000200170 001__ 200170
000200170 005__ 20190331123004.0
000200170 0247_ $$2doi$$a10.1016/j.tsf.2014.06.033
000200170 022__ $$a0040-6090
000200170 02470 $$2ISI$$a000341054600001
000200170 037__ $$aARTICLE
000200170 245__ $$ac-texture versus a-texture low pressure metalorganic chemical vapor deposition ZnO films: Lower resistivity despite smaller grain size
000200170 269__ $$a2014
000200170 260__ $$aLausanne$$bElsevier$$c2014
000200170 300__ $$a6
000200170 336__ $$aJournal Articles
000200170 500__ $$aIMT-NE Number : 742
000200170 520__ $$aRecently, it has been shown that it is possible to tune the morphology of zinc oxide films deposited by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) while preserving good electrical conductivity. Here a closer look is taken at films deposited under two different deposition conditions; one leading to LP-MOCVD a-texture (i.e., with the a-axis perpendicular to the substrate), the other resulting in c-texture (i.e., with the c-axis perpendicular to the substrate), with the aim of correlating their structural and electrical characteristics. We introduce the concept of a "selection layer" to indicate the initial region of growth that precedes the establishment of a clear preferential crystallographic film orientation. With a strong preferential c-texture of initial nucleation the selection layer for c-texture films is minimal (<50nm), while for a-texture it extends for about 0.25 mu m of film thickness. The non-intentionally doped c-textured material has an electrical resistivity lower by an order of magnitude than the a-textured one, due to a higher carrier concentration and higher carrier mobility. Electrical transport measurements indicate that grain boundaries are the main limitation to conductivity for both film textures; in which case it is unexpected that the c-textured films show higher carrier mobility despite having smaller grains (i.e., greater grain boundary density). This inconsistency is explained by referring to their thinner selection layer, and lower activation energy for inter-grain transport as determined by temperature-dependent Hall measurements. (C) 2014 Elsevier B.V. All rights reserved.
000200170 6531_ $$aLow-pressure metalorganic chemical vapor deposition
000200170 6531_ $$aZinc oxide
000200170 6531_ $$aTransport mechanisms
000200170 6531_ $$aTexture coefficients
000200170 6531_ $$aSurface morphology
000200170 6531_ $$aSelection layer
000200170 6531_ $$aGrain boundary
000200170 700__ $$0245958$$aFanni, Lorenzo$$g220271
000200170 700__ $$0246513$$aAebersold, Arthur Brian$$g178255
000200170 700__ $$0242217$$aAlexander, Duncan$$g180921
000200170 700__ $$0243410$$aDing, Laura$$g161128
000200170 700__ $$0246541$$aMorales Masis, Monica$$g229523
000200170 700__ $$0243399$$aNicolay, Sylvain$$g166204
000200170 700__ $$0243401$$aBallif, Christophe$$g100192
000200170 773__ $$j565$$k1-6$$tThin Solid Films
000200170 8564_ $$s1173766$$uhttps://infoscience.epfl.ch/record/200170/files/paper_742.pdf$$yn/a$$zn/a
000200170 909C0 $$0252194$$pPV-LAB$$xU11963
000200170 909C0 $$0252025$$pCIME$$xU10192
000200170 909CO $$ooai:infoscience.tind.io:200170$$pSB$$pSTI$$particle$$qGLOBAL_SET
000200170 917Z8 $$x220271
000200170 917Z8 $$x190055
000200170 937__ $$aEPFL-ARTICLE-200170
000200170 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000200170 980__ $$aARTICLE