signals for each mobility model with maximum confidence. However,
we acknowledge that the labelling process is guided by the same features as those that are used later in classification,
as we do not resort to domain experts for labelling the training signals.
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Table 5.4: Quantitative evaluations of the performances of the spectral (�spectral) and spatial features
(�spatial) on the (a) Flickr dataset and (b) traffic dataset.

(a)

(b)

Eq. (5.5) are sufficiently discriminative to separate these graph signals even without the need for
supervision.

Finally, we propose a quantitative performance evaluation of the two feature choices. Specif-
ically, we report the best 5-fold cross-validation accuracy in the training stage, as well as the
percentage of mismatched labels in the classification and clustering approaches. As we can see in
Table 5.4(a), the proposed spectral features achieve significantly higher cross-validation accuracy
than the spatial features, which indicates that the classification labels shown in Fig. 5.7(a) are more
likely to be accurate than those in Fig. 5.7(b). Moreover, there are much less mismatches between
the labels obtained by classification and clustering for the spectral features, which suggests that
the proposed spectral features are more stable and reliable in classification. This is consistent with
the visualizations in Fig. 5.7 and Fig. 5.8.

5.5.3 Mobility inference from traffic data

We now perform experiments with the traffic dataset. We select 40 out of 437 vertices in the
graph and manually label the graph signals corresponding to their neighborhoods with one of
the mobility models. We have 10 training signals for each model. We then apply Algorithm 5
with K = 2 to classify the 2-hop neighborhoods of the rest of the vertices. The classification
results based on �spectral and �spatial are shown in Fig. 5.9(a) and Fig. 5.9(b)8, respectively. As
can be seen in Fig. 5.9(a), the crosses, passages, and two main junctions through which vehicles
move from Hayward (middle left region) to Berkeley (top left region), are identified by the orange,
red, and green vertices, respectively. This matches our intuitions about the possible locations for
the Gathering, Bi-directional, and Spreading patterns. In comparison, the labels obtained with
classification using spatial features and shown in Fig. 5.9(b) are less consistent.

Similarly to the first dataset, we apply unsupervised clustering using both �spectral and �spatial
as features and the k-means algorithm. We see in Fig. 5.9 and Fig. 5.10 that there is again a good

8For a more clear illustration, the color codes on the edges in Fig. 5.9 and Fig. 5.10 are based on a different
colormap from that in Fig. 1.2 and Fig. 5.6. The color codes on the edges in all these figures are nevertheless not
important.
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(a)

(b)

Figure 5.7: The class labels of mobility patterns for the central area of London, obtained by a classifier
trained using the (a) spectral features �spectral and (b) spatial features �spatial.
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(a)

(b)

Figure 5.8: The class labels of mobility patterns for the central area of London, obtained by unsupervised
clustering using the (a) spectral features �spectral and (b) spatial features �spatial.
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(a)

(b)

Figure 5.9: The class labels of mobility patterns for the freeways in Alameda County, obtained by a
classifier trained using the (a) spectral features �spectral and (b) spatial features �spatial.
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(a)

(b)

Figure 5.10: The class labels of mobility patterns for the freeways in Alameda County, obtained by
unsupervised clustering using the (a) spectral features �spectral and (b) spatial features �spatial.
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match between the labels obtained by classification and clustering using the spectral features, while
this is not the case for the labels obtained using spatial features. In addition, Table 5.4(b) confirms
the superiority of the proposed spectral features over the spatial features in separating the graph
signals, in terms of cross-validation accuracy and feature consistency.

In summary, the experimental results on the two sets of real world data suggest that classifiers
based on spatial features are not robust enough for signals on real world graphs. These can be
much more irregular than the grid graphs, where spatial features perform relatively well in synthetic
experiments. In the contrary, the spectral features do not seem to suffer from the same problem,
since they better capture the intrinsic characteristics of the signals on graphs irrespective of the
regularity of the graphs.

5.6 Conclusion

In this chapter, we have studied the classification problem of signals defined on graphs. We have
shown that spectral graph models like wavelets defined on graphs are of great potential and lead
to pretty robust features in learning tasks associated with signals with noticeable local variations,
such as those that follow the random walk model. The present chapter opens new and interesting
research questions in the field of signal processing on graphs, for example, (i) the development of
learning algorithms for specific models of graph signals, and (ii) the design of graph transforms and
dictionaries tailored for learning tasks such as classification and clustering.

We demonstrate the effectiveness of the proposed framework by a concrete classification ap-
plication where we classify mobility patterns in real world traffic and social media data. It is
interesting to see that our mobility inference framework relies only on coarse and aggregate data.
Compared to the state-of-the-art approaches that are based on the analysis of empirical individual
traces [52, 74, 84, 28, 142], our approach interestingly permits to the understanding of mobility
behaviors without sacrificing privacy. Furthermore, the explicit mobility models proposed in this
chapter presents an interesting comparison to the probabilistic models proposed in [34] for predict-
ing different human mobility patterns.

It is important to notice that the choices of the graph always play a crucial role in graph-based
signal processing and learning. Ideally, the graphs should contain information related to the true
causes of the observations. However, in practice, the graphs are usually assumed to be known a
priori; or, they come naturally from the domain of application, such as the geographical graphs
that we considered in the real world experiments in this chapter. In order to maximize the benefits
of the proposed learning frameworks on graphs, we therefore would like to learn a meaningful graph
topology that well explains the observed data. This is the focus of the next chapter.



Chapter 6

Graph learning: A signal representation

perspective

6.1 Introduction

In graph-based signal processing and learning tasks, the graph is often assumed to be known a
priori, or given by the specific properties of the target application, like a geographical graph or a
social friendship graph for example. In some applications, however, a natural graph is not easy to
define at all. In these scenarios, we need to learn the graph topology from the observed data, such
that it matches the prior knowledge on the data and captures the intrinsic relationships between
the entities for efficient processing of the signals. This is the main objective of this chapter.

The key challenge in the problem of graph learning is to compute the topology such that the
graph satisfies some models of the relationships between the signals and the graph topology. More
precisely, we need some meaningful criteria to evaluate the matching between the two, which guide
the process of graph learning given the observed signals. In this chapter, we propose to define such
criteria by revisiting the representation learning theory [10] used in the traditional signal setting.
Specifically, in a factor analysis model considered in the theory of representation learning, the
Gaussian prior is a widely adopted probabilistic prior imposed on the latent variables that explain
the observed signals. This leads to a Gaussian assumption on the observed signals; furthermore,
the signal representation by the factor analysis model provides a probabilistic interpretation of
the highly successful representation learned by the Principal Component Analysis (PCA) [10]. We
generalize the Gaussian prior in the graph setting and impose it on the latent variables that control
the observations (which are now graph signals). The only difference with the traditional case is that
the transformation from the latent variables to the observed signals involves information about the
topology of the graph. This permits to define joint properties (or joint model) between the signals
and the graph, such that the signal representation is consistent with the Gaussian prior. Specifically,
we show that this generalization leads to a PCA-like representation for the graph signals, which
turns out to be a smooth signal representation on graphs. We then design an algorithm for graph
learning that favors signal representations which are smooth and consistent with the statistical
prior defined for the data.

We test our graph learning algorithm on several synthetic experiments, where we show that



80 Chapter 6. Graph learning: A signal representation perspective

the proposed algorithm is able to efficiently infer the topology of the groundtruth graphs, and
outperforms a learning algorithm for the estimation of a sparse inverse covariance matrix for Gaus-
sian graphical models [18]. We further demonstrate the meaningfulness of the proposed framework
through a practical example, where we are able to infer the hidden altitude relationships between
89 measuring stations in Switzerland from the average monthly temperature observations collected
at these stations between 1981 and 2010.

The graph learning framework proposed in this chapter provides new insight into the under-
standing of the interactions between signals and graphs in graph signal processing, and would surely
lead to new theoretical development in this field. It will also benefit numerous emerging real world
applications, such as the analysis of transportation, biomedical, and social networks, where it is
beneficial to infer some hidden relationships between the entities.

The rest of the chapter is organized as follows. In Section 6.2, we formally define the problem
of graph learning. In Section 6.3, we establish the link between signal representations in the
traditional and graph settings when a Gaussian prior is imposed on the latent variables in a factor
analysis model. We then propose our novel graph learning framework in Section 6.4 and present
the experimental results in Section 6.5. Finally, we highlight some important connections between
the proposed graph learning framework and the problems addressed in the previous chapters, and
conclude the chapter in Section 6.6.

6.2 Problem formulation

The graph learning problem can be motivated from the following simple example. Consider a signal
given by a set of unordered scalar values, which can potentially live on three different graphs G1,
G2 and G3, leading to three graph signals shown in Fig. 6.1. Without any assumption on the
properties of the graph signal, the three candidate graphs are all valid choices. However, if we
assume that the signal is smooth on the underlying graph, which loosely means that neighboring
vertices share similar signal values, then G1 is obviously a more reasonable choice than G2 and G3.
Our objective is exactly to learn a graph similar to G1 when the signal is expected to be smooth
on an “unknown” graph topology.

The above example shows that learning a meaningful graph by enforcing desired signal properties
on the observed signals, such as smoothness, is surely beneficial for the appropriate representation
of the data. This is exactly the objective of our learning framework. Specifically, we consider in
this chapter the following problem:

Graph learning for signal representation. Given a set of observed data X = {xi}pi=1 (xi 2 Rn)
that are considered as signals defined on a weighted and undirected graph G of n vertices, we would
like to infer an optimal topology of G, namely, its edges and the associated weights, that results in
given statistical properties of X, such as smoothness of the graph signals.

We remark here that our objective is slightly different from the objective of frameworks for learning
graphical models proposed in machine learning, where the learned graph usually represents the con-
ditional independence structure between the random variables. We will provide further discussion
about this later in the chapter.
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Figure 6.1: The same signal can potentially live on different graphs (this figure is inspired by the one
in [119]). In these figures, the red bars pointing upwards and the blue bars pointing downwards represent
positive and negative signal values, respectively. The length of the bars reflects the magnitude of the
values. In this illustration, while all the choices are valid a priori, we are looking for the graph that offers
desirable properties of the resulting graph signal. Specifically, in this example, choosing graph G1 favors
the smoothness property of the graph signal.

6.3 Factor analysis framework

6.3.1 Signal representation in the traditional setting

We present our learning framework by making the connections between the signal representations in
the traditional setting and the graph setting. We start with signal representations in the traditional
setting, and then generalize it to the graph setting. In our analysis, we consider the factor analysis
[8, 9] model as our signal model, which is a generic linear statistical model that tries to explain
observations of a given dimension with a potentially smaller number of unobserved latent variables.
Such latent variables with given probabilistic prior lead to efficient signal representations in both
the traditional and graph settings. Specifically, we consider:

x = Wh+ ux + ✏, (6.1)

where x 2 Rn is the observation, h 2 Rk is the latent variable that controls x, W 2 Rn⇥k is the full
rank representation matrix that linearly relates the two random variables. The parameter ux 2 Rn

is the mean of x, and ✏ is a multivariate Gaussian noise that has mean zero and covariance �2
✏ In.

Its probability density function is given by:

p(✏) ⇠ N (0,�2
✏ In), (6.2)

where In represents the identity matrix of dimension n. It is usually assumed that k < n, so that
the latent variable h provides a more parsimonious signal representation than x. Notice also that
we do not require the columns of W to be orthonormal. The conditional probability of x given h
can then be written as:

p(x|h) ⇠ N (Wh+ ux,�
2
✏ In). (6.3)
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In the traditional setting, a Gaussian prior is conventionally imposed on the latent variable h in
Eq. (6.3), which leads to an efficient representation of the observation. Specifically, assume that h
follows a zero-mean multivariate Gaussian distribution with covariance matrix �2

hIn:

p(h) ⇠ N (0,�2
hIn). (6.4)

Due to the properties of multivariate Gaussian distributions under linear transformations, x also
follows a multivariate Gaussian distribution:

p(x) ⇠ N (ux,�
2
hWW T

+ �2
✏ In). (6.5)

Eq. (6.5) shows that the representation matrix W spans the same subspace as the k leading principal
components of the covariance matrix of x. To see this more clearly, consider the following eigen-
decomposition:

�2
hWW T

+ �2
✏ In = U⇤UT , (6.6)

where U and ⇤ are the eigenvector and eigenvalue matrices of the covariance matrix. We can
rewrite Eq. (6.6) as follows:

�2
hWW T

= U⇤UT � �2
✏ In = U(⇤� �2

✏ In)U
T . (6.7)

Since W has rank k, Eq. (6.7) implies that the diagonal matrix (⇤ � �2
✏ In) has only its first k

diagonal entries that are non-zero; their value is �2
h. Therefore, Eq. (6.7) can be simplified as:

WW T
= UkIkU

T
k , (6.8)

where Uk 2 Rn⇥k contains the k leading principal components as columns. As a result, there must
exist an orthogonal matrix R 2 Rk⇥k that satisfies

W = UkR. (6.9)

Eq. (6.9) implies that W spans the same subspace as Uk. It has been pointed out in [10] that signal
representation by the factor analysis model shown above provides a probabilistic interpretation
of the highly successful representation learned by the PCA, which was originally presented in
[105, 130]. The key observation here is that, under a Gaussian prior distribution of the latent
variable h, the representation matrix W in the factor analysis model spans the same subspace as
the k leading principal components of the covariance matrix of x. We will see in the following
section that this observation has an analogy in the graph setting; we will use this property in our
graph learning framework.

Given the observation x and the Gaussian prior distribution in Eq. (6.4), one is often interested
in a maximum a posteriori (MAP) estimate of h that explains the observations x, which is of key
importance in our learning framework. In the following section, we will show an analogy of such
an estimate in the graph setting, based on which we derive our graph learning framework.
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6.3.2 Signal representation in the graph setting

We now consider signal representation in the graph setting, where the signals are defined on the
vertex set of the graph. In this setting, the Laplacian matrix L of a graph G provides tools to
establish connections between signal representations in the traditional and graph settings. Specifi-
cally, since L is a real and symmetric matrix, it has a complete set of orthonormal eigenvectors and
associated eigenvalues:

L = �⇤�T , (6.10)

where � is the eigenvector matrix, and ⇤ is the diagonal eigenvalue matrix where the eigenvalues
are sorted in increasing order. We assume that the graph G is connected, which implies that the
smallest eigenvalue is 0 and that all the other eigenvalues are strictly positive.

In the graph setting, for the representation of graph signals, we would like to generalize the
factor analysis model in Eq. (6.1). The key is therefore to choose a representation matrix W in
Eq. (6.1) that relates the graph signals with the latent variable. In our analysis, we propose to define
the representation matrix as the eigenvector matrix � of the graph Laplacian L. The motivation is
that, under such a definition, a Gaussian prior imposed on the latent variable leads to a Gaussian
assumption and smooth representations of the graph signals, as we will see later. One may have
also noticed that, in Eq. (6.1), the representation matrix W is a rank-k tall and thin matrix, while
in the graph setting we choose � which is a rank-n square matrix. The reason behind is that we
would like to base our studies on all the eigenvectors of the graph Laplacian L, not just the k
leading ones.

Specifically, let us consider the following model:

x = �h+ ux + ✏, (6.11)

where x 2 Rn represents the observed graph signal, h 2 Rn represents the latent variable that
controls the graph signal x through the representation matrix �, ux 2 Rn is the mean of x, and
✏ is a multivariate Gaussian noise with mean zero and covariance �2

✏ In. The probability density
function of ✏ is thus given by:

p(✏) ⇠ N (0,�2
✏ In). (6.12)

Similarly to the traditional setting, we impose a Gaussian prior on the latent variable h. Specifi-
cally, we assume that the latent variable h follows a degenerate zero-mean multivariate Gaussian
distribution with covariance matrix ⇤†:

p(h) ⇠ N (0,⇤†
), (6.13)

where ⇤† denotes the Moore-Penrose pseudoinverse of ⇤ since it is not full rank. In particular, the
covariance matrix defined in Eq. (6.13) leads to a smooth signal representation that we will see
later. The conditional probability of x given h, and the probability of x, are thus given as follows:

p(x|h) ⇠ N (�h+ ux,�
2
✏ In), (6.14)

p(x) ⇠ N (ux, L
†
+ �2

✏ In), (6.15)

where in Eq. (6.15) we have used the fact that, the pseudoinverse of L, L†, admits the following
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eigen-decomposition:
L†

= �⇤†�T . (6.16)

It can be seen from Eq. (6.15) that, in a noise-free scenario where �✏ = 0, x also follows a
degenerate multivariate Gaussian distribution with zero-mean and covariance L†. In this case, x
can be interpreted as a Gaussian Markov Random Field (GMRF) with respect to the graph G,
where the inverse covariance matrix, or the so-called precision matrix, is chosen to be the graph
Laplacian L. Notice that the GMRF is a very generic model such that the precision matrix can be
defined with much freedom, as long as its non-zero entries encode the partial correlations between
random variables and as long as their locations correspond to the edges in the graph [106]. However,
the graph Laplacian L is widely adopted in the literature of image analysis, as the precision matrix
of the GMRFs that model images [139]. From Eq. (6.15) we see that, by defining the representation
matrix in the factor analysis model as the eigenvector matrix � and assuming that the latent
variable follows a degenerate Gaussian distribution with covariance ⇤†, we can recover the GMRF
with precision matrix L in a noise-free scenario.

In the presence of noise, we see from Eq. (6.15) that, under a Gaussian prior on the latent
variable h, the representation matrix � is the eigenvector matrix of the covariance of x:

L†
+ �2

✏ In = �(⇤†
+ �2

✏ In)�
T . (6.17)

This is analogous to the observation we have in the traditional setting, where the representation
matrix W spans the same subspace as the k leading principal components of the covariance of x
under a Gaussian prior on h. The representation in Eq. (6.11) can then be considered as a PCA-like
representation for the graph signal x. More importantly, it leads to a smooth assumption of the
signal on the graph, as we show as follows.

As we have seen in Eq. (6.11), the latent variables h explains the graph signal x through
the representation matrix, namely, the eigenvector matrix � of the graph Laplacian. Given the
observation x and the multivariate Gaussian prior distribution of h in Eq. (6.13), we are thus
interested in a MAP estimate of h. Specifically, by applying Bayes’ rule and assuming without loss
of generality that ux = 0, the MAP estimate of the latent variable h can be written as follows [58]:

hMAP(x) := argmax

h
p(h|x)

= argmax

h
p(x|h)p(h)

= argmin

h
(�log pE(x� �h)� log pH(h)) .

(6.18)

Given the probability distributions shown in Eq. (6.12) and Eq. (6.13), the above MAP estimate
can then be expressed as:

hMAP(x) = argmin

h
||x� �h||22 + ↵ hT⇤h, (6.19)

where ↵ is some constant parameter. In a noise-free scenario where x = �h, Eq. (6.19) corresponds
to minimizing the following quantity:

hT⇤h = (�Tx)T⇤�Tx = xT�⇤�Tx = xTLx. (6.20)
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The Laplacian quadratic term in Eq. (6.20) is usually considered as a measure of smoothness of the
signal x on G [144]. Therefore, we see that in a factor analysis model in Eq. (6.11), a Gaussian prior
in Eq. (6.13) imposed on the latent variable h leads to a smooth assumption of the graph signal. We
are going to make use of this observation in our graph learning algorithm in the following section.

6.4 Learning graphs under signal smoothness prior

Given a Gaussian prior and the smooth assumption of the graph signal as we have shown above, the
MAP estimate of h in Eq. (6.19) provide us with the connections between the signal observations
and the desired graph topology to be learned. Specifically, notice in Eq. (6.19) that both the
representation matrix � and the inverse covariance matrix ⇤ of the Gaussian prior distribution
imposed on h come from the graph Laplacian L. When the graph is unknown, we can have the
following joint optimization problem of �, ⇤ and h:

arg min

�,⇤,h
||x� �h||22 + ↵ hT⇤h, (6.21)

where � and ⇤ are the eigenvector and eigenvalue matrices of L, respectively. Eq. (6.21) can be
simplified via a change of variable y = �h as:

argmin

L,y
||x� y||22 + ↵ yTLy. (6.22)

According to the factor analysis model in Eq. (6.11), y can be considered as a “noiseless” version of
the zero-mean observation x. Furthermore, as we have explained before, due to the properties of
the graph Laplacian L, the quadratic form yTLy in Eq. (6.22) is usually considered as a measure
of smoothness of the signal y on G. In the problem of Eq. (6.22), we are thus interested in finding
jointly L and y, such that y is close to the observation x, and at the same time y is smooth on the
graph G. Therefore, the learned graph topology enforces the smoothness property of the signals,
defined by the Laplacian quadratic smoothness measure.

We propose to solve the optimization problem of Eq. (6.22), with constraints and an additional
penalty term on the Frobenius norm of L in the objective, in the following matrix form:

argmin

L,Y
||X � Y ||2F+↵ tr(Y TLY ) + �||L||2F ,

s.t. tr(L) = n,

Lij = Lji  0, i 6= j,

L · 1 = 0,

(6.23)

where X 2 Rn⇥p contains the p input data samples {xi}pi=1 as columns, ↵ and � are two regulariza-
tion parameters, and 1 and 0 denote the constant one and zero vector. The Frobenius norm of L is
added to improve the numerical stability of the solution and, together with the Laplacian quadratic
term, will also influence the sparsity of the learned graph (as we will see in the experimental sec-
tion)1. The first constraint (the trace constraint) in Eq. (6.23) helps avoiding trivial solutions, and

1We do not impose a L1-norm penalty on L since we do not specifically assume that the learned graph is sparse.
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the second and third constraints guarantee that the learned L is a valid Laplacian matrix.
The optimization problem of Eq. (6.23) is not jointly convex in L and Y . Therefore, we adopt

an alternating optimization scheme where at each step we fix one variable and solve the other.
Specifically, at the first step, for a given Y , we solve the following optimization problem with
respect to L:

argmin

L
↵ tr(Y TLY ) + �||L||2F ,

s.t. tr(L) = n,

Lij = Lji  0, i 6= j,

L · 1 = 0.

(6.24)

At the second step, L is fixed and we solve the following optimization problem with respect to Y :

argmin

Y
||X � Y ||2F + ↵ tr(Y TLY ). (6.25)

Both of the problems of Eq. (6.24) and Eq. (6.25) can be casted as convex optimization problems
with unique solutions. Specifically, the problem of Eq. (6.24) can be written as a quadratic program,
which can be efficiently solved via interior point methods [17] or operator splitting methods (e.g.,
alternating direction method of multipliers (ADMM) [18]). In addition, the problem of Eq. (6.25)
has the following closed-form solution:

Y = (In + ↵L)�1X. (6.26)

In practice, we alternate between these two steps to get the final solution to the problem of
Eq. (6.23), and we observe empirical convergence within a few iterations. The complete algorithm
is summarized in Algorithm 6.

Algorithm 6 Graph Learning for Smooth Signal Representation (GL-SigRep)
1: Input: Input signal X, number of iterations iter, ↵, �
2: Output: Output signal Y , graph Laplacian L
3: Initialization: Y = X
4: for t = 1, 2, ..., iter do:
5: Step to update Graph Laplacian L:
6: Solve the optimization problem of Eq. (6.24) to update L.
7: Step to update Y :
8: Solve the optimization problem of Eq. (6.25) to update Y .
9: end for
10: L = Liter, Y = Y iter.

We note that the proposed learning framework has some similarity with the one in [64], where
the authors have proposed a similar objective as the one in Eq. (6.23), based on a smoothness or
fitness metric of the signals on graphs. However, we rather take a probabilistic approach that is
analogous to the one in the traditional setting, which gives us an extra data fitting term ||X�Y ||2F
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in the objective of the optimization problem of Eq. (6.23). In practice, when the power of Laplacian
in [64] is chosen to be 1, it corresponds to assuming X = Y and finding the solution to a single
instance of the problem of Eq. (6.24).

Finally, we compare the proposed graph learning framework to a state-of-the-art approach for
estimating a sparse inverse covariance matrix for GMRFs. Specifically, the works in [6, 49] propose
to solve the following L1-regularized log-determinant program:

argmin

L
pre

tr(SLpre)� log det(Lpre) + �||Lpre||1, (6.27)

where Lpre is the precision (inverse covariance) matrix to estimate, S = XXT is the sample co-
variance matrix, � is a regularization parameter, det(·) denotes the determinant, and || · ||1 denote
the L1-norm. The main motivation behind the optimization of Eq. (6.27) is as follows. When the
number of samples is smaller than the sample dimension, the sample covariance S is not full rank.
In this case, the optimization of Eq. (6.27) tries to find a full rank precision matrix Lpre (this is
enforced by the log-determinant term), which is the closest to the sample covariance S (this is
enforced by the trace term). Additionally, the L1 penalty is introduced to enforce the sparsity of
Lpre in terms of the L1-norm. The problem of Eq. (6.27) is conceptually similar to the problem
of Eq. (6.23), in the sense that both can be interpreted as estimating the precision matrix of a
GMRF. An important difference is however that the precision matrix in our framework is a valid
graph Laplacian, while the one in Eq. (6.27) is not. Indeed, Lpre is a full rank matrix that usually
have both positive and negative off-diagonal entries, reflecting both positive and negative corre-
lations. Therefore, Lpre cannot be interpreted as a graph topology for defining graph signals; it
rather reflects the partial correlations between the random variables that control the observations.
This major difference leads to the different performances of the two approaches in our experiments,
as we will see in the following section.

6.5 Experimental results

In this section, we evaluate the performance of the proposed graph learning algorithm. We first
describe the general experimental setting and the implementation details for the algorithms under
comparison, and then we present the experimental results on synthetic and real world data.

6.5.1 Experimental settings

Given a set of synthetic or real world observations, we test the performance of Algorithm 6 by
comparing the learned graph to the groundtruth one. Specifically, we compare the edges in the
learned graph to the ones of the groundtruth graph. In the quantitative evaluation, we focus
on the presence or absence of the edges and do not consider the weights of the edges. We use
four evaluation criteria commonly used in information retrieval [88] to test the performance of our
algorithm:

• Precision: Precision is defined as:

Precision =

TP
TP + FP

, (6.28)
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where TP and FP are the numbers of true positives and false positives. It thus evaluates
the percentage of correct edges in the learned graph, that is the edges that are present in the
groundtruth graph.

• Recall : Recall is defined as:
Recall =

TP
TP + FN

, (6.29)

where FN is the number of false negatives. It thus evaluates the percentage of the edges in
the groundtruth graph that are present in the learned graph.

• F-measure: F-measure is defined as the harmonic mean of Precision and Recall :

F-measure = 2 · Precision · Recall
Precision + Recall

. (6.30)

The F-measure thus takes into account both Precision and Recall to measure the accuracy
of the obtained results.

• Normalized Mutual Information (NMI ): NMI is defined as in Eq. (3.22). The NMI measures
the mutual dependence between the obtained results and the groundtruth.

In our experiments, we solve the optimization of Eq. (6.24) using the convex optimization
package CVX [55, 54]. The algorithm stops when the maximum number of iterations is reached
or the absolute change in the objective is smaller than 10

�4. In most of the cases, we observed
that the algorithm converges within less than five iterations. The experiments are carried out on
different sets of parameters, namely, for different values of ↵ and � in Eq. (6.23). Finally, we prune
insignificant edges with a weight less than 10

�4 in the learned graph.
We compare the proposed graph learning algorithm to an algorithm for estimating a sparse

inverse covariance matrix for Gaussian graphical models, solving the L1-regularized log-determinant
program of Eq. (6.27) with the ADMM [18]. We denote this algorithm as GL-LogDet. This
method however aims at estimating a full rank precision matrix which is not a valid graph Laplacian.
Even if the comparison with GL-LogDet is not completely fair, it is nevertheless interesting since
the learned precision matrix also encodes the information about the partial correlations between the
variables. In our experiments, following the suggestions in [18], we set the augmented Lagrangian
parameter and the over-relaxation parameter in GL-LogDet to be 1 and 1.5, respectively. We test
GL-LogDet based on different choices of the parameter � in Eq. (6.27). In the evaluation, all the
off-diagonal non-zero entries whose absolute values are above the threshold of 10�4 are considered
as valid correlations2. These correlations are then considered as learned “edges” and compared
against the edges in the groundtruth graph for performance evaluation.

6.5.2 Results on synthetic data

We first carry out our synthetic experiments on three different graphs of 20 vertices, namely, a
graph whose edges are determined based on Euclidean distances between vertices, and two graphs

2Since the precision matrix learned by GL-LogDet seldom contains entries with values smaller than 10�4, the
thresholding does not make a difference in the evaluation. Nevertheless, we still implement this step for a fair
comparison.
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that follow the Erdős-Rényi model [45] and the Barabási-Albert model [7], respectively. For the
first graph, we generate the coordinates of the vertices uniformly at random in the unit square,
and compute the edge weights between every pair of vertices using the Euclidean distances between
them and a Gaussian radial basis function (RBF): exp

�

�d(i, j)2/2�2
�

, with the width parameter
� = 0.5. We then remove all the edges whose weights are smaller than 0.75. Next, we use the Erdős-
Rényi (ER) model with edge probability 0.2 to generate a random graph, that is, each possible edge
is included in the graph with probability 0.2 independent form every other edge. Finally, we use the
Barabási-Albert (BA) model to generate a scale-free random graph. Specifically, the BA graph in
our experiments is generated by adding one new vertex to the graph at each time, connecting to one
existing vertex in the graph. The probability of the new vertex attaching to a given existing vertex
in the graph is proportional to the ratio of the degree of that existing vertex to the sum of degrees
of all the existing vertices. The BA and ER graphs are important random graph models studied
in network science. Specifically, the former have power-law (or scale-free) degree distributions
similarly to many networks observed in real world, while the latter do not. The BA and ER graphs
in our experiments have unitary edge weights. Given a synthetic groundtruth graph, we compute
the graph Laplacian L and normalize the trace according to Eq. (6.23). Then, for each graph, we
generate 100 signals X = {xi}100i=1 that follow the distribution shown in Eq. (6.15) with ux = 0

and �✏ = 0.5. We then apply GL-SigRep and GL-LogDet to learn the graph Laplacian or the
precision matrix, respectively, given only the signals X.

We first show visually the learned graph Laplacians or precision matrices for the algorithms GL-
SigRep and GL-LogDet. In Fig. 6.2, we show from the top to the bottom rows the Laplacian
matrices of the groundtruth graph, the graph Laplacians learned by GL-SigRep, the precision
matrices learned by GL-LogDet, and the sample covariance matrices S = XXT , for one random
instance of each of the three graph models3. First, we see that, although the positions of the large
entries in the sample covariance matrices partially correspond to the positions of the edges in the
groundtruth graph, they generally contain many noisy correlations. Next, for all the three types of
graphs, the graph Laplacian matrices learned by GL-SigRep is visually more consistent with the
groundtruth data than the precision matrices learned by GL-LogDet. In addition to the position
of the edges, the edge weights in the Laplacians learned by GL-SigRep is similar to the ones in
the groundtruth graph, while the correlations in the precision matrices learned by GL-LogDet
are relatively small (this is especially the case for the BA graph). Possible explanations of this
observation are that: (i) it estimates a full rank precision matrix instead of the groundtruth graph
Laplacian, and (ii) the L1-norm penalty in the optimization of Eq. (6.27) leads to many relatively
small correlations.

Next, we evaluate quantitatively the performances of the two graph learning algorithms in re-
covering the positions of the edges in the groundtruth. In Table 6.1, we show the best F-measure,
Precision, Recall and NMI scores achieved by the two algorithms averaged over ten random in-
stances of the three graphs with the associated signals X. Our algorithm GL-SigRep clearly
outperforms GL-LogDet in terms of all the evaluation criteria. Especially, for the Gaussian RBF
and BA graphs, GL-SigRep achieves an average F-measure score close to 0.9, which means that

3These results are obtained based on the parameters that lead to a similar number of edges as the ones in the
groundtruth graph. More discussion about the choices of these parameters are presented later. The values of the
sample covariance matrices are scaled before the visualization.
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(a) Gaussian RBF: Groundtruth (b) ER: Groundtruth (c) BA: Groundtruth

(d) Gaussian RBF: GL-SigRep (e) ER: GL-SigRep (f) BA: GL-SigRep

(g) Gaussian RBF: GL-LogDet (h) ER: GL-LogDet (i) BA: GL-LogDet

(j) Gaussian RBF: Sample covariance (k) ER: Sample covariance (l) BA: Sample covariance

Figure 6.2: The learned graph Laplacian or precision matrices. From the top to the bottom rows are
the groundtruth Laplacians, the Laplacians learned by GL-SigRep, the precision matrices learned by GL-

LogDet, and the sample covariances. From the left to the right columns we show the Gaussian RBF graph,
the ER graph, and the BA graph.
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Table 6.1: Graph learning performance for GL-SigRep and GL-LogDet: (a) the Gaussian RBF graph,
(b) the ER graph, and (c) the BA graph.

(a) Gaussian RBF graph

(b) ER graph

(c) BA graph

the learned graphs have very similar topologies compared to the groundtruth.
To better understand the behavior of GL-SigRep under different sets of parameters, we plot

in Fig. 6.3 the numbers of edges in the learned graph, and the F-measure scores, under 121 different
combinations of the parameters ↵ and � in Eq. (6.23), for a random instance of the Gaussian RBF
graph. First, we see that the number of edges in the learned graph decreases as � decreases and
↵ increases. The intuitions behind this behavior are as follows. When � increases, the Frobenius
norm of L in the objective function in Eq. (6.23) tends to be small, leading to a more uniform
distribution of the entries, thus the number of edges tends to increase. Decreasing � leads to the
opposite effect. When ↵ increases, the trace of the quadratic term tends to be small. In this case,
since we have:

tr(Y TLY ) = �1

2

p
X

m=1

n
X

i,j

Lij (ym(i)� ym(j))2 , (6.31)

the algorithm favors a smaller number of non-zero entries in L, and the number of edges decreases.
Therefore, both parameters ↵ and � implicitly affect the sparsity of the learned graph Laplacian.
More interestingly, Fig. 6.3(a) and Fig. 6.3(b) show that both the number of edges and the F-
measure scores are similar for the values of ↵ and � with the same ratio �

↵ . This suggests that the
trace of the quadratic term and the Frobenius norm are the dominating factors in the optimization
of Eq. (6.23), rather than the data fidelity term. This implies that, in practice, we may search for
an appropriate ratio �

↵ to maximize the learning performance of the algorithm.
Next, we show in Fig. 6.4(a) and Fig. 6.5(a) the number of edges in the graphs learned by

GL-SigRep and the learning performance evaluated based on the four criteria, respectively, for
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(a) (b)

Figure 6.3: (a) The number of edges in the learned graph, and (b) the F-measure score, under 121 different
combinations of the parameters ↵ and � for an instance of the Gaussian RBF graph.

the same Gaussian RBF graph as before under different ratios of � to ↵. As expected, the number
of edges decreases as the ratio of � to ↵ decreases. Looking at Fig. 6.4(a) and Fig. 6.5(a) together,
we see that, as the number of edges approaches the number of edges in the groundtruth graph
(in this case, 56 edges), the Recall stays high and the Precision increases rapidly, which makes
the F-measure increase. When the number of edges in the learned graph is close to the one in
the groundtruth graph, the curves for the Precision and the Recall intersect and the F-measure
reaches its peak. After that, although the Precision keeps increasing towards 1, the Recall drops
rapidly as fewer and fewer edges are detected, leading to a decreasing trend in the F-measure. A
similar trend can be observed in the curve for the NMI score. These together show that GL-
SigRep is able to learn a graph that is very close to the groundtruth graph when the number of
edges matches the number of edges in the groundtruth graph. For comparison, we plot the same
curves in Fig. 6.4(b) and Fig. 6.5(b) for GL-LogDet, under different values of the parameter � in
Eq. (6.27). In this case, GL-LogDet learns more and more correlations, many with relatively small
values, as � decreases. The Precision and Recall curves still intersect at a point where the number
of correlations matches most closely the number of edges in the groundtruth graph. However, both
scores are rather low at this point, which leads to an unsatisfactory F-measure score in this case.
Similarly, the NMI scores are very low. Overall, these comparisons show that GL-SigRep achieves
better performance than GL-LogDet in learning the positions of the edges.

Finally, we investigate the influence of the number of signals available for learning, and the level
of noise present in the data. In Fig. 6.6, we show the performance of the two algorithms for different
numbers of signals for a given instance of the Gaussian RBF graph. As we can see in Fig. 6.6, the
performance of both algorithms increases as more signals are available to learn the graph Laplacian
and the precision matrix, respectively. The benefit of having more signals seems slightly larger
for GL-SigRep, as the F-measure increases quickly when more than 20 signals are available. In
Fig. 6.7, we show the performance of the algorithms for different values of the standard deviation
of the Gaussian noise �✏, for the same groundtruth graph. We see that the performance of both
algorithms is rather stable when the noise intensity increases, although GL-SigRep seems to be
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(a) (b)

Figure 6.4: (a) Number of edges in the graphs learned by GL-SigRep for different ratios �
↵ . (b) Number

of correlations in the precision matrices learned by GL-LogDet for different values of �.

(a) (b)

Figure 6.5: Performance of (a) GL-SigRep for different ratios �
↵ , and (b) GL-LogDet for different values

of �.
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(a) (b)

Figure 6.6: Performance of (a) GL-SigRep and (b) GL-LogDet for different numbers of the signals, p.

(a) (b)

Figure 6.7: Performance of (a) GL-SigRep and (b) GL-LogDet for different standard deviations of the
noise, �✏.

more sensitive to noise in this experiment where the F-measure drops only slightly.

6.5.3 Results on real world data

We now test the proposed graph learning framework on real world data. Specifically, we consider
the average monthly temperature data collected at 89 measuring stations in Switzerland (shown in
Fig. 6.8) during the period between 1981 and 2010. This leads to 12 signals (i.e., one per month),
each of dimension 89, which correspond to the average temperatures at each of the measuring
stations. By applying the proposed graph learning algorithm, we would like to infer a graph where
stations with similar temperature evolutions across the year are connected. In other words, we
aim at learning a graph on which the observed temperature signals are smooth. In this case,
the natural choice of a geographical graph based on physical distances between the stations does
not seem appropriate for representing the similarity of temperature values between these stations.
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Figure 6.8: The locations of 89 measuring stations in Switzerland (figure from [1]).

(a) (b) (c)

Figure 6.9: Average monthly temperature in Switzerland during the period from 1981 to 2010 (figure from
[2]): (a) February. (b) June. (c) October.

Indeed, Fig. 6.9 shows the average temperatures in Switzerland in February, June and October,
and we can see that the evolution of temperatures at most of the stations follow very similar
trends and are thus highly correlated, regardless of the geographical distances between them. On
the other hand, it turns out that altitude is a more reliable source of information to determine
temperature evolutions. For instance, as we observed from the data, the temperature at two
stations, Jungfraujoch and Piz Corvatsch, follow similar trends that are clearly different from other
stations, possibly due to their similar altitudes (both are more than 3000 metres above sea level).
Therefore, we build a groundtruth graph that reflects the similarity between stations in terms of
their altitudes. More specifically, we connect two stations with an unitary weight if and only if
their altitude difference is smaller than 300 metres. The goal of our learning experiments is then
to recover this altitude graph given the 12 observed signals.

We first show visual comparisons between the Laplacian of the groundtruth altitude-based
graph, the graph Laplacian learned by GL-SigRep, the precision matrix learned by GL-LogDet,
and the sample covariance matrix. For a more clear visualization, we focus on the top left part
of the four matrices and plot them in Fig. 6.104. First, we see that the sample covariance does

4The results for GL-SigRep and GL-LogDet are obtained based on the parameters ↵, � and � that lead to the
best F-measure scores. The values of the sample covariance matrices are scaled before the visualization.
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(a) Groundtruth (b) GL-SigRep

(c) GL-LogDet (d) Sample covariance

Figure 6.10: Visual comparisons between (a) The groundtruth graph Laplacian. (b) The graph Laplacian
learned by GL-SigRep. (c) The precision matrix learned by GL-LogDet. (d) The sample covariance
matrix.



6.5 Experimental results 97

(a) (b)

Figure 6.11: (a) Number of edges in the graphs learned by GL-SigRep for different ratios �
↵ . (b) Number

of correlations in the precision matrices learned by GL-LogDet for different values of �.

(a) (b)

Figure 6.12: Performance of (a) GL-SigRep for different ratios �
↵ , and (b) GL-LogDet for different

values of �.

not match well the groundtruth, since it contains many correlations that do not appear in the
groundtruth graph, as it was the case for the synthetic data. This is especially due to a small
number of samples (12) compared to the sample dimension (89) in this case. The comparisons
between GL-SigRep and GL-LogDet show that the edges in the graph learned by our algorithm
is again more consistent with the groundtruth data in terms of both positions and weights. Similarly
to the synthetic experiments, we investigate the number of edges in the learned graph and the F-
measure scores for different ratios �

↵ for GL-SigRep; the results are presented in Fig. 6.11(a) and
Fig. 6.12(a). Clearly, we can observe the same behavior as in the synthetic experiments, namely,
when the number of edges matches closely the one in the groundtruth graph (i.e., 1169 edges),
the curves for the Precision and the Recall intersect, and the F-measure and NMI scores are near
their peaks. For the best parameter values, GL-SigRep achieves a F-measure close to 0.85, which
indicates a very good recovery of the topology of the groundtruth graph. In Fig. 6.11(b) and
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Fig. 6.12(b), the same results are presented for GL-LogDet. We can see that the performance is
less convincing in this case. Specifically, both the Precision and the Recall stay relatively low and
do not reach close to 1. As a result, the curve for F-measure is less satisfactory and a similar trend
is observed for the NMI curve. It is worth noting that, in Fig. 6.11(b), the number of correlations
in the learned precision matrices decreases as � decreases, before increasing again in the end. This
is not consistent with the monotonically increasing trend that we have observed in Fig. 6.4(b) in the
synthetic experiments. By taking a closer look at the precision matrices learned in both cases, we
observe that the L1-norm of the precision matrices always decreases as � increases. However, the
decrease in the L1-norm does not necessarily translate into a larger sparsity in terms of the number
of non-zero entries. In practice, it could happen that more and more non-zero entries with smaller
values appear in the precision matrices as the L1-norm decreases, which is the case in Fig. 6.11(b).
Overall, GL-SigRep is clearly more reliable than GL-LogDet in achieving a desired sparsity level
for the learned graph by an appropriate parameter selection.

Finally, we propose an example of applying the constructed graph in an interpolation problem
via semi-supervised learning. We consider the scenario when the temperature data for some time
periods at some measuring stations are corrupted due to problems at these stations. In this case,
since the constructed graph contains information about the similarities between the temperature
data at different stations across the year, we can try to recover the corrupted observations by
assuming that the data is smooth on the learned graph. Specifically, we propose to learn a graph
from the complete temperature data for six months of the year, namely, January, March, May, July,
September and November. For data from the other six months, we randomly corrupt 50% of the
observations by setting the corresponding values to zero. We then recover the corrupted data by
solving the following optimization problem:

argmin

y
||x�My||22 + � tr(yTLy), (6.32)

where L is the Laplacian of the learned graph, x and y are the corrupted data and reconstructed
observations for each month respectively, and � is a regularization parameter. The mask operator
M is a diagonal matrix whose diagonal entries are zeros at the locations corresponding to the
corrupted observations and are ones otherwise. The problem of Eq. (6.32) has the following closed-
form solution:

y = (M+ �L)�1Mx. (6.33)

We solve the problem of Eq. (6.32) for data for each month with � = 0.01, and visualize the
reconstruction results for data for two months, namely, June and October, in Fig. 6.13. In this
figure, we show from the top to the bottom rows the original observations, corrupted observations
and reconstructed data, respectively. We can see that semi-supervised learning on the learned
graph indeed helps reconstruct the corrupted observations. We further show in Fig. 6.14 the mean
squared error (MSE) between the original signal values in six months, and the corrupted (red)
and the reconstructed (blue) signal values, for different percentage of corruption. As expected, the
MSE increases as the percentage of corruption increases; however, even with a large percentage of
corruption, the algorithm is still able to reconstruct the original signal values reasonably well.
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Figure 6.13: Signal interpolation using the learned graph. From the top to the bottom rows are the scaled
original, corrupted and reconstructed signals, respectively. From the left to the right columns we show
results for June and October, respectively.
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Figure 6.14: The mean squared error between the original signal values and the corrupted (red) and the
reconstructed (blue) signal values, for different percentage of data corruption.

6.6 Conclusion

In this chapter, we have presented a framework for learning graph topologies from the observed
signals under the assumption that the signals are smooth on the learned graphs. We have developed
a method for learning graphs that enforce the smoothness property of the graph signals, under a
Gaussian prior distribution imposed on the latent variables in a factor analysis model. In both
synthetic and real world experiments, we have shown that the proposed method outperforms an
algorithm for estimating a sparse inverse covariance matrix for Gaussian graphical models.

There exist some connections between the framework presented in this chapter and those in the
previous chapters, which shows that the proposed graph learning framework can serve as comple-
mentary methods to the methods developed earlier in this thesis. Specifically, the proposed graph
learning framework in this chapter can be nicely combined with the techniques presented in the
previous chapters to solve data processing problems on graphs. Since the learned graph is expected
to reveal the intrinsic relationships between the entities than a covariance based graph, it can be
used to define a wavelet frame for graph signal classification, as presented in Chapter 5. Graph
learning can also help in the problems of learning with multi-layer graphs addressed in Chapter 3
where the proposed graph learning framework can be used to create the individual graphs from
each view and then form the multi-layer graph.

Graph learning is a challenging problem from a computational point of view, as the number of
variables scales quadratically with the size of the graph. In order to extend the proposed learning
framework to graphs of very large scales, computationally efficient methods are certainly worth
investigating in further studies. In addition, it would be interesting to explore other prior distri-
butions for the latent variables in the factor analysis model, which would lead to other properties
in the representations of the graph signals. Specifically, the generalization of a Laplace prior and
the resulting sparse representations in the traditional setting is certainly one of the future research
directions in graph learning for efficient signal representations.



Chapter 7

Conclusion

7.1 Main contributions

In this thesis, we have addressed several problems related to the representation, clustering, classi-
fication, and learning of complex and multi-view data defined on weighted and undirected graphs.
In particular, we have studied the problem of learning the relationships between entities in multi-
layer graphs. We have addressed the graph signal classification problem based on spectral graph
features. We have proposed a novel framework for learning graphs given observed data, such that
they become regular on the constructed graphs.

We have first addressed the problem of analyzing data represented as multi-layer graphs. The
key challenge in this problem is to efficiently combine information contained in the individual graph
layers. We have first adopted a machine learning approach, where we model the individual layers as
subspaces on a Grassmann manifold. The problem of combining multiple layers is then transformed
into the problem of merging subspaces on the manifold. To this end, we have studied the distance
metrics defined on the Grassmann manifold, and proposed a framework to find a representative
subspace whose average distance from the individual subspaces is minimized. We have shown that
the resulting subspace can be used for clustering the vertices of the multi-layer graphs. Then, to
better take into account the respective importance of individual layers, we have approached the
same problem from a signal processing viewpoint. Specifically, we have considered the eigenvectors
of the graph Laplacian of one layer as signals defined on the vertex set of another layer. We have
then proposed a novel graph regularization framework to find a set of joint eigenvectors, or a joint
spectrum, of the two layers, and further extended it to the setting of multiple layers. We have again
tested our framework in clustering methods in multi-layer graphs. Our first framework provides a
generic and principled way of learning with multi-layer graphs, while the second approach allows us
to take into account the respective importance of the individual layers in a unique and convincing
way.

Next, we have studied the problem of classification of graph signals. The main difficulty of graph
signal classification comes from the irregular support of the signals and the design of discriminative
and robust features. To address these challenges, we have adopted signal representations in the
graph spectral domain, and studied the benefits of such representations for feature construction
in classifying graph signals under a generic model. We have shown that localized spectral rep-
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resentations are of great help in classifying signals with noticeable local variations, such as those
following the random walk model. We have then proposed discriminative spectral features for graph
signal classification and tested their performances in both synthetic and real world experiments.
In particular, we have successfully applied our spectral classification framework to the real world
problem of the inference of mobility patterns in traffic and social media data. Our classification
framework constitutes one of the first complete studies of the graph signal classification problem in
the emerging research field of signal processing on graphs.

Finally, we have considered the problem of learning graph topologies given observed signals.
From a signal processing point of view, the challenge in the learning of the graphs mainly lies in
finding a criteria that matches the signal values and the graph topologies in a meaningful way.
Such a criteria can thus guide the learning process. Inspired by the representation learning theory
in the traditional signal setting, we have approached this problem from the perspective of signal
representations on graphs. Specifically, we have first established links between signal representations
in the traditional setting and the graph setting, and then generalized the factor analysis model for
the representation of graph signals. We have shown that a Gaussian probabilistic prior imposed on
the latent variables in the factor analysis model leads to smooth signal representations on graphs.
We have then designed a graph learning framework that learns graph topologies and enforces
the smoothness of the observed signals on the resulting graph. We have tested our framework
in synthetic and real world graph learning experiments, and demonstrated that its performance
is superior to that of a similar approach in the machine learning community. Our graph learning
framework is one of the first rigorous frameworks to solve the challenging problem of graph learning
in graph signal processing.

To summarize, we have studied in this thesis several emerging research problems related to
multi-view data processing associated with various forms of graphs, and provided novel signal
processing and machine learning solutions. We believe that the research effort in this thesis provides
an example to show the ever-decreasing gap between these two traditionally different research
fields, and approaches from both should be leveraged together to meet the challenges of modern
information processing with complex data.

7.2 Perspectives

The research problems and proposed approaches presented in this thesis open the following new
interesting research directions. First, our model of multi-layer graphs can be further extended to
the settings where (i) different graph layers do not necessarily have the same number of vertices,
(ii) vertices in different layers only have partially known correspondence, and (iii) individual layers
that correspond to temporal observations evolve with time. For example, the works in [101, 69, 20]
propose to use functional maps (namely, a given set of corresponding functions) to replace the
assumption on the bijective correspondences between vertices in different graphs. These settings
pose even bigger challenges in modeling dynamic and incomplete multi-view relationships between
the entities in the dataset, where a Grassmann manifold of fixed dimension becomes insufficient for
properly representing the data. In such cases, subspace representations of individual layers may
also need to take into account the more complex settings. For example, instead of the represen-
tation from the spectral embedding of the graph, we could consider subspaces defined by kernels



7.2 Perspectives 103

or dictionaries on graphs. By properly designing the spectral filters behind the kernels and the
dictionaries, we could gain more flexibility and adaptivity for representing dynamic and incomplete
data.

Second, we have adopted the spectral graph wavelets to construct representations of graph
signals for classification. Although wavelets are attractive tools for signal representation and pro-
cessing, they may not be adaptive enough to handle different classes of graph signals given the
specific learning tasks at hand. Dictionaries on graphs provide an appealing alternative, since they
are usually learned from the data and can be designed in such a way that they are tailored for
the specific learning tasks. In addition, we have based our classification analysis on the random
walk model for graph signals, and used classical learning models such as the SVMs as the classifier
after feature construction. It would be interesting to design novel classifiers dedicated to the spe-
cific signal models of interest. Dictionaries can again show their advantages in the research effort
towards this direction due to their flexibility and adaptivity. For example, recent studies in [47]
show that properly designed dictionaries can lead to very efficient linear classifiers with competitive
performance compared to the state-of-the-art.

Finally, our proposed graph learning framework is based on a Gaussian probabilistic prior on the
latent variables in the factor analysis model. It would certainly be interesting to explore other priors
that would lead to other desirable properties for the graphs signals, such as a Laplace prior and the
resulting sparse representations. Furthermore, instead of a linear representation model such as the
factor analysis model we have considered, it is tempting to also consider nonlinear representation
models that would explain more complex behaviors of the graph signals and their interactions with
the graph topologies. This would not only benefit the specific research problem of graph learning,
but also shed new lights in the understanding of the representation and approximation of graph
signals in the field of signal processing on graphs.

Multi-view data processing on graphs, as an increasingly popular research topic, presents the
typical challenges we need to meet in the analysis and understanding of the “Big Data” flows. First,
we need more flexible and robust graph models for the complex, noisy and incomplete data of
various forms. Second, we need more efficient graph-based signal processing and machine learning
algorithms to handle large-scale data, while still maintaining satisfactory performance. Finally, we
need to demonstrate that theoretical methods can indeed be applied to real world scenarios and
benefit practical applications. It is our belief that the models, methods, and applications presented
in this thesis serve as first attempts in the research towards this direction.





Appendix A

Classification analysis of the Gaussian

Markov Random Field model

In this appendix, we analyze the efficiency of adopting spatial and spectral representations of graph
signals for feature construction in graph signal classification applications, for graph signals that
follow a Gaussian Markov Random Field (GMRF) model. More specifically, for a given graph
signal {f,G}, this model assumes that f is a GMRF with respect to G, with the precision matrix
in the GMRF chosen as the graph Laplacian L. Our GMRF model essentially assumes that the
graph signal follows a multivariate Gaussian distribution. This is an important class of graph
signals to study, since (i) it is closely related to the Gaussian distribution in classical settings, and
(ii) it is a smooth model that could explain the behaviors of graph signals in many real world
applications, such as temperature changes in a local region or resource allocations in electrical and
transportation networks.

A.1 Distributions of the GFT and SGWT coefficients

We first show the following results about the distributions of the GFT and SGWT coefficients1.

Lemma 2. If the signal f 2 Rn is a GMRF with respect to a graph G, with a mean uf and a
precision matrix chosen as the graph Laplacian L, then the GFT coefficients of f , namely, ˆfG,
follows a multivariate Gaussian distribution.

Proof. By definition, a GMRF f with a mean uf and a precision matrix L has the following density:

p(f) = (2⇡)�
n
2 |L|

1
2 exp

✓

�1

2

(f � uf )
TL(f � uf )

◆

, (A.1)

where | · | denote the operators taking the determinant of a matrix. In other words, f follows a
degenerate multivariate Gaussian distribution:

f ⇠ N (uf , L
†
), (A.2)

1Similar assumptions about the distributions of the signal and its GFT coefficients have been discussed in [65].
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where the covariance matrix L† is the Moore-Penrose pseudoinverse of L. According to the def-
inition of GFT, we have ˆfG

= �T f where � is the matrix containing the eigenvectors of L as
columns. Therefore, following the properties of multivariate Gaussian distributions under linear
transformation, and writing the eigendecomposition of L† as L†

= �⇤†�T , we have:

ˆfG ⇠ N (�Tuf ,⇤
†
), (A.3)

where ⇤† is the pseudoinverse of the eigenvalue matrix ⇤. This shows that ˆfG follows a degenerate
multivariate Gaussian distribution.

Lemma 3. If the signal f 2 Rn is a GMRF with respect to a graph G with a mean uf and a precision
matrix chosen as the graph Laplacian L, then, the SGWT coefficients of f at one particular scale
tj, namely, ˆfW

tj , follows a multivariate Gaussian distribution.

Proof. Given a wavelet kernel function g, by the construction of SGWT we have ˆfW
tj = �g(tj⇤)�

T f
at scale tj [62]. Similarly to the proof of Lemma 2, by applying the properties of multivariate
Gaussian distributions, we have:

ˆfW
tj ⇠ N

⇣

�g(tj⇤)�
Tuf ,�g(tj⇤)⇤

†g(tj⇤)
T�T

⌘

. (A.4)

Since g(tj⇤) is a diagonal matrix, we have:

ˆfW
tj ⇠ N

⇣

�g(tj⇤)�
Tuf ,�g(tj⇤)⇤

†g(tj⇤)�
T
⌘

. (A.5)

This shows that ˆfW
tj follows a degenerate multivariate Gaussian distribution.

Without loss of generality, in the following analysis we assume that uf = 0, therefore Eq. (A.2),
Eq. (A.3) and Eq. (A.5) can be simplified as follows:

f ⇠ N (0, L†
),

ˆfG ⇠ N (0,⇤†
),

ˆfW
tj ⇠ N (0,�g(tj⇤)⇤

†g(tj⇤)�
T
).

(A.6)

A.2 Classification analysis

The above results allow us to analyze the efficiency of signal representations in the spatial domain
(which is f itself) and in the graph spectral domain (which are its GFT and SGWT coefficients)
for feature constructions in classification. Let us define two graph signals {f1, G1} and {f2, G2},
where both f1 and f2 are zero-mean. We denote by L1, ⇤1, �1 the graph Laplacian matrix, its
eigenvalue matrix, and its eigenvector matrix for G1, respectively, and similarly L2, ⇤2 and �2

for G2. We consider the following problem, where we would like to distinguish the two graph
signals to see which one is better explained by a GMRF model, for the purpose of classification.
Given features x1 and x2 that are respectively constructed based on {f1, G1} and {f2, G2}, this
is equivalent to comparing the posterior probabilities P (wGMRF|x1) and P (wGMRF|x2), where the
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class wGMRF means that the graph signal follows a GMRF model. By applying Bayes’ rule, we
can use the class-conditional probability instead of the posterior probability and have the following
decision function z:

z = P (x1|wGMRF)� P (x2|wGMRF). (A.7)

The decision rule is that {f1, G1} is better explained by a GMRF model if z > 0 and {f2, G2}
otherwise.

We now compare the discriminating power of three feature choices, namely, the signal values
f , its GFT coefficients ˆfG, and its SGWT coefficients ˆfW

tj at one particular scale tj . Incorporating
the statistics of Eq. (A.6) (namely, the class-conditional probabilities) into Eq. (A.7), when the
signal values f1 and f2 are adopted as features, we have the following decision function zf for our
problem:

zf = (�1

2

fT
1 L1f1 +

1

2

ln|L1|+)� (�1

2

fT
2 L2f2 +

1

2

ln|L2|+). (A.8)

Similarly, when ˆfG
1 = �T

1 f1 and ˆfG
2 = �T

2 f2 are adopted as features, we have the following decision
function zG:

zG =

✓

�1

2

(

ˆfG
1 )

T
⇤1(

ˆfG
1 ) +

1

2

ln|⇤1|+
◆

�
✓

�1

2

(

ˆfG
2 )

T
⇤2(

ˆfG
2 ) +

1

2

ln|⇤2|+
◆

. (A.9)

Finally, when ˆfW
1 = �1g(tj1⇤1)�

T
1 f1 and ˆfW

2 = �2g(tj2⇤2)�
T
2 f2 are adopted as features, we have

the following decision function zW :

zW =
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(A.10)

where tj1 and tj2 determine the j-th scale for the two wavelets, and |·|+ denotes the operator taking
the pseudo-determinant of a singular matrix. In Eq. (A.10), we have taken the pseudoinverse of
g†(tj1⇤1) and g†(tj2⇤2) due to their singularity.

We compare the discriminating power of three decision functions as follows. Assuming that the
pseudo-determinant terms stay within a similar range2 for G1 and G2, zf , zG and zW are dominated
by the difference between the quadratic terms in Eq. (A.8), Eq. (A.9) and Eq. (A.10). First, we see
from Eq. (A.8) that, when the signal values are adopted as features, the decision function zf simply
evaluates the sign of the difference between two Laplacian quadratic forms 1

2f
TL2f � 1

2f
TL1f .

That is, we rely on the quantity 1
2f

TL2f � 1
2f

TL1f to distinguish which graph signal is better
explained by the GMRF model. Furthermore, notice that ˆfG

1 , ˆfW
1 , and ˆfG

2 , ˆfW
2 , are obtained by

linear transformations of f1 and f2, respectively. It turns out that, when the GFT coefficients are
adopted as features, the difference between the quadratic terms in Eq. (A.9) is of exactly the same

2Since L, ⇤ and �g†(tj⇤)⇤g
†(tj⇤)�

T are all positive semi-definite matrices, their pseudo-determinants are the
products of non-zero eigenvalues. Therefore, we assume that L1 and L2 have similar eigenvalue product, which is
reasonable especially when we take the normalized versions of L1 and L2, whose eigenvalues are bounded between 0
and 2.
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form as 1
2f

TL2f � 1
2f

TL1f . The same statement holds for the SGWT features and the difference
between the quadratic terms in Eq. (A.10), as long as the diagonals of g(tj1⇤1) and g(tj2⇤2) vanish
only at zero, which is the case for the SGWT implementation in [62]. Indeed, using the fact that
ˆfG
1 = �T

1 f1 and ˆfG
2 = �T

2 f2, we have:
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Similarly, using the fact that ˆfW
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From Eq. (A.12) we see that, when the diagonals of g(tj1⇤1) and g(tj2⇤2) vanish only at zero, we
have:

g(tj1⇤1)g
†
(tj1⇤1) = g†(tj1⇤1)g(tj1⇤1) = diag(0, 1, ..., 1),

g(tj2⇤2)g
†
(tj2⇤2) = g†(tj2⇤2)g(tj2⇤2) = diag(0, 1, ..., 1).

(A.13)

In this case, the right hand side of Eq. (A.12) can be further simplified as:

1

2

fT
2 �2g(tj2⇤2)g

†
(tj2⇤2)⇤2g

†
(tj2⇤2)g(tj2⇤2)�

T
2 f2

� 1

2

fT
1 �1g(tj1⇤1)g

†
(tj1⇤1)⇤1g

†
(tj1⇤1)g(tj1⇤1)�

T
1 f1

=

1

2

fT
2 �2⇤2�

T
2 f2 �

1

2

fT
1 �1⇤1�

T
1 f1

=

1

2

fT
2 L2f2 �

1

2

fT
1 L1f1.

(A.14)

The above analysis implies that, from a Bayesian point of view, the three feature choices, namely,
the signal values, its GFT coefficients, or its SGWT coefficients at one particular scale tj , do not



A.3 Further discussions 109

have a big difference in terms of discriminating power in our problem.

A.3 Further discussions

Let us take a closer look at the probabilistic assumption that we have on the data in this model.
In Eq. (A.1), the choice of the precision matrix being the graph Laplacian L has been discussed in
[139] and is widely used as an image prior model. On the one hand, since the eigenvectors of L are
also the eigenvectors of the covariance L†, namely,

L = �⇤�T , (A.15)
L†

= �⇤†�T , (A.16)

the GFT can be considered as the Karhunen-Loève transform (KLT) for graph signals, which decor-
relates completely the random variables in f and compacts the energy along the directions of the
principal components. However, although such properties are desirable for signal representation,
the KLT, or its discrete version, the Principal Component Analysis (PCA), might not be efficient
for discrimination [39]. Therefore, the GFT coefficients may not be beneficial as features in classifi-
cation. On the other hand, the probability distribution in Eq. (A.1) implies that a zero-mean signal
f with a smaller quantity fTLf is more likely to be observed. Since the Laplacian quadratic form
fTLf is usually considered as a smoothness measure of signals on graphs [144], we can essentially
think of GMRF as a smooth signal model on graphs. It is important to point out that, in this case,
the signal is considered globally smooth on the graph, without significant variations in a particular
local region of the graph. As a result, most of the energy of the signal tends to be contained in the
low frequency components, and a transform that is aimed at capturing the local variations of the
signal (or its high frequency components), such as the SGWT, usually does not differ much from
the GFT.

Nevertheless, in practical classification tasks, one usually does not work directly with the rep-
resentations themselves, namely the signal values in the spatial domain or the coefficients in the
graph spectral domain, but rather with features built on these representations. Since the SGWT
is a redundant transform that is able to capture different spectral components of the graph signal,
the SGWT coefficients are potentially more powerful for feature construction even when most of
the signal energy is contained in its low frequency components. If it is constructed properly, it is
at least as good as other global representations such as the signal values or the GFT coefficients.
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