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Abstract
The thesis deals with electromechanical phenomena in ferroelectrics. High-order electrome-

chanical couplings, in contrast to the ordinary low-order electrostrictive coupling (coupling

which is linear in deformation and quadratic in polarization), were usually neglected in theo-

retical consideration. This thesis will be focused on the investigation of the systems where

these couplings are of importance, e.g. ferroelectric thin films, tunable Film Bulk Acoustic

wave Resonators (FBARs), and problems involving the flexoelectric effect. This work was

accomplished through a combination of two approaches: ab initio methods and phenomeno-

logical Landau theory.

We demonstrate that high-order electromechanical couplings are of importance for strained

ferroelectric films. It is shown that theoretical methods can suffer from a substantial inaccu-

racy unless these higher-order electromechanical interactions are taken into account. This

statement is illustrated with an example of a temperature - misfit strain phase diagram of a

BaTiO3 (BTO) thin film derived with high-order electromechanical interactions evaluated with

the help of first principles calculations.

Another domain where high-order electromechanical interactions are important is tunable

FBARs, where the antiresonance frequency tuning is governed by the high-order electrome-

chanical coefficient. The non-linear electrostrictive coefficient was for the first time calculated

for BTO and SrTiO3 (STO) using ab initio methods. Then, taking into account the small dif-

ference of obtained values for BTO and STO these results were linearly interpolated to the

Bax Sr1−x TiO3 (BST) compositions. The obtained values are consistent with previously made

order-of-magnitude estimates. Using parameters obtained with first principles calculations,

we simulate the resonance behaviour of BST based tunable FBARs. Resulting antiresonance

tuning is smaller than expected due to the compensation of two competing terms conditioned

by linear and non-linear electrostrictions. Our calculations also confirm that, for tunable

FBAR modeling, it is important to use a polarization-based Landau free energy expansion

taking into account both non-linear electrostriction and background permittivity.

It is demonstrated that for classical perovskites in the paraelectric phase, such as BTO, STO,

and PbTiO3 (PTO), electrostrictive strain induced by an electric field may not obey traditionally

considered "extension along the field and contraction perpendicular to it" behaviour if the ap-

plied electric field is directed obliquely to the cubic crystallographic directions. A remarkable

behaviour is predicted for bars of bulk BTO, STO, and PTO cut along the [111] crystallographic

cubic direction. In this case, for an electric field parallel to the bar, some expansion along all its

three dimensions is expected. The situation with the [110] cut is also unusual, the electrostric-
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Abstract

tive effect from a field along the bar will result in a contraction in one transversal direction

and an expansion in the other. In terms of the effective "polarization-strain" electrostrictive

coefficients of the sample, this means a positive transversal electrostriction coefficient for

some sample orientations.

The related effects take place in differently oriented perovskite thin films. Here, we identify

the manifestation of the angular dependance of electrostriction in the phase diagrams of

thin films with the example of BST 30/70. We study the behaviour of the ferroelectric phase

transition temperature of the film depending on its orientation. It was found that, for some

film orientations, the phase transition temperature can be less than that in the bulk material.

Ferroelectric properties of materials can be markedly changed through strain engineering,

therefore the use of the thin films grown in different orientations gives more flexibility for

engineering and provides a broader range of operating temperatures.

The flexoelectric effect is a response of electric polarization to a mechanical strain gradient.

It represents a higher-order effect with respect to piezoelectricity. Often this effect can be

neglected, however, at the nanoscale, where large strain gradients are expected, the flexo-

electric effect becomes appreciable. A significant number of recent publications devoted to

flexoelectricity shows an increasing interest in the phenomenon. In this work, we demonstrate

the possibility of the extraction of the bulk flexoelectric tensors from the phonon spectrum.

For this, we exploit a model phonon spectrum of STO, which was calculated using first princi-

ples methods. The dynamic flexocoupling coefficient, which was customarily not taken into

account, but which gives a substantial contribution to the total flexocoupling coefficient, was

for the first time obtained using ab initio calculations.

Finally, antiphase domain boundaries (APB) in antiferroelectric PbZrO3 are studied using ab

initio full relaxation calculations. Following transmission electron microscopy experiments,

where the polarity in APB was originally found, our calculations confirm the presence of local

polarity and, moreover, show the bistability of the APB structure. Taking into account the

above results, one can conclude that the phenomenon observed at the APB is a signature of

local ferroelectricity. Ferroelectric APBs in antiferroelectrics are of high interest since they can

be potentially viewed as functional 1-10 nm wide elements, which carry the information.

Key words: ferroelectrics, ferroelectricity, flexoelectricity, thin films, electrostriction, Landau

theory, ab initio calculations
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Résumé
Cette thèse traite des phénomènes électromécaniques dans les ferroélectriques. Les couplages

électromécaniques d’ordre élevé, au contraire du couplage électrostrictif de bas ordre (cou-

plage linéaire avec la déformation et quadratique avec la polarisation) sont généralement

négligés dans les modèles théoriques. Cette thèse se concentre sur l’étude des systèmes

dans lesquels ces couplages sont importants, tels que les films minces ferroélectriques et

les résonateurs acoustiques ajustables, et les problèmes impliquant l’effet flexoélectrique.

Ce travail a été réalisé en combinant deux approches : des calculs ab initio et la théorie

phénoménologique de Landau.

Nous avons démontré que les couplages électromécaniques d’ordre élevé sont importants

pour les films ferroélectriques contraints, et que les modèles théoriques utilisés peuvent

souffrir d’imprécisions substantielles à moins de les prendre en compte. Cette affirmation

est illustrée par un diagramme de phases de la température en fonction de la contrainte

épitaxiale de films minces de BaTiO3 (BTO). Celui-ci a été calculé à l’aide des couplages

électromécaniques d’ordre élevé à partir de calculs des premiers principes.

Un autre domaine dans lequel les interactions électromécaniques d’ordre élevé sont impor-

tantes est les résonateurs acoustiques ajustables pour lesquels ils contrôlent la fréquence

d’antirésonance. Le coefficient électrostrictif non-linéaire a été calculé pour la première fois

pour BTO et SrTiO3 (STO) en utilisant des méthodes ab initio. En prenant en compte les

faibles différences de valeurs pour BTO et STO, les résultats ont ensuite été linéairement inter-

polés pour les compositions de Bax Sr1−x TiO3 (BST). Les valeurs obtenues concordent avec

les estimations faites précédemment. En utilisant les paramètres obtenus à partir des calculs

des premiers principes, nous avons simulé le comportement à la résonance de résonateurs

ajustables à base de BST. L’ajustement de l’antirésonance dans ce système est plus faible

qu’attendu à cause de la compensation de deux termes en compétition qui sont conditionnés

par l’électrostriction linéaire et non-linéaire. Nos calculs confirment aussi que pour modéliser

un résonateur acoustique ajustable, il est important d’utiliser le développement de l’énergie

libre de Landau en prenant en compte à la fois l’électrostriction non-linéaire et la permittivité.

Il a été démontré que pour les perovskites classiques dans leur phase paraélectrique, telles

que BTO, STO et PbTiO3 (PTO), la contrainte électrostrictive induite par un champ électrique

n’obéit pas nécessairement au comportement traditionnel « extension le long du champ et

contraction perpendiculairement à celui-ci » si le champ est appliqué de façon oblique aux

axes cristallographiques cubiques. Un comportement remarquable est prédit pour des barres

de matériaux massifs de BTO, STO et PTO découpées le long de l’axe cristallographique cu-
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Résumé

bique [111]. Pour un champ électrique appliqué parallèle à la barre, une extension dans les

trois dimensions est attendue. Le cas d’une découpe suivant l’axe [110] est aussi inhabituel,

l’effet électrostrictif pour un champ appliqué le long de la barre résulte en une contraction

suivant une des directions transverses et à une extension suivant l’autre. En termes de coef-

ficients électrostrictifs effectifs « polarisation-contrainte » de l’échantillon cela signifie que

certains sont positifs pour des orientations données.

Des effets similaires se produisent dans des films minces de perovskites. Ici, nous identifions la

manifestation de la dépendance angulaire de l’électrostriction dans les diagrammes de phases

de films minces en prenant comme exemple BST30/70. Nous avons étudié le comportement

de la température de transition de phase ferroélectrique en fonction de l’orientation du film.

Nous avons trouvé que pour certaines orientations, la température de transition de phase

peut être inférieure à celle du matériau massif. Les propriétés ferroélectriques du matériau

peuvent être notoirement modifiées en ajustant la contrainte. Le choix de l’orientation du film

pendant sa croissance permet d’ajuster ses propriétés et d’augmenter sa plage opérationnelle

de températures.

L’effet flexoélectrique est la réponse de la polarisation électrique à un gradient de con-

trainte. Il est d’ordre plus élevé que l’effet piézoélectrique et est souvent négligé. A l’échelle

nanométrique cependant, ou des gradients importants sont attendus, l’effet flexoélectrique

devient non négligeable. Nombre de publications récentes lui sont dévouées ce qui confirme

l’intérêt croissant pour le phénomène. Dans cette thèse, nous démontrons la possibilité

d’extraire les coefficients flexoélectriques des spectres de phonons. Pour cela nous exploitons

le spectre de phonons de STO, calculé à partir de calculs fondamentaux. Le coefficient dy-

namique de flexocouplage, qui n’est habituellement pas pris en compte, donne une contribu-

tion substantielle au coefficient flexoélectrique total et a été calculé pour la première fois en

utilisant une méthode ab initio.

Finalement, les parois de domaines d’antiphase (PDA) de l’antiferroélectrique PbZrO3 sont

étudiées en utilisant des relaxations complètes ab initio. En partant des observations par

microscopie électronique à transmission, où la polarité des PDA a originellement été trouvée,

nos calculs confirment la présence d’une polarité locale et, de plus, révèlent une bistabilité de

la structure des PDA. En prenant en compte ces résultats, nous avons conclu que le phénomène

observé est la signature d’une ferroélectricité locale. Les parois de domaines d’antiphase dans

les antiferroélectriques sont particulièrement intéressantes car elles peuvent potentiellement

être vues comme des porteuses d’information de seulement 1-10nm de large.

Mots clefs: ferroélectriques, ferroelectricité, flexoelectricité, films minces, electrostriction,

théorie de Landau, simulations ab initio
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Introduction

Electromechanical effects control a large amount of physical properties and, nowadays, are

widely used in many technical applications. Since the first electrical relays used in the tele-

graph at the end of 18th century devices based on electromechanical effects are everywhere.

The devices based on electromechanical effects such as sensors, actuators, radio filters, switch-

ers, etc. are part of modern devices and tools: radio and TV sets, mobile and landline phones,

ultrasonic medical equipment, and millions of others.

Speaking about electromechanical effects one usually means piezoelectric effect (or converse

piezoelectric effect). The piezoelectric effect was discovered in 1880 by the brothers Pierre

and Jacques Curie. They were doing experiments with tourmaline, quartz, topaz, cane sugar

and Rochelle salt and they found out that a mechanical stress can cause electricity, moreover

the measured voltage was proportional to the mechanical stress. The converse effect was

however discovered later by Gabriel Lippmann in 1881 using the thermodynamic aspect of

the theory of piezoelectricity. These two phenomena were called piezoelectric and converse

(inverse) piezoelectric effect respectively from Greek’s "piezein" which means "to press" or to

"to squeeze".

The understanding of the concept of piezoelectricity in solids begins with the understanding

of the internal structure of the material. Let us consider for simplicity a single crystal material.

This material is made up of atoms with positive or negative charge that are constrained to

occupy positions in a specific repeating relationship to each other building up the structure

or lattice of the crystal. The symmetry of a crystal internal structure governs the symmetry

of its external properties, it is so called Neumann’s principle. Namely, the specific symmetry

possessed by the structure determines whether it is possible for piezoelectricity to exist in

the crystal. All crystals can be divided into 32 different classes or point groups utilizing these

symmetry elements. These 32 point groups are subdivisions of seven basic crystal systems

that are, in order of ascending symmetry, triclinic, monoclinic, orthorhombic, tetragonal,

rhombohedral (trigonal), hexagonal, and cubic. Of the 32 point groups, 21 classes are non-

centrosymmetric (a necessary condition for piezoelectricity to exist) and 20 of these are

piezoelectric.

The piezoelectric effect is a linear interaction between the mechanical and the electrical state

in crystalline materials with no inversion symmetry. The piezoelectric effect represents the
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creation of the electrical charge on the surface of the free standing material resulting from an

applied mechanical force, in terms of dielectric displacement Di and stress σ j k , it is expressed

as:

Di = di j kσ j k . (1)

Hereafter, when needed, we apply the Einstein dummy suffix summation convention. The

converse piezoelectric effect (the appearance of a mechanical strain ε j k resulting from an

applied electrical field Ei ) could be described as:

ε j k = di j k Ei . (2)

The two effect always coexist, and the proportionality constant di j k is the piezoelectric con-

stant.

There are 10 out of a possible 20 piezoelectric crystal classes that are designated as pyroelectric.

This group of materials possesses the unusual characteristic of being permanently polarized

within a given temperature range. Unlike the more general piezoelectric classes that produce

a polarization under stress, the pyroelectrics possess this polarization permanently. This

polarization also changes with temperature, hence, the term pyroelectricity. Pyroelectric

crystals, such as tourmaline and wurtzite, are often called polar materials, thus referring to the

polar axis which direction cannot be changed within the symmetry operations of the material.

The total dipole moment varies with temperature, leading to a change in sign for the current

flowing out of a short-circuited crystal.

Figure 1: Perovskite structure of ABO3 on example of BaTiO3. The materiail can exist in
different phases: (a) cubic phase, (b) tetragonal phase, (c) orthorhombic phase, and (d)
rhombohedral phase. The direction of polarization in different phases is shown with the green
arrow.

If a material possesses a phase transition from non-polar to polar phase, accompanied with

the lowering of the symmetry, this material is called ferroelectric. One of the most important

groups of ferroelectrics is perovskites. In perovskites in the ferroelectric phase, there exist

more than one polar state, and the orientation of the polarization can be reoriented by an

electric field of some magnitude. A typical perovskite ABO3 cubic unit-cell structure is given

in Fig. 1. For example, the unit cell of BaTiO3 (BTO) consists of a corner-linked network of
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Ba2+ atoms (A sites) and Ti4+ ions occupying sites (B sites) within the octahedral cage of O2+

octahedra.

In most cases, however, depending on temperature, the simple cubic structure of perovskites

undergoes several phase transitions. In BTO, there are cubic paraelectric and three ferroelectric

phases (tetragonal, orthorhombic, and rhombohedral) shown in Fig. 1. These ferroelectric

phases are described by direction of polarization and associated distortion of the cubic unit

cell.

Figure 2: Perovskite ABO3 unit cell of BaTiO3 illustrating 180◦ polarization reversal for two of
the six possible polarization states of the tetragonal phase produced by displacement of the
central cation in the tetragonal phase.

Under application of an electric field atoms move to new positions along the direction of the

applied field, which is schematically shown in Fig. 2. That leads to the change of polarization

of the sample.

Good dielectric and electromechanical properties of ferroelectric materials condition their

wide range of applications. Among these applications are high dielectric-constant capacitors,

piezoelectric sonar and ultrasonic transducers, radio and communication filters, pyroelectric

security surveillance devices, medical diagnostic transducers, buzzers, gas igniters, various

sensors and switches, ultrasonic motors, electro-optic devices, thin-film capacitors, ferroelec-

tric thin-film memories, etc.

Electrostriction is another electromechanical effect that exists in ferroelectric materials. Unlike

piezoelectricity, where the deformation is linear with respect to the applied field, and it changes

sign when the field is reversed, electrostriction is a quadric effect with respect to polarization

εi j =Qi j kl Pk Pl (3)

where Pi is the polarization, and Qi j kl is the electrostrictive coefficient. This also means that

electrostriction produces an expansion in most materials (if Q > 0) in the direction of the

field regardless of its polarity. Electrostriction is a general property of all dielectric materials,

whether they are crystals, amorphous, ceramics, polar, or centrosymmetric.

Until nowadays, the non-linear electrostrictive couplings were not yet considered and were

usually neglected in both physical models and engineering calculations for electromechanical
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systems. In contrast to the "normal" electrostrictive coupling which is linear in deformation

and quadratic in polarization, here we are dealing with couplings that involve higher powers

of these variables. It is presently understood that there are systems where these couplings can

be decisive. For example, for the phase diagrams of ferroelectric thin films, the non-linear

electrostrictive coefficients determine the phase of the film. Another important aspect of

non-linear electrostriction was recognized during recent development of tunable Film Bulk

Acoustic wave Resonators (FBARs): it was found that the non-linear electrostrictive interaction

can essentially control the performance of such devices.

Another phenomenon, which is of a special interest, is the flexoelectric effect. This effect

is controlled by the linear coupling between the deformation gradient and polarization (in

contrast to the piezoelectric effect which is controlled by the linear coupling between defor-

mation and polarization). The flexoelectric effect, being of high fundamental interest, was

recently also recognized as the basis for a new type of mechanical sensors. At the same time,

the recent experimental studies establish the important role of this coupling in behaviour of

multi-domain and disordered ferroelectrics.

Goals and objectives of the thesis

The goal of the thesis is to develop new theoretical knowledge on the high-order electro-

mechanical couplings in ferroelectrics. The work will be focused on the missing knowledge in

the field, which can be summarized as follows.

The role of non-linear electrostrictive couplings in the phase formation in ferroelectric thin

films was identified, however the information on the constants of non-linear electrostrictive

interactions is very limited. Therefore we want to perform relevant first principles calculations

to evaluate them and show their importance for for real systems.

There is a growing interest of flexoelectricity from both theoretical and experimental points

of view, however there are still many problems to be addressed. Namely, the dynamic bulk

flexoelectric tensor was found to be important, but not yet measured or calculated. Here, we

intend to show how to obtain the information on the bulk flexoelectric tensors exploiting a

phonon spectrum. Using the model phonon spectrum of STO calculated with first principles

methods, we want to evaluate the dynamic bulk flexoelectric tensor.

Two kinds of the theoretical activity are intended: (i) a work in terms of the continuous phe-

nomenological theory (Landau theory, electrodynamics, phenomenological charge transport,

etc.), (ii) first principles calculations using Density Functional Theory (DFT).
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Outline of the thesis

The thesis is split into a few chapters. The introduction gives the general information about

electromechanical effects and ferroelectric materials where these effects are of interest. The

first chapter will show the state of the art including the latest achievements in the field. The

second chapter will be devoted to DFT calculations of high-order electrostriction coefficients

and to subsequent phenomenological development of the strain-temperature phase diagrams

for ferroelectric thin films of a model ferroelectric BTO. In the third chapter we will study

tunable Film Bulk Acoustic wave Resonators using Landau theory with the thermodynamic

coefficients ab initio calculated. Then, we will consider electrostrictive effect for different

crystallographic directions in perovskite bulk crystals and thin films. In the fifth chapter, using

first principles calculations the flexoelectric effect will be studied. It will be demonstrated how

to calculate the static and dynamic flexoelectric tensors with the help of the model phonon

spectrum of SrTiO3. The sixth chapter will be devoted to first principles calculations of

antiphase boundaries in antiferroelectric PbZrO3. At the end, we will summarize the obtained

results and show possible impact in the field.
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1 State of the art

Electromechanical properties of solids are widely used in many technical applications. Tra-

ditionally, speaking about electromechanical properties, one means the piezoelectric effect.

Indeed nowadays this effect is widely used in devices based on bulk [12] or thin film materials

[13]. Specifically, piezoelectrics, i.e. materials exhibiting the piezoelectric effect, are used,

for example, in sensors, actuators, RF filters, and active damping devices. Materials, which

exhibit piezoelectricity, are also good candidates for the energy harvesting use [14]. How-

ever, without diminishing the role of the piezoelectric effect, the resent developments in the

field revealed that the so-called high order electromechanical couplings (and corresponding

electromechanical effects) become of increasing importance [15].

1.1 Non-linear electrostrictive couplings and strain engineering

As was mentioned in the introduction, until recently, the non-linear electrostrictive couplings

have been almost completely ignored when analysing the electromechanical properties of

solids. The first relevant work was published by Yushin in 1996 [16]. The importance of these

couplings was recognized later especially for the thin films. Recently, it became possible

to control and even to engineer the phase of a ferroelectric film through creating different

misfit strain between the film and the substrate by using different substrates, which nowa-

days constitutes a whole branch of materials science, so-called "strain engineering". It was

demonstrated that the "ordinary" low-order electrostrictive coupling is extremely important

for this control. The temperature-strain phase diagrams (see Fig. 1.1) have been developed for

classical materials such as BaTiO3, PbTiO3, and SrTiO3 [17, 18]. As a great success in this field,

one should mention the paper by Haeni [19] where governed by this coupling ferroelectricity

was stimulated for the paraelectric SrTiO3 at room temperature. This observation was in a

qualitative agreement with the theoretical prediction, moreover the experiment was actually

stimulated by the theory. However, the further theoretical studies [20] established that the

adequate derivation of the temperature-strain phase diagrams for ferroelectric thin films is

impossible without taking into account the non-linear electrostrictive couplings. Up to date,

no theoretical work has been done neither on the incorporation of these couplings into the
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Chapter 1. State of the art

phenomenological theory nor on the first principle calculations of the corresponding coupling

constants.

Figure 1.1: Temperature - misfit strain phase diagrams of a single-domain (001)-oriented
BaTiO3 taken from Ref. [1]. The phases are denoted as (i) the c-phase, polarization is out-
of-plane (P1 = P2 = 0,P3 6= 0); (ii) the aa-phase, where polarization is in-plane (P1 6= 0,P2 6=
0,P3 = 0); (iii) the ac-phase where P1 6= 0,P2 = 0,P3 6= 0; (iv) r-phase, where all components of
polarization are non-zero; and (v) paraelectric phase, polarization is 0.

Quite recently the importance of non-linear electrostrictive couplings was also realized in the

context of the development of a new type of microwave tunable devices, tunable Film Bulk

Acoustic wave Resonators (FBARs). In such devices, the piezoelectric effect is induced in a

non-piezoelectric material by the application of a dc electric field [21]. Thus, in a thin non-

piezoelectric film, the excitation of the piezoelectric resonance (like that used in quartz-based

watches) was found possible. However, in tunable FBARs, in contrast to normal piezoelectrics

like quartz, the parameters of the resonance can be tuned with the applied dc electric field.

Modelling of such devices established that the tuning of its antiresonance frequency is mainly

controlled by the non-linear electrostrictive couplings [22, 23]. Moreover, it was shown that it

is the strength of this interaction that is decisive for the use of tunable FBARs in tunable RF

filters.

The said above shows that the high-order electromechanical couplings are an important

new issue for both fundamentals of ferroelectrics and applications. This is explained by a

limited theoretical work done in the field since until recently the importance of the high-order

electromechanical couplings was not recognized.

1.2 Flexoelectric effect

The name flexoelectric originates from the Latin word "flexus" meaning "bend" and is related

to the fact that a strain gradient naturally arises in bent plates. The flexoelectric effect is an

electromechanical effect in which the dielectric polarization exhibits a linear response to
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1.2. Flexoelectric effect

a gradient of mechanical strain. In a piezoelectric material, an applied uniform strain can

induce an electric polarization and vice-versa. Crystallographic considerations indicate that

this technologically important property is fundamentally restricted to non-centrosymmetric

crystal systems. For piezoelectrics, the polarization vector Pi is related to the second order

strain tensor ε j k through the third order piezoelectric tensor di j k :

Pi = di j kε j k . (1.1)

Tensor transformation properties require that under inversion-centre symmetry, all odd-order

tensors (like di j k , third-order tensor) vanish. Thus, many common dielectrics, e.g. Silicon

and NaCl are not piezoelectric whereas ZnO and GaAs are. Actually it is possible to extend the

conventional piezoelectric constitutive law by including strain gradients:

Pi = di j kε j k + fkl i j
∂εkl

∂x j
. (1.2)

Here ∂εkl
∂x j

and fkl i j are the strain gradient and the tensor of static flexoelectric coefficients, re-

spectively. While the piezoelectric property is non-zero only for selected non-centrosymmetric

materials, the strain gradient-polarization coupling (i.e. flexoelectric coefficients) is in prin-

ciple non-zero for all dielectric materials including those that are centrosymmetric. This

implies that under a non-uniform strain, all dielectric materials are capable of producing a

polarization.

Though the existence of the flexoelectric effect in solids was predicted long time ago, only a

little attention was paid to it, primarily because the effect was expected to be weak. However,

recently, the situation has changed. First, systematic experimental studies on flexoelectricity

in ferroelectric ceramics showed that the response can be several orders of magnitude stronger

than was expected based on theoretical estimates [24]. Second, in line with the modern trend

to the miniaturization, the length scales decrease, and therefore larger strain gradients and,

correspondingly, larger flexoelectric effects are expected. The flexoelectric effect looks promis-

ing for practical applications and helps to explain a number of phenomena, especially at the

nanoscale. However, available theoretical and experimental results are rather contradictory,

attesting to a limited understanding of flexoelectricity.

The first phenomenological framework for the description of this effect was offered by Kogan

[25] in 1964, who did it in the context of electron–phonon coupling in centrosymmetric

crystals, where the flexoelectric coupling may play an important role. The analysis of the

magnitude of the static bulk flexoelectric coefficients provided by Kogan was later generalized

to ferroelectrics by the Tagantsev [26]. In ferroelectrics, the materials in which this effect looks

to be interesting for practical applications, flexoelectricity was first addressed by Bursian and

coworkers [27, 28]. They characterized flexoelectricity in the classical ferroelectric BaTiO3

and demonstrated switching of spontaneous polarization driven by a strain gradient. These

authors also developed a phenomenological theory of the flexoelectric effect in a finite plate

of a ferroelectric. One of the results of this theory is that the flexoelectric effect should be

9



Chapter 1. State of the art

strongly enhanced in materials with high dielectric permittivity, e.g. ferroelectrics.

The evaluation of flexoelectric properties is a challenging task both experimentally and theo-

retically. Experimental measurements of the flexoelectric effect of high-dielectric-constant

ceramics such as lead magnesium niobate, barium strontium titanate and lead zirconate

titanate by Cross and co-workers [3, 29, 30] show that the magnitude of their flexoelectric coef-

ficients are of the order of 10−6 C/m which is two orders of magnitude larger than theoretical

estimates. At the same time, the values of the components of the static flexoelectric tensor

for SrTiO3 recently experimentally estimated by Zubko et al. [31] are of the order of 10−8 C/m,

which reasonably agree with the estimates by Tagantsev [6].

Recent experimental studies on flexoelectricity-driven phenomena are also numerous. The

results of these studies attest to the key feature of the flexoelectric effect, namely, that a strain

gradient (via the flexoelectric coupling) may work as an electric field: it can induce poling,

switching, and rotation of polarization; it can create a voltage offset of hysteresis loops and

smear the dielectric anomaly at ferroelectric phase transitions. Gruverman et al. [2] observed

polarization switching in the (111)-oriented (PZT)-based capacitors generated by substrate

bending and provided direct experimental evidence of stress-induced switching (Fig. 1.2).

Figure 1.2: PFM (Piezoresponse Force Microscopy) images illustrating the impact of stress on
polarization switching behaviour of the (111)-oriented PZT capacitors, taken from Ref. [2]. (a)
and (b) - images of PFM amplitude and phase after tensile stress application, (c) and (d) - PFM
amplitude and phase after compressive stress application.

At the same time, theoretical estimations show that effective electric field E eff arised under

application of bending due to flexoelectric effect is an order of E eff = f
χ

1
R ≈ 0.1V/cm, where χ

is dielectric susceptibility and R characteristic bending radius, which is absolutely insufficient

to perform polarisation switching. Later, Gruverman et al. [32] demonstrated that the stress

gradient generated by the tip of an atomic force microscope can mechanically switch the

polarization in the nanoscale volume of a ferroelectric film.

Recently, the idea to exploit flexoelectricity in a new type of composites to generate effective

piezoelectricity has been discussed and theoretically analysed by Sharma et al. [33]. A sug-
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1.2. Flexoelectric effect

gestion was made by Cross et al. [3, 29] about the possibility of creating composite material

of non-piezoelectric materials which exhibit the piezoelectric response originating from the

flexoelectric coupling. The idea behind such materials is to make working the strain gradients

and to have effective piezoelectricity through the flexoelectric effect (Fig. 1.3).

Figure 1.3: Diagrammatic sketch of a flexoelectric piezoelectric composite made of truncated
pyramidal blocks of BST ceramics. Taken from Ref. [3].

Cross et al [3] have published studies on such composites reporting, for a Bax Sr1−x TiO3 (BST)

based structure, an effective piezoelectric modulus of 40 pC/N (for example, for quartz piezo-

electric modulus d11 = 2.3 pC/N). As was also shown by Majdoub et al. [34] the flexoelectric

effect (as revealed by recent calculations on prototype nanostructures) under certain circum-

stances can compete with the piezoelectric response. Flexoelectric composites can have wide

range of applications as, for example, in energy harvesting and as vibration and pressure

sensors. Furthermore, they cannot be depolled offering an advantage in operation at the

higher temperatures than ferroelectric piezoelectric ceramics.

Flexoelectric effect actually represents 4 related phenomena: static and dynamic bulk flexo-

electric effects, surface flexoelectric effect and surface piezoelectricity [24].

The static bulk flexoelectric response is controlled by the redistribution of the bound charge

of a crystal driven by a strain gradient, where ionic and electronic contributions can be distin-

guished. The theories of this phenomenon provide relationships between the flexoelectric

tensor introduced phenomenologically and the microscopical parameters of the material (e.g.

the dynamical matrix which describes the energy of interatomic interactions in the crystal).

The ionic contribution to flexoelectricity was evaluated for several perovskite ferroelectrics and

bi-atomic crystals by Sharma and coworkers [35] using the framework offered by Tagantsev

[36]. Ab initio calculations of this contribution were performed by Hong et al [37] and Pono-

mareva et al [38] for SrTiO3, BaTiO3, and their solid solution. The first-principles calculations

of the purely electronic contribution to flexoelectricity have been done by Hong and Vanderbilt

for a number of crystals, including classical perovskites [39] and Stengel [40]. The concept

behind these calculations, stemming from the classical work by Martin [41], was formulated

by Resta [42]. The electronic contribution to flexoelectricity in carbon nanosystems was evalu-
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ated by Dumitrica et al [43] and Kalinin and Meunier [44] using ab initio calculations. Ab initio

and shell model results for static bulk flexoelectric effect are available for non-ferroelectric

crystals (GaAs, GaP, ZnS, NaCl, and KCl) and ferroelectric (BaTiO3, SrTiO3) crystals [15]. For

non-ferroelectric, the calculated value of the bulk flexoelectric coefficients were found to be in

the range 10−12 −10−11 C/m, which are essentially smaller than Kogan’s estimate.

The importance of the surface effects in the flexoelectric behaviour of ferroelectrics was

identified by Tagantsev and Yurkov [45]. It was also shown by Indenbom et al [46] and Eliseev

et al [47] that taking flexoelectricity into account will lead to a modification of the electrical

and mechanical boundary conditions.

Revising the work done in the field, one can conclude that the available theoretical knowledge

on static bulk flexoelectric tensor is quite limited and the variety of terminology and methods

used in different papers often obscure the links between different results. The dynamic bulk

flexoelectric tensor was identified by Tagantsev [24, 48], but never measured or calculated,

however its contribution is considerer to be important. Surface flexoelectricity and surface

piezoelectricity are little studied and their values are experimentally unknown.
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2 Can we trust thin film diagrams?

In the introduction we already mentioned the importance of taking into account the non-

linear electrostrictive couplings for problems involving ferroelectric thin films. In this chapter

we will consider in depth the theory laying behind the matter and the impact of non-linear

electrostrictive coefficients on the temperature - misfit strain phase diagrams.

2.1 Strain engineering

Strain engineering is a modern strategy to control and enhance materials properties. It

represents a technique which deals with semiconductor and ferroic thin films strained on

a substrate. Such strain can be tensile or compressive and occurs due to the difference

between lattice parameters or due to the difference of the thermal expansion coefficients

of the film and that of the underlying substrate. In strain-engineered ferroics, the strain

appearing in the film shifts the transition temperatures and can change the properties of the

material such as the dielectric and piezoelectric constants, remanent polarization, or even

can induce room temperature ferroelectricity in a non-ferroelectric material [19]. Currently

used methods for the description of thermodynamics of ferroic thin films (classical Landau

theory [17], phase field modeling [49], and ab initio based Monte-Carlo (MC) simulations [50])

are based on an energy expansion in terms of internal degrees of freedom. Any treatment of

this kind starts from such expansion for the bulk ferroic (e.g. the effective Hamiltonian for MC

simulations [50] or a thermodynamic potential for Landau theory analysis [17]). Further mixed

mechanical conditions corresponding to the films are applied. This way one establishes a kind

of effective thermodynamic potential (or effective Hamiltonian) of the film. Minimisation of

such potential or further MC simulations yield the ferroic state of a film as a function of the

temperature and misfit strain. The standard way to present the results of such calculations is

the so-called "temperature - misfit strain" phase diagrams [17], which give the ferroic state

depending on temperature and parent misfit strain of the film. Such diagrams have been

developed for many classical ferroelectric materials like BaTiO3[1, 17, 49–51], PbTiO3[1, 51],

and SrTiO3[18].
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Chapter 2. Can we trust thin film diagrams?

The goal of this work is to draw attention to the fact that the aforementioned methods of

description of ferroelectric thin films in their current implementations may suffer from a

serious principle drawback, which may lead to erroneous results. It is commonly understood

that a large (sometimes enormous) difference between the properties of a strained film and its

bulk counterpart is due to the coupling between the order parameter and strain. Customarily

this coupling is modeled in the so-called electrostriction approximation corresponding to

terms quadratic in the order parameter and linear in mechanical strain (stress) in the ther-

modynamic potential [17] or effective Hamiltonian [50] of the bulk material. Already 10 years

ago, when using the electrostriction approximation for a special situation in PbTiO3 films of

(111)-orientation, a possible principle deficiency of this approximation was pointed out [20].

This chapter is devoted to a comprehensive analysis of this problem in terms of Landau theory

however the conclusion should hold for MC simulations as well. We show that this "ordinary"

electrostriction based description provides an adequate approach of thermodynamics of ferro-

electric thin films if and only if it is controlled by the free energy expansion up to fourth power

terms in polarization. However, if the sixth-power polarization terms (γ-terms) are needed

in the expansion, which is a common situation for ferroelectric perovskites, higher-order

electromechanical couplings should be taken into account. First, we elucidate the matter in

terms of a simplified phenomenological model. Second, to demonstrate the phenomenon

for thin films, we estimate some higher-order electrostrictive coefficients using experimental

data and we calculate missing coefficients (in order to have a complete set) using ab initio

methods. Then, we show that the higher-order electromechanical couplings readily lead to an

order-of-magnitude renormalization of the γ-terms of free energy when passing from the bulk

thermodynamic potential to the effective thermodynamic potential of the film. Finally, we

illustrate our message with the results of the calculations for a BaTiO3 thin film.

2.2 Scalar model

The problem with the "electrostriction based" description of strained ferroelectrics can be

illustrated qualitatively by a simple scalar model. Let us describe a ferroelectric with a Gibbs

thermodynamic potential energy expansion keeping only one component of polarization P

and stress σ:

G = α

2
P 2 + β

4
P 4 + γ

6
P 6 − s

2
σ2 −QP 2σ︸ ︷︷ ︸

"ordinary"

− M

2
P 2σ2 −RP 4σ− N

3
σ3︸ ︷︷ ︸

"high-order"

, (2.1)

where the "ordinary" part represents Gibbs energy commonly used to describe ferroelectric

systems (Q - "ordinary" electrostrictive coefficient, s - linear compliance) and "high-order"

terms (M , R - high-order electrostrictive coefficients and N - non-linear compliance) which

are customarily neglected. This neglect can be readily justified for a bulk material but the

situation for the clamped system is different. We can show this considering ferroelectricity in

a clamped system, i.e. where the strain ε equals the misfit strain ε0. To obtain the effective
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2.2. Scalar model

potential of the clamped system

G̃ =G +εσ, (2.2)

where T is temperature, we eliminate stress σ using a mechanical equation of state

ε= ε0 =−∂G

∂σ
= sσ+Nσ2 +QP 2 +RP 4 +MP 2σ, (2.3)

and write the effective thermodynamic potential G̃(P,T,ε0):

G̃(P,T,ε0) = α∗

2
P 2 + β∗

4
P 4 + γ∗

6
P 6 + ε2

0

2s
, (2.4)

where minima of G̃ with respect to polarization correspond to the ground state of the clamped

system. Electromechanical interactions in such systems lead to renormalizations of α, β and

γ:

α∗ =α−ε0
Q

s
−ε2

0(
M

2s2 + QN

s3 )︸ ︷︷ ︸
A

, (2.5)

β∗ =β+2
Q2

s
+ε0(

MQ

s2 − R

s
− NQ2

s3 )︸ ︷︷ ︸
B

, (2.6)

γ∗ = γ−3M
Q2

s2 +6R
Q

s
+2N

Q3

s3︸ ︷︷ ︸
C

. (2.7)

Now, let us have a closer look at Eqs. (2.5)-(2.7). The ε0
Q
s term in (2.5) leads to the shift of the

phase transition temperature. The 2Q2

s term in (2.6) renormalizes β, for example, for BaTiO3

this "renormalization" switches the sign of β, i.e. it changes the order of the phase transition

passing from a bulk material to a film [1]. These two "electrostrictive" corrections do not

involve high-order electrostrictive couplings, they are well known and justified experimentally

[19, 52]. At the same time, atomic order-of-magnitude estimates show that, in (2.5), Q
s is about

( M
2s2 + QN

s3 ) whereas 2Q2

s is about ( MQ
s2 − R

s − NQ2

s3 ) in (2.6). Thus, in view of smallness of ε0 for

any practical situation the A and B corrections are expected to be negligible, except the cases

where the low-order corrections are unusually small. However, atomic order-of-magnitude

estimates suggest that the C correction in (2.7) is of the same order of magnitude as γ similar

to the strong renormalization of the β term in (2.6). These estimates imply that the high-order

coefficients, which are customarily neglected in the majority of problems, should be included

into thermodynamic energy expansions as far as the "γ-term" in (2.1) is important for the

description of a problem.
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Chapter 2. Can we trust thin film diagrams?

2.3 Landau theory of thin films with high-order electrostrictive

couplings

There are several ways to introduce high-order couplings to Landau theory. The first one is

to use the Gibbs thermodynamic energy expansion for a centrosymmetric cubic crystal with

respect to polarization Pi and stress σi j :

G = aP 2 +ai j P 2
i P 2

j +ai j k P 2
i P 2

j P 2
k −

si j kl

2
σi jσkl −

Ni j kl mn

3
σi jσklσmn −Qi j kl Pi P jσkl−

−Mi j kl mn

2
Pi P jσklσmn −Ri j kl mnPi P j Pk Plσmn ,

(2.8)

where a, ai j , and ai j k are dielectric stiffness and higher-order dielectric stiffness coefficients

at constant stress, si j kl and Ni j kl mn are linear and nonlinear elastic compliances, Qi j kl is

ordinary electrostriction, and Mi j kl mn and Ri j kl mn are high-order electrostriction tensors.

The minima of G with respect to polarization at zero stress correspond to the ground state of

the mechanically free sample. The G expansion is often used dealing with experimental data.

Alternatively, when working with ab initio calculations, instead of G expansion one naturally

uses the Helmholtz thermodynamic function F written in terms of polarization Pi and strain

εi j :

F = bP 2 +bi j P 2
i P 2

j +bi j k P 2
i P 2

j P 2
k +

ci j kl

2
εi j εkl +

ni j kl mn

3
εi j εklεmn −qi j kl Pi P j εkl−

−mi j kl mn

2
Pi P j εklεmn − ri j kl mnPi P j Pk Plεmn ,

(2.9)

where qi j kl , mi j kl mn and ri j kl mn are components of linear and high-order electrostrictive

tensors, and ci j kl and ni j kl mn are linear and non-linear stiffness tensors. The minima of F at

zero strain correspond to the ground state of a fully mechanically clamped sample.

The relationships between the Ni j kl mn and ni j kl mn coefficients can be found by resolving the

mechanical state equations for stress:

σi j = ci j klεkl +ni j kl mnεklεmn (2.10)

and strain:

εi j = si j klσkl +Ni j kl mnσklσmn . (2.11)

Eliminating, for example, stress σi j between (2.10) and (2.11) and keeping linear terms in

(2.10) in view of the smallness of εi j one can obtain:

ni j kl mn =−ci j uv ckl w x cmny z Nuv w x y z . (2.12)

Hereafter, we use the Voigt matrix notation when possible. In addition to standard Voigt
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2.4. Legendre transformation of high-order electrostrictive coefficients

notations for stress σi , strain εi , elastic (si j and ci j ) [53] and linear electrostriction (qi j and

Qi j ) tensors, defining Qi j according to the Landolt-Bornstein reference book [7]

Qi j kl =
Qmn for n = 1,2,3

Qmn
2 for n = 4,5,6

, (2.13)

we use the Voigt matrix notation for nonlinear elasticity (ni j k and Ni j k ) and high-order

electrostriction (mi j k , ri j k , Mi j k , and Ri j k ) tensors as follows:

Ni j kl mn =



Nabc , a,b,c = 1,2,3
Nabc

2 , one suffix 4,5,6 and other 1,2,3
Nabc

4 , one suffix 1,2,3 and other 4,5,6
Nabc

8 , for a,b,c = 4,5,6

, (2.14)



Mi j kl mn = Mabc , a,b,c = 1,2,3

Mi j kl mn = Mabc
2 , a = 1,2,3;b,c = (one suffix 4,5,6 and another 1,2,3)

Mi j kl mn = Mabc
4 , a = 1,2,3;b,c = 4,5,6

M414 = 8M231123, M424 = 8M232223, M456 = 8M231312

, (2.15)


Ri j kl mn = Rabc , a,b,c = 1,2,3

Ri j kl mn = Rabc
2 , a,b = 1,2,3;c = 4,5,6

R144 = 4R112323, R155 = 4R111313

. (2.16)

The Voigt matrix notation for the coefficients of the F expansion are ni j kl mn = nabc , a,b,c =
1..6; mi j kl mn = mabc , a = 1,2,3;b,c = 1..6 and m414 = 2m231123,m424 = 2m232223,m456 =
2m231312; and ri j kl mn = rabc , a,b = 1,2,3;c = 1..6 and r144 = 2r112323,r155 = 2r111313.

2.4 Legendre transformation of high-order electrostrictive coeffi-

cients

Knowing the coefficients of Helmholtz thermodynamic function F written in terms of po-

larization Pi and strain εi (2.9) it is possible to find the corresponding coefficients of Gibbs

energy expansion G with respect to polarization Pi and stressσi (2.8). One performs Legendre

transformation

G = F −εiσi (2.17)
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where εiσi represents the work required to maintain a constant stress. Then, the solutions of

the mechanical equation of state

σi =− ∂F

∂εi
, i = 1..6 (2.18)

with respect to εi were expanded in series, and only low order terms of the expansion were
kept, after that, εi were substituted into (2.17). This way, one eliminates strains εi between
(2.17) and (2.18) and obtains G as function of Pi and σi j with new high-order electrostrictive
coefficients express in terms of ci j , mi j k , and ri j k . The transformations of the corresponding
high-order electrostrictive coefficients are listed below (2.19 - 2.33).

M111 = (c11 + c12) 2m111

(c11 − c12) 2 (c11 +2c12) 2
− 4c12 (c11 + c12)m112

(c11 − c12) 2 (c11 +2c12) 2
+ (2.19)

2c2
12m122

(c11 − c12) 2 (c11 +2c12) 2
+ 2c2

12m123

(c11 − c12) 2 (c11 +2c12) 2
,

M112 =− c12 (c11 + c12)m111

(c11 − c12) 2 (c11 +2c12) 2
+

(
c2

11 + c11c12 +2c2
12

)
m112

(c11 − c12) 2 (c11 +2c12) 2
− (2.20)

c11c12m122

(c11 − c12) 2 (c11 +2c12) 2
− c11c12m123

(c11 − c12) 2 (c11 +2c12) 2
,

M122 = c2
12m111

(c11 − c12) 2 (c11 +2c12) 2
− 2c11c12m112

(c11 − c12) 2 (c11 +2c12) 2
+ (2.21)(

c2
11 +2c11c12 +2c2

12

)
m122

(c11 − c12) 2 (c11 +2c12) 2
− 2c12 (c11 + c12)m123

(c11 − c12) 2 (c11 +2c12) 2
,

M123 = c2
12m111

(c11 − c12) 2 (c11 +2c12) 2
− 2c11c12m112

(c11 − c12) 2 (c11 +2c12) 2
− (2.22)

2c12 (c11 + c12)m122

(c11 − c12) 2 (c11 +2c12) 2
+

(
c2

11 +2c11c12 +2c2
12

)
m123

(c11 − c12) 2 (c11 +2c12) 2
,

M144 = m144

c44
2

, (2.23)

M155 = m155

c44
2

, (2.24)

M414 = (c11 + c12)m414

(c11 − c12) (c11 +2c12)c44
− 2c12m424(

c11
2 + c11c12 −2c12

2
)

c44
, (2.25)
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M424 =− c12m414(
c11

2 + c11c12 −2c12
2
)

c44
+ c11m424(

c11
2 + c11c12 −2c12

2
)

c44
, (2.26)

M456 = m456

c44
2

, (2.27)

R111 = (c11 + c12)m111
(
c11q11 + c12

(
q11 −2q12

))
(c11 − c12) 2 (c11 +2c12) 2

+ 2c12m122
(
c12q11 − c11q12

)
(c11 − c12) 2 (c11 +2c12) 2

+ (2.28)

2c12m123
(
c12q11 − c11q12

)
(c11 − c12) 2 (c11 +2c12) 2

+ 2m112
(
c2

11q12 + c11c12
(−2q11 +q12

)+2c2
12

(−q11 +q12
))

(c11 − c12) 2 (c11 +2c12) 2
+

(c11 + c12)r111

(c11 − c12) (c11 +2c12)
− 2c12r112

c2
11 + c11c12 −2c2

12

,

R121 = m122
(
c2

11q11 +2c2
12q11 + c11c12

(
q11 −4q12

))
2(c11 − c12) 2 (c11 +2c12) 2

+ c11m111
(−c12q11 + c11q12

)
2(c11 − c12) 2 (c11 +2c12) 2

+ (2.29)

m123
(−3c11c12q11 −2c2

12

(
q11 −2q12

)+ c2
11q12

)
2(c11 − c12) 2 (c11 +2c12) 2

+ m112
(
2c2

12q11 + c2
11

(
q11 +2q12

)− c11c12
(
q11 +4q12

))
2(c11 − c12) 2 (c11 +2c12) 2

−
c12m414q44

2
(
c2

11 + c11c12 −2c2
12

)
c44

+ c11m424q44

2c2
11c44 +2c11c12c44 −4c2

12c44
+ c11r121

c2
11 + c11c12 −2c2

12

− c12r123

c2
11 + c11c12 −2c2

12

,

R112 = m112
(
c2

11q11 +2c2
12q11 + c11c12

(
q11 −4q12

))
(c11 − c12) 2 (c11 +2c12) 2

− c12m111
(
c11q11 + c12

(
q11 −2q12

))
(c11 − c12) 2 (c11 +2c12) 2

+ (2.30)

c11m122
(−c12q11 + c11q12

)
(c11 − c12) 2 (c11 +2c12) 2

+ c11m123
(−c12q11 + c11q12

)
(c11 − c12) 2 (c11 +2c12) 2

− c12r111

c2
11 + c11c12 −2c2

12

+ c11r112

c2
11 + c11c12 −2c2

12

,

R123 = m123
(
c2

11q11 + c11c12
(
2q11 −3q12

)+2c2
12

(
q11 −q12

))
(c11 − c12) 2 (c11 +2c12) 2

+ c12m111
(
c12q11 − c11q12

)
(c11 − c12) 2 (c11 +2c12) 2

+ (2.31)

m122
(
c2

11q12 + c11c12
(−2q11 +q12

)+2c2
12

(−q11 +q12
))

(c11 − c12) 2 (c11 +2c12) 2
+ m112

(
c2

11q12 +2c2
12q12 − c11c12

(
2q11 +q12

))
(c11 − c12) 2 (c11 +2c12) 2

+
(c11 + c12)m414q44

2(c11 − c12) (c11 +2c12)c44
− c12m424q44(

c2
11 + c11c12 −2c2

12

)
c44

− 2c12r121

c2
11 + c11c12 −2c2

12

+ (c11 + c12)r123

(c11 − c12) (c11 +2c12)
,

R144 = m414
(
c11q11 + c12

(
q11 −2q12

))
2
(
c2

11 + c11c12 −2c2
12

)
c44

+ −c12m424q11 + c11m424q12

(c11 − c12) (c11 +2c12)c44
+ m144q44

2c2
44

+ m456q44

c2
44

+ r144

c44
, (2.32)

R155 = m414(c11q12 − c12q11)

(c11 − c12) (c11 +2c12)c44
+ m424

(−2c12q12 + c11
(
q11 +q12

))
(c11 − c12) (c11 +2c12)c44

+ m155q44

c2
44

+ r155

c44
. (2.33)
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2.5 Thin film phase diagrams

To illustrate quantitatively the phenomenon described above in Sec. 2.2, we exploit an effective

energy potential of a strained thin film of a single-domain (001)-oriented BTO on a square

substrate. In principle, the considered below theory of thin films works not only for BTO, but

for all ferroelectric materials characterized with m3m → 4mm phase transaction. To obtain

the effective potential from the G expansion:

G̃(Pi ,T,ε0) =G +ε1σ1 +ε2σ2 +ε6σ6, (2.34)

the minima of which correspond to the ground state of the film partially clamped on the

substrate [1], we apply mixed mechanical conditions

∂G

∂σ1
= ε0,

∂G

∂σ2
= ε0,

∂G

∂σ6
= 0

σ3 = 0,σ4 = 0,σ5 = 0
(2.35)

and eliminate stresses σ1, σ2 and σ6. Hereafter a Cartesian coordinate system with the x3

axis perpendicular to the film-substrate interface is considered, ε0 = a∥−a0

a0
- biaxial parent

misfit strain, where a0 is the lattice parameter of the ferroelectric material in the cubic phase

extrapolated to temperature T and a∥ is the in-plane lattice parameter of the film. Minimizing

G̃(Pi ,T,ε0) with respect to polarization Pi for each (T,ε0) point one can find the polarization

states of the thin film, i.e. one can build the phase diagram.

2.6 Bulk - thin film renormalization of ai j k coefficients

As it was mentioned discussing the scalar model, the high-order electrostrictive as well as
nonlinear compliance coefficients lead to the changes in coefficients abulk

i j k → afilm
i j k of P 6-terms

while passing from a bulk crystal to the thin film (G → G̃). The high-order couplings described
by the Mi j k , Ri j k , and Ni j k tensors renormalize the ai j k coefficients of the P 6-terms of G̃ . The
renormalization reads:

afilm
111 = abulk

111 − M111 (Q11s11 −Q12s12) 2

2(s11 − s12) 2 (s11 + s12) 2
− M122

(
Q2

12s2
11 −2Q11Q12s11s12 +Q2

11s2
12

)
2(s11 − s12) 2 (s11 + s12) 2

− (2.36)

R112
(−Q12s3

11 +Q11s2
11s12 +Q12s11s2

12 −Q11s3
12

)
(s11 − s12) 2 (s11 + s12) 2

− R111
(−Q11s3

11 +Q12s2
11s12 +Q11s11s2

12 −Q12s3
12

)
(s11 − s12) 2 (s11 + s12) 2

−

M112
(−Q2

11s11s12 −Q2
12s11s12 +Q11Q12

(
s2

11 + s2
12

))
(s11 − s12) 2 (s11 + s12) 2

+
(Q11 +Q12)

3(s11 − s12) 2 (s11 + s12) 3
(Q11

2
(
s11

2N111 + s11 (N111 −3N112) s12 +N111s12
2
)
+

Q12
2
(
s11

2N111 + s11 (N111 −3N112) s12 +N111s12
2
)
−

Q11Q12

(
s11

2 (N111 −3N112)+4s11N111s12 + (N111 −3N112) s12
2
)
),
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afilm
333 = abulk

111 − M122Q2
12

(s11 + s12) 2
− M123Q2

12

(s11 + s12) 2
+ 2Q12R112

s11 + s12
+ 2Q12

3 (N111 +3N112)

3(s11 + s12) 3
, (2.37)

afilm
112 = abulk

112 − M122
(
Q2

11s11 (s11 −2s12)+Q2
12s12 (−2s11 + s12)+2Q11Q12

(
s2

11 − s11s12 + s2
12

))
2(s11 − s12) 2 (s11 + s12) 2

− (2.38)

M112
(
Q11Q12

(
s2

11 −4s11s12 + s2
12

)+Q2
11

(
s2

11 − s11s12 + s2
12

)+Q2
12

(
s2

11 − s11s12 + s2
12

))
(s11 − s12) 2 (s11 + s12) 2

−

M155Q2
44

(
s2

11 − s2
12

)2

2(s11 − s12) 2 (s11 + s12) 2s2
44

− M424 (Q11 +Q12)Q44

(s11 + s12) s44
+ Q44R155

(
s2

11 − s2
12

)2

(s11 − s12) 2 (s11 + s12) 2s44
−

M111
(
2Q11Q12s11s2

44(s11 − s12)+Q2
12s2

11s2
44 −2Q2

11s11s12s2
44 −2Q11Q12s11s12s2

44 −2Q2
12s11s12s2

44 +Q2
11s2

12s2
44

)
2(s11 − s12) 2 (s11 + s12) 2s2

44

−

R111
(−Q12s3

11s2
44 +Q11s2

11s12s2
44 +Q12s11s2

12s2
44 −Q11s3

12s2
44

)
(s11 − s12) 2 (s11 + s12) 2s2

44

−

(R121(−2Q11s3
11s2

44 −2Q12s3
11s2

44 +2Q11s2
11s12s2

44 +2Q12s2
11s12s2

44 +2Q11s11s2
12s2

44 +2Q12s11s2
12s2

44 −
2Q11s3

12s2
44 −2Q12s3

12s2
44))/((s11 − s12) 2 (s11 + s12) 2s2

44)−
R112

(−Q11s3
11s2

44 +Q12s2
11s12s2

44 +Q11s11s2
12s2

44 −Q12s3
12s2

44

)
(s11 − s12) 2 (s11 + s12) 2s2

44

+

(Q11 +Q12)

(s11 − s12) 2 (s11 + s12) 3s44
2

(
Q44

2
(

s11
2 − s12

2)2N155+(Q11
2(s11

2N112 − s11(N111 +N112)s12 +N112s12
2)+

Q12
2(s11

2N112 − s11(N111 +N112)s12 +N112s12
2)+Q11Q12(s11

2(N111 +N112)- 4s11N112s12+(N111 +N112)s12
2))s44

2,

afilm
113 = abulk

112 − M111Q12 (Q11s11 −Q12s12)

(s11 − s12) (s11 + s12) 2
− M123

(
Q11Q12s2

11 −Q2
11s11s12 −Q2

12s11s12 +Q11Q12s2
12

)
(s11 − s12) 2 (s11 + s12) 2

− (2.39)

M112
(
Q11Q12s2

11 +Q2
12s2

11 −2Q11Q12s11s12 −2Q2
12s11s12 +Q11Q12s2

12 +Q2
12s2

12

)
(s11 − s12) 2 (s11 + s12) 2

−

R123
(−2Q12s3

11 +2Q11s2
11s12 +2Q12s11s2

12 −2Q11s3
12

)
(s11 − s12) 2 (s11 + s12) 2

−

R121
(−2Q11s3

11 +2Q12s2
11s12 +2Q11s11s2

12 −2Q12s3
12

)
(s11 − s12) 2 (s11 + s12) 2

−

R111
(−Q12s3

11 +Q12s2
11s12 +Q12s11s2

12 −Q12s3
12

)
(s11 − s12) 2 (s11 + s12) 2

− R112
(−Q12s3

11 +Q12s2
11s12 +Q12s11s2

12 −Q12s3
12

)
(s11 − s12) 2 (s11 + s12) 2

−

M122
(
2Q11Q12s12 (−3s11 + s12)+Q2

11

(
s2

11 + s2
12

)+Q2
12

(
3s2

11 −2s11s12 + s2
12

))
2(s11 − s12) 2 (s11 + s12) 2

+
Q12

(s11 − s12) 2 (s11 + s12) 3
(4 Q11Q12(s11

2N112 − s11(N111 +N112)s12 +N112s12
2)+Q11

2(s11
2(N111 +N112)−

4s11N112s12+(N111 +N112)s12
2)+Q12

2(s11
2(N111 +N112 −4s11N112s12+(N111 +N112)s12

2)),

afilm
133 = abulk

112 − M111Q2
12

2(s11 + s12) 2
− M112Q2

12

(s11 + s12) 2
− M123Q12 (Q11 +Q12)

(s11 + s12) 2
− M122Q12 (2Q11 +3Q12)

2(s11 + s12) 2
+ (2.40)

R112 (Q11s11 +Q12s11 +Q11s12 +Q12s12)

(s11 + s12) 2
+ R121 (2Q12s11 +2Q12s12)

(s11 + s12) 2
+ R123 (2Q12s11 +2Q12s12)

(s11 + s12) 2
+

Q12
2 (Q11 +Q12) (N111 +3N112)

(s11 + s12) 3
,
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afilm
123 = abulk

123 − 2M112Q12 (Q11 +Q12)

(s11 + s12) 2
+ 2M111Q12 (−s11 + s12) (Q12s11 −Q11s12)

(s11 − s12) 2 (s11 + s12) 2
− (2.41)

M123
(−4Q11Q12s11s12 +Q2

11

(
s2

11 + s2
12

)+Q2
12

(
s2

11 + s2
12

))
(s11 − s12) 2 (s11 + s12) 2

+

2M122
(
Q2

11s11s12 +Q2
12 (2s11 − s12) s12 −Q11Q12

(
2s2

11 − s11s12 + s2
12

))
(s11 − s12) 2 (s11 + s12) 2

− M144Q2
44

(
s2

11 − s2
12

)2

2(s11 − s12) 2 (s11 + s12) 2s2
44

−

2M424Q12Q44

(s11 + s12) s44
+ 2Q44R144

(
s2

11 − s2
12

)2

(s11 − s12) 2 (s11 + s12) 2s44
−

R123
(
4Q11s11 (s11 + s12) (−s11 + s12) s2

44 +4Q12 (−s11 − s12) s12 (−s11 + s12) s2
44

)
(s11 − s12) 2 (s11 + s12) 2s2

44

−

(R121(8Q12s11 (s11 + s12) (−s11 + s12) s2
44 +4Q11 (−s11 − s12) s12 (−s11 + s12) s2

44 +
4Q12 (−s11 − s12) s12 (−s11 + s12) s2

44))/((s11 − s12) 2 (s11 + s12) 2s2
44)+

2Q12N111
(
2Q11Q12s11

2s44
2 −2Q11

2s11s12s44
2 −2Q12

2s11s12s44
2 +2Q11Q12s12

2s44
2)

(s11 − s12) 2 (s11 + s12) 3s44
2

+

2Q12Q44
2 (

s11
2 − s12

2)2N155

(s11 − s12) 2 (s11 + s12) 3s44
2

+

(2Q12N112(2Q11
2s11

2s44
2 +2Q11Q12s11

2s44
2 +2Q12

2s11
2s44

2 −2Q11
2s11s12s44

2 −
8Q11Q12s11s12s44

2 −2Q12
2s11s12s44

2 +2Q11
2s12

2s44
2 +2Q11Q12s12

2s44
2 +2Q12

2s12
2s44

2))/

((s11 − s12) 2 (s11 + s12) 3s44
2)

Note that in (2.35) solutions were expanded in series and only low order terms of the expansion

were kept, then σ1, σ2 and σ6 were substituted into (2.34), therefore expressions (2.36 - 2.41)

result from the expansion in series in (2.35).

2.7 Ab initio calculations

To see what impact high-order interactions exert on the thin film effective potential G̃ (2.34),

one has to know the values of the high-order electrostrictive and non-linear compliance

coefficients. Since the experimental information on the high-order coefficients is scarce we

turned towards ab initio methods, namely, we used the Vienna Ab-initio Simulation Package

(VASP) [54] performing zero Kelvin Density Functional Theory (DFT) full relaxation calcula-

tions. All calculations were performed within the Generalized Gradient Approximation PW91

(GGA-PW91) [55] as implemented in VASP using the projector augmented-wave method for

the electron-ion interactions [56]. We have used a 8x8x8 Monkhorst-Pack grid for k-point

sampling [57], and a plane-wave energy cut-off of 600eV. For full relaxation calculations,

the threshold of the Hellman-Feynman force was 1meV/A. We would like to underline that

mechanical compliance and electrostriction in (2.8) are expected to be weakly temperature

dependent. This justifies the use of zero Kelvin DFT results in finite temperature calculations.

All other analytical and numerical calculations to solve Landau theory equations including

plotting thin film misfit-strain temperature phase diagrams, etc. were performed with Wolfram

Mathematica software.

Technically, because of working with DFT, it is more convenient to use the F expansion (2.9)

to calculate the high-order coefficients. Stiffness ci j and ni j k and electrostrictive qi j , mi j k ,
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2.7. Ab initio calculations

and ri j k coefficients can be found in the following way. Using VASP we can find stress σi on

strain ε j and polarization Pi on strain ε j dependences for different geometries (for different i

and j ). Then, using the mechanical state equation

σi j = ∂G

∂εi j
= ci j klεkl +ni j kl mnεklεmn −qkl i j Pk Pl −mklmni j Pk Plεmn −rklmni j Pk Pl PmPn ,

(2.42)

we determine the coefficients by fitting. Polarization was calculated by the atomic displace-

ments ξp, j and Born charges for the cubic phase Zp,i j :

Pi = e

v
Zp,i jξp, j , (2.43)

where p enumerates the atoms in the unit cell, e - the charge of electron, v - volume of the

cubic unit cell. The Born charges Zp,i j for BTO were obtained with VASP.

QBa =

 2.34 0 0

0 2.34 0

0 0 2.34



QTi =

 7.90 0 0

0 7.90 0

0 0 7.90



QO1 =

 −2.17 0 0

0 −2.17 0

0 0 −6.29



QO2 =

 −2.17 0 0

0 −6.29 0

0 0 −2.17



QO3 =

 −6.29 0 0

0 −2.17 0

0 0 −2.17



(2.44)

It is possible to find ci j and ni j k tensors separately from others (qi j , mi j k , and ri j k ) if one uses

the mechanical state equation (2.42) at zero polarization and models the deformation applied

to the paraelectric cubic phase keeping the mmm symmetry of the structure. For example, the

mechanical state equation (2.42) at zero polarization and only ε1 nonzero component gives:

σ1 = c11ε1 +n111ε
2
1. (2.45)

The σ1(ε1) dependence obtained with VASP shown in Fig. 2.1 are inserted into Eq. (2.45) and

the corresponding c11 and n111 coefficients are obtained by fitting.
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Figure 2.1: Modeled stressσ1 on strain ε1 dependence for BaTiO3. Obtained with VASP keeping
the mmm symmetry of the structure.

Then, the other qi j , mi j k , and ri j k coefficients can be found from analysis of all of Eq. (2.42).

Let us demonstrate how to find the q11, m111 and r111 tensors components. One uses Eq.

(2.42) where only polarization P1 and strain ε1 are nonzero:

σ1 = c11ε1 +n111ε
2
1 −q11P 2

1 −m111P 2
1ε1 − r111P 4

1 , (2.46)

Performing VASP full relaxation calculations keeping the 4mm tetragonal symmetry of the

structure, we find the P1(ε1) and σ1(ε1) dependences using polynomial fit. Then, we put them

into Eq. (2.46). Once we have polynomial functions of ε1 on the both sides of Eq. (2.46) we

obtain q11, m111 and r111 by fitting. By repeating this procedure for different symmetries

of the structure and for different components of σi and ε j it is possible to calculate all the

components of the high-order electrostrictive tensors.

The above described scheme requires a good accuracy of σi (ε j ) and Pi (ε j ) dependences. Un-

fortunately, because of the technical limitations of software we can not have reliable precision

of the curvature of σi (ε j ) and Pi (ε j ) and therefore reliable precision of ri j k coefficients. We

clarify the matter with the example where only σ1(ε1) and P1(ε1) are nonzero. One represents

σ1(ε1) and P 2
1 (ε1) dependences obtained with VASP as

σ1(0) =σ1(0)+σ′
1(0)ε1 +σ′′

1(0)ε2
1,

P 2
1 (0) = ρ0 +ρ1ε1 +ρ2ε

2
1

(2.47)

and inserts them into Eq. (2.46). Equating coefficients of powers of ε1 one has 3 independent

equations:

σ1(0) =−q11ρ0 − r111ρ
2
0, (2.48)

σ′
1(0) = c11 −q11ρ1 −2m111ρ0 −2r111ρ0ρ1, (2.49)

σ′′
1(0) = n111 −q11ρ2 −2m111ρ1 − r111(ρ2

1 +2ρ0ρ2) (2.50)
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Figure 2.2: Modeled stress σ1 on strain ε1 (a) and square of polarization P 2
1 on strain ε1 (b)

dependences for BaTiO3. Obtained with VASP full relaxation calculations keeping the 4mm
tetragonal symmetry of the structure.

to find simultaneously 3 unknown values of q11, m111, and r111. This way one has to consider

the second derivatives of σ1(ε1) and P1(ε1) dependences (Eq. (2.50)) which cannot be reliably

found with VASP. This is supported by the fact that the ri j k values found with VASP are in

conflict with those obtained with experimental data. Thus, we do not attempt to calculate

the ri j k coefficients, and this way we use only the two lower-order independent equations.

We realize that the exclusion of ri j k can cause the change of mi j k in (2.49), but the numerical

calculations show that this leads to a small correction of mi j k .

The coefficients are calculated with errors as it can be seen from Table 2.2. The origin of the

error of the coefficients is due to the computational limit of VASP causing the calculation

error of atomic displacements and therefore polarization (which was calculated by atomic

displacements) and stress σ. Additionally, the calculation scheme described above is iterative,

one needs to use previously found coefficients to calculate new ones. For example, to find a

coefficient m112 which corresponds to the term

F = ...− m112

2
P 2

1ε1ε2 + ... (2.51)
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one uses the mechanical equation of state keeping only P1, ε1 and ε2 components:

∂F

∂ε1
=σ1 = c11ε1 + c12ε2 + c111ε

2
1 +2c112ε1ε2 −q11P 2

1 −m111P 2
1ε1 −m112P 2

1ε2. (2.52)

From (2.52) by setting ε1 = ε2 = ε we can write:

σ1(ε) = (c11 + c12)ε+ (c111 +2c112)ε−q11P 2
1 − (m111 +m112)P 2

1ε, (2.53)

Then, keeping ε1 = ε2 = ε we find the σ1(ε) and P1(ε) dependences with first principles meth-

ods. Knowing σ1(ε) and P1(ε), the m112 coefficient can be found from (2.53), since the other

(except m112) coefficients in (2.53) are known from the previous steps. The σ1(ε) and P1(ε)

dependences obtained with VASP have some errors as well as the previously found c11, c12,

c111, c112, q11, and m111 coefficients. So, when the m112 coefficient is calculated it contains an

accumulating error of all previously found coefficients and clearly has lower precision then for

example m111.

2.8 Experimental estimates of Ri j k coefficients

Due to the technical limitations of VASP we are unable to reliably determine the ri j k coeffi-

cients. Luckily we can estimate some of the Ri j k coefficients using experimental information

on piezoelectric coefficients and spontaneous polarization and stain. From (2.8) one can

proceed to the linearized constitutive equations for the piezoelectric coefficient di j , defined

as

di j =
(
∂ε j

∂Ei

)
σi=0

, (2.54)

and spontaneous strain εS . For BaTiO3 in the tetragonal phase we have:

d33 =χ33
∂

∂P3

(
∂G

∂σ3

)
= 2Q11PSχ33 +4R111P 3

Sχ33 (2.55)

εS3 =− ∂G

∂σ3
=Q11P 2

S +R111P 4
S (2.56)

d31 =χ33
∂

∂P3

(
∂G

∂σ1

)
= 2Q12PSχ33 +4R112P 3

Sχ33 (2.57)

εS1 =− ∂G

∂σ3
=Q12P 2

S +R112P 4
S (2.58)

d15 =χ11
∂

∂P1

(
∂G

∂σ5

)
= 2PSQ44χ11 +4R155P 3

Sχ11, (2.59)

where PS = 0.26 C
m2 [58] is the spontaneous polarization, χ33 = 168ε0 and χ11 = 2920ε0 [9] are

the dielectric susceptibilities. Eqs. (2.55)-(2.59) can be appended with the equation for the
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spontaneous stain in the orthorhombic phase:

εS5 =− ∂G

∂σ5
=Q44

P 2
S

2
+R155

P 4
S

4
, (2.60)

where for PS we take the same value of 0.26 C
m2 since the absolute value of PS does not ap-

preciably change during the phase transition from the tetragonal to the orthorhombic phase

[58], there is only a rotation of polarization vector. Resolving Eqs. (2.55)-(2.60) and using

experimental data on di j and εSi from Table 2.1 one can estimate the Qi j and Ri j k values

which are also shown in Table 2.1. Thus, three out of six components of the Ri j k tensor can be

found within this method. While we have a relatively good precision of the Qi j coefficients

within few percents, the error bars of the Ri j k coefficients can reach some 30% of their value

(except R155, where the error can be up to 100% in view of the smallness of the latter).

di j ,
[
10−12 C

N

]
εSi Qi j ,

[
m4

C2

]
Ri j k ,

[
m8

C4

]
d33 = 85.6 εS3 = 0.0077 Q11 = 0.118 R111 =−0.08

d31 =−34.5 εS1 =−0.0027 Q12 =−0.036 R112 =−0.07
d15 = 240 εS5 = 0.00105 Q44 = 0.032 R155 =−0.02

Table 2.1: Some experimental material parameters of BaTiO3. di j - piezoelectric coefficients,
the values are taken from Ref. [9]. εSi is the spontaneous strain, εS3 = c−a0

a0
and εS1 = a−a0

a0
,

where c = 4.034 Å and a = 3.992 Å are the lattice parameters of the tetragonal cell, a0 = 4.003 Å is
the lattice constant of cubic BaTiO3 extrapolated to room temperature [10], εS5 is recalculated
from the distortion angle β= 89◦51.6′[10] of orthorhombic cell. Qi j and Ri j k are linear and
non-linear electrostriction calculated from experimental data.

2.9 Results and discussion

The coefficients of ordinary and high-order electrostriction as well as linear and non-linear

elastic compliances obtained with the first principles calculations for the F expansion were

recalculated for G . The analytic expressions of the recalculations can be found in section 2.4

and Eq. (2.12). The values of recalculated coefficients are given in Table 2.2. In the table we

compare the obtained ci j stiffness coefficients with experiment, the corresponding si j values

needed for the thin film diagram plotting, one can find with the following expressions:

s11 = c11 + c12

c2
11 + c12c11 −2c2

12

,

s12 =− c12

c2
11 + c12c11 −2c2

12

,

s44 = 1

c44
.

(2.61)

We should note that current DFT methods give relatively moderate precision for high-order

coefficients as it is clear from the error bars in Table 2.2 due to technical limitations of the
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Chapter 2. Can we trust thin film diagrams?

software and due to the neglect of the ri j k coefficients in the used scheme as it was described

above.

ci j ,
(×1011Pa

)
cexp

i j ,
(×1011Pa

)
Mi j k ,

(
10−12 m4

C2Pa

)
Ni j k ,

(
10−23 1

Pa2

)
c11 2.94±0.01 c11 2.75 M111 −2.6±0.2 N111 8±1
c12 1.08±0.01 c12 1.79 M112 1.3±0.5 N112 < 2
c44 1.18±0.01 c44 1.13 M122 3.5±0.5 N123 < 2

M123 −1.0±0.5 N144 < 2

Qi j ,
(

m4

C2

)
Qexp

i j ,
(

m4

C2

)
M144 < 1 N155 < 2

Q11 0.162±0.005 Q11 0.11 M155 1.5±1 N456 < 4
Q12 −0.034±0.005 Q12 −0.043 M414 < 1
Q44 0.021±0.005 Q44 0.029 M424 < 1

M456 < 1

Table 2.2: Some materials parameters of BaTiO3 obtained from ab initio calculations. si j

and Ni j k are linear and nonlinear elastic compliance, Qi j and Mi j k are linear and high-order
electrostrictive tensors respectively. Experimental values of ci j (from [7]) and Qi j (from [1])
are also given for comparison.

The renormalized afilm
i j k coefficients are obtained using relationships (2.36)-(2.41) and data

from the Table 2.2. Table 2.3 demonstrates the size of the abulk
i j k → afilm

i j k renormalization effect

for BaTiO3 where the components of the original (abulk
i j k ) and renormalized (afilm

i j k ) tensors as

well as the renormalizing corrections (∆ai j k ) are given.

abulk
i j k ∆a

by Mi j k &Ri j k

i j k ∆a
by Ni j k

i j k afilm
i j k

a111 7.9 0.5±0.5 1.4±0.2 9.8±0.5
a333 0.8±0.5 < 0.2 8.7±0.5
a112 4.5 −10.6±0.5 1.5±0.2 −4.6±0.5
a113 −5.0±0.5 −1.3±0.2 −1.8±0.5
a133 0.5±0.5 0.5±0.2 5.5±0.5
a123 4.9 7.1±0.5 1.4±0.2 13.4±0.5

Table 2.3: Renormalization of the coefficients of the P 6-terms when passing from the ther-
modynamic potential of a bulk material G to the effective potential of a film G̃ . All values are
given in 109 m9

C4F
at 300K. abulk

i j k are coefficients of the expansion G for bulk and mechanically

free BaTiO3. ∆ai j k are corrections to corresponding abulk
i j k coefficients representing an addi-

tion to abulk
i j k (for example, afilm

333 = abulk
111 +∆a333). afilm

i j k are coefficients of the G̃ energy of the
(001)-oriented clamped film.

An inspection of this table shows that the renormalization is strong, e.g. abulk
123 = 4.9×109 m9

C4F

while afilm
123 = 13.9×109 m9

C4F
which means more than a 100% change, confirming the conclusion

drawn above from the order-of-magnitude estimates.

Further we demonstrate the influence of high-order terms on the temperature - misfit strain

phase diagram for a single-domain (001)-oriented BaTiO3 thin film. To plot the diagram, one
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Figure 2.3: Temperature - misfit strain phase diagrams of a single-domain (001)-oriented
BaTiO3. ε0 - biaxial parent misfit strain, T - temperature. The phases are denoted as (i)
the c-phase (yellow), polarization is out-of-plane (P1 = P2 = 0,P3 6= 0); (ii) the aa-phase
(red), where polarization is in-plane (P1 6= 0,P2 6= 0,P3 = 0); (iii) the ac-phase (brown) where
P1 6= 0,P2 = 0,P3 6= 0; (iv) r-phase (red), where all components of polarization are non-zero;
and (v) paraelectric phase (blue), polarization is 0. (a) Original Pertsev’s diagrams built with
coefficients from Ref. [1]. (b) Developed with coefficients set from Ref. [1] appended with
high-order Mi j kl mn , Ri j kl mn and Ni j kl mn coefficients. The hatched regions demonstrate the
shift of the transition lines within the error bars of the coefficients.

minimizes the above obtained thin film effective potential G̃(Pi ,T,ε0) (2.34) with respect to

polarization Pi for each (T,ε0) point. A comparison between Figs. 2.3(a) and 2.3(b) shows

how the original phase diagram built with the coefficients from Ref. [1] changes when sup-

plemented with the high-order electrostrictive and nonlinear compliance coefficients (Table

2.2) evaluated from first principles calculations and experimental data. From Figs. 2.3(a) and

2.3(b) one can see that taking into account the high-order coefficients strongly changes the

diagram. The effect might have been much stronger, but positive P 4-terms of G̃ leading to the

second-order phase transition in the film [1] diminish the role of the strongly renormalized

ai j k coefficients. The hatched regions in Fig. 2.3(b) demonstrate the shift of the transition
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Chapter 2. Can we trust thin film diagrams?

lines within the error bars of the coefficients. It is seen that the diagram is extremely sensitive

to the variation of the high-order coefficients.

Another striking feature of the data from Table 2.3 is the negative sign of some of afilm
i j k , making

the renormalized theory formally unstable. However, we found that, physically, the situation

can be treated as stable. The point is that the potential G̃ of the thin film still has local minima

due to the positive sign of renormalized coefficients for P 4-terms of the thermodynamic

potential of the film [1], therefore the system is locally stable. As for the global stability, it can

be restored by adding P 8-terms in the G expansion [59]. We do not incorporate these terms in

our consideration, however we believe that this will not essentially affect the positions of the

local minima in view of very high power of the terms.

We would like to note that the above results have implications on finite temperature MC

simulations. To perform MC simulations for perovskites one customarily uses an effective

Hamiltonian incorporating ordinary electrostriction [50, 60]. In view of our findings, we

suggest that for the treatment of ferroelectric thin films the effective Hamiltonian has to also

include high-order electromechanical interactions and nonlinear elasticity.

2.10 Conclusions

To summarize, in this chapter it was shown that an adequate Landau theory treatment of

thermodynamics of typical ferroelectric thin films requires taking into account high-order

electromechanical couplings and non-linear elasticity. The high-order electromechanical

couplings were for the first time calculated using first principles methods. Our analysis

suggests that all Landau theory based simulation of ferroelectric thin films should take into

account not only customarily incorporated "ordinary electrostriction type" coupling, but also

the high-order electromechanical interactions. In view of this finding, we believe that an

experimental evaluation of high-order electromechanical couplings in ferroelectrics seems to

be a task of primary importance.
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3 FBARs tuning from first principles

Another example, demonstrating the importance of taking into account the high-order elec-

trostrictive coefficients, is tunable thin Film Bulk Acoustic wave Resonators (FBARs). In this

chapter, first, we introduce tunable FBARs and review their applications. Then, we consider a

theory of FBARs tuning and using ab initio methods we determine the coefficients needed

for FBARs tuning description. Further, using ab initio results the tuning of Bax Sr1−x TiO3

(BST) based tunable FBARs was studied. Finally, we present the results and discussion of the

obtained results.

3.1 Introduction to Film Bulk Acoustic wave Resonators

Highly selective Radio Frequency (RF) bandpass filters are absolutely essential for multichan-

nel microwave communication systems and specifically for mobile phones which nowadays

constitute the largest market for RF resonators. RF bandpass filters are needed to avoid in-

terference between different wireless communication systems and to protect receive and

transmit passes from the interference of disturbing signals. Traditionally the band selecting

filters are based on Surface Acoustic Wave (SAW) technology. The SAW filters provide good

selectivity in the frequency range below 2 GHz. However, their overall performance degrades

closer to the upper limit of mobile phone frequency bands (about 2 GHz).

Surface acoustic wave based sensors are also widely used, for example, in biosensoring [61]

where such sensors provide high sensitivity for the detection of biomolecules in liquids.

However these devices do not scale well with RF applications at higher frequencies since their

sub-micrometer sizes decrease the power handling capabilities.

Small size, high Q-factor values, and applicability to high frequencies are the driving forces

for the development of the FBAR technology for GHz-range applications. FBAR devices use

thin piezoelectric (typically AlN [62–65] or ZnO [66, 67]) films to transform an electrical signal

into an acoustical wave which can resonate at a certain frequency in the acoustically isolated

body of the resonator. The acoustic waves in FBARs propagate perpendicular to the surfaces
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Chapter 3. FBARs tuning from first principles

of the film (thickness waves) which are mainly used in microwave filters [68]. Presently FBARs

are commercially available and the filters based on fixed frequency FBARs are regarded as

one of the most promising technologies to address the performance/cost requirements of

microwave communications systems [69]. However these piezoelectric-effect-based FBARs

are non-tunable, their resonance frequency is fixed by geometry and size of the resonator and

piezoelectric material used.

At the same time modern trends of IC architecture simplification and miniaturisation, im-

provement of transceiver/receiver performance, reducing power consumption in mobile

devices, and reduction of weight, size and cost [70] give rise for the development of tunable

FBARs. Tunable FBARs based on Bax Sr1−x TiO3 ferroelectric films in the paraelectric phase

were proposed and patented in 2004 by Gevorgian[21, 71]. Tunable FBARs (at about 5 GHz)

with tuning range up to 4% [72] and Q-factors of more than 350 [73] were reported. Tunable

FBARs exploiting BST ferroelectric films in the paraelectric phase possess no ferroelectric

hysteresis which is extremely important for the circuit applications of these devices.

One distinguishes two tuning modes of tunable FBARs based on ferroelectric thin films:

thickness extension (TE) and lateral field excitation (LFE) modes [23]. For the TE mode, the

direction of the applied DC bias EDC (as well as induced polarization PDC ) is parallel to the

travelling direction of the acoustic wave (perpendicular to the film surface). For the LFE mode,

the applied DC bias is in the plane of the film and perpendicular to the travelling direction

of the acoustic wave. The TE mode is a standard and practically used realisation of modern

tunable FBARs, so that hereafter in this chapter, we are going to deal with the TE mode only.

For practical application as tunable microwave filters, the simultaneous tuning of the res-

onance and antiresonance frequencies is highly desired [70]. At the same time, for BST

compositions the antiresonance tuning is normally much smaller than that of the resonance

which makes the realisation of tunable filters using BST based tunable FBARs difficult. This

problem is of high interest nowadays and provokes research in the field.

A simple theory of tunable FBARs based on the DC-bias-induced piezoelectric effect was

developed recently by Noeth et al. [23, 74] and by Vendik et al. [22] where it was shown

that, for antiresonance frequency tuning, it is important to take into account the high-order

electrostrictive coefficient m111. In these papers as m111 values were unknown for BST, they

were taken from order-of-magnitude estimations. This work answers some questions which

remain to be addressed. What is the sign of m111 coefficients for BST and the sign of the

corresponding shift of the antiresonance frequency of tunable FBARs? Is it possible to have

comparable shifts of resonance and antiresonance frequencies that is essential to produce a

tunable filter?

In this chapter the high-order electrostrictive coefficient as well as stiffness and linear elec-

trostriction were calculated using ab initio methods. To improve the reliability of the obtained

results we used two different software packages: Vienna Ab-initio Simulation Package (VASP)

and Quantum ESPRESSO (QE). Then using ab initio results and theory developed in Ref.
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[23], the tuning of BST based tunable FBARs was studied. Finally we present the results and

discussion of the obtained results.

3.2 Description of FBARs tuning

A theory of tunable FBARs based on the DC bias induced piezoelectric effect was developed

recently by Noeth et al [23, 74]. Here we recall essential aspects. The treatment is based

on a Landau free energy expansion for the cubic phase in terms of the ferroelectric part of

polarization P and strain u.

F =αi P 2
i +βi j P 2

i P 2
j +

1

2
c0

i j ui u j −qi j P 2
i u j − 1

2
mi j k P 2

i u j uk , (3.1)

where c0 - stiffness of free bulk sample, q and m - linear and nonlinear electrostriction

respectively. In this case dielectric displacement Di is defined as

Di = εbEi +Pi , (3.2)

where εb is the background permittivity and Ei is the electric field. We include in our treatment

a nonlinear electrostrictive coefficient m which was previously considered as a higher-order

correction and customarily neglected [75], but which actually plays an important role in the

antiresonance frequency tuning of tunable FBARs [22, 23, 74].

Let us consider a tunable FBAR operating in the TE mode based on a [001]-oriented BST thin

ferroelectric film in the paraelectric phase. DC field induced tuning of acoustic resonance of

paraelectric phase BST films are demonstrated experimentally for x ≤ 0.5 [76], therefore we

limit our consideration to these BST compositions. A schematic drawing of a resonator using

the TE mode is shown in Fig. 3.1. representing a parallel-plate capacitor of thickness t , where

1

3

2
E

P
DC

DC

k

electrode

electrode

t

Figure 3.1: A schematic drawing of the TE mode resonator. The DC bias E DC and polarization
P DC is parallel to the direction of the traveling acoustic wave with the wave vector k.

the acoustic wave with the wave vector k resonates in the thickness direction along the X3 axis

parallel to the applied field. Applied between the electrodes the electric field consists of large

DC E DC
3 and small AC E AC

3 components:

E tot
3 = E DC

3 +E AC
3 , (3.3)
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The electric field induces polarization in the film which can also be split into DC and AC parts:

P tot
3 = P DC

3 +P AC
3 . (3.4)

Values of induced polarization P DC
3 can be found by solving a cubic equation [70]:

E DC
3 =α∗

3 P DC
3 +β∗

33

(
P DC

3

)3
, (3.5)

where α∗ and β∗ correspond to the coefficients of a clamped film. Explicit expressions of α∗

and β∗ for the [001] thin films clamped on the substrate can be found elsewhere [1].

From (3.1) one can proceed to the linearised constitutive equations [23] written for a tunable

FBAR (Fig. 3.1) using the TE mode:

D3 = ε33E AC
3 +e33u3

σ3 = cE
33u3 −e33E AC

3 (3.6)

where D - electric displacement, σ stress, e - electric field induced effective piezoelectric

coefficient, cE - stiffness coefficient at constant field. The dielectric constant ε33 consists of a

background part εb and a field dependent part χ33:

ε33 = εb +χ33,χ33 = 1

α∗
3 +β∗

33(P DC
3 )

2 (3.7)

The DC bias applied to centrosymmetric BST crystal leads to internal atom displacements and

induced piezoelectricity with an effective piezoelectric constant e:

e33 = 2χ33q33P DC
3 . (3.8)

Tunability of acoustic resonance of tunable FBARs is also achieved due to the DC field depen-

dent stiffness cE :

cE
33 = c0

33 + (m333 +4q2
33χ33)(P DC

3 )
2

, (3.9)

where c0 is stiffness in the absence electric field.

This way, the AC field via the induced piezoelectric effect, (3.8), causes an acoustic wave

travelling in the film. From (3.6), the impedance Z can be derived by taking into account the

mechanical wave equation, mechanical boundary conditions, and the Poisson equation [77]:

Z (ω) = 1

iωC0

(
1−k2

t
tan(kt/2)

kt/2

)
, (3.10)

where ω is the AC field angular frequency, C0 is the clamped capacitance, and k is the wave
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vector of the longitudinal wave. The wave vector k and the electromechanical coupling factor

kt are defined as [77]:

k = ω√
cD

33/ρ
(3.11)

k2
t =

e2
33

cD
33ε33

(3.12)

where ρ is the density of the material and the elastic constant cD at fixed dielectric displace-

ment is

cD
33 = cE

33 +
e2

33

ε33
. (3.13)

Using Eqs. (3.7), (3.9), and (3.13) and neglecting the difference between ε33 =χ33 +εb and χ33

for large χ33 (normally for ferroelectric materials χ33 >> εb), one can express cD
33 as

cD
33 = c0

33 −m333(P DC
3 )2 − e2

33ε
b

ε2
33

. (3.14)

One can see in (3.14) that the cD
33 tuning is carried out by two terms. The first one, m333(P DC

3 )2,

is determined by non-linear electrostriction m333 and the second one,
e2

33ε
b
33

ε2
33

, we will call it

electrostrictive, is driven by the induced piezoelectric coefficient, e33.

In the TE mode the relations for the resonance fR and the antiresonance frequency fAR [in Hz]

are given by [77]:

fR = 1
2t

√
cD

33
ρ

(
1− 8k2

t

π2

)
, (3.15)

fAR = 1
2t

√
cD

33
ρ (3.16)

In Ref. [23] it was shown that the resonance frequency tuning (3.15) is stronger than the

antiresonance one. It happens because of the field dependance of electromechanical coupling

factor kt is much stronger than that of the elastic constant cD
33 according to order-of-magnitude

estimations, and for the resonance tuning 3.15 the change of cD
33 can be neglected. However, for

the antiresonance frequency tuning, (3.16), cD
33 fully determines the antiresonance behaviour

(3.16). To determine the shift of cD
33 under applied field and in turn to determine the shift of

fAR one has to know the m333 coefficient which is not yet available experimentally.

The theory discussed above deals with tunable FBARs based on the BST films in the cubic

paraelectric phase and therefore the expansion of free energy (3.1) is written for a cubic
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material. Due to the m3m symmetry of tensors in (3.1), one can write that m111 = m222 = m333.

Further we will always use the m111 notation.

3.3 Ab initio calculations

To find the high-order electrostrictive coefficients m111 for BaTiO3 and SrTiO3 we turned

towards ab initio methods, namely, we used 2 programs, PWSCF (Plane-Wave Self-Consistent

Field) being part of QE package [78] and VASP [54] performing zero Kelvin Density Functional

Theory (DFT) full relaxation calculations.

All VASP calculations were performed within the generalized-gradient approximation (GGA)

with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional [79] as implemented

in VASP using the projector augmented-wave method for the electron-ion interactions [56].

We have used a 8x8x8 Monkhorst-Pack grid for k-point sampling [57], and a plane-wave energy

cut-off of 600eV to yield convergence. For full relaxation calculations, the threshold of the

Hellman-Feynman force was 1meV/Å.

QE calculations were also made within the GGA PBE exchange-correlation functional with

ultrasoft pseudopotential by Vanderbilt [80]. We have used an automatically generated uni-

form 8x8x8 grid of k-points, the kinetic energy cutoff for wavefunctions was 60Ry (816eV). The

convergence threshold on forces for ionic minimization was chosen to be equal to 5×10−5 a.u.

(1.3 meV/Å).

The starting point for our calculations was a relaxed cubic phase with lattice parameters

a0 = 4.0268Å (QE) and a0 = 4.0351Å (VASP) for BaTiO3, and a0 = 3.9383Å (QE) and a0 =
3.9479Å (VASP) for SrTiO3.

Here we would like to underline that mechanical and electro-mechanical constants, like

mechanical stiffness and electrostriction defined as coefficients of free energy expansion (3.1),

are expected to be weakly temperature dependent. This justifies the use of zero Kelvin DFT

results in finite temperature tunable FBARs simulations.

Let us demonstrate the way we found the stiffness c11 and electrostrictive q11, m111 coeffi-

cients. From VASP and QE we directly have atomic displacements and stress σi applied to the

structure for a certain deformation value ui . Then, polarization was calculated using (2.43).
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3.3. Ab initio calculations

The Born charges calculated with QE are

QBa =

 2.74 0 0

0 2.74 0

0 0 2.74



QTi =

 7.44 0 0

0 7.44 0

0 0 7.44



QO1 =

 −2.14 0 0

0 −2.14 0

0 0 −5.91



QO2 =

 −2.14 0 0

0 −5.91 0

0 0 −2.14



QO3 =

 −5.91 0 0

0 −2.14 0

0 0 −2.14



(3.17)

for BTO and

QSr =

 2.55 0 0

0 2.55 0

0 0 2.55



QTi =

 7.37 0 0

0 7.37 0

0 0 7.37



QO1 =

 −2.03 0 0

0 −2.03 0

0 0 −5.87



QO2 =

 −2.03 0 0

0 −5.87 0

0 0 −2.03



QO3 =

 −5.87 0 0

0 −2.03 0

0 0 −2.03



(3.18)

for STO.

Using the energy expansion (3.1) and setting Pi = 0 (paraelectric phase), one can write a

37



Chapter 3. FBARs tuning from first principles

0.000 0.005 0.010 0.015 0.020 0.025 0.030
0.00

0.05

0.10

0.15

0.20

0.25

-0.005

-1µ109

0

1µ109

2µ109

3µ109

P
  

 (
  

  
 )

12
C m

42

(a)

(b)

st
re

ss
 σ

  
(P

a
)

1

strain u1

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Figure 3.2: Modeled stress σ1 on strain u1 (a) and square of polarization P 2
1 on strain u1 (b)

dependences in the vicinity of zero strain for SrTiO3. Obtained with VASP full relaxation
calculations keeping the 4mm tetragonal symmetry of the structure.

mechanical equation of state for Ox1 direction:

∂F

∂u1
=σ1 = c11u1, (3.19)

where applied deformation was calculated as u1 = c−a0
a0

. Then, with DFT methods, keeping

the mmm symmetry of the structure, we model the σ1(u1) dependence. Fitting σ1(u1) with

polynomial function, we can find c11 coefficient.

Next, for other q11 and m111 coefficients, using ab initio full relaxation calculations and keeping

the 4mm tetragonal symmetry of the structure, we find P1(u1) and σ1(u1) dependences (Fig.

3.2). The obtained dependences are expanded in series in the vicinity of u1 = 0:

σ1(0) =σ1(0)+σ′
1(0)u1 +σ′′

1(0)u2
1, (3.20)

P 2
1 (0) = ρ0 +ρ1u1 +ρ2u2

1 (3.21)

and substituted into the mechanical equation written for the case where only the P1 compo-
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nent of polarization and the u1 component of strain are nonzero:

∂F

∂u1
=σ1 = c11u1 −q11P 2

1 −m111P 2
1 u1. (3.22)

Equating coefficients of powers of u1 one has two low-order independent equations:

σ1(0) =−q11ρ0 (3.23)

σ′
1(0) = c11 −q11ρ1 −m111ρ0 (3.24)

to find the q11 and m111 values.

We do not incorporate the nonlinear stiffness coefficient n111 into (3.22) since the n111u2
1 term

would be a higher-order correction. We clarify the matter as follows. Let us consider Eq. (3.22)

supplemented with nonlinear stiffness:

σ1 = c11u1 +n111u2
1 −q11P 2

1 −m111P 2
1 u1. (3.25)

Equating coefficients of powers of u1 as before, additionally to (3.23) and (3.24) one has the

third equation:

σ′′
1(0) = n111 −q11ρ2 −m111ρ1. (3.26)

Thus, n111 does not enter the two lower-order equations ((3.23) and (3.24)) and can be excluded

from the consideration.

3.4 Results and discussion

The coefficients of ordinary and high-order electrostriction as well as elastic stiffness obtained

with the first principles calculations are given in Table 3.1. Two sets of constants calculated

with VASP and QE as well as experimental data are given for comparison. Analysis of Table

3.1 shows that one has a good agrement between our calculated stiffness coefficients and

experiment. At the same time, it is difficult to compare the obtained q11 electrostriction values

with experimental results in view of the two-times spread of the latter. Meanwhile, our q11

values are 10-20% close to the values taken from Landolt and Bornstein, which gives us reason

to believe that the predicted m111 values are a reasonable approximation. The main reason

for the inaccuracy of the obtained coefficients in Table 3.1 is the errors appearing due to

the software technical limitations of the determination of the relaxed atomic positions and

therefore the determination of polarization and stress.

Based on electro-mechanical coefficients obtained with VASP calculations and taking into

account the small difference of obtained values for the end members of BST solid solution
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Chapter 3. FBARs tuning from first principles

VASP QE Experiment
SrTiO3 (x = 0)

c11,1011 N
m2 3.28±0.02 3.17±0.02 3.18a , 3.16b

q11,1010 m
F 3.0±0.1 2.9±0.1 1.20a , 2.53b

m111,1011 m
F −2.2±0.4 −3.0±0.4 -

BaTiO3 (x = 1)
c11,1011 N

m2 2.91±0.02 2.82±0.02 2.83a , 2.55b

q11,1010 m
F 4.0±0.1 3.6±0.1 1.43a , 2.81b

m111,1011 m
F −2.8±0.4 −2.8±0.4 -

Table 3.1: Data obtained with the first principles calculations. c11 - stiffness, q11 and m111

- linear and nonlinear electrostriction coefficients. (a) Experimental data were taken or re-
calculated from Ref. [11]. (b) Data were taken or recalculated from Landolt and Bornstein
[7].

(Table 3.1) we used a linear interpolation for the dependences c11(x), q11(x), m111(x):

c11(x) = 3.28×1011 −3.7×1010x
N

m2 (3.27)

q11(x) = 3.04×1010 +9.3×109x
m

F
(3.28)

m111(x) =−2.2×1011 −6×1010x
m

F
(3.29)

The common way to characterise the tunability of a material is to use the relative tunability nr

defined as

nr = ε(0)−ε(E DC )

ε(0)
, (3.30)

where ε(0) and ε(E DC ) correspond to the permittivity at zero field and under DC bias, respec-

tively.

Using (3.14)-(3.16) and (3.27)-(3.29) one can plot the tuning of resonance, fr − f0

f0
, and antireso-

nance, far − f0

f0
, frequencies depending on nr , where f0 is the resonance frequency extrapolated

to zero DC field:

f0 = 1

2t

√
c0

33

ρ
. (3.31)

These dependences for the tunable FBAR using the [001]-oriented thin film of some BST

compositions are shown in Fig. 3.3. The resonance tuning is larger for BST compositions with
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Figure 3.3: Modeled dependences of resonance (a) and antiresonance (b) frequency tuning on
relative tunability nr for the tunable FBAR using the [001]-oriented thin film of different BST
compositions. Parameters used in calculations like stiffness, linear and non-linear electrostric-
tion are taken from Table 3.1. Other used parameters are taken from Ref. [4]: α= 1

ε0

T−T0(x)
CCW (x) ,

T = 300K, T0(x) = (42+439.37x−96x2)K, CCW (x) = (0.86+1.1x2)105K, β= 8(1−x)109 m5

C2F
, and

εb = 7ε0.

higher x because of increasing values of q11(x) (3.28) which via kt (3.12) govern the tuning.

The shift of the antiresonance frequency is much smaller than that of the resonance. The

reason for such a difference in behaviour of resonance and antiresonance can be explained

as follows. A tunable FBAR resonator can be represented as an equivalent parallel LC circuit

and its antiresonance corresponds to infinite impedance Z of such a circuit. The Z = ∞
means D3 = 0 on the plates of the tunable FBAR which in turn leads to a presence of the

depolarising field inside. The depolarising field reduces the amplitude of the polarization wave

and therefore suppresses the electromechanical coupling between polarization and strain.

So, the contribution of linear electrostriction is reduced and the tuning starts to be sensitive

to higher-order effects. This way, for antiresonance tuning, the non-linear electrostriction

m111 becomes important for consideration. On the contrary, the resonance corresponds

to Z = 0 of the equivalent serial LC circuit which means < E3 >= 0. Therefore, the average

depolarizing field inside the resonator is zero and there is almost no reduction of polarization-

strain coupling, and therefore the contribution of m111 as a higher-order effect is negligible.
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Figure 3.4: Modeled dependences of the antiresonance frequency tuning on relative tunability
nr for the tunable FBAR using the [001]-oriented thin film of BST with x = 0.25. Dashed
lines show the antiresonance behaviour without taking into account m111 and the behaviour
resulting from "D-expansion" of Landau free energy.

The shift of the antiresonance frequency is specified by two competing terms m333(P DC
3 )2

and
e2

33ε
b
33

ε2
33

(see (3.14)) which are actually equally responsible for the antiresonance tuning. We

would like to underline that it is important to use thermodynamic energy expansion in terms

of polarization ("P-expansion") and not in terms of dielectric displacement ("D-expansion").

In Ref. [22] where the electromechanical properties of tunable FBARs were treated based on

the "D-expansion" of free energy, the
e2

33ε
b

ε2
33

term does not appear leading to erroneous results.

In Fig. 3.4, the antiresonance tuning without taking into account m111 and the tuning resulting

from "D-expansion" are shown with dashed lines for a BST composition with x = 0.25. The

previously unknown m111 coefficient was found to be negative and therefore responsible

for the positive shift of fAR, at the same time the electrostrictive contribution in (3.14) gives

negative shift. This way there is a compensation of two contributions in (3.14) which leads to

weaker tuning than what was expected from order-of-magnitude estimations.

Additionally, it is instructive to plot resonance and antiresonance frequency tuning depending

on applied DC bias (Figure 3.5). We cannot directly compare our results obtained for the

(001)-oriented single-domain BST thin film with experiment in view of limited experimental

data, available mostly for polydomain films [70]. At the same time, it is still useful to have a

look on the available experimental results. In Ref. [81] a membrane-type tunable FBAR based

on a Ba0.3Sr0.7TiO3 650 nm thick thin film was fabricated by means of microfabrication. The

polydomain film with a (001)/(111) preferred orientation was deposited on a 100 nm thick

bottom Pt electrode which in turn was placed on a 100 nm thick SiO2 layer. The maximum

archived tuning was about -2.4% and -0.6% for the resonance and antiresonance frequencies

respectively at a DC electric field of 615 kV/cm which corresponds to nr = 0.5. Our results for

x = 0.25 and DC bias of 615 kV/cm show the resonance tuning of -20% and antiresonance

of -0.7% (Figure 3.5). Our calculations show the similar antiresonance tuning value, but
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Figure 3.5: Modeled dependences of the resonance (a) and antiresonance (b) frequency tuning
on applied DC bias for the tunable FBAR using the [001]-oriented thin film of different BST
compositions. Parameters used in calculations like stiffness, linear and non-linear electrostric-
tion are taken from Table 3.1. Other used parameters are taken from Ref. [4]: α= 1

ε0

T−T0(x)
CCW (x) ,

T = 300K, T0(x) = (42+439.37x−96x2)K, CCW (x) = (0.86+1.1x2)105K, β= 8(1−x)109 m5

C2F
, and

εb = 7ε0.

the resonance tuning values are much larger than experimental results. The reason of such

difference of the resonance tuning values is that our calculations were performed for the (001)-

oriented single domain film, whereas the experiment were done with (001)/(111)-oriented

polydomain film deposited on the SiO2 layer and loaded with Pt electrodes. First, the effective

values of q11 electrostriction for the (111)-oriented film are few times lower than the true

value of q11 [23], that eventually leads to the smaller electromechanical coupling factor kt and

correspondingly to the lower resonance tuning. Second, the frequency tuning of pure BST

material is expected to be reduced by the presence of electrodes and substrates.

3.5 Conclusions

A high-order m111 electrostrictive coefficient being important for antiresonance frequency

tuning of tunable FBARs was for the first time calculated using ab initio methods for BaTiO3
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Chapter 3. FBARs tuning from first principles

and SrTiO3. Since the m111 values were found negative and close to each other for the both

materials, we determined m111 for BST compositions using a linear interpolation. Based

on the results obtained with first principles calculations we simulated the resonance and

antiresonance tuning of the BST based tunable FBAR. Our calculations confirm that when

studying tunable FBARs tuning one should use the P-expansion of the Landau free energy

which allows taking into account the electrostrictive contribution to the shift of the antires-

onance frequency. It was established that there is a compensation of linear and non-linear

electrostrictive contributions to the antiresonance tuning which leads to the fact that the

tuning was found to be smaller than expected from previously made estimations.
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4 Positive effective Q12 electrostrictive
coefficients in perovskites

Nowadays materials science is focused on creation and engineering of new materials and

composites with unusual properties. Among them are composites and forms with negative

Poisson’s ratio [82–84], which expand laterally in tension and contract laterally in compres-

sion, metamaterials with negative compressibility [85] exhibiting transitions, during which

a material undergoes contraction when tensioned (or expansion when pressured). Using of

these unusual mechanical properties in applications pushs the limits of design of modern

devices such as actuators, force amplifiers, micromechanical controls, and protective devices.

Even more important and widely used nowadays are electromechanical properties. To exhibit

a deformation under the application of an electric field, is a common property of solids. His-

torically, this phenomena was called electrostriction and it implied both a linear converse

piezoelectric effect and a quadric effect with respect to polarization, i.e. electrostriction.

The electrostrictive effect, being quadratic, is typically weaker than the piezoelectric one. At

the same time, in materials of interest for applications, primarily ferroelectrics, the piezo-

electric effect has its disadvantages, for example it shows hysteresis which is undesirable

for actuator applications [12], while electrostriction in centrosymmetric materials is free of

this drawback. Electrostriction plays an essential role in physics and applications of solids.

First of all, electrostriction is of importance for the ferroelectric thin film strain engineering

[86] as we saw in the chapter 2. The strain engineering dealing with thin films strained on

the substrates pursues the fabrication more environmentally preferable materials. In the

clamped thin films electrostriction leads to major effects as a shift of Curie temperature, an

increase of remanent polarization, and a change of the order of the phase transition. In relaxor

ferroelectrics, in view of their high dielectric constant, the electrostrictive effect can be used

for hysteresis-free actuator applications [12]. In chapter 3 we learned that electrostriction is

important for tunable FBARs. Ordinary FBARs based on piezoelectric thin films resonate at

certain frequency of the applied AC electric field depending on the acoustic velocity of the

material and geometry of the FBAR [62, 66]. In tunable FBARs based on ferroelectric films,

piezoelectricity is induced by applying DC bias in such a way that the resonance frequency can

be tuned. It is electrostriction that is responsible for this tuning as well as for the modification
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Chapter 4. Positive effective electrostrictive coefficients in perovskites

of other properties as elastic constants and dielectric permittivity [23, 71]. Tunable FBARs

can be used for many applications like in sensors, voltage-controlled tunable resonators and

filters [87, 88].

It is generally believed that in perovskite ferroelectrics the electrostrictive effect leads to

expansion of the sample along the applied electric field and its contraction in the perpendic-

ular direction. In terms of the so-called stress-polarization electrostrictive coefficients Qi j

it means that Q11 is positive and Q12 is negative [1, 5, 6]. However, this is not a general rule

for ferroelectrics. For example, some of the ferroelectric polymers from the polyvinylidene

fluoride (PVDF) family can exhibit the opposite behaviour [89, 90]. Here a reasonable question

arises: is the "extension along the field and contraction perpendicular to it" rule general for

perovskites or is it rather a feature of the crystallographic orientation of the sample? This

chapter addresses this question showing that the "extension along the field and contraction

perpendicular to it" rule can be readily violated if the sample is cut obliquely to the cubic

crystallographic directions, notably electrostrictive expansion in all direction can be possible.

4.1 Effective Q12 electrostrictive coefficients in crystals

To answer this question, let us consider a bar of perovskite material in the cubic paraelectric

phase cut obliquely in a direction which differs by angle θ from the [001] crystallographic axis

(see Fig. 4.1). The oblique cut direction changes in the (110)-plane and passes from [001] to

[111] and then to [110]-directions. To explore the electrostrictive strain behaviour, one applies

an electrical field ~E which in turn induces polarization ~P parallel to the field ( ~P =χ~E for cubic

material) in the oblique cut direction. The polarization ~P in the sample

x
2̀ x

3̀

x
1̀

[001]

[111]

[110]

θ
PCut d

ire
ct

io
n

P
[001]

[110]

Figure 4.1: Direction of polarization described by angle θ and the rotated reference frame
(x ′

1, x ′
2, x ′

3) associated with it. The polarization direction changes in plane going from [001]
to [111] and then to the [110] direction.
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4.1. Effective electrostrictive coefficients in perovskite crystals

~P =


p

2
2 sinθp
2

2 sinθ

cosθ

 (4.1)

in turn induces electrostrictive strain εkl :

εkl =Qi j kl Pi P j (4.2)

where Qi j kl is the electrostrictive tensor. We now change to the Voigt matrix notation [53]

εi j = εn for n = 1,2,3

εi j = εn

2
for n = 4,5,6,

defining electrostrictive tensor Qmn according to the Landolt-Bornstein reference book [7]:

Qi j kl =Qmn for n = 1,2,3

Qi j kl = Qmn

2
for n = 4,5,6.

In Voigt notation the electrostrictive strain ε appeared in the sample reads as

ε=



ε1

ε1

ε3

ε4

ε4

ε6


, (4.3)

where

ε1 = P 2
(

1

2
(Q11 +Q12)sin2θ+Q12 cos2θ)

)
ε3 = P 2 (

Q11 cos2θ+Q12 sin2θ
)

ε4 =
p

2P 2Q44 cosθ sinθ

ε6 = P 2Q44 sin2θ
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In the Cartesian reference frame (x ′
1, x ′

2, x ′
3) with the x ′

3 axis parallel to the direction of the

oblique cut (see Fig. 4.1), the strain tensor has the form:

ε′ =



P 2Qθ(1)
12

P 2Qθ(2)
12

P 2Qθ
11

P 2Qθ
44

0

0


, (4.4)

where

Qθ
11 =

1

32
((6Q11 −6Q12 −3Q44)cos(4θ)+ (8Q11 −4(2Q12 +Q44))cos(2θ)+

18Q11 +14Q12 +7Q44)

Qθ(1)
12 = 1

8
(− (2Q11 −2Q12 −Q44)cos(2θ)+2Q11 +6Q12 −Q44)

Qθ(2)
12 = 1

32
(− (6Q11 −3(2Q12 +Q44))cos(4θ)+6Q11 +26Q12 −3Q44)

Qθ
44 =− 1

32
(2Q11 −2Q12 −Q44) (2sin(2θ)+3sin(4θ))

(4.5)

are the effective electrostrictive components. ε′3 = P 2Qθ
11 is parallel to the cut direction,

ε′1 = P 2Qθ(1)
12 and ε′2 = P 2Qθ(2)

12 are perpendicular to it. For θ = 0, for typical cubic perovskites

BaTiO3, SrTiO3, and PbTiO3 Qθ
11 = Q11 > 0 while Qθ(1)

12 = Qθ(2)
12 = Q12 < 0 (see Table 4.1) and

the "extension along the field and contraction perpendicular to it" rule holds. In answering

the question of whether this rule is violated for the oblique orientation of the sample, we are

interested in whether the signs of Qθ
11, Qθ(1)

12 , and Qθ(2)
12 depend on the value of angle θ.

BaTiO3 [5] SrTiO3 [6] PbTiO3 [1]

Q11,
[

m4

C2

]
0.10 0.046 0.089

Q12,
[

m4

C2

]
−0.034 −0.013 −0.026

Q44,
[

m4

C2

]
0.029 0.020 0.068

Table 4.1: Electrostrictive coefficients which were used for calculations, for BaTiO3 coefficients
were taken from [5], for SrTiO3 from [6], and PbTiO3 from [1]. The Q44 values are written taking
into account the factor of 2 as defined in Landolt–Bornstein [7].

We start with an issue relevant to the problem. The field-induced relative change of the sample

volume is given by the trace of the deformation tensor, which is independent of the direction

of the cut:

Tr (εi j ) = P 2(Qθ
11 +Qθ(1)

12 +Qθ(2)
12 ) = P 2(Q11 +2Q12) = const. (4.6)

Thus, in principle, if one cuts the sample obliquely with respect to the cubic crystallographic
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Figure 4.2: Effective Qθ
11 coefficient as a function of the cut direction θ for three perovskites ma-

terials BaTiO3 (pink), SrTiO3 (blue) and PbTiO3 (green). The data for electrostrictive constants
are taken from Table 4.1.

directions Qθ
12 can become positive at the expense of a reduction in Qθ

11 while keeping the

sum Qθ
11 +Qθ(1)

12 +Qθ(2)
12 constant and breaking the classical "extension along the field and

contraction perpendicular to it" behaviour. Indeed, for three perovskites materials BaTiO3,

SrTiO3, and PbTiO3, such a reduction in Qθ
11 is possible as clear from Fig. 4.2.

It is seen in Fig. 4.2 that while Qθ
11 always stays positive, at the same time, it decreases for all

the considered perovskite materials. Such a decrease corresponds to appreciable variations

in Qθ
12 for all these materials, as seen from Fig. 4.3, where the dependences of the

Qθ
12

Qθ
11

ratio

on the cut direction θ are plotted. For the cubic ferroelectrics considered, a positive Qθ
12 can

be found for certain directions. Cuts close to the [111]-direction are of special interest. Here

one finds expansion of the sample in all directions. In addition, Qθ
11 has a minimum for the

[111]-direction which in turn gives a maximum for Qθ(1)
12 +Qθ(2)

12 . For cuts close to the [110]-

direction, instead of the classical "extension along the field and contraction perpendicular to

it" behaviour one finds a very different behaviour where, under the field, the sample expands

in two dimensions and contracts in one (along the [001]-axis).

4.2 Effective Q12 electrostrictive coefficients in thin films

As we saw in the chapter 2 electrostriction plays an essential role in the thermodynamics of

thin films. At the same time we learned here that the effective electrostrictive coefficients

are different for different crystallographic directions, therefore for the thin films of different

orientations (deposited in different orientations) we should expect different behaviour [20, 91].

Indeed, Fig. 4.4 shows the experimental dependance of out-of-plane permittivity on tempera-

ture of two constrained BST 30/70 thin films of (111) and (100) orientations respectively. The

peaks of permittivity correspond to paraelectric-ferroelectric phase transition in the films. It is

interesting to observe that for -0.7% strained (100)-oriented film the TC is 130 K higher than

the transition temperature of unstrained bulk material, but -0.8% strained (111)-oriented film
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Figure 4.3: Dependence of
Qθ

12

Qθ
11

ratio on the cut direction θ. Qθ
11 - longitudinal effective elec-

trostrictive coefficient, Qθ(1)
12 ,Qθ(2)

12 - two transversal effective electrostrictive coefficients (see
(4.4)). (a) plotted for BaTiO3 with coefficients from [5]. (b) for SrTiO3 from [6]. (c) for PbTiO3

from [1].

the ferroelectric phase transition occurs at the temperature which is 50 K less than bulk.

To understand this phenomenon one can exploit Landau thermodynamic theory of thin films

[1] similarly to what we did in chapter 2 for the (001)-oriented film (eqs. (2.34)-(2.35)). For
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Figure 4.4: Experimental dependance of out-of-plane permittivity on temperature of two BST
30/70 thin films of (111) and (100) orientations. Provided by Yamada Tomoaki, Tokyo Institute
of Technology, Japan

(001)-oriented thin film the potential can be written as

G̃ = a1(P 2
1 +P 2

2 )+a3P 2
3 + ..., (4.7)

where the a1 and a3 coefficients are [1]:

a1 = a − Q11 +Q12

s11 + s12
ε0 (4.8)

a3 = a − 2Q12

s11 + s12
ε0 (4.9)

with

a = T −TC

2ε0CCW
,

where TC and CCW are the Curie-Weiss temperature and constant of the bulk crystal. In (4.7) we

dropped the higher-order polarization terms since we develop qualitative illustration working

for relatively small strains and close to the TC of bulk material. The conditions a1 = 0 and

a3 = 0 give two transition lines on the film phase diagram (Fig. 2.3a). Therefore, equations (4.8)

and (4.9) show that misfit strain ε0 shifts the TC. Moreover, this shift of transition temperature

also depend on electrostrictive coefficients (see (4.8) and (4.9)). Since, as we saw before,

the effective electrostrictive coefficients change for different crystallographic directions one

should expect different behaviour for different film orientations. For example, for (111)-
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oriented film one can obtain for a1 and a3 [20]:

a1 = a − (4Q11 +8Q12 +Q44)

4s11 +8s12 + s44
ε0

a3 = a − (4Q11 +8Q12 −2Q44)

4s11 +8s12 + s44
ε0.

(4.10)

x
2̀ x

3̀

x
1̀

[001]

[111]

θ

Norm
al t

o th
e f

ilm
 p

la
ne

Figure 4.5: Orientation of the film described by the normal to the film plane which differs from
[001] crystallographic axis by angle θ. The rotated reference frame (x ′

1, x ′
2, x ′

3) is associated
with the film with Ox ′

3 axis parallel to the normal.

Let us study a more general case where the film is oriented with angle θ to [001] crystallographic

direction (see Fig. 4.5). Using the energy expansion of a centrosymmetric cubic bulk material

G (eq. (2.8)), we write the effective thermodynamic potential G̃ of the thin film:

G̃ =G +ε′1σ′
1 +ε′2σ′

2 +ε′6σ′
6, (4.11)

where ε′i and σ′
i are written for the rotated reference frame, assuming that Ox ′

3 axis is per-

pendicular to the surface of the film. Then, we impose the boundary conditions written for

rotated reference frame:

ε′1 = ε0,ε′2 = ε0,ε′6 = 0

σ′
3 = 0,σ′

4 = 0,σ′
5 = 0.

(4.12)
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Figure 4.6: Schematically shown thin film temperature - misfit strain phase diagrams for
different film orientations of BST 30/70 film. θ - orientation (deposition) angle of the thin film
with respect to [001] crystallographic axis. Parameters (TC,Qi j , si j , etc.) of bulk BaTiO3 and
SrTiO3 materials were as taken from [5–7] and interpolated for BST 30/70.

The relationships between stress σi of crystallographic reference frame and σ′
i are

σ′
1 =

1

2
(σ1 +σ2 −2σ6)

σ′
2 =

1

2

(
2σ3 sin2(θ)−p

2(σ4 +σ5)sin(2θ)+ (σ1 +σ2 +2σ6)cos2(θ)
)

σ′
3 =

1

2
(σ1 +σ2 +2σ6)sin2(θ)+σ3 cos2(θ)+p

2(σ4 +σ5)sin(θ)cos(θ)

σ′
4 =

1

4

(
(σ1 +σ2 −2σ3 +2σ6)sin(2θ)+2

p
2(σ4 +σ5)cos(2θ)

)
σ′

5 =
1

2

(
(σ1 −σ2)sin(θ)−p

2(σ4 −σ5)cos(θ)
)

σ′
6 =

1

2

(p
2(σ4 −σ5)sin(θ)+ (σ1 −σ2)cos(θ)

)
.

(4.13)

The relationships (4.13) hold for the components of strain, and they can be obtained by

replacing σ by ε in (4.13). The resulting thin film potential can be written as

G̃ = a∗
1 P 2

1 +a∗
2 P 2

2 +a∗
3 P 2

3 , (4.14)
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Chapter 4. Positive effective electrostrictive coefficients in perovskites

where the a∗
1 , a∗

2 , and a∗
3 coefficients are effective dielectric stiffness of the thin film which

depend on the orientation of the film (on the angle θ), strain ε0, and temperature.

Figure 4.6 shows the paraelectric-ferroelectric transition lines of thin film phase diagrams for

different film orientations (oriented with angle θ with respect to [001] crystallographic axis) of

BST 30/70 film. One can observe that for compressive strains the transition line substantially

changes its behaviour, while for tensile strains it nearly does not alter.

Let us consider a thin film under the 0.8% compressive strain (dashed line on the diagrams in

Fig. 4.6) corresponding to experimental results shown in Fig. 4.4. The 0.8% compressive strain

gives a 180 K (experiment 130 K, Fig. 4.4) increase of transition temperature comparing to the

bulk material for (001)-oriented film, while for (111)-orientation we have 120 K (experiment

50 K) negative shift of TC. Figure 4.7 shows the phase transition temperature depending on

the film orientation under the compressive strain of 0.8%, i.e. along the dashed line. One can

see that, first, the increase of θ cause the decrease of the phase transition temperature, and

TC has its minimum for (111)-oriented film. It is interesting to notice that for θ around 40

degrees the phase transition temperature of the film becomes equal to that of the bulk material.

Figure 4.7 clarifies the experimentally observed behaviour of permittivity on temperature of

two BST 30/70 thin films of (111) and (100) orientations showing the positive shift of TC for

(001) film and negative shift for (111)-oriented film with respect to TC of the bulk material.

However, predicted theoretical behaviour gives good qualitative illustration to the effect, but

not quantitative agrement: for (001) film predicted shift is 180 K (experiment 130 K), for (111)

film 120 K instead of experimental 50 K.
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Figure 4.7: Ferroelectric phase transition temperature depending on the film orientation under
the compressive strain of 0.8% for BST 30/70 thin film. θ - orientation (deposition) angle of
the thin film with respect to [001] crystallographic axis. Parameters (TC,Qi j , si j , etc.) of bulk
BaTiO3 and SrTiO3 materials were as taken from [5–7] and interpolated for BST 30/70.
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4.3 Conclusions

In the first part of this chapter it was shown that classical cubic perovskite ferroelectrics

exhibit deviations from the "extension along the field and contraction perpendicular to it"

behaviour if the sample is cut obliquely to the cubic crystallographic directions. Specifically,

a remarkable behaviour is predicted for bars of BaTiO3, SrTiO3, and PbTiO3 cut along the

[111] crystallographic cubic direction. In this case, in the paraelectric phase in an electric

field parallel to bar, a expansion along all its three dimensions takes place. In terms of the

components of the electrostriction tensor, Qθ
i j , in the reference frame of the bar this implies

that Qθ
11 and Qθ

12 are positive in contrast to Q11 > 0 and Q12 < 0 in the crystallographic reference

frame. The situation with the [110] cut is also unusual, the electrostriction effect in the field

directed along the bar will result in a contraction in one transversal direction and an expansion

in the another. This implies Qθ
12 < 0 and Qθ

13 > 0. The crystal chemistry behind such behaviour

is not clear for the moment. This phenomenon may be of interest for actuators based on the

electrostrictive effect, transducers, and detectors.

In the second part we considered the effect of the change of phase transition temperature of

the thin films grown in different crystallographic orientation on the example of BST 30/70.

Here, we identify the manifestation of the angular dependance of electrostriction in the phase

diagrams of thin films, i.e. we found the shift of TC depending on the film orientation. It was

found that, oppositely to the commonly believed behaviour, a compressive strain does not

always increase TC. Depending on the film orientation the phase transition temperature can

be less than that in the bulk material. Ferroelectric properties of materials can be markedly

changed through strain engineering. Using of the thin films grown in different orientations

gives more flexibility for engineering and provides a broader range of operating temperatures.

This can be exploited to modify the ferroelectric properties of any ferroic system, including

multiferroics [92], whose ferroic order parameter has a strong coupling to strain.

At the end, we would like to say that, to have a better quantitative theory of differently oriented

thin films, one has to consider higher order electromechanical couplings as it was discussed

in the chapter 2.
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5 Flexoelectric effect

The flexoelectric effect looks promising for practical applications and helps to explain a

number of phenomena, especially at the nanoscale. However, the available theoretical and

experimental results are rather contradictory, attesting to a limited understanding of flexoelec-

tricity. The bulk flexoelectric effect can be split into static effect (which appears, for example,

in a bent plate) and dynamic effect (which can be observed in a sound wave). We demonstrate

the possibility of extraction of static and dynamic bulk flexocoupling tensors from phonon

dispersion. The developed method can be used with real experimental phonon spectrum to

find flexoelectric coefficients. Here, we work with the simulated phonon spectrum of STO,

which was calculated using first principles methods.

In this chapter, we first will introduce the bulk flexoelectric effect in crystals. Then, we will

demonstrate that the static and dynamic flexoelectric tensors can be found analyzing the

phonon dispersion branches with the example of the simulated spectrum of STO cubic crystal.

The results extracted from phonon dispersion can be confirmed with an alternative method

involving lattice dynamics, i.e. dynamical matrices or Interatomic Force Constants (IFCs),

which will be considered further in the corresponding section. The dynamic bulk flexocoupling

coefficient was, for the first time, obtained for STO material. We will sum up the results in

conclusions.

5.1 Description of the bulk flexoelectric effect in crystals

Following Yudin and Tagantsev [24], we consider a phenomenological approach which pro-

vides an adequate description of the bulk flexoelectric effect. However, in contrast to the

piezoelectric response, the treatment of the flexoelectric effect in the static (e.g. in a bent

plate) and dynamic (in a sound wave) situations generally requires separate treatments [36].

Let us start with the static case.

57



Chapter 5. Flexoelectric effect

5.1.1 Static flexoelectric effect

In a simple case one can introduce the flexoelectric effect via the constitutive equation for the

electric polarization Pi

Pi =χi j E j +ei j k u j k +µkl i j
∂ukl

∂x j
, (5.1)

where Ei , u j k , and ∂ukl
∂x j

are the macroscopic electric field, the strain tensor, and its spatial

gradient, respectively. The first two rhs terms of equation (5.1) describe the dielectric and

piezoelectric responses with the tensor of the clamped dielectric susceptibility χi j and the

piezoelectric tensor ei j k , respectively. The last rhs term of equation (5.1) describes the linear

polarization response to a strain gradient - flexoelectric effect. The strain tensor is defined as

the symmetric part of the tensor ∂Ui
∂x j

, where Ui is the displacement of point of the medium in

the direction i :

u j k = 1

2

(
∂U j

∂xk
+ ∂Uk

∂x j

)
. (5.2)

The antisymmetric part of the tensor ∂Ui
∂x j

Ω j k = 1

2

(
∂U j

∂xk
− ∂Uk

∂x j

)
, (5.3)

corresponding to rotations of the sample as a whole. Homogeneous rotations evidently do

not contribute to the polarization response. At the same time, the gradients of Ω j k can

contribute to the polarization response, however they can always be presented as a sum

of the components of tensor ∂ukl
∂x j

, as it was shown by Indenbom et al [46]. The fourth rank

tensor µkl i j controlling the flexoelectric effect in equation (1) is the flexoelectric tensor, it is

symmetric with respect to the permutation of the first two suffixes. The flexoelectric tensor

is allowed in materials of any symmetry (including amorphous), in a sharp contrast to the

piezoelectric tensor, ei j k , which is a third rank tensor and, therefore, allowed only in non-

centrosymmetric materials. This makes the principal difference between piezoelectricity and

flexoelectricity, as the latter is a general phenomenon having no symmetry limitations. Since

the piezoelectric and flexoelectric tensors describe the properties of a material in the absence

of a macroscopical electric field, these can also be defined as

ei j k =
(
∂Pi

∂u j k

)
E=0

, (5.4)

µkl i j =
 ∂Pi

∂
(
∂ukl
∂x j

)


E=0

. (5.5)
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A more advanced description of piezoelectric and flexoelectric effects is based on minimizing

of thermodynamic potential [24]. Such a minimization yields the bulk constitutive electrome-

chanical equations:

Ei =χ−1
i j P j − fkl i j

∂ukl

∂x j
− gi j kl

∂2Pk

∂x j∂xl
, (5.6)

σi j = ci j kl ukl + fi j kl
∂Pk

∂xl
, (5.7)

whereσi j and ci j kl are stress and elastic stiffness respectively. fi j kl is called flexocoupling ten-

sor. It is seen that, in the case where the strain gradient and the polarization are homogeneous,

equation (5.6) reproduces the flexoelectric effect introduced by (5.1) with

µi j kl =χkx fi j xl (5.8)

Equation (5.8) links the flexoelectric and flexocoupling tensors, suggesting that the flexo-

electric response should be enhanced in materials with high dielectric constants such as

ferroelectrics. It is also clear from this equation that via the flexoelectric coupling the strain

gradient works as an electric field. Equation (5.7) enables us to recognize the thermodynami-

cally conjugated effect to the static bulk flexoelectric response — converse flexoelectric effect,

which consists of the contribution to the mechanical stress, proportional to the gradient of

polarization.

5.1.2 Dynamic flexoelectric effect

Now we will discuss the so-called dynamic flexoelectric effect. While the static bulk flexo-

electric effect can be viewed as an extension of the piezoelectric effect, the phenomenon

treated below has no analogue in piezoelectricity. In the elastic wave in solids, the static effect

can be viewed as a contribution to polarization proportional to the strain gradient (which is

always present in the mechanical wave). In the time domain, there is another contribution

which corresponds to the polarization response to accelerated motion of the medium, or

Pi is proportional to Ü j , and since in the acoustic wave Ü j ∝ ∂ukl
∂x j

, this contribution to the

flexoelectric effect is called the dynamic flexoelectric effect.

On the phenomenological side, the dynamic flexoelectric effect can be taken into account by

adding a mixed term to the density of kinetic energy

Tk = ρ

2
U̇ 2

i + γi j

2
Ṗi Ṗ j +Mi jU̇i Ṗ j (5.9)

where ρ is the density and γi j is a phenomenological tensor controlling the dynamics of
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polarization, Mi j is a dynamic flexoelectric tensor. Minimizing the action∫ ∫
(T −Φ+uiσi )dV d t , (5.10)

Φ=
χ−1

i j

2
P j P j +

ci j kl

2
ui j ukl +

gi j kl

2

∂Pi

∂x j

∂Pk

∂xl
− fi j kl

2

(
Pk

∂ui j

∂xl
−ui j

∂Pk

∂xl

)
−Pi Ei , (5.11)

with respect to Pi and U j [24] one obtains

Ei =χ−1
i j P j − fkl i j

∂ukl

∂x j
+Mi jÜ j − gi j kl

∂2Pk

∂x j∂xl
+γi j P̈ j , (5.12)

ρÜi = ci j kl
∂ukl

∂x j
+ fi j kl

∂2Pk

∂xl∂xl
−M j i P̈ j . (5.13)

The last two rhs terms of equation (5.12) control the spatial and frequency dispersion of

the polarization response. However, when we consider macroscopic manifestations of the

flexoelectric response (e.g. in a dynamically bent sample or in ultrasonic acoustic wave), where

1/q (q - phonon wave vector) is much larger than the typical microscopic scales, and sound

wave frequency is much smaller than the typical optical phonon frequencies, these terms can

be neglected. Thus, setting electric field to 0 in (5.12) and taking into account that Ü j ∝ ∂ukl
∂x j

we see that the Mi jÜ j term corresponding to the dynamic flexoelectric effect indeed provides

a contribution to polarization along with fi j kl .

It is instructive to eliminate Üi between equations (5.12) and (5.13) to find a relationship

controlling the total flexoelectric response in the dynamic case omitting the terms containing

the higher order second derivatives of polarization ∂2Pk
∂x j∂xl

and P̈i :

Ei =χ−1
i j P j −

(
fkl i j −

1

ρ
Mi x cx j kl

)
∂ukl

∂x j
. (5.14)

From this equation we can see that in view of the dynamic flexoelectric effect, the role of the

flexocoupling tensor, fkl i j , is now played by the total flexocoupling tensor:

f tot
kl i j = fkl i j −

1

ρ
Mi x cx j kl = fkl i j + f dyn

kl i j . (5.15)

Thus, including the dynamic case, the flexoelectric response is controlled by the total flexo-

electric tensor

µtot
i j kl =µi j kl +µdyn

i j kl , (5.16)
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where the dynamic contribution is correspondingly defined as

µ
dyn
kl i j =− 1

ρ
χi x Mx y cy j kl . (5.17)

Both the phenomenological and microscopic theories suggest that, like the static contribution,

the dynamic contribution should be enhanced in high-K materials, see Eq. (5.17). The dynamic

contribution to the flexoelectric effect makes it qualitatively different from the piezoelectric

effect.

Order-of-magnitude estimates [24] show that the components of tensors fi j kl and f dyn
i j kl are

expected to be comparable. One should mention that, despite the fact that the components

of the tensors fi j kl and f dyn
i j kl are expected to be comparable, the dynamic flexoelectric effect

does not always provide a contribution comparable to that of the static effect. In an acoustic

wave, the dynamic effect works at full strength, however, in quasi-static experiments of plate

bending, i.e. where the smallest dimension of the sample is less than the acoustic wavelength

corresponding to the frequency of the external perturbation, the dynamic effect is negligible

[24].

In the following sections, we will first demonstrate a possibility of determination of static and

dynamic bulk flexocoupling tensors using phonon spectrum. We will calculate them using

a model spectrum for STO material which was obtained with first principles calculations.

Then, we will use an alternative approach to calculate flexocoupling tensors which involves

microscopic lattice dynamics, i.e. Interatomic Force Constants (IFC). At the end, we will

conclude, comparing the results obtained with two methods and showing advantages and

drawbacks of both approaches.

5.2 Determination of flexoelectric tensors using phonon

dispersion

5.2.1 Introduction

One of the direct manifestations of flexoelectric coupling is related to phonon spectra in

solids. In terms of phonons, the flexoelectric interaction can be interpreted as a repulsion

between transverse acoustic (TA) and soft-mode transverse optic (TO) branches. This effect

was documented in perovskite ferroelectrics by Axe et al, who studied the dispersion of the

phonons in KTaO3 (KTO) [8] and PbTiO3 [93] by means of neutron scattering. The temperature

dependence of the dispersion curves obtained for KTO is shown in figure 5.1. As it is seen from

the figure, with decreasing temperature the soft optical branch moves downward closer to the

acoustic one and causes a bending of the latter. The temperature-driven acoustic phonon

branch bending has also been observed in STO by Hehlen et al [94] by means of Brillouin

scattering (the method which allows to trace acoustic branches in the vicinity of the Γ-point).

61



Chapter 5. Flexoelectric effect

Figure 5.1: Temperature dependence of dispersion curves for transverse acoustic (TA) and
soft-mode optic (TO) phonons with wavevector q = π

a (ξ,0,0) in KTaO3, where a is the lattice
constant. Taken from ref. [8].

It is possible to describe the repulsion of phonon branches in terms of the continuum Landau

theory [24]. Within the validity of the continuum model we consider the long-wavelength

part of the spectrum. We start with equations (5.12) and (5.13), where we rewrite the strain in

terms of acoustic displacement

ukl =
1

2

(
∂Uk

∂xl
+ ∂Ul

∂xk

)
. (5.18)

To describe the phonons, we search for solutions for polarization and displacement in the

form

P = P̃e iωt−i~q~x , (5.19)

U = Ũ e iωt−i~q~x . (5.20)

Since we are interested in the transverse modes, in which electric field does not arise, we omit

the term related to electric field and obtain the following set of linear homogeneous equations

62



5.2. Determination of flexoelectric tensors using phonon dispersion

for amplitudes of polarization and displacement:

ω2γi j P̃ j =χ−1
i j P j + gi j kl q j ql P̃k + fkl i j q j qlŨk −Mi jŨ jω

2, (5.21)

ρω2Ũi = ci j kl q j qlŨk + fi j kl q j ql P̃k −M j i P̃ jω
2. (5.22)

Eigenfrequencies of the system, corresponding to acoustic and optic branches, may be found

from the condition of zero determinant of the set of equations (5.21) and (5.22). Let us illustrate

the acoustic branch bending for the case of the cubic crystalline lattice symmetry and the

q-vector directed along a four-fold axis, which corresponds to the conditions of the experiment

by Axe et al (figure 5.1). In this case, the transverse modes are two-fold degenerate and not

coupled with the longitudinal mode. The dispersion of the transverse modes may be readily

derived from equations (5.21) and (5.22) by applying the zero determinant condition to get:

(ω2 −ω2
A)(ω2 −ω2

O) = (ω2M −q2 f44)2

ργ
, (5.23)

where ωA and ωO are the TA and TO phonon frequencies in the absence of flexoelectric

coupling:

ω2
A = c44q2

ρ
, (5.24)

ω2
O = α+ g44q2

γ
. (5.25)

In view of the cubic symmetry of the material under consideration second order tensors

become scalars, so we use the expressions Mi j → M , γi j → γ, χ−1
i j →α.

The trend of the phonon branch repulsion can be identified by treating the case of weak

interaction between the branches. In this case the relative shift of the acoustic branch may be

calculated from equation (5.23) by setting ω=ωA everywhere except for the first parenthesis

in the lhs to get:

ω2 =ω2
A − q4

(
f tot

44

)2

γρ
(
ω2

O −ω2
A

) , (5.26)

where

f tot
100 = f tot

44 = f44 − c44

ρ
M . (5.27)

The repulsive character of the interaction between the branches (or lowering of the acoustic

branch) is seen from the sign in expression (5.26). As for its magnitude, it is controlled by the
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total flexocoupling coefficient, (5.27), which has both dynamic and static contributions. We

should take into account this fact when we will extracting information about the flexocoupling

tensors from ab initio phonon dispersion curves. Formula (5.26) works best in the vicinity

of the Γ-point, where the mode coupling conditioned by higher powers of the wavevector

and self dispersion of the branches are weak. The difference of frequency squares in the

denominator in the rhs of equation (5.26) indicates the amplification of the effect when the

optical branch approaches the acoustic one (e.g. with decreasing temperature). The trend of

the branch repulsion described above holds when interaction between them is strong. In the

case of strong coupling, the contributions of static and dynamic flexoelectric effects to the

acoustic branch bending become frequency-weighted, as controlled by expression (5.23). As

noticed by Axe et al [8], if the strength of flexoelectric effect exceeds some threshold (once

the acoustic branch touches the x-axis in figure 5.1), there will be a phase transition into an

incommensurate phase.

5.2.2 Ab initio calculations of phonon dispersion curves

To obtain phonon dispersion curves and IFCs, we exploit the QE ab initio package. Phonon

calculations with QE represent a two-step process. First, one has to find the groundstate atomic

and electronic configuration using PWscf. The PWscf calculations were also made within

the GGA PBE exchange-correlation functional with ultrasoft pseudopotential by Vanderbilt

[80]. We have used an automatically generated uniform 10x10x10 grid of k-points, the kinetic

energy cutoff for wavefunctions was 60Ry (816eV). Second, one calculates phonons using

Density Functional Perturbation Theory as implemented in the PHonon code. For phonon

calculations use used 10x10x10 automatic Monkhorst-Pack grid of q-points. The energy

threshold for self-consistency was chosen to be equal to 10−16 Ry (1.4×10−15 eV) with the

help of the convergence tests. Within PHonon, first, ph.x code calculates normal modes and

dynamical matrices at given mesh of q-points. At this step dynamical matrices does not

contain the nonanalytic term occurring in polar materials, i.e. there is no LO-TO splitting,

moreover no Acoustic Sum Rule (ASR) is applied. Then, code q2r.x (q-point to real space) reads

the dynamical matrices produced in the preceding step and Fourier-transform them, writing

a file of IFC in real space, up to a distance that depends on the size of the grid of q-vectors. At

the end, matdyn.x program is used to produce phonon modes, frequencies, and dynamical

matrices at any q-point using the IFC as input. At this step ASR is applied and microscopic

field contribution (LO-TO splitting) can be introduced. This procedure of a double Fourier

transformations offers a scheme which gives a good accuracy of the frequencies for all q-points

being much cheaper computationally.

A real STO material has a structural transition at 105 K, which occurs due to the oxygen octa-

hedra rotation, changing the symmetry from cubic to tetragonal. These tetragonal distortions

are found to be essential in preventing the ferroelectric transition. If one suppressed this struc-

tural instability (for instance, keeping the cubic symmetry of the material) STO would have a

ferroelectric phase transition near 30 K [95]. A manifestation of this behaviour is supported
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5.2. Determination of flexoelectric tensors using phonon dispersion

by DFT calculations with GGA exchange-correlation functionals of cubic STO where one can

observe negative squares of phonon frequencies for the soft-mode phonons for relaxed cubic

structure. To avoid this situation, of cause, it is possible to include the oxygen octahedra

rotation and work with tetragonal STO, which is the stable configuration at 0 K, but in this case

phonon picture is much more complicated, and therefore it is much more computationally

expensive. The stability of cubic STO can also be brought by applying a hydrostatic pressure

to the system. Here we would like to remark that we are primarily interested in high order

inharmonic couplings (flexoelectric couplings) which change very little with pressure or tem-

perature, unlike, for example, the dielectric response. The possible change of flexoelectric

coefficients is defined by the deformation of the system, which is about 1% for our case. This

way, we believe that the obtained here estimates are valid for realistic finite temperature and

pressure.

Figure 5.2: Calculated phonon dispersion of transverse acoustic (TA) and soft-mode transverse
optic (TO) branches with wavevector q = π

a (ξ,0,0) for cubic SrTiO3 stabilized by pressure. The
blue lines correspond to the lower pressure (p = 69 kBar, a = 3.89 Å) when the flexoelectric
interaction between the TO and TA branches is strong and one can observe lowering of the TA.
The grey lines correspond to the high pressure (p = 135 kBar, a = 3.85 Å) when the interaction
is weak.

Figure 5.2 shows phonon dispersion of the TA and TO branches for [1,0,0] direction for the

cubic STO stabilized by pressure. Tuning the pressure one can bring the TO and TA branches

closer to each other amplifying the flexoelectric coupling. The blue lines correspond to the
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lower pressure (p = 69 kBar, a = 3.89 Å) when the flexoelectric interaction between the TO and

TA phonon is strong and one can observe lowering of the TA branch. The grey lines correspond

to the high pressure (p = 135 kBar, a = 3.85 Å) when the TO and TA branches stand far from

each other and therefore the interaction is weak. This picture of the TA branch lowering with

pressure is similar to that with temperature observed by Axe for KTO, see Fig. 5.1.

Since the flexoelectric effect is proportional to the dielectric constant it is essential to know its

value for the studied system. The dielectric constant can be found from the frequency of the

TO mode at Γ-point, namely [96]

ω2
O(0) = λ

ε
. (5.28)

For the low pressure (ωO(0) = 28cm−1) with
p
λ= 4.7×1013 Hz [96] we have relative dielectric

constant εr = 3138, whereas for high pressure (ωO(0) = 107cm−1) εr equals 215. This way we

have the ab initio STO cubic structure approaching the phase transition not with temperature

but with pressure.

5.2.3 Results

To observe the flexoelectric coupling, it is instructive to plot the dispersion curves for the

square of the phonon frequency vs that of the wave vector, Fig. 5.3. The grey and blue curves

of the TA phonon correspond to high and low pressure. The dashed lines show the linear

behaviour in the absence of interaction between branches corresponding to the expressions

(5.24) and (5.25). For the high pressure case, the flexoelectric coupling is weak in view of the

large distance between the TA and TO branches. We assume that in this case the bending of

the acoustical branch is conditioned by the self dispersion of the curves or other higher order

effects, which are not related to flexoelectric coupling under study.

Fitting the TA branch of [1,0,0] direction of wavevector to (5.26) in the vicinity of Γ-point one

can find f tot
44 within the sign ambiguity. Expression (5.26) gives only total value of flexoelectric

coefficient, to find f44 and M , one has to consider full expression (5.23). Substituting ω in rhs

of (5.23) with expression (5.26) one can obtain:

(ω2 −ω2
A)(ω2 −ω2

O) =

(
q2 f tot

44 +q4M ( f tot
44 )2

αρ

)2

ργ
. (5.29)

or

±
√
ργ(ω2 −ω2

A)(ω2 −ω2
O)

q2 = f tot
44 +q2M

(
f tot

44

)2

αρ
. (5.30)

We used formula (5.30) with ω corresponding to the fitted TA branch to find f44 and M . The

lhs of (5.30) is shown in figure 5.4. From Eq. (5.30) and Fig. 5.4 one can see the coefficients
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Figure 5.3: Calculated dependence of square of phonon frequency on square of wave vector
of transverse acoustic (TA) and soft-mode transverse optic (TO) branches with wavevector
q = π

a (ξ,0,0) for cubic SrTiO3 stabilized by pressure. Blue and red lines correspond to the
hydrostatic pressure 69 kBar and 135 kBar correspondingly. The red TO branch (high pressure)
is out of the figure.

can be found within the sign ambiguity, however we know the relative sign.

It is possible to find other components of the static flexoelectric tensor analyzing the phonon

dispersion curves in other directions of the wavevector. Let us consider phonon dispersion

with the q-vector directed along the [110] direction. From equations (5.18) and (5.19) by

applying the zero determinant condition we get two different transverse modes: one with

displacement and polarisation vectors parallel to [001] direction is described by expression

(5.23) already considered above and the other with displacement and polarisation vectors

parallel to [110] expressed by

(ω2 −ω2
A)(ω2 −ω2

O) = (ω2M −q2 f eff)2

ργ
, (5.31)
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Figure 5.4: The lhs of the expression (5.30) with the ω corresponding to the TA branch with
wavevector q = π

a (ξ,0,0) for cubic SrTiO3 stabilized by 69 kBar hydrostatic pressure. Blue and
purple curves correspond to the "+" and "-" signs in (5.30), correspondingly. The dashed lines
are tangent lines, which were used to find M coefficient.

with new ωA and ωO :

ω2
A = ceffq2

ρ
, (5.32)

ω2
O = α+ g effq2

γ
, (5.33)

where

ceff = 1

2
(c11 − c12)

g eff = 1

2
(g11 − g12)

f eff = 1

2
( f11 − f12)

(5.34)

Figure 5.5 shows the calculated phonon dispersion curves for direction of the wavevector

q = π
a (ξ,ξ,0). The two modes, with displacement and polarisation vectors parallel to [001]

direction (TA1 and TO1) and with displacement and polarisation vectors parallel to [110] (TA2

and TO2), are shown with orange and green colours correspondingly. Analysing the orange

curves (TA1 and TO1) and using formula (5.23) we can double check the value of already

obtained coefficients f44 and M . Using expression (5.31) and the fit of the green dispersion

curves (TA2 and TO2) we can find f eff = 1
2 ( f11 − f12) and M . However, one can see that the TA2

branch little deviates from the straight dashed line indicating a very small interaction between
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Figure 5.5: Calculated dependence of square of phonon frequency on square of wave vector
of transverse acoustic (TA) and soft-mode transverse optic (TO) branches for cubic SrTiO3

for direction [110], q = π
a (ξ,ξ,0). The two modes, with displacement and polarisation vectors

parallel to [001] direction (TA1 and TO1) and with displacement and polarisation vectors
parallel to [110] (TA2 and TO2), are shown with orange and green colours correspondingly.

branches, i.e.

f11 − f12 ≈ c11 − c12

ρ
M . (5.35)

It can be shown that the analysis of dispersion curves of other directions of wavevector will

not resolve other components of flexoelectric tensor, i.e. we will always have combination of

f11− f12 and f44. For instance, for [111] direction of q-vector we can write the same expression

(5.31) with

ceff = 1

3
(c11 − c12 + c44)

g eff = 1

3
(g11 − g12 + g44)

f eff = 1

3
( f11 − f12 + f44)

(5.36)
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Figure 5.6: Calculated dependence of square of phonon frequency on square of wave vector of
transverse acoustic (TA) and soft-mode transverse optic (TO) branches for cubic SrTiO3 for
direction [111], q = π

a (ξ,ξ,ξ). Green lines correspond to the low pressure (p = 69 kBar), black
lines - high pressure (p = 135 kBar).

which can be used only to confirm previously obtained values. Figure 5.6 shows the depen-

dence of square of phonon frequency on square of wave vector of the TA and TO branches for

[111] direction of q-vector. One can see that the flexoelectric coupling is again small, which

means

f11 − f12 + f44 ≈ c11 − c12 + c44

ρ
M . (5.37)

Referring to the flexoelectric coupling as small we actually mean that bending of the TA branch

because of the flexoelectric coupling is of the same magnitude as the self dispersion of the

branch related to other effects. It can be seen in Fig. 5.6 where lowering of the TA dispersion

curves at low (green line) and high (black line) pressure (no flexoelectric coupling) is practically

the same, which is contrary to the situation shown in Fig. 5.3.

The results of analysis of dispersion curves in different directions of q-vector can be summa-
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5.3. Determination of flexoelectric tensors using lattice dynamics

rized as

[100] direction of q vector: f tot
100 = f tot

44 = f44 − c44

ρ
M ,

[110] direction of q vector: f tot
110 = f tot = f11 − f12

2
− c11 − c12

2ρ
M ,

[111] direction of q vector: f tot
111 = f tot = f11 − f12 + f44

3
− c11 − c12 + c44

3ρ
M .

(5.38)

If only information on f tot is available, for example, due to the precision of phonon dispersion

curves, one can use three Eqs. (5.38) to find three unknown values f44, f11 − f12, and M . We

also used these equations to check the agreement of the obtained values.

[100] [110] (TA1) [110] (TA2) [111]
ceff (×1011 N

m2 ) c44 = 0.98 c44 = 0.96 1
2 (c11 − c12) = 1.12 1

3 (c11 − c12 + c44) = 1.09
f tot (V) ±1.0 ±1.0 <0.3 <0.3

M ,×10−8 Vs2

m2 ±6.3 ±7.0 ±7.4 undefined
ceff

ρ M (V) ±1.2 ±1.3 ±1.5 undefined

f44 (V) ±2.2 ±2.2
f11 − f12 (V) ±2.4±0.3 ±2±0.3

Table 5.1: Material parameters obtained from analysis of phonon dispersions of cubic STO
(a = 3.89 Å) under pressure 69 kBar. ceff is effective value of mechanical stiffness obtained
from the tangent of the TA branch at Γ-point. f and M are static and dynamic flexocoupling

coefficients. ρ is the density of STO, ρ = 5174 kg
m3 , calculated by the mass of atoms in the unit

cell divided by the volume.

The values of the static and dynamic bulk flexoelectric tensor for STO which were extracted

from the phonon dispersion curves, are given in Table 5.1. The f tot coefficients are found

within the sign ambiguity due to the quadric character of flexoelectric coupling in (5.23)

and (5.31). As it was expected, the dynamic flexoelectric coefficient, c44
ρ M = ±1.2V (M =

±6.3×10−8 Vs2

m2 ), is comparable with total flexoelectric coefficient. This way one can see a 100%

difference between static and total flexoelectric coefficients which confirms the fact of the

necessity of including the dynamic contribution.

The discussed above procedure can be readily used with the real phonon spectrum based on

experimental data.

5.3 Determination of flexoelectric tensors using lattice dynamics

The discussed above method based on the processing of dispersion curves is suitable to

obtain flexoelectric coefficients, however within this method two things are missing. First, the

coefficients can be only defined within the sign ambiguity and, second, the method cannot

resolve the difference f11 − f12.
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Chapter 5. Flexoelectric effect

Actually, it is possible to find static and dynamic and flexocoupling tensors using microscopic

theories. For the static flexoelectric tensor, it was done by Maranganti and Sharma [35] for

some semiconductor and ferroelectric materials including STO. Here, we are mainly interested

in M coefficient and suitability of standard DFT calculation schemes for static flexocoupling

tensor.

5.3.1 Introduction

The microscopic theory of the bulk flexoelectric effect has been developed by Tagantsev [36].

Here, we will consider a point-charge approximation, but instead of treating the ions as point

charges, we will use more exact Born charges. This is a good approximation for calculating the

flexoelectric response for materials with high dielectric constant, e.g. ferroelectrics, where the

lattice contribution is dominant. We used the so-called long-wavelength method, originally

introduced into the lattice dynamics theory by Born and Huang [97]. In this method, one

considers a sinusoidal wave of elastic deformation with a wavelength which is much larger

than the typical interatomic distance and calculates the amplitude of the induced polarization

wave, based on lattice mechanics of crystals and the basic definition of polarization. Then, the

microscopic expressions for the flexoelectric tensor can be found by comparing the results of

these calculations with the amplitude of the induced polarization wave calculated within the

basic constitutive equation (5.1).

While the complete description of the method can be found in refs. [24, 36] here we show

the expressions which link the phenomenological values of flexocoupling tensors with micro-

scopic bulk properties.

For f ∗ defined by the equation of motion

Ei =χ−1
i j P j + f ∗

i j kl

∂2U j

∂rk∂rl
+Mi jÜ j (5.39)

the static bilk flexoelectric tensor can be found as

χi j f ∗
j klm =− 1

v
Qi , j ,p N klm

j ,p , (5.40)

where v is the volume of the unit cell, Qi , j ,p are the Born charges. We would like to draw

attention that the flexocoupling tensors f and f ∗ are actually defined differently (compare

(5.39) and (5.6)). Using the relation

∂2U j

∂xk∂xl
= ∂u j l

∂xk
+ ∂u j k

∂xl
+ ∂ukl

∂x j
(5.41)

it can be shown that

fi j kl =−
(

f ∗
ki l j + f ∗

ki j l + f ∗
kl i j

)
. (5.42)
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5.3. Determination of flexoelectric tensors using lattice dynamics

The dynamic flexocoupling tensor can be found from the relationship:

χi j M j k =− 1

v
Qi , j ,pGk

j ,p . (5.43)

One can also obtain the expression for dielectric susceptibility

χi j = 1

v
Qi ,k,pΓkp,l p ′Q j ,l ,p ′ , (5.44)

which is instructive for us while comparing the results obtained from phonon dispersion and

microscopic lattice dynamic. The tensors Γ, N , and G can be calculated in terms of lattice

dynamics theory [36, 97]. Following Tagantsev [36], we write microscopic expressions for N

and G :

N j kl
i ,p =∑

p ′′
Γi p,i ′p ′ T̃ kl

i ′p ′, j p ′′ , (5.45)

with

T̃ j l
i p,i ′p ′ = T j l

i p,i ′p ′ −
δpp ′

s

∑
p ′′p ′′′

T j l
i p ′′,i ′p ′′′ , (5.46)

and

G j
i ,p =−Γi p,i ′p ′µp ′ , µp = mp − 1

s

∑
i

mi , (5.47)

where Γ is the inverse matrix, defined in a special way [96], to the singular matrix A(0)
i p,i ′p ′

(a dynamic matrix at Γ-point, which contains zero eigenvalues corresponding to acoustic

phonons), mp is the mass of p-th atom, s is the number of atoms in the unit cell. For the cubic

material, where all atoms are inversion centers, T kl
i p,i ′p ′ can be found as

T j l
i p,i ′p ′ = 1

2
A(2) j l

i p,i ′p ′ (5.48)

The matrices A(0)
i p,i ′p ′ and A(2) j l

i p,i ′p ′ are:

A(0)
i p,i ′p ′ =

∑
n−n′

Φnn′
i p,i ′p ′ , (5.49)

A(2) j l
i p,i ′p ′ =− ∑

n−n′
Φnn′

i p,i ′p ′(~Rn
p −~Rn′

p ′ )
j
(~Rn

p −~Rn′
p ′ )

l
, (5.50)

where the summation is done over all unit cells (numbered with n), ~Rn
p is the radius-vector of

the p-th atom in the n-th unit cell, andΦnn′
i p,i ′p ′ are Interatomic Force Constants (IFCs), which

is a matrix consisting of potential energy second partial derivatives with respect to atomic
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Chapter 5. Flexoelectric effect

displacements with the macroscopic field contribution being excluded. Once IFCs are known,

for instance, from first principles calculations, one can find the flexoelectric tensors following

the theory discussed above.

5.3.2 Ab initio calculations of interatomic force constants

IFCs were calculated using PHonon program as as it was already described in section 5.2.2.

We used a 10x10x10 automatic Monkhorst-Pack grid of q-points, hence we know the IFCs for

the supercell representing an array of 10x10x10 cells (225000 values of IFCs). The IFCs were

calculated for exactly the same system as the previously obtained phonon dispersion curves:

cubic STO under low pressure p = 69 kBar with lattice constant a = 3.89 Å, moreover it was

extracted from the same run of ph.x code. Summing the IFCs and using (5.49) and (5.49) we

obtained matrices A(0)
i p,i ′p ′ and A(2) j l

i p,i ′p ′ .

5.3.3 Results

Dynamic flexocoupling coefficient

Knowing the A(0)
i p,i ′p ′ matrix and the Born charges for STO (also obtained with QE)

QSr =

 2.45 0 0

0 2.45 0

0 0 2.45



QTi =

 7.34 0 0

0 7.34 0

0 0 7.34



QO1 =

 −2.00 0 0

0 −2.00 0

0 0 −5.75



QO2 =

 −2.00 0 0

0 −5.75 0

0 0 −2.00



QO3 =

 −5.75 0 0

0 −2.00 0

0 0 −2.00



(5.51)

we calculated χ using formulas (5.44) and (5.44), as well as M coefficient using (5.43) and

(5.47).

We got an agrement for dielectric constant and the absolute value of the dynamic flexoelectric

coefficient, which are shown in Table 5.2. The microscopic method allows to resolve the sign
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5.3. Determination of flexoelectric tensors using lattice dynamics

Phonon dispersion IFCs
χ/ε0 3140 3050

M (×10−8 Vs2

m2 ) ±6.3 6.0

Table 5.2: Dielectric suitability, χ, and dynamic flexocoupling coefficient, M , obtained from
the analysis of phonon dispersion curves and calculated from Interatomic Force Constants
(IFCs).

of M and therefore the signs of previously obtained f44 and f11 − f12 which are eventually

positive.

Comments on the finding of the static flexocoupling tensor
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Figure 5.7: Convergence of IFCs (a) and momentum of IFCs (b) with the cell number n1.
Φ

(n1,0,0)−(0,0,0)
11,11 represents a IFC between atom "1" (Sr) in the direction Ox1 sitting in the (n1,0,0)

cell and second atom "1" in the direction Ox1 being in the "central" (0,0,0) cell. R(n1,0,0)
p is a

radius vector to p-th atom in the (n1,0,0) cell. n1 = ±5 corresponds to a cell at the edge of
supercell.

One can find the static flexocoupling tensor using the matrix of momentums A(2) j l
i p,i ′p ′ , as it

was done by Maranganti and Sharma [35]. However, we noticed that our result depends on

the edge of the supercell or on the way we count the atoms in the sum (5.50). The matter
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is explained as following. Since all such ab initio calculations give a finite number of IFCs

one has to have a proper convergence of results with respect to the total number of IFCs

considered. The χ and M coefficients are actually defined by the A(0)
i p,i ′p ′ matrix (5.49), i.e. by

the dynamic matrix at Γ-point. The f tensor is defined by A(2) j l
i p,i ′p ′ containing not only IFCs but

their momenta (5.50). Figure 5.7(a) shows the convergence of IFCs,Φ(n1,0,0)−(0,0,0)
11,11 , along Ox1

direction between the atoms of Sr (atom "1" in the unit cell): one is sitting in the cell (0,0,0), the

other - in the cell (n1,0,0), with the cell number n1. We numerate the cells with three indexes,

n = (n1,n2,n3), since we work with 10x10x10 supercell. One can see a substantial decrease

of IFCs with n1 which insures the convergence of values of the A(0)
i p,i ′p ′ matrix. However in

Fig. 5.7(b) one can see that momenta of IFCs, do not reach convergence within the range of

the used n. The divergence at the end of the supercell (large n) takes place because of DFT

calculation limitations, namely because of periodic boundary conditions: the considered

supercell actually "feels" the presence of infinite number of other supercells. This effect is

magnified at the border of the supercell.

We demonstrate the divergence of the results, counting differently the momentums (Eq. (5.50))

of Sr atoms at the edge of the supercell, see Fig. 5.8. We obtain the following values for the f

tensor:

f =



−16.5 2.43 2.43 0 0 0

2.43 −16.5 2.43 0 0 0

2.43 2.43 −16.5 0 0 0

0 0 0 −3.21 0 0

0 0 0 0 −3.21 0

0 0 0 0 0 −3.21


(5.52)

if the moments for the cells with n1,n2,n3 =±5 (the edge cells) are counted in the sum (5.50);

f =



−3.1 −1.48 −1.48 0 0 0

−1.48 −3.1 −1.48 0 0 0

−1.48 −1.48 −3.1 0 0 0

0 0 0 0.62 0 0

0 0 0 0 0.62 0

0 0 0 0 0 0.62


(5.53)

if the moments for the edge cells are counted with the factor 1/2;

f =



6.19 −3. −3. 0 0 0

−3. 6.19 −3. 0 0 0

−3. −3. 6.19 0 0 0

0 0 0 1.96 0 0

0 0 0 0 1.96 0

0 0 0 0 0 1.96


(5.54)
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Figure 5.8: Convergence of momentum of IFCs with the cell number n1. Φ(n1,0,0)−(0,0,0)
11,11 repre-

sents a IFC between atom "1" (Sr) in the direction Ox1 sitting in the (n1,0,0) cell and second
atom "1" in the direction Ox1 being in the "central" (0,0,0) cell. R(n1,0,0)

p is a radius vector to
p-th atom in the (n1,0,0) cell. n1 =±5 corresponds to a cell at the edge of supercell. (a) the
moments of the edge cells are counted in the sum (5.50), (b) the moments of the edge cells are
counted with the factor 1/2, (c) the moments of the edge cells are not counted.

if if the moments for the edge cells are not counted. From (5.52)-(5.54) one can see the drastic

change of the obtained f values depending on the edge.

This way, using the standard precision of ab initio phonon dispersion calculations (10x10x10

q-point grid), we were not able to find reliably the static flexocoupling tensor components.

Therefore, to have a reliable result one should consider a bigger supercell omitting some values

of IFC at the edge.

77



Chapter 5. Flexoelectric effect

χ/ε0 3100

M ,×10−8 Vs2

m2 6.3
f11 − f12 (V) 2.0

f44 (V) 2.2
µ11 −µ12, nC

m 56
µ44, nC

m 61

Table 5.3: Material parameters of STO obtained joining the two methods based on phonon
dispersions and IFCs. χ/ε0 is relative dielectric susceptibility. f and M are static and dynamic
flexocoupling coefficients. µ is static flexoelectric tensor.

5.4 Discussion and comparison with experiment

The results obtained with two above approaches are summarized in Table 5.3. The values of

the static flexoelectric tensor, µ, are calculated using the Table 5.1 and Eq. (5.8).

Maranganti and Sharma [35] found static bulk flexoelectric tensor for some semiconductor

and ferroelectric materials including STO using first principles calculations and the theory

developed in [36]. They obtained for STO

µ11 = 3.7
nC

m
, µ12 = 0.3

nC

m
, µ44 = 3.6

nC

m
. (5.55)

Unfortunately, they show only the values of flexoelectric tensor (not flexocoupling tensor),

which is not informative, because flexoelectric coefficients depend on χ (Eq. (5.8)), and since

the latter is highly temperature dependent, the values of µ obtained at 0 K can substantially

change for the room temperature. Since they do not give the value of the dielectric susceptibil-

ity, we cannot make the comparison in terms of the flexoelectric coefficients. At the same time,

we can compare the (µ11 −µ12)/µ44 ratio, which is about 0.94 for Maranganti and Sharma (see

(5.55)) and 0.9 for us. However, there are strong arguments giving us right to doubt the validity

of the results obtained by Maranganti and Sharma, since, to calculate phonon dispersion of

STO, they used 6x6x6 grid of q-point which is insufficient for convergence as it was shown

above.

It is also interesting to have a look on the previously obtained experimental results. Tagantsev

et al [6] determined total flexoelectric coefficients ,| f tot
44 | = 2.2 V, for crystalline STO based on

experimental data of Brillouin scattering by Hehlen et al [94]. The information on the flexo-

electric coupling can also be obtained from a treatment of the low-energy phonon spectrum

of a crystal probed with the neutron scattering technique. In this case, the energy resolution

is much lower than in the Brillouin scattering technique but the spectrum is available in the

whole Brillouin zone. However, this analysis was done with the contribution of the dynamic

flexoelectric effect being omitted. Thus, such a treatment of a spectrum gives some effec-

tive values of the flexocoupling coefficients f eff. For STO it was obtained | f tot
44 | = 1.2−2 and

| f tot
11 − f tot

12 | = 1.2−1.4 V [24]. The spread of obtained values indicates a low precision of neutron
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scattering based experiments. In addition, as was indicated in the preceding subsection, this

technique does not yield the sign of flexoelectric components.

Zubko et al [31] employed a bending method to characterize the flexoelectric response in

single crystals of STO. To get all the three independent coefficients characterizing the flexo-

electric response of cubic STO the authors performed bending experiments with different

orientations of the beam. We cannot compare our results with that by Zubko, since these ex-

periments have a substantial drawback, which is the presence of surface contribution to bulk

flexoelectric response [24], which strongly changes the bulk flexoelectric values. Additionally,

pure bending experiments yield only two independent equations for the three components of

the flexoelectric tensor and the authors combined their data with the component f44 = 2.2 V

of the flexocoupling tensor taken from the Brillouin scattering to find f11 = 0.08 V and f12 = 2.6

V. Such a combination should not be done, since flexocoupling tensor taken from the Brillouin

scattering is actually a total flexocoupling coefficient containing both f44 and M , therefore

one should not combine total and static coefficient whose values can drastically differ.

5.5 Conclusions

Summing up this chapter we wold like to highlight some essential moments. It was shown

with the example of STO that we can use 0 Kelvin DFT calculations stabilizing the perovskites

structure with pressure. Moreover, it is possible to greatly change the dielectric constant of the

material providing analog to Curie-Weiss law.

To calculate static and dynamic flexoelectric tensors, we used ab initio calculations and two

phenomenological methods based on the calculated dynamical matrices. The first method

consists of the analysis of phonon dispersion curves. It gives f and M tensors within the

sign ambiguity and it is not able to resolve the f11 − f12 difference. The obtained values

are comparable with previously reported. The considered analysis can be used with real

experimental data of phonon dispersion to find flexoelectric coefficients.

The second method uses microscopic parameters of the material, i.e. IFC. This method can,

in principle, provides all components of f and M tensors. With this method the dynamic

flexoelectric coefficient was for the first time calculated for cubic STO. As expected from

previous estimations, M has a significant contribution to f tot and should be taken into ac-

count. However, within this method the standard precision for dispersion curves calculations

(10x10x10 q-point mesh) is not enough to find f tensor. To calculate static flexoelectric tensor

the method requires smaller mesh of q-points (more atoms in the supercell).
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6 Ferroelectric antiphase boundaries in
antiferroelectric materials

Since this thesis is mainly focused on DFT calculations of ferroelectrics, it is interesting to see

what first principles methods can offer if we study domain boundaries of ferroelectrics and

antiferroelectrics. In this chapter, using ab initio modelling we will show that antiphase bound-

aries in antiferroelectric PbZrO3 (PZ) may possess ferroelectricity supporting the transmission

electron-microscopy (TEM) experiments by Wei et al. [98].

6.1 Introduction

Domain boundaries make an intriguing and challenging research subject due to their dis-

tinctive properties and promising perspective in designing nanoelectronic devices. A typical

example is the discovery of electronic conductivity at ferroelectric domain walls in multiferroic

oxides such as BiFeO3 [99–101] and ErMnO3 [102]. Charged domain walls in the ubiquitous

BaTiO3 ferroelectric showed electron-gas like conductivity while the individual domains re-

mained excellent insulators [103]. Large photovoltages were generated by domain walls,

attractive for photovoltaic devices [104]. These properties are particularly attractive because

domain walls can be created, annihilated, rewritten and displaced electrically inside the

material, potentially leading to agile nano-electronics.

Recently, the polarity of twin boundaries in centro-symmetric CaTiO3 was shown [105]. Pos-

sible polarity of domain boundaries in non-polar materials and, to a greater extent, local

ferroelectricity in such boundaries make these objects attractive for both fundamental science

and possible practical future applications.

How to identify materials with ferroelectric boundaries? Based on a Landau theory treat-

ment, one can show that antiphase boundaries in antiferroelectrics are likely ferroelectric.

Implementing this result and using an atomic scale experimental study of the prototypi-

cal antiferroelectric lead zirconate [98], exploiting a negative spherical-aberration imaging

(NCSI) technique [106] in an aberration-corrected TEM, it can be demonstrated that antiphase

boundaries with a π phase-shift of the order parameter exhibit polarity, which, in view of the

81



Chapter 6. Ferroelectric antiphase boundaries in antiferroelectric materials

symmetry of the system, implies the existence of local ferroelectricity.

6.2 Theory of ferroelectricity in antiferroelectric domain walls

Antiferroelectrics constitute a large group of dielectric materials which can be experimentally

recognized by a structural phase transition between two non-polar phases with a strong

dielectric anomaly at the high temperature side of the transition [107–109]. Antiferroelectricity

is a result of the interruption of an imminent ferroelectric phase transition having Curie

temperature of T0 by a structural phase transition [110] at a slightly higher temperature TA.

This interruption occurs due to repulsive interaction between polarization and a structural

order parameter appearing at TA.

A simple two instabilities Landau-type theory [110–113] rationalizes the antiferroelectric

behaviour using the following free energy expansion in terms of polarization, P , and structural

order parameter, ξ,

F (P,ξ) = A

2
(T −T0)P 2 + η

2
P 2ξ2 +FA(ξ) (6.1)

Here the coefficient η> 0 controls the repulsive biquadratic coupling between polarization

and structural order parameter. The transition at TA is described by the contribution to the

free energy FA(ξ), implying softening of a lattice mode associated with the order parameter

ξ. For the low-temperature phase where the order parameter of the transition, ξ, acquires a

spontaneous value of ξ0, the susceptibility, defined as

χ= 1/
∂2F

∂P 2 , (6.2)

takes the form

χ= 1

A(T −T0)+ηξ2
0

. (6.3)

Equation (6.3) corresponds to antiferroelectric-type anomaly if A(T −T0)+ ηξ2
0 increases

on cooling. This is possible if the increase of ξ0 with lowering temperature dominates the

behaviour of this term, which can be assured by large enough coupling constant η.

The above scenario suggests that domain boundaries provide favorable conditions for the

development of local ferroelectricity. This can be elucidated considering the simplest type

of ferroic domain boundary, the so-called Ising wall. In such wall the order parameter ξ

passes through zero in the middle of the boundary. Thus, in the middle of the boundary,

the suppressing effect of the structural ordering (with respect to the ξ-parameter) on the

ferroelectric instability vanishes, creating favorable conditions for the development of local

ferroelectricity at T < T0.
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6.2.1 Antiphase boundaries in lead zirconate - candidates for ferroelectricity

The concept presented above can be applied to PZ. However, in PZ the situation is more

complicated. At high temperatures, PZ has the ideal cubic perovskite structure shown in Fig.

6.1(a). After cooling through a first order phase transition at TA ∼ 500 K, the structure changes

from cubic m3m to orthorhombic mmm. The structural changes at the transition can be

presented as a combination of displacements in two lattice modes [114], one corresponding

to the Σ point (the wave vector ~kΣ = 2π
ac

(1/4,1/4,0); ac is the lattice constant of the high-

temperature cubic phase) in the Brillouin zone and the other corresponding to the R point

(~kR = 2π
ac

(1/2,1/2,1/2)). The distortions associated with the Σ point are mainly related to

displacements of lead ions (Fig. 6.1(b)) while those associated with the R point derive from

antiphase rotations of the oxygen octahedra (Fig. 6.1c) about the crystallographic axes of the

cubic phase. Thus, the transition is governed by a mixed order parameter, containing Σ-point

and R-point-related components.

Figure 6.1: Structure of lead zirconate. a. The cubic unit cell. Lattice modes relevant to
the phase transition into the orthorhombic phase: b. Lead displacements in the Σ-mode. c.
Oxygen-octahedron rotations in the R-mode. In b and c, the projections of the orthorhom-
bic unit cells onto the ab plane (rectangles) are shown. The crystallographic axes of the
orthorhombic phase ([100] and [010]) and of the pseudo-cubic phase (xc and yc ) are shown.

The possibility of local ferroelectricity in domain boundaries can be discussed referring to the

Σ-point-related component of the order parameter, corresponding to the so-called Σ3 mode
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of the parent cubic structure, with lead displacements having the form [110, 115]

rPb ∝

−1

1

0

cos

(
π

2ac
(xc + yc)+φ

)
(6.4)

where xc = n1ac, yc = n2ac (n1 and n2 are integers) are the coordinates in the cubic lattice

frame and φ is the phase of the modulation.

The condensation of the order parameter linked to this mode is associated with a 4-fold

increase of the number of atoms per unit cell as schematically depicted in Fig. 6.1(b). As a

result, two types of domain states form: orientational and translational [116]. The orienta-

tional states (ferroelastic twins) differ by the orientation of the atomic displacements. The

translational domain states that correspond to a given orientational state can be turned from

one to another by shifting the lattice by ac, 2ac, or 3ac, corresponding to a fraction of a lattice

translation vector of the low-temperature phase. In view of the quadrupling of the unit cell,

there are 4 translational domain states for each orientational state. In terms of Eq. (6.4), lead

displacements in these states corresponds to φ=π/4,3π/4,5π/4 and 7π/4 [110]. These states

can be visualized in the plane of the complex order parameter ξ= ρe iφ, corresponding to the

points marked with four circles (Fig. 6.2(a)), where φ is the phase of the order parameter and

ρ is its modulus, proportional to the magnitude of lead displacements.

Three types of translational boundaries, corresponding to phase shifts of π/2, π, and 3π/2

can separate the four translational states. The mappings of these translational boundaries are

schematically shown in Fig. 6.2(a) with solid lines. Mapping "3" is of a particular interest for

the appearance of the local ferroelectricity. It corresponds to a π-wall, (so-called antiphase

boundary (APB)) i.e. having a phase shift of π, at the middle of which the order parameter

passes through the zero point hence the suppressing effect of the order parameter on to

the ferroelectric instability is reduced. Following this argument one might contemplate a

π/2 translational domain boundary where the order-parameter passes as well through zero

(mapping "2" in Fig. 6.2(b)) and wonder if also in this case the ferroelectric instability is

favoured. No theory of translational domain boundaries in PZ is available at present to

quantitatively address this problem. However, such a problem has been addressed for an

improper ferroelectric by Fouskova and Fousek [117]. These authors compared the energies

of two variants of a domain wall in gadolinium molibdate (GMO), which have mapping onto

the plane of the two-component order-parameter (q1, q2) marked with solid lines "1" and

"2" in 6.2(b). They demonstrated that the variant corresponding to mapping "2", which

passes though the origin is energetically unfavorable compared to the rotational variant,

corresponding to mapping "1". The problem in GMO is isomorphous to that in PZ to within

the substitution (Re ξ, Im ξ) for (q1, q2). The results obtained for GMO enables speculating

that passing through zero of the order parameter in a π/2 translational domain boundary in

PZ is quite improbable. On the same lines, in orientational (twin) domain boundaries, which

are also comparable to the walls treated by Fousek and Fouskova, the order parameter is not
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6.2. Theory of ferroelectricity in antiferroelectric domain walls

Figure 6.2: Mapping of the translational domain states and boundaries inside a single orienta-
tional domain of PbZrO3 onto the plane of the complex order parameter. Circles - translational
domain states. Lines - translational boundaries. The boundaries linking the domain state
marked by empty circle with the other states are shown with numbered lines. (a) Naturally
expected translational boundaries.The phase shifts ∆φ of the modulation of the lead displace-
ments in the walls are: line 1 - the π/2 wall, ∆φ= π/2; lines 2 and 3 - the π walls (antiphase
boundary), ∆φ=π; line 4 - the 3/2π wall, ∆φ= 3/2π. In the π-wall (line "3") the order parame-
ter passes through zero. In view of the above discussion, in such wall the suppressing effect
of the order parameter on the ferroelectric instability is minimal making the π-wall the most
favorable for the occurrence of local ferroelectricity. (b) Mappings of possible π/2 walls onto
the plane (Re ξ, Im ξ) of the complex amplitude of the order parameter in PZ - solid lines 1
and 2. Mappings of possible ferroelectric walls onto the plane (q1,q2) of the two-component
order parameter in GMO - solid lines 1 and 2.

expected to pass through zero in the wall neither. This implies that there is no special reason

for the appearance of local ferroelectricity in twin boundaries, though such event cannot be

excluded. It is therefore the π wall which is promising for the local ferroelectricity. This way,

APBs in PZ, i.e. translational boundaries with phase shifts of π, are good candidates for the

occurrence of local ferroelectricity.

6.2.2 The thickness of antiphase boundaries in ferroics

The above discussion motivates experimental search for ferroelectricity in APBs in PZ. For

such research, it seems appropriates to specify the notion APB in ferroics, which not fully

identical to that commonly used in non-ferroic materials.

By definition, any two elementary unit cells in a perfect crystalline structure can be superim-

posed by translation with an elementary vector belonging to the set of the lattice translation

vectors of the structure. Some crystals exhibit distinct neighboring regions, where a unit

cell in one can superimpose a unit cell in the other by the application of a vector differing

from an allowed lattice translation vector by approximately half of an elementary lattice

translation vector. In this case the boundary separating the two regions is called antiphase

boundary. Hereafter, the aforementioned translation vector is called an APB vector. This
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primary definition of the APB is termed definition-0.

Figure 6.3: Antiphase boundary (APB) in a "non-ferroic" vs. APB in a ferroic. (a) 2D schematic
of an APB in a “non-ferroic”. Here only one chain of atoms parallel to the Ox direction is
shown and the whole 2D "crystal" can be obtained by repeating this chain in the O y direction
with a period c. Regions "domain I" and "domain II" have both a perfect crystalline structure
with period a. Yet, in order to superpose elementary cell of region I onto region II, a vector is
needed, which differs from a translational vectors by a/2. This vector does not belong to the set
of elementary lattice translation vectors of the structure, all equal na, n being integer numbers.
The antiphase boundary w1 is marked grey and its width is about a/2. (b) 2D schematic of a
structural phase transition in a ferroic. In each phase, only one chain of atoms is shown; the
whole 2D "crystal" can be obtained by repeating the chain in the perpendicular direction with
the period c. At the transition, the period in the direction of the chain changes from a/2 to a.
(c) Schematic of an APB in the 2D ferroic introduced in Fig. 6.2(b). The thickness of the APB
consistent with its primary definition (definition-0) is w3. According to definition-1 one would
attribute to the APB the thickness w2.

Figure 6.3(a) shows a 2D schematic of an APB. Here only one chain of atoms parallel to the Ox

direction is shown and the whole 2D "crystal" can be obtained by repeating the chain in the

O y direction with a period c. In this drawing, the APB vector differs from a lattice translation

vector exactly by a/2, i.e. by a half of the elementary translation vector. In a more realistic

model, the separation between the neighboring "atoms" in the Ox directions should be a/2

only inside regions of "domain I" and "domain II" of the structure while at the APB it should

evidently be slightly different from this value.

For the model depicted in Fig. 6.2(b), another definition of the APB (termed hereafter

definition-1) can be introduced based on definition-0 given above. Specifically, it is seen

that the regions "I" and "II" can be characterized by the alternation of the signs of the atomic
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displacements along the O y direction, which are either b or −b. As is clear from Fig. 6.3(a),

one can identify the presence of the APB by a shift of the phase of this alienation and ascribe

the position of the APB to the place where this phase shift takes place. For the model depicted

in Fig. 6.3(a), the APB can be viewed as a layer which is a/2 thick in the Ox direction. In terms

of definition-0, by removing away this layer, the periodicity throughout the whole system,

which was violated by the presence of the APB, is restored. In terms of definition-1, at this

layer, the regular alternation of the atomic displacements in the 0x direction is violated. Based

on any of the two definitions, one can attribute to the APB the width of a and speak about its

location with the accuracy of the interatomic distance. Definition-1 is more convenient in

practical work compared to definition-0.

The model depicted in Fig. 6.3(a), corresponds to the situation in non-ferroic crystals. Mean-

while, for ferroics, that situation is, in general, different and requires a special treatment.

The new features are as follows: (i) definition-1 is not consistent any more with the primary

definition-0, and (ii) a thickness equal to the correlation length rather than the interatomic

distance should be ascribed to the APB. This situation is discussed next.

In ferroics, APBs occur once a structural phase transition is accompanied with a unit cell

multiplication. Figure 6.3(b) shows the evolution of the structure at such a phase transition in

a ferroic "material" where the unit cell volume is doubled at the transition and the period in

the Ox direction changes from a/2 to a. Specifically, the structural evolution shown in this

figure corresponds to the case, where, in the ordered phase, the structure is in a single domain

state. It is seen that that such single domain structure is equivalent to that inside regions "I"

and "II" of the non-ferroic 2D crystal shown in Fig. 6.3(a).

In such a ferroic 2D crystal, APBs may readily occur, separating between so-called translational

domains. Specifically, for a ferroic having a second order phase transition or of a first order

close to the second order transition (the typical situation which enables the Landau-theory

treatment), in an APB, the structure evolves gradually between the two translational domains

on a spatial scale of about the correlation length ζ. The primary statement of the Landau

theory is that ζ is much larger than the lattice constant of the material. In practice, due to an

interplay of numerical factors such difference may not be very large, however, conceptually, ζ

should be larger than the lattice constant. A ferroic "material" exhibiting two translational

domains marked with "I" and "II", which are separated by an APB, is schematically depicted

in Fig. 6.3(c).

Now, there is a question of the thickness and position of a ferroic APB. Using definition-0,

one treats the APB as the area different from the translational invariant domains "I" and "II".

Note that the translational invariance requires not only the periodicity in the Ox direction but

also the identity of the atomic displacements in the O y direction. Thus, one considers the

antiphase boundary as an object having the thickness w3
∼= ζ. The APB is the whole region,

with the thickness of about ζ, where the lattice periodicity is violated. Once the APB contains

many distorted unit cells, one can say that, in an APB, the modulus of the order parameter
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deviates from its bulk value.

Can one apply definition-1 to an APB in ferroics? In definition-1, one considered the APB to

be atomically thin (in Fig. 6.3(c) it is w2) and specified its location to within the interatomic

distance. However in ferroics this definition loses its essential feature. Specifically, in non-

ferroics definition-1 is equivalent to the primary definition-0. On the contrary, in ferroics,

definition-1 is in conflict with the primary definition-0. In a ferroic material, two unit cells

separated just by the APB of definition-1 cannot be superimposed by any translational vector

at all, thus it is impossible to speak about a phase shift at it. Thus, strictly speaking, when

applied to ferroics, definition-1 of the APB does not correspond to the term "APB" itself.

To summarize, APBs in ferroics are objects of a finite volume, not just a stepwise break of the

periodicity.

6.3 Electron microscopy experiments

Following the above analysis, Wei et al [98] investigated PZ to search for local polarity in its

domain boundaries. Employing the NCSI technique [106] in an aberration-corrected TEM

combined with quantum-mechanical and optical simulation, they imaged and measured the

atomic positions, including those of oxygen.

Figure 6.4(a) is a dark-field image of a PZ crystal, showing translational domains separated

by domain walls (dark line contrast). These translational domains correspond to a single

orientational domain. The topological nature of the domain walls, allows reactions between

them, provided the conservation of the total phase shift (topological charge) is kept. Encircled

and marked "1", "2", and "3" are annihilation of two APBs, annihilation of one APB and two

π/2 walls, and split of an APB into two π/2 walls, respectively.

A high-resolution TEM image of APB is shown in Fig. 6.4(b). It was recorded under NCSI

condition with the electron beam along the crystallographic [001] direction. One readily

checks that the two highlighted unit cells exhibit a π shift in the phase of the order parameter.

The identity of these two unit cells can be checked with lead displacements. Passing a pair

of rows in the [010] direction, the sign of lead displacements alternates as shown with the

blue/pink arrows in Fig. 6.4(b), following the law of the alienation dictated by Eq. (6.4).

The number of lead containing rows between the two highlighted unit cells is 10 (and not a

multiple of 4), evidencing the π phase shift and the existence of the APB region. Based on

image simulation, the atomic positions corresponding to the experimental image are obtained

from the model structure.

A violation of the correlation in the antipolar in-plane Pb displacements is clearly seen in the

APB area (Fig. 6.5(a)). Due to the depolarizing effect, polarity is expected only in the boundary

plane, i.e along the [100] orthorhombic axis. Scrutinizing the x-atomic displacements shown

in Fig. 6.5(b), they find a systematic unipolar displacements of Zr in 7 elementary cubes
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Figure 6.4: Morphology of translational boundaries in the antiferroelectric PZ crystal. (a)
Dark-field image with superposed orthorhombic axes shows morphology of the translational
boundaries (dark lines). Topological features of these boundaries are marked by the red
circles: "1" - annihilation of two antiphase boundaries (APBs), "2" - annihilation of one
APB and two π/2 walls, and "3" - split of an APB into two π/2 walls. (b) Atomic-resolution
image of an APB between two translational domains recorded under NCSI conditions with
the incident electron beam parallel to the [001] direction. In two domains, two identically
defined orthorhombic unit cells are highlighted. Lead atom displacements are represented
in the schematic orthorhombic blocks to the left (domain I) and the right (domain II) of the
image. By shifting the orthorhombic cell, the APB (the shaded cyan area) can be evidenced by
the conflict of half a unit cell in between these two domains. The scale bar in (a,b) is 200 nm
and 1 nm, respectively.

(pseudo-cubic unit cells) with an average value of about 8pm. This hints to a dipole moment

inside the wall, having a dipole moment density of about 11 µC cm−2, obtained taking ac =

0.413 nm and 6 electron charges for the Zr Born charge.

To evaluate the polarity of the APB, Wei et al used the following approach: they calculated

the dipole moments based on the displacements of all the ions from their positions in the

cubic phase associated with their Born charges. Then, they averaged these moments over the

projection of the orthorhombic unit cell onto the ab plane using a "sliding" unit cell. By the

"sliding" cell they mean the orthorhombic cell of 40 atoms shifted each time along [010] axis
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Figure 6.5: Atomic displacemets of translational boundaries in the antiferroelectric PZ crystal.
(a) and (b) displacements of Pb and Zr atoms with respect to the atomic positions of the cubic
phase, averaged over the planes along x direction as function of the plane positions along y
direction. Blue squares: in-plane (the x direction, [100] in Fig. 6.1) displacements parallel to
the wall; pink circles: out-of-plane (the y direction, [010] in Fig. 6.1) displacements normal to
the wall. (c) Dipole moment density obtained by averaging the dipole moments of a "sliding"
orthorhombic unit cell plotted as a function of the centers of the sliding cells. Red squares:
in-plane polarity; green circles: out-of-plane polarity.

by b/4 (Fig. 6.6.

Figure 6.5(c) shows the dipole moment density obtained this way, as a function of the center

of the sliding unit cells. Note that this figure shows a deviation from zero polarity in the

centro-symmetric domain-bulk. This deviation indicates the measurement errors (standard

deviationσ< 5 µC cm−2) of the polarization calculated this way. This relatively low accuracy is

not surprising when calculating the dipole moments of a 40 atom unit cell of the orthorhombic

PZ. Importantly, one can ascribe in-plane polarity to the APB area, corresponding to some
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Figure 6.6: Schematic diagram of the "sliding" orthorhombic unit cell. Based on the structure
model derived from the image simulation, the spontaneous polarization is calculated for each
unit cell, then the cell is shifted by b/4.

14 µC cm−2, definitely exceeding the "noise" level. The contribution of B-site to the polarity

in the wall can be taken as an indication that the B-site atoms contribute to the ferroelectric

soft mode of the material. From Fig. 6.5(c), it is also clear that no polarity normal to the

boundary can be ascribed to APB, which is consistent with the expected manifestation of the

depolarizing effect.

6.4 Ab initio simulations

Following the TEM experiments by Wei et al, we investigated the presence of local polarity in

the APB in PZ by first principles calculations.

To perform first principles full relaxation calculations we used PWSCF. The calculations were

performed within the GGA with PBE exchange-correlation functional using ultrasoft pseu-

dopotentials by Vanderbilt [80]. The kinetic energy cutoff for wavefunctions was 60 Ry (816 eV).

The kinetic energy cutoff for charge density and pseudo potential was 720 Ry. The remained

force after ionic minimization was about 10−3 a.u. (21 meV A−1) for the bulk PZ and 10−2 a.u.

(0.21 eV A−1) for the supercell simulating APB in PZ.
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Figure 6.7: Calculated bulk structure of PZ. The calculations reproduce the features of the real
material such as antiparallel lead atom displacements and antiphase correlated rotation of
the oxygen octahedra. The displacements of Pb atoms are schematically shown with arrows.

6.4.1 Ab initio calculations of bulk lead zirconate

As a starting point for the calculations we obtained a relaxed PZ orthorhombic cell of 40

atoms with a = 6.056 Å, b = 11.954 Å and c = 8.334 Å (experimental values are a = 5.884

Å, b = 11.787 Å, c = 8.231 Å [118]) exhibiting all the specific features of the structure, such

as 8 times multiplication of the cubic unit cell, antiparallel Pb atom displacements, and O

octahedron rotations (compare Figs. 6.7 and 6.1). This result is consistent with first principles

results obtained by Waghmare and Rabe [119].

6.4.2 Ab initio calculations of APB in lead zirconate

Further, we constructed a 220 atoms supercell (5.5 orthorhombic cells) simulating a π phase

shift in APB corresponding to the TEM experiment. The two end cells of the supercell had a

fixed orthorhombic structure corresponding to that of the PZ inside the adjacent domains and

92



6.4. Ab initio simulations

the inner 3.5 orthorhombic cells were relaxed (Fig. 6.8).

Figure 6.8: Ab initio calculation of antiphase boundary in PZ. The two end cells of the supercell
have a fixed orthorhombic structure corresponding to that of the PZ inside the adjacent
domains. The inner 3.5 orthorhombic cells are relaxed. The displacements of Pb atoms are
schematically shown with arrows.

We calculated the polarization of the APB using the "sliding" cell by atom displacements

with respect to the cubic phase multiplied by Born charges, calculated with PWSCF (for [100]

direction, ZPb = 3.889, ZZr = 5.996, ZO1,O2 =−2.464, ZO3,O4,O5 =−3.718). The corresponding

atom displacements and polarity are shown in Fig. 6.9. Because of depolarizing field, the

out-of-plane polarity (green circles) has much smaller values than the in-plane polarity (red

squares), which is similar to the experimental behaviour (Fig. 6.5). We would like to under-

line that we calculate polarization using Born charges (and not Berry phase approach) on

purpose. The reason for this is that we show our ab initio results in comparison with the

experiment, namely, we compare the atomic behaviour in the APB region using experimental

data and first principles calculations. The "experimental" polarization was calculated by

atomic displacements and Born charges (Wei et al. took the values of Born charges from our

first principles calculations), this way we believe that it is worth calculating the "ab initio"

polarization using the same approach for a clearer comparison with the experiment. The

ab intio results confirmed the observed with TEM polarity and agreed qualitatively with the

experimental results. The width of the APB region was found to be about 2 orthorhombic cells.

We estimated the surface formation energy of the π-wall considered above. We compared the

energies of the super cell (5.5 orthorhombic cells) simulating the APB region and of the 5.5

cells of the bulk PZ. The value of the surface formation energy was found to be about 190 mJ

m−2.

Our simulations also demonstrated the bistability of the polar state of APBs in PZ. The energy

of the two configurations of atom displacements shown for lead atoms in Fig. 6.10 was found

to be equivalent (they have the same energy). Thus, the structure was found to be bistable.

Hence the ab initio calculations showed both, the presence of local polarity, and the possibility

of polarization switching, supporting the ferroelectric nature of APB.
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Figure 6.9: Results of ab initio calculations. (a) and (b) Displacements of Pb and Zr atoms
with respect to the atomic positions of the cubic structure, squares: in-plane (x direction)
displacements parallel to the wall, circles: out-of-plane (y direction) displacements normal
to the wall. (c) Dipole moment density for the "sliding" orthorhombic unit cell plotted as a
function of the centers of the sliding cells; squares: in-plane polarity, circles: out-of-plane
polarity.

6.5 Discussion

The performed ab initio calculations give a further support to the experimental observations

by Wei which provide experimental evidence for the anticipated polarity in APBs in the centro-

symmetric PZ. As the observed polarity is the result of spontaneous symmetry breaking, the

phenomenon observed at the APB is a signature of local ferroelectricity. This is supported by

first principle calculations which reveals the bi-stability of the polarity at the APB. Although the

switchability of the polarity was not demonstrated, the moderate values of the spontaneous

polarization found in the APB suggest moderate values of its thermodynamic coercive field,

which behaves as the cube of spontaneous polarization [116], promising that the polarity is

not only bistable but also switchable.

The polar antiphase domain boundaries studied above are expected to be bistable and mobile.

94



6.5. Discussion

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

0 5 10 15 20 25 30

D
is

p
la

ce
m

e
n

t 
(p

m
)

Distance (units of b/4)

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

0 5 10 15 20 25 30

D
is

p
la

ce
m

e
n

t 
(p

m
)

Distance (units of b/4)

0000 1155 220000

(a)

(b)

APB region

000 1155 2200

APB region

P

P

Figure 6.10: Pb atom displacements from cubic positions along [100] direction in the APB
region. There are 2 equivalent configurations (a) and (b) corresponding to the same energy
confirming the bistability of the structure.

The bistability of polar domain walls in a non-polar material is readily expected in view of

the symmetry arguments. Understanding the mobility of the APBs is less evident. Since

translational domains are identical in terms of all materials tensors no macroscopic stimulus

can change the energy of the domains. However, under electric field, ~E , the dipole moment

density in the wall is associated with the energy density −~P~E . This implies force acting on

the wall once the electric field is inhomogeneous, e.g. when electric field gradient is applied

across the wall.

Ferroelectric antiphase domain boundaries in antiferroelectrics can be viewed as functional

elements, 1-10 nm wide, which carry information. Unlike twin domain walls, the polar trans-

lational walls are non-ferroelastic, which makes them strain-free, thus even more appealing

for potential information-carrying elements. In comparison with the attractive magnetic

domain-wall memory [120], they do not require current for operation and are an order of

magnitude thinner, thus adding potentially a new element for future high-density information

storage.
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7.1 Conclusions

This work points out to the importance of high-order electromechanical couplings in the

physics of ferroelectrics. Until recently, only the piezoelectric and low-order electrostrictive

electromechanical couplings were taken into account in the physical models and used into

the devices. However, the recent developments in the field have revealed that the high-

order electromechanical couplings and corresponding electromechanical effects become

increasingly important. High-order electromechanical couplings can be roughly divided into

two groups, the non-linear electrostrictive couplings and couplings related to the flexoelectric

effect.

It was shown that an adequate Landau theory treatment of thermodynamics of ferroelectric

thin films requires taking into account high-order electromechanical couplings and non-

linear elasticity. The high-order electromechanical couplings were for the first time calculated

for classical ferroelectric crystal of BTO, using first principles methods. The above analysis

suggests that all Landau theory based simulation of ferroelectric thin films should take into

account not only customarily incorporated ordinary electrostriction coupling, but also the

high-order electromechanical interactions.

A high-order electrostrictive coefficients are important for antiresonance frequency tuning

of tunable FBARs. The high-order electrostrictive coefficients for BTO and STO materials

were, for the first time, calculated using ab initio methods. Since the obtained values were

found close to each other for the both materials, we determined the m111 coefficient for BST

compositions using a linear interpolation. Based on the results obtained with first principles

calculations, we simulated the resonance and antiresonance tuning of the BST based tunable

FBARs. It was established that there is a compensation of linear and non-linear electrostrictive

contributions to the antiresonance tuning which leads to the fact that the tuning was found to

be smaller than expected from previously made estimations.

It was shown that classical cubic perovskite ferroelectrics exhibit deviations from the "ex-
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tension along the field and contraction perpendicular to it" behaviour if the sample is cut

obliquely to the cubic crystallographic directions. Specifically, a remarkable behaviour along

the [111] crystallographic cubic direction is predicted for the perovskite in the paraelectric

phase. In this case, an electric field parallel to [111] direction causes a expansion along all its

three dimensions of the sample. This phenomenon may be of interest for actuators based on

the electrostrictive effect, transducers, and detectors.

There exist a manifestation of the angular dependance of electrostriction in the phase diagrams

of ferroelectric thin films. It was found that there is a shift of the phase transition temperature

depending on the film orientation. Remarkably, for some film orientations, a compressive

strain does not always increase TC. Depending on the film orientation the phase transition

temperature can be less than that in the bulk material. The use of differently orientated thin

films provides a broader range of operating temperatures for thin film based devices, which

allows more flexibility for engineering.

Then, the flexoelectric effect with the example of STO was studied using the analysis of

phonon dispersion and microscopic lattice dynamics. The phonon dispersion curves as well

as microscopic parameters (IFCs) were obtained using first principles calculations for cubic

STO. The structure was stabilized by applied pressure, since cubic STO material is unstable

within first principles methods using GGA, which is actually an expected behaviour. Moreover,

varying the pressure, it is possible to greatly change the dielectric constant of the material

providing an analog to Curie-Weiss law.

To calculate static and dynamic flexoelectric tensors two methods were used. The first method

represents the analysis of phonon dispersion curves. It gives f and M tensors within the sign

ambiguity and it is not able to resolve the f11 − f12 difference. The obtained values are in a

qualitative agreement with previously made estimations. The considered analysis can be used

with real experimental data of phonon dispersion to find flexoelectric coefficients. The second

method uses microscopic parameters of the material, i.e. IFC. This method can, in principle,

provides all components of f and M tensors. With this method the dynamic flexoelectric

coefficient was for the first time calculated for STO. As expected, M has a significant contribu-

tion to f tot and, therefore, should be taken into account. However, it was shown the standard

precision of such calculations is not enough to find f tensor.

Being mainly focused on DFT calculations of ferroelectrics, the thesis also contains first

principles study of domain boundaries of antiferroelectric PZ. Using DFT full relaxation

calculations it was shown that translational antiphase boundaries in antiferroelectric PZ

possess local polarity. The bistability of polar domain walls in a non-polar material, which

was expected in view of the symmetry arguments, was also established. Hence, the ab initio

calculations showed both, the presence of local polarity, and the possibility of polarization

switching, supporting the ferroelectric nature of APB. Ferroelectric translational antiphase

boundaries could make a new type of non-volatile memory. In comparison with the attractive

magnetic domain-wall memory, they do not require current for operation and are an order
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of magnitude thinner, adding potentially a new element for future high-density information

storage.

7.2 Outlook

We have showed the importance of high-order electromechanical couplings for ferroelectric

materials. In view of our findings, an experimental evaluation of high-order electromechanical

couplings in ferroelectrics seems to be a task of primary importance. There are several

obstacles which complicate the evaluation of the high-order electromechanical coefficients

using ab initio methods. Namely, one often needs a high precision of calculations. To reliably

calculate high-order electrostrictive coefficients, the full relaxation DFT calculations should

be done with a good accuracy. The calculations of flexoelectric tensors requires a very dense

mesh of q-point to be able to plot phonon spectrum with the correct behaviour near the

Γ-point.
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