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Abstract

The tokamak scrape-off layer (SOL) is the plasma region characterized by open field
lines that start and end on the vessel walls. The plasma dynamics in the SOL plays
a crucial role in determining the overall performance of a tokamak, since it controls
the plasma-wall interactions, being responsible of exhausting the tokamak power, it
regulates the overall plasma confinement, and it governs the plasma refueling and
the removal of fusion ashes.

Scrape-off layer physics is intrinsically non-linear and characterized by phenom-
ena that occur on a wide range of spatio-temporal scales. Free energy sources drive
a number of unstable modes that develop into turbulence and lead to transport of
particles and heat across the magnetic field lines. Depending on the driving in-
stability, different SOL turbulent regimes can be identified. As the SOL turbulent
regimes determine the plasma confinement properties and the SOL width (and, con-
sequently, the power flux on the vessel wall, for example), it is of crucial importance
to understand which turbulent regimes are active in the SOL, under which condi-
tions they develop, and which are the main properties of the associated turbulent
transport.

In the present thesis we define the SOL turbulent regimes, and we provide a
framework to identify them, given the operational SOL parameters. Our study
is based on the drift-reduced Braginskii equations and it is focused on a limited
tokamak SOL configuration. We first describe the main SOL linear instabilities,
such as the inertial and resistive branches of the drift waves, the resistive, iner-
tial and ideal branches of the ballooning modes, and the ion temperature gradient
mode. Then, we find the SOL turbulent regimes depending on the instability driving
turbulent transport, assuming that turbulence saturates when the radial gradient
associated to the pressure fluctuations is comparable to the equilibrium one. Our
methodology for the turbulent regime identification is supported by the analysis
of non-linear turbulence simulations performed with the GBS code, a flux-driven,
3D code that solves the drift-reduced Braginskii equations without separation be-
tween background and fluctuations. We find that drift waves drive transport at low
resistivity and negative magnetic shear, while ballooning modes dominate at high
resistivity and positive magnetic shear. The ion temperature gradient instability
plays a negligible role in the SOL dynamics, since the ion temperature gradient is
generally below the threshold necessary for the development of this instability.
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Version Abrégée

Le scrape-off layer (SOL) d’un tokamak est la région du plasma caractérisée par
des lignes de champ ouvertes, qui commencent et terminent sur les parois de la
chambre à vide. La dynamique du plasma dans le SOL joue un rôle crucial pour
déterminer la performance d’ensemble d’un tokamak, car, en étant responsable de
l’évacuation de la puissance produite par le tokamak, elle contrôle les interactions
entre le plasma et les parois, elle régule le confinement du plasma et elle gouverne
l’introduction de nouveau combustible et l’enlèvement des cendres produites par la
fusion.

La physique du SOL est par nature non-linéaire et est caractérisée par des
phénomènes dont les échelles spatio-temporelles varient fortement. Des sources
d’énergie libre sont la cause de nombreuses instabilités, sont source de turbulence,
et mènent au transport de particules et de chaleur à travers les lignes de champ
magnétique. Selon l’instabilité qui les provoque, différents régimes de turbulence
sont identifiés dans le SOL. Les régimes de turbulence déterminent les propriétés de
confinement du plasma ainsi que l’épaisseur du SOL (et, par conséquence, le flux
de puissance sur les parois de la chambre a vide, par exemple). L’identification des
régimes actifs dans le SOL, des conditions dans lesquelles ils se développent, et des
propriétés les plus importantes du transport associé sont d’importance cruciale.

Dans cette thèse nous définissons les régimes de turbulence dans le SOL, et
nous fournissons un cadre pour leur identification, étant donnés les parametrès
opérationnels du SOL. Notre étude est basée sur les équations drift-reduced de
Braginskii et se concentre sur les configurations du SOL dites limitées. D’abord
nous décrivons les instabilités linéaires les plus importantes dans le SOL, tel que
les branches résistives et inertielles des ondes de dérive (drift waves), les branches
résistives, intertielles et idéales du ballooning mode, et le mode du au gradient de
température ionique (ion temperature gradient mode). Nous trouvons ensuite les
régimes de turbulence dans le SOL après avoir identifié les instabilités qui sont
la cause du transport turbulent, en supposant que la turbulence sature quand le
gradient radial associé aux fluctuations de pression est comparable au gradient
d’équilibre. Notre méthodologie pour l’identification du régime de turbulence est
validée par l’analyse de simulations non-linéaires de la turbulence realisées avec
le code GBS, un code flux-driven, 3D, qui résout les drift-reduced équations de
Braginskii sans séparation entre les fluctuations et l’équilibre. Nous trouvons que
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les drift waves sont la cause du transport lorsque la résistivité est faible et que
le cisaillement magnétique est négatif, tandis que les ballooning modes dominent
à haute résistivité lorsque le cisaillement magnétique est positif. L’instabilité liée
au gradient de température ionique joue un rôle négligeable dans la dynamique du
SOL, puisque le gradient de température ionique est généralement au dessous du
seuil nécessaire pour le développement de cette instabilité.

Mots clés: physique des plasmas, fusion controllée, scrape-off layer,

turbulence du plasma, simulations fluides, régimes de turbulence, trans-

port turbulent, instabilités du plasma
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Chapter 1

Introduction

Although the states of matter that are typically known are three, the solid, the
liquid, and the gaseous state, which are characterized by an increasing mobility of
the molecules and atoms, a fourth state of matter exists, the plasma state, which
is attained when the temperature exceeds ∼ 1 eV (1 eV≃ 11, 000 K). At this tem-
perature the excitation of the atoms is so high that electrons are separated from
the nuclei, and matter becomes an ensemble of charged particles. As a matter of
fact, most of the matter visible in the universe, from high-density stars to the low-
density interstellar gas, is in the plasma state. On Earth, plasmas can be observed
during events like lighting and the aurora borealis or australis. Plasmas also play
a role in technologies that impact our everyday life: neon tubes are lit up by light-
emitting plasmas, plasma torches are used for precise cutting, thin films deposition
used in semiconductor production is realized through plasma processes, and many
more. Although constituted by an ensemble of electrically charged particles, plas-
mas appear to be quasi-neutral if observed on a scale larger than the Debye length,
λD =

√

T/(4πne2) (in CGS units), where T is the plasma temperature and n its
density, since the single particle charges are shielded by collective effects.

Ions at high temperature can win their electrical repulsion, and fuse together.
Nuclear fusion of two light nuclei releases energy until iron is obtained as product
of the reaction. This is due to the fact that the mass of the product is inferior to
the mass of the colliding nuclei; therefore an amount of energy equal to E = mc2

is generated, where m is the mass difference between the colliding and the product
nuclei, and c is the speed of light. Nuclear fusion is the process through which all
the elements heavier than hydrogen are generated in the stars.

Among all the possible fusion reactions, few are interesting to use for energy
production on an industrial scale, the reason being the high temperature at which
the nuclear reaction has more probability to take place. The best candidate, having
the largest cross-section around 100 KeV, is the reaction between deuterium (D)
and tritium (T):

2
1D + 3

1T→ He(3.5 MeV) + 1
0n(14.1 MeV) (1.1)

1



Chapter 1. Introduction

This reactions produces ∼ 350 GJ of energy per gram of nuclear fuel. Comparing
it to the energy released by burning a gram of fossil fuel, ∼ 40 kJ, it is possible to
understand the enormous interest of developing a technology capable of extracting
energy from nuclear fusion and channeling it into an industrial scale production.

Unfortunately, achieving the conditions for the self-sustained thermonuclear re-
action is a highly challenging task. It is required in fact that the amount of energy
released by the fusion reactions is enough to keep the fuel at the necessary high
temperature, compensating inevitable power losses. Fusion power is sufficient to
maintain the plasma in the burning regime, when the Lawson triple product crite-
rion nTτE & 1020 m3 keV s is satisfied, where τE is the energy confinement time, the
ratio between the plasma total energy and the power losses from the fusion reaction.
The physical meaning of the Lawson criterion can be easily understood. The larger
n, the larger is the rate at which reactions take place, and therefore the thermonu-
clear power. A high temperature, as pointed out earlier, is necessary in order to
have a large reaction probability. Finally, a long confinement time guarantees that
the produced energy is not lost.

In order to reach self-sustained fusion conditions, two main approaches are cur-
rently followed. The first approach aims at reaching ignition by compressing fuel
capsules of ∼ 1 mm diameter using powerful lasers. Using this technology the Na-
tional Ignition Facility (NIF) in Livermore, USA has showed significant progress
recently (see Ref. [1]). The second approach, instead, aims at reaching ignition
with lower density plasmas, n & 1020 m3, heated to temperatures of the order of
few keVs, and confined by a strong magnetic field in a torus shaped chamber. The
next section is an overview of the confinement technologies used within the second
approach, and in particular of the tokamak reactor.

1.1 The tokamak reactor

A tokamak is a toroidal chamber in which the plasma is confined by means of
a magnetic field. The magnetic field is composed by a toroidal and a poloidal
component, being the toroidal component around 10 times larger than the poloidal
(see Fig. 1.1). The toroidal magnetic field is generated by a set of coils contained in
a poloidal cross section of the machine. Since the toroidal magnetic field alone is not
capable of confining the plasma as magnetic field curvature and gradient-induced
drifts cause the loss of the plasma, a poloidal component of the magnetic field is
added. The poloidal magnetic field is generated by an electric current induced in
the plasma. The current is due to the action of the central solenoid, that works as
the primary circuit of a transformer. The variation of the electric current in the
central solenoid induces an electromotive force inside the plasma (secondary circuit
of the transformer) that, in turn, drives the plasma current. Finally, additional
outer poloidal field coils are necessary to control the vertical and the horizontal

2 Annamaria Mosetto – CRPP/EPFL



1.1. The tokamak reactor

Figure 1.1: Schematic representation of a tokamak. The main toroidal field is generated by
toroidal field coils lying in poloidal planes, the smaller poloidal field is generated by a toroidal
electric current induced by the central solenoid, that acts as a primary circuit of a transformer.
Additional poloidal field coils are necessary for plasma shaping and positioning. Image source:
EFDA.

position of the plasma. The resulting magnetic field lines wind around the torus,
defining toroidally nested surfaces of equal magnetic flux, called flux surfaces.

The contact of the plasma with a solid surface defines the last closed flux surface
(LCFS, or separatrix) location. The poloidal cross section is therefore divided in two
regions: the closed flux surface region, where the magnetic field lines wrap around
the magnetic flux surfaces with no interruptions, and the open flux surface region,
in which the field lines are open and end on machine vessel. The open flux surface
region is called the scrape-off layer (SOL), since the plasma is scraped off from the
hot core. The plasma particles entering the SOL are transported either along or
across the field lines, determining the heat loads on the material constituting the
first wall.

There are two methods of controlling the position of the LCFS. The oldest and
simplest is used in the limited tokamak configuration and consists in introducing
a barrier of few centimeters along the poloidal, or the toroidal cross section of the
plasma, limiting it physically, and preventing the plasma from impacting directly
onto the rest of the wall (see Fig. 1.2, left, for the cross section of a toroidally limited
plasma). A more efficient strategy is used instead in the diverted configuration (see
Fig. 1.2, right). By means of externally imposed magnetic fields, the magnetic
topology is modified in such a way that the field lines of the SOL touch the wall
in a well defined region of the tokamak separated from the main chamber, called
divertor. The advantages of the diverted over the limited configuration is that it is
more difficult for the first wall eroded materials to be reinjected into the hot core, it

Turbulent regimes in the tokamak scrape-off layer 3



Chapter 1. Introduction

Figure 1.2: Plasma flux surfaces poloidal cross section in a limited (left) and diverted con-
figuration (right), example from the JET tokamak. The SOL region is highlighted in orange.
Image source: EFDA.

is easier to remove the fusion ashes (helium resulting from the fusion reactions), and,
in general, it provides better confinement properties, allowing easier access to a high
confinement mode; when the core plasma is heated above a certain threshold, the
formation of a transport barrier is observed with the transition between a low (L)
and a high (H) confinement mode, leading to an increase of the plasma confinement
time. The H-mode is considered an attractive working scenario in future fusion
reactors.

It is since the 1960s that experimental tokamak machines have entered into oper-
ation all over the world. Their increasing capability of achieving conditions closer to
ignition (higher triple product) can be compared to the development of microchips
by the electronic industry, see Fig. 1.3. Among the currently working tokamaks, we
underline the Joint European Torus (JET), the world’s largest tokamak, situated
in Culham, UK. In 1997, JET produced 16 MW of fusion power from 24 MW of
injected power, with a conversion factor (ratio between the energy produced by
the fusion reactions and the energy injected in the tokamak by external sources) of
around 65%.

Despite the undeniable progress of thermonuclear fusion research, a number of
outstanding problems still need to be resolved. In fact, in order to be able to
deliver fusion generated electricity on the grid, a conversion factor larger than 1 is
needed, since the released fusion power needs to be transformed through a chain
that involves energy losses at different stages. Moreover, present-day tokamaks are
unable to guarantee a steady state power production. ITER, a tokamak machine
of unprecedented capabilities, aims at addressing some of these open issues (see
Fig. 1.4). Launched as a project in 1985, the ITER machine is currently under
construction in Cadarache, France, and the first plasma is foreseen for 2020. The
main goals of the ITER experimental campaign are (see Ref. [2]):

4 Annamaria Mosetto – CRPP/EPFL



1.2. Turbulence in the SOL

Figure 1.3: Achieved triple product
for different tokamaks compared to the
development of computer chips. Image
source: http://www.fusenet.eu.

Figure 1.4: Schematic of the
ITER machine. Image source:
http://www.fusion.kit.edu

- to momentarily produce a conversion factor of 10;

- to produce a steady-state plasma with a conversion factor value greater than
5;

- to maintain a fusion pulse for up to 480 s;

- to ignite a self-sustaining plasma;

- to develop technologies and processes needed for a fusion power plant, includ-
ing superconducting magnets and remote handling;

- to test tritium breeding concepts;

- to refine neutron shield/heat conversion technology (most of the energy in the
deuterium-tritium fusion reaction is released in the form of fast neutrons).

The success of the ITER campaign is fundamental to prove that thermonuclear
fusion will be capable of providing a reliable source of energy for the future.

1.2 Turbulence in the SOL

The tokamak SOL dynamics is of crucial importance in determining the overall per-
formances of the machine, since it establishes the boundary conditions for the core
plasma, it controls the impurity dynamics, the plasma refueling and it is responsible
of exhausting the tokamak power [3]. The SOL width, for example, controls the
wetted area of plasma facing components and, therefore, the maximum heat flux
that needs to be evacuated. Scrape-off layer physics is believed to play a crucial role

Turbulent regimes in the tokamak scrape-off layer 5



Chapter 1. Introduction

in the L-H transition [4]. Improving the understanding and the predicting capabil-
ities of tokamak SOL physics is therefore essential for the success of thermonuclear
fusion.

Scrape-off layer plasma dynamics is particularly difficult to tackle because it is
governed by highly non-linear turbulent processes, involving a large range of time
and spatial scales. It is determined by the interplay between the plasma outflowing
from the core, cross-field turbulent transport, and parallel streaming along the field
lines. Since SOL plasma temperature is relatively low, it is possible to simplify
its description by assuming that the collisionality is high enough to ensure to be
close to thermodynamical equilibrium. The plasma can therefore be described by
considering a few moments of the particle distribution function, obtaining a set of
fluid equations, such as the ones derived by Braginskii in 1965 [5]. Afterwards,
a number of models were deduced from the original work of Braginskii, consider-
ing the drift approximation, according to which the perpendicular velocity of the
plasma particles is described as the sum of the plasma drifts: the E × B drift,
the diamagnetic drift and the polarisation drift (see, e.g., Ref. [6]). Based on the
drift-reduced approximation, both 2D codes, capturing turbulence in the poloidal
plane, (see, e.g, Refs. [7, 8, 9, 10]), and 3D codes, adding the dynamics parallel to
the field lines (see, e.g., Refs. [11, 12, 13, 14, 15, 16]) have been developed. At the
same time, a number of gyrofluid models were derived including additional kinetic
effects that are not comprised in the Braginskii equations, calculating moments of
the gyrokinetic equations (see, e.g., Refs. [17, 18, 19]). Some of the developed nu-
merical tools are capable of simulating the SOL alone (e.g., GBS [20]), some focus
on the closed flux surface region (e.g., EMEDGE3D [16]), while others consider a
region across the separatrix. Among the latter, we mention the GEM code [19], the
BOUT code [12], and the TOKAM3X code [13]. The passage from a closed to an
open magnetic field lines region introduces physical phenomena whose analysis is
far from being completed.

While the SOL turbulence regimes have not been the subject of a detailed anal-
ysis yet, in the 1990s a large effort has been devoted to the analysis of the turbulent
regimes in the tokamak edge. Among the research groups who focused on this issue,
we remind Scott [11, 21] and Rogers et al. [22, 23, 24]. Both groups use very simi-
lar systems of equations derived from the Braginskii model and both describe edge
turbulence as the competition among different regimes: a self-sustained non-linear
drift wave instability, two branches of the ballooning mode instability, the resistive
and the ideal ballooning modes, and the ion temperature gradient instability.

Scott analyzes edge turbulence focusing on the energy transfer from the free
energy source to the sinks, through a certain number of transfer channels [21, 25].
The free energy source is the background pressure gradient, advected by the E ×
B velocity. The sinks are the resistive current damping, and the dissipation of
energy at small perpendicular scales [21]. Scott identifies the self-sustained non-
linear drift wave instability as the main turbulent regime in the tokamak edge,

6 Annamaria Mosetto – CRPP/EPFL



1.2. Turbulence in the SOL

for standard experimental parameters [21]. This instability develops non-linearly,
overpowering the underlying linear instability, if the fluctuations level overcomes
a critical threshold. It is independent on the magnetic curvature, and it relies on
the system non-linearities in order to be self-sustained. The main transfer channel
for the non-linear drift wave instability is the adiabatic coupling, which couples
the electric potential, the parallel current and the pressure in the parallel electron
dynamics in Ohm’s law. For the ballooning instabilities, instead, the main energy
transfer channel is represented by the interchange drive, i.e. the curvature effect
related to diamagnetic advection. This term directly relates the electric potential
and the pressure, without involving the parallel dynamics. Finally, Scott introduces
the role of the ion temperature dynamics by describing the ion temperature gradient
instability, becoming increasingly important for steeper ion temperature gradients.

Rogers et al. also picture the edge turbulence as a competition among the fore-
mentioned regimes. Similarly, they describe a self-sustained, non-linear drift wave
instability as the result of non-linear coupling between density and electric poten-
tial at different parallel wavelength, in the absence of magnetic shear [6]. They
demonstrate that the non-linear drift wave mechanism is active also in the presence
of magnetic shear [26]. As in Scott’s work, they identify the threshold between drift
wave and resistive ballooning mode regimes according to the importance of the adi-
abatic coupling [22]. In Ref. [22] they find that, for a series of ASDEX tokamak
discharges, resistive ballooning mode is prevailing for Ohmic and L-mode discharges,
while the non-linear self-sustained drift wave instability is driving transport in H-
mode discharges. Both Scott and Rogers et al. eventually converge on a similar
set of dimensionless control parameters for the description of the electromagnetic
fluid drift turbulence: a parameter taking into account plasma β = 8πnTe/B2, i.e.
the ratio between the kinetic pressure and the magnetic pressure (in Rogers et al.
that is αMHD = (q2Rβ)/Lpe), and a parameter including the effects of electron-ion
collisions and the importance of the adiabatic coupling (in Rogers et al. that is
αd = (mi/me)

1/2 [(2R)/Ln]
1/4 [cs/(νq2R)]1/4 1/(8π)). We remark that the pressure

gradient length, that sets the background pressure profile, is set a priori when gradi-
ent driven numerical simulations are performed, such at those carried out by Scott
and Rogers et al. In experimental applications, instead, the pressure gradient length
is the self-consistent result of the interplay between sources, plasma transport, and
sinks. In Ref. [27] LaBombard et al. analyze a large number of Alcator C-Mod
edge plasma states, studying the dependence of transport on parameters identified
thanks to the drift-reduced analysis. Their results are summarized in Fig. 1.5. In
L-mode discharges they find a one-to-one relationship between collisionality and
αMHD, suggesting that for each value of collisionality there is a critical value of
αMHD that cannot be overcome. For αd . 0.35 the upper αMHD (or β̂) limit cor-
responds to a dramatic increase in transport for decreasing αd. H-mode discharges
lie instead in a region where αd & 0.35, and their αMHD satisfies αMHDα2

d ≃ 0.15.
These experimentally defined limits show good agreement with a density limit for
low αd, and with an L-H threshold for high αd identified in Refs. [24, 28]. The re-

Turbulent regimes in the tokamak scrape-off layer 7



Chapter 1. Introduction

Figure 1.5: Parameter space of edge turbulence within the electromagnetic fluid drift turbu-
lence model, as identified in Ref. [24]. LaBombard et al. in Ref. [27] confirm experimentally
the existence of the density limit at high collisionality (low αd). Figure source: Ref. [27],
Fig. 10.

sults listed in Ref. [27] clearly suggest that the electromagnetic fluid drift turbulent
model can be applied to the description of edge plasma turbulence, capturing some
of its most important features.

1.3 Scope and outline of the thesis

The knowledge of the SOL turbulent regimes, of the conditions under which they
develop, and of the characteristics of the transport they origin is of particular in-
terest for the fusion community. This is necessary, in fact, to determine the SOL
properties in order to predict, e.g., the heat load on plasma facing components.
In the present thesis we present analytical investigations supported by numerical
GBS simulations of the plasma SOL aimed at improving the understanding of the
main turbulent regimes active in the tokamak SOL. The GBS code represents a ma-
ture and developed tool capable of simulating SOL turbulent regimes. It is based
on drift-reduced Braginskii equations, and it computes the plasma evolution self-
consistently, without separation between background equilibrium and fluctuations.
The plasma profiles are not fixed a priori, but they results from the non-linear in-
teraction among the plasma outflow from the LCFS, the parallel streaming, and
the radial transport due to the turbulence. Our goal is to provide a framework in
which, given the operational SOL parameters, the turbulent regime driving SOL
transport can be predicted without requiring expensive numerical analysis. The
thesis is organized as follows.
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1.3. Scope and outline of the thesis

In Chap. 2, starting from the fluid Braginskii equations, we derive the set of
adimensionalized, drift-reduced, Braginskii equations used for our study of SOL
turbulence and solved by GBS. We also derive a new set of boundary conditions to
apply to these equations at the magnetic presheath entrance, including hot ion dy-
namics. The set of equations is then linearized and the linear solver used throughout
our investigation is described.

In Chap. 3 we outline the main linear instabilities described by the linearized
drift-reduced Braginskii equations, in the cold ion limit. We first identify the inertial
and resistive branches of the drift wave and the inertial, resistive, and ideal branches
of the ballooning mode instabilities, describing their main properties. We study
their growth rate as a function of the main SOL parameters: the density gradient
scale length, Ln, the ratio between the density and the temperature gradient length,
ηe = Ln/LTe, the parallel resistivity, ν, the plasma beta, β, the magnetic shear, ŝ,
the tokamak major and minor radii, R and a, and the safety factor q. We identify
the threshold among the different instabilities as a function of the SOL parameters.
Finally we verify our results against linear SOL calculations.

In Chap. 4 we identify the non-linear SOL turbulent regimes in the electrostatic
limit, as a function of the SOL operational parameters: the safety factor, q, the
magnetic shear, ŝ, the resistivity, ν and the ion to electron mass ratio, mi/me.
In order to estimate the pressure scale length, necessary to identify the instability
that drives transport in the non-linear turbulence, among the ones introduced in
Chap. 3, we use the gradient removal hypothesis. This says that turbulence is non-
linearly saturated when the radial gradient of the background plasma pressure is
of the same order of the radial gradient of the pressure fluctuations. By means
of the gradient removal theory, we can build a map in the operational parameter
space which defines the SOL turbulent regimes, i.e. the regions in which each linear
instability drives transport. Finally, we check the validity of our methodology in
identifying the non-linear prevailing regime in a set of non-linear GBS simulations.

In Chap. 5 we describe hot ion effects on SOL turbulence. We proceed to a
detailed analysis of the linear instabilities in the presence of hot ions, describing both
the changes on the linear instabilities existing in the cold ion limit, as described in
Chap 3, and introducing the ion temperature gradient mode. We apply the gradient
removal theory to SOL turbulence with hot ion dynamics and we outline the role
of ion temperature gradient driven turbulence in the SOL turbulence. Finally we
present the SOL turbulent regimes that include the hot ion effects.

In Chap. 6 we summarize the main findings of the present thesis and we outline
the possible future developments of our work.

Turbulent regimes in the tokamak scrape-off layer 9





Chapter 2

The model equations for SOL

turbulence and the GBS code

2.1 Introduction

Since the plasma is relatively cold at the edge of a tokamak device, the collision-
ality is high and allows the use of a fluid description. The Braginskii equations [5]
were developed in the 1960s to describe the plasma dynamics in a highly collisional
plasma. The original Braginskii equations are not suitable to describe and simulate
turbulence in the tokamak SOL, since the spatial and temporal scale range they
cover is too large to allow simulations at a reasonable computational cost. In or-
der to circumvent this problem, a drift-reduced approach has been proposed soon
following the derivation of the Braginskii equation. The drift-reduced approxima-
tion of Braginskii equations has been used by many authors (see, e.g., Ref. [29]),
neglecting ion or electron temperature, assuming an adiabatic electron response, or
applying additional approximations [30,31,32,33]. For en early review, see Ref. [34].
We will consider the derivation of the drift-reduced Braginskii equations carried out
by Zeiler [35, 6].

Based on the drift-reduced Braginskii equations, the Global Braginskii Solver
(GBS) [20] is a three dimensional fluid code used to describe the evolution of the
plasma density, electric potential, electron and ion parallel velocities, and electron
and ion temperatures in the tokamak SOL. One of the key features of the code is
the capability of advancing equilibrium and perturbations self-consistently, as an
interplay among the plasma density and energy outflowing from the plasma core, the
parallel losses at the limiter plates, and the cross-field transport due to turbulence.

The GBS code was initially conceived to describe the two dimensional plasma
dynamics in basic plasma physics devices [36], and it was then developed to include
the dynamics in the third dimension and progressively approach more complex con-
figurations. At first GBS was successfully applied to simulate the LAPD linear
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device [37]. Later, the code was employed to investigate the turbulent dynamics
of the TORPEX device [38, 39, 40]. This is characterized by helicoidal field lines
created by superposing a vertical and a toroidal magnetic field. The code has been
validated against experiments in the TORPEX device [41,42]. This machine is par-
ticularly suitable for the code validation, since it is equipped with a large number of
diagnostics, allowing a detailed comparison with simulation results. With the addi-
tion of toroidal curvature and electromagnetic effects, the code was recently ported
to the tokamak SOL geometry in a limited configuration [20, 43, 44]. Development
of GBS have been carried out in the framework of the present thesis, in particular
the inclusion of magnetic shear and hot ion temperature effects to provide a better
description of tokamak SOL turbulence. Further developments of GBS are currently
being carried out to describe more complex SOL scenarios.

We note that, beside GBS, a number of codes based on the drift-reduced Bragin-
skii equations have been developed in the past years: the GEM code [19], the BOUT
code [12], the TOKAM3D code [13], the CYTO code [14] and the EMEDGE3D
code [15, 16]. As a matter of fact, those are based on a similar set of equations as
GBS and similar numerical schemes.

The present chapter introduces the model that we employ to study the tokamak
SOL turbulence. We first introduce the Braginskii equations, and we derive their
drift-reduced limit. We then proceed with an explanation of the main features of
the non-linear GBS code. Finally, we briefly describe the linear equations that we
have considered and implemented in a linear solver to study the linear properties
of the SOL instabilities.

2.2 The Braginskii equations

The description at a kinetic level of an ionized gas is given by the distribution
function f (t, r,v) of all the particle species composing the plasma. The phase-space
evolution of the distribution function is described by the Boltzmann equation:

∂f

∂t
+∇ · (vf) +∇ ·

(

F

m
f

)

= C, (2.1)

where F is the Lorentz force F = q
(

E + 1
c
v ×B

)

, m is the particle mass, q is
the particle charge, and C is the collisional operator describing the evolution of
the particle population due to collisions. Because of collisions, the distribution
function approaches a Maxwellian distribution on a time scale of the same order of
the collisional time.

In order to have a more amenable description of the plasma, we consider the
time evolution of the first three moments of the Boltzmann equation. We introduce
therefore the density,

n (t, r) =
∫

f (t, r,v) dv, (2.2)
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2.2. The Braginskii equations

the mean velocity,

V (t, r) =
1
n

∫

vf (t, r,v) dv =< v >, (2.3)

and the temperature,

T (t, r) =
1
n

∫

m

3
(v − V )2 f (t, r,v) dv =

m

3
< (v − V )2 > . (2.4)

In the following, we assume that we are dealing with a plasma composed by electrons
and one simple ion species, whose charge is Ze. The continuity equation, the
momentum equation, and the temperature equation, describing the evolution of
the density, of the average velocity, and of the temperature can be obtained by
multiplying Eq. (2.1) by 1, by mV , and by mv2/2, respectively, and integrating
over the velocity space. We obtain:

∂ne
∂t

+∇ · (neVe) = 0 (2.5)

∂ni
∂t

+∇ · (niVi) = 0 (2.6)

mene
deVe

dt
= −∇pe −∇ ·πe − ene[E +

1
c
Ve ×B] + Re (2.7)

mini
diVi

dt
= −∇pi −∇ ·πi + Zeni[E +

1
c
Vi×B] + Ri (2.8)

3
2
ne
deTe
dt

+ pe∇ ·Ve = −∇ · qe − πe : ∇Ve +Qe (2.9)

3
2
ni
diTi
dt

+ pi∇ ·Vi = −∇ · qi − πi : ∇Vi +Qi, (2.10)

where

deVe

dt
=

∂

∂t
+ Ve ·∇ (2.11)

diVi

dt
=

∂

∂t
+ Vi ·∇, (2.12)

are the total derivatives for the electrons and the ions, respectively, pe = neTe is the
electron plasma pressure, and, analogously, pi = niTi, for the ions.

Equations (2.5) and (2.6) state the conservation of density. On the right hand
side of Eqs. (2.7) and (2.8) the first two terms represent the change in momentum
density due to the pressure tensor P = pI + π. Decomposing the particle velocity
as the sum of the average, fluid, velocity and a random component, v = V + v′,
the plasma pressure p is the isotropic part of the pressure tensor,

p = nm < v′2 > /3 = nT, (2.13)

Turbulent regimes in the tokamak scrape-off layer 13
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while the stress tensor,

πα, = nm < v′αv
′
β − v′2/3δα,β >, (2.14)

is the anisotropic component. The third term on the right hand side of Eqs. (2.7)
and (2.8) describes the effect of the electric and magnetic field, while the last term,
Re,i is the density of momentum per unit time exchanged due to collision with the
other species:

R =
∫

mv′Cdv. (2.15)

Eqs. (2.9) and (2.10) are the heat equations for electrons and ions, respectively. The
vector q is the flux of heat density of a given species, due to the random motion of
the particles:

q =
∫

m

2
v′2vf (t, r,v) dv. (2.16)

The scalar Q represents instead the heat density generated as a consequence of the
collisions with the other species in the gas:

Q =
∫ m

2
v′2Cdv. (2.17)

Finally, we note that the Frobenius inner product, π : ∇V = παβ∂Vα/∂xβ , has been
used.

Equations (2.5)-(2.10) can be used to compute the time evolution of n, V and
T , if an expression of R, π, q, and Q as a function of n, V and T can be formed.
This is known as the closure problem: in order to solve the nth moment of the Boltz-
mann equation, the solution of the n+ 1 moment is needed. Braginskii proposes to
calculate the expressions for R, π, q, and Q, under the hypothesis that the distri-
bution function f is close to a Maxwellian, as the plasma tends to thermodynamic
equilibrium, because of collisions. As a matter of fact, a Maxwellian distribution
function is reached if the gradients and the time derivative vanish identically. The
presence of spatial and temporal gradients introduce deviations from a Maxwellian.
These deviations are evaluated by the Braginskii equations in the case of spatial
variations occurring on a scale that is much larger than the space travelled by a
particle between two collisions and in the case of time scales of interest much longer
than the collision time. Braginskii expresses R, π, q, and Q as proportional to n,
V and T and their gradients. The proportionality coefficients are called transport
coefficients. The next section is dedicated to the description of the relation between
the transport coefficients and n, V and T and their gradients.

2.2.1 The transport coefficients

The transport coefficients described in the following are calculated under the hy-
pothesis that the plasma is immersed in a strong magnetic field. Under this cir-
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2.2. The Braginskii equations

cumstances we suppose ωe,iτe,i ≫ 1, where ωe,i = qB/me,ic are the electron/ion
cyclotron frequencies, τe,i are the electron/ion collision times:

τe =
3
√
meT

3/2
e

4
√

2πλe4Z2ni
, (2.18)

τi =
3
√
miT

3/2
i

4
√
πλe4Z4ni

, (2.19)

and λ is the Coulomb logarithm.

The term R in the momentum equations (2.7) and (2.8) is the sum of two
contributions: a friction force due to electron/ion collisions, and a thermal force,
due to the coexistence of a temperature gradient in presence of electron/ion collision.
These can be written as (Ri = −Re):

Re = Ru + Rt, (2.20)

Ru = ene

(

j‖

σ‖
+

j⊥

σ⊥

)

, (2.21)

Rt = −0.71ne∇‖Te −
3
2
ne
ωeτe

b×∇⊥Te, (2.22)

where b is the unit vector parallel to the magnetic field, j‖,⊥ = ene
(

V‖,⊥i − V‖,⊥e
)

is
the current in the parallel/perpendicular direction, and σ‖,⊥ is the parallel/perpendicular
conductivity:

σ⊥ =
e2neτe
me

, (2.23)

σ‖ = 1.96σ⊥. (2.24)

The electron heat flux qe in the temperature equation (Eq. (2.9)) can be expressed
as the sum of two terms, qu and qt. The first term is directly related to the thermal
force in R, while the second is due to the presence of a temperature gradient:

qe

u
= 0.71neTeu‖ +

3
2
neTe
ωeτe

b× u, (2.25)

qe

t
= −χe‖∇‖Te − χe⊥∇⊥Te −

5
2
cneTe
eB

b×∇Te, (2.26)

where u = Ve − Vi and the thermal conductivities are:

χe‖ = 3.16
neTeτe
me

, (2.27)

χe⊥ = 4.66
neTe
meω2

eτe
. (2.28)
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The ion heat flux qi is, neglecting terms of order ωiτi:

qi = −χi‖∇‖Ti − χi⊥∇⊥Ti +
5
2
cniTi
ZeB

b×∇Ti, (2.29)

where the thermal conductivities are:

χi‖ = 3.9
niTiτi
mi

, (2.30)

χi⊥ = 2
niTi
miω

2
i τi
. (2.31)

The last term in Eqs. (2.26) and (2.29) is due to the interplay of Larmor radius
effects and the presence of a temperature gradient.

If we consider ωτ ≫ 1, and we align the z axis along the magnetic field, the
stress tensor π can be written as:

πzz = −η0Wzz, (2.32)

πxx = −η0

2
(Wxx +Wyy)−

η1

2
(Wxx −Wyy)− η3Wxy, (2.33)

πyy = −η0

2
(Wxx +Wyy)−

η1

2
(Wyy −Wxx) + η3Wxy, (2.34)

πxy = πyx = −η1Wxy +
η3

2
(Wxx −Wyy) , (2.35)

πxz = πzx = −η2Wxz − η4Wyz, (2.36)

πyz = πzy = −η2Wyz − η4Wxz, (2.37)

where the rate-of-strain tensor W is:

Wα,β =
∂Vα
∂xβ

+
∂Vβ
∂xα
− 2

3
δα,β∇ ·V . (2.38)

We remark that it is the presence of the magnetic field that introduces a different
behaviour of the plasma in the directions parallel and perpendicular to the field
itself. As a matter of fact, the parallel momentum is easily transported along the
parallel direction, while the transport in the perpendicular direction is inhibited.
For the perpendicular momentum, the transport is reduced in both the parallel and
in the perpendicular directions, with respect to the parallel momentum transport.
This is reflected in the fact that the viscosities η1 and η2 are smaller than η0 by a
factor (ωτ)2 , and the viscosities η3 and η4 by a factor ωτ . The expressions for the
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electron and ion viscosities are:

ηe0 = 0.73neTeτe, (2.39)

ηe1 = 0.51
neTe
ω2
eτe

, ηe2 = 4ηe1, (2.40)

ηe3 = −neTe
2ωe

, ηe4 = 2ηe3; (2.41)

ηi0 = 0.96niTiτi, (2.42)

ηi1 =
3
10
niTi
ω2
i τi
, ηi2 = 4ηi1, (2.43)

ηe3 =
niTi
2ωi

, ηi4 = 2ηi3. (2.44)

In the absence of magnetic field, the relation between π and W is simply π = −η0W .
Finally, the heat generation Q appearing in Eqs. (2.9) and (2.10) can be written,
for electrons and ions, respectively as:

Qe = −Re ·u−Qi, (2.45)

Qi =
3mene
miτe

(Te − Ti) . (2.46)

For the electrons, this is composed by the Joule heating due to friction with ions
and a term due to the temperature difference between the two species. In the ion
heat generation we keep the term related to the difference between Te and Ti, while
the Joule heating is neglected, since this is ∼ me/mi times smaller than Re ·u.

2.3 The drift reduced approximation

The Braginskii equations presented in the previous section, Eqs. (2.5)-(2.10), need
to be further simplified to obtain a model that can be used to numerically investigate
plasma turbulence in the SOL. In fact, the Braginskii equations describe the plasma
dynamics occurring on a wide range of time and spatial scales, ranging from the
fast cyclotron motion to the confinement time scale, and from the Larmor radius
and the Debye length to the typical machine size. This makes their use to simulate
SOL turbulence extremely challenging from a numerical point of view. However,
turbulence in the SOL is characterized by time variations on a time scale much
slower than the ion gyromotion and spatial variations on a scale of the order of
ρs = cs/ωi, the ion Larmor radius at the sound speed, cs. Therefore, the drift
ordering can be adopted, according to which we assume:

∂

∂t
∼ VE×B ·∇ ∼

ρ2
s

L2
⊥
ωi ≪ ωi, (2.47)
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as ρs is smaller than L⊥, the typical equilibrium scale length, and VE×B = c/B
(−∇φ× b) is the E ×B drift velocity. In the following we also assume the plasma
to be quasi-neutral. In fact, we consider plasma turbulence taking place on a spatial
scale ρs ≫ λD, where λD =

√

Te/(2πe2n) is the Debye length. We can therefore
assume ni = ne ≡ n.

The basic idea behind the drift-reduced approximation is to split the particles
dynamics into the parallel and the perpendicular direction with respect to the mag-
netic field and express the electron and ion perpendicular velocities as:

V⊥e = VE×B + V∗e, (2.48)

V⊥i = VE×B + V∗i + Vpol, (2.49)

where
V∗e = −b×∇pec/ (enB) (2.50)

is the electron diamagnetic drift velocity, and

V∗i = b×∇pic/ (enB) (2.51)

is the ion diamagnetic drift velocity. Together with the E×B drift, the diamagnetic
drift provide the 0th order approximation of the perpendicular velocity, i.e. V⊥i0 =
VE×B + V∗i. The first order correction to the ion perpendicular velocity is called
polarisation drift, Vpol, and it is expressed as:

Vpol =
b

ωi
× d

dt
V⊥i0 +

1
nmiωi

{

b×
[

pi

(

∇× b

ωi

)

· ∇V⊥i0

]

+

+b×∇⊥
[2pi
ωi
∇ · b× V⊥i0

]

−∇⊥
[

pi
2ωi
∇⊥ ·V⊥i0

]}

+

+
1

nmiωi
b×

[

Gκ− ∇G
3

]

,

(2.52)

where d/dt = ∂/∂t +
(

VE×B + V‖i
)

·∇, and κ is the field curvature, κ = b ·∇b.
The diamagnetic drift does not appear, since it cancels out with the first term on the
right hand side of Eq. (2.55). In order to deduce Eq. (2.52), it has been necessary
to further simplify Eqs. (2.7) and (2.8); the transfer of momentum from electrons to
ions (Ri) has been neglected, in the expression for Re the perpendicular component
of the frictional and thermal forces has been neglected too. Furthermore, the stress
tensor π is divided in two contributions: a viscous part, πvis, and a finite Larmor
radius part (FLR), πFLR. The viscous part can be written as:

πvis = (bb− I/3)G, (2.53)

G = −η0

(

2∇‖V‖ − κ ·V − 1
3
∇ ·V

)

, (2.54)
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where G is the stress function. The FLR part of the stress tensor is such that:

∇ ·πFLR = −mn (V∗ · ∇) V + p

[(

∇× b

ω

)

·∇
]

V +∇⊥
(

p

2ω
∇ ·V

)

+

+b×∇
(

p

2ω
∇⊥ ·V

)

,

(2.55)

where V∗ is the diamagnetic drift velocity. Just the terms related to η3 have been
kept, while η1, η2, and η4 related terms have been neglected in Eqs (2.32)-(2.37).
We remark that ∇ ·πFLR is smaller than ∇ ·πvis by a factor ωτ ≫ 1. The complete
derivation of πvis and πFLR can be found in [6] and references therein. It is possible
to verify that Vpol ≪ VE×B, by estimating Vpol through the first term of Eq. (2.52)
as Vpol ≃ b

ωi
× d
dt

V⊥i0 ≃ VE×Bρ
2
s/L

2
⊥ ≪ VE×B (according to Eq. (2.47), see Ref. [6]

for details). The polarisation drift appears in the term ∇ · (nVpol), which can be
written as:

∇ · (nVpol) = ∇⊥
nc

Bωi

d

dt

(

E⊥ −
∇⊥pi
en

)

+
1

3miωi
b× κ ·∇G. (2.56)

More details about the derivation of Eq. (2.56) can be found in Ref. [6]. The
electron polarisation drift can be calculated similarly to the ions. It is nevertheless
neglected, since, for electrons, the first term of Eq. (2.56) is smaller than the one
for ions by a factor me; the second term is instead smaller than the ion one by a
factor η0e/η0i ≃

√

me/mi.

2.3.1 The continuity and vorticity equations

Having separated the plasma motion along the perpendicular and the parallel di-
rections, we can write the continuity equations for ions and electrons as follows:

∂ne
∂t

+∇ ·
[

n
(

VE×B + V∗e + V‖e
)]

= 0, (2.57)

∂ni
∂t

+∇ ·
[

n
(

VE×B + V∗i + Vpol + V‖i
)]

= 0. (2.58)

The vorticity equation is derived by subtracting the ion and the electron continuity
equations, and imposing quasi-neutrality by setting ne = ni. This is equivalent to
impose ∇ · j = 0. This equation describes the evolution of the quantity ω = ∇2

⊥φ,
which is related to the fluid rotation in the plane perpendicular to the magnetic field.
The name is derived from the analogy with the vorticity used in fluid dynamics,
ωfd = ∇× V . In our case, in fact, it can be demonstrated that ω is proportional

Turbulent regimes in the tokamak scrape-off layer 19



Chapter 2. The model equations for SOL turbulence and the GBS code

to b ·∇ × VE×B. The vorticity equation reads as:

nc

Bωi

d

dt

(

−∇2
⊥φ−

1
en
∇2
⊥pi

)

+
1

3miωi
b× κ ·∇Gi +∇‖

j‖
e

+∇ ·n (V∗i − V∗e) = 0,

(2.59)
where we have applied the Boussinesq approximation [45]:

∇⊥
nc

Bωi

d

dt

(

E⊥ −
∇⊥pi
en

)

≃ nc

Bωi

d

dt

(

−∇2
⊥φ−

1
en
∇2
⊥pi

)

. (2.60)

2.3.2 The semi-electrostatic limit

Braginskii equations retain both shear and compressional Alfvén waves. Since com-
pressional Alfvén waves are several orders of magnitude faster than the turbulent
fluctuations we are interested in, we want to exclude their dynamics from our sys-
tem. This is achieved by choosing a vector potential A that is purely parallel to
the magnetic field:

δA = −ψb, (2.61)

where ψ is the poloidal flux function. Within the assumption that β = 8π(pe +
pi) /B2 ≪ 1 and observing that typical scale lengths in the parallel direction are
much larger than the ones in the perpendicular direction, we can write the perturbed
magnetic field as:

δB = −∇× (ψb) ≃ b×∇⊥ψ = δB⊥. (2.62)

The Ampere’s law is therefore written as:

∇2
⊥ψ =

4π
c
j‖, (2.63)

and the electric field is given by:

E = −∇φ+
1
c

∂ψ

∂t
b. (2.64)

Beside entering Eq. (2.64), electromagnetic fluctuations play a role in the definition
of the parallel derivative operator,

∇‖ = b ·∇ +
b

B
×∇⊥ψ ·∇, (2.65)

where the second term is the contribution to the parallel derivative due to magnetic
perturbations.
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2.3.3 Parallel motion

The parallel motion for the electron species can be derived by projecting Eq. (2.7)
along the parallel direction. In this case, the parallel component of Re is retained:

me
deV‖e
dt

= −1
n
∇‖pe −

2
3
∇‖Ge + e∇‖φ−

e

c

∂ψ

∂t
+ e

j‖
σ‖
− 0.71∇‖Te. (2.66)

The total time derivative is expressed as: de/dt = ∂/∂t+
(

VE×B + V‖e
)

·∇ , being
the diamagnetic contribution to the total derivative canceled out by the first term
in the ∇ ·πFLR,e equation (see Eq. (2.55)). In deducing Eq. (2.66), we have used
∇ ·πe = 2/3∇‖Ge, where we have considered that the FLR part of the stress tensor
is perpendicular to the magnetic field. The equation regulating the evolution of
the ion parallel velocity can be obtained by adding the parallel components of the
electron and the ion momentum equations:

mi
dV‖i
dt

= −1
n
∇ (pi + pe)− pi∇×

b

ωi
·∇V‖i −

2
3
∇‖Gi. (2.67)

In Eq. (2.67) the πe tensor has been neglected since the πFLR,e and the πvis,e contri-
butions are smaller than their ion counterpart by a factor me and

√
me respectively.

2.3.4 Temperature equations

The electron temperature equation is obtained from Eq. (2.9) by neglecting, in the
heat generation Qe, the frictional part of the heating, the second term in Eq. (2.22),
and the electron-ion heat transfer. In the heat flux term qe, we neglect the term
proportional to χe⊥ and the second term in Eq. (2.25), since smaller than χe‖ by a
factor ωeτe. We therefore obtain:

3
2
n
deTe
dt

+
3
2
nV∗e · ∇Te + pe∇ ·

(

V⊥e + V‖e
)

− 5
2
c

e
∇ · pe

(

b

B
×∇Te

)

−0.71Te∇‖j‖ −∇ ·
(

χ‖e∇‖Te
)

= 0.
(2.68)

A similar equation is obtained for the ion temperature, starting from Eq. (2.10),
by neglecting the electron-ion heat transfer (Qi = 0) and the terms proportional to
χi⊥ and to χi‖ in the heat flux qi; χi⊥ is smaller than χi‖ by a factor ωiτi, and χi‖ is

smaller than χe‖ by a factor
√

me/mi. This leads to:

3
2
n
dTi
dt

+
3
2
nV∗i ·∇Ti + pi∇ ·

(

V⊥i + V‖i
)

+
5
2
c

e
∇ · pi

(

b

B
×∇Ti

)

= 0. (2.69)

We notice that in Eq. (2.69) the term ∇ ·Vpol has to be evaluated. This can be
avoided by making use of the density equation (see Ref. [6]). We can in fact eliminate
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the term pi∇ ·
(

V⊥i + V‖i
)

using the ion continuity equation:

pi∇ ·
(

V⊥i + V‖i
)

= −Ti
(

dn

dt
+ V∗i · ∇n

)

= −Ti
dn

dt
+ nV∗i ·∇Ti, (2.70)

where we notice that V∗i ·∇pi = 0. Moreover, we can rewrite the 4th term of
Eq. (2.69) as:

5
2
c

e
∇ · pi

(

b

B
×∇Ti

)

= −5
2
nV∗i · ∇Ti +

5
2
c

e

(

∇× b

B

)

· ∇Ti. (2.71)

Substituting Eqs. (2.70) and (2.71) into Eq. (2.69), we obtain a new form for the
ion temperature equation:

3
2
n
dTi
dt
− Ti

dn

dt
+

5
2
c

e
pi

(

∇× b

B

)

·∇Ti = 0. (2.72)

In Eq. (2.72) we ignore Vpol ·∇ in the total derivative, since much smaller than the
other contributions, but we retain the term proportional to ∇ ·Vpol, consistently
with the derivation of Eq. (2.59), which is hidden in the dn/dt term. Substituting
Eq. (2.57) into Eq. (2.72), we obtain the ion temperature equation that can be
approached numerically:

3
2
n
dTi
dt

+ Ti
[

n ·∇
(

VE×B + V‖e
)

+∇ · (nV∗e)
]

+
5
2
c

e
pi

(

∇× b

B

)

·∇Ti = 0. (2.73)

2.3.5 Summary of results

In the previous sections a set of drift-reduced equations describing the behaviour
of plasma density, vorticity, electron and ion parallel velocities, electron and ion
temperatures has been derived. Here we present a summary of the drift-reduced set
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of equations that we will consider for the reminder of the present thesis:

∂n

∂t
+∇ ·

(

VE×B + V∗e + V‖e
)

= 0, (2.74)

nc

Bωi

d

dt

(

−∇2
⊥φ−

1
en
∇2
⊥pi

)

+
1

3miωi
b× κ ·∇Gi +∇‖

j‖
e

+∇ ·n (V∗i− V∗e) = 0,

(2.75)

me
deV‖e
dt

= −1
n
∇‖pe −

2
3
∇‖Ge + e∇‖φ−

e

c

∂ψ

∂t
+ e

j‖
σ‖
− 0.71∇‖Te, (2.76)

mi
dV‖i
dt

= −1
n
∇ (pi + pe)− pi∇×

b

ωi
·∇V‖i −

2
3
∇‖Gi, (2.77)

3
2
n
deTe
dt

+
3
2
nV∗e · ∇Te + pe∇ ·

(

V⊥e + V‖e
)

− 5
2
c

e
∇ · pe

(

b

B
×∇Te

)

+

−0.71Te∇‖j‖ −∇ ·
(

χ‖e∇‖Te
)

= 0, (2.78)

3
2
n
dTi
dt

+ Ti
[

n · ∇
(

VE×B + V‖e
)

+∇ · (nV∗e)
]

+
5
2
c

e
pi

(

∇× b

B

)

·∇Ti = 0 (2.79)

2.4 The GBS code

2.4.1 The GBS model

In order to express the system of Eqs. (2.74)-(2.79), summarized in Sec. 2.3.5, in
an easy-to-handle form for numerical solution, we introduce some mathematical
operators.

- Terms in the form ∇ · (nV∗e) are developed as:

∇ · (nV∗e) = −c
e

(

∇× b

B

)

· ∇pe = − 2c
eB

C (pe) , (2.80)

where C is the curvature operator, defined as:

C (f) =
B

2

(

∇× b

B

)

· ∇f. (2.81)

- Terms in the form ∇ · (nVE×B) are developed as:

∇ · (nVE×B) = c∇n ·
(

−∇φ× b

B

)

+cn∇ ·
(

∇φ× b

B

)

=
c

B
[φ, n]+

2cn
B
C (φ) ,

(2.82)
where [φ, n] is the Poisson brackets operator, defined as:

[φ, f ] = b · (∇φ×∇f) . (2.83)
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- Terms in the form ∇ ·
(

nV‖e
)

are developed as:

∇ ·
(

nV‖e
)

= ∇n ·V‖e + n∇ ·V‖e = n∇‖V‖e + V‖e∇‖n, (2.84)

where ∇ · b has been neglected, i.e. finite aspect ratio effects are neglected, as
in the reminder of the present work. The impact of finite aspect ratio effects
on SOL turbulence has been the subject of one of our recent publications [46].
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According to the operators previously introduced, Eqs. (2.74)-(2.79) can be writ-
ten as:

∂n

∂t
= − c

B
[φ, n] +

2c
eB

[

nC(Te) + TeC(n)− enC(φ)
]

+

−n∇‖V‖e − V‖e∇‖n +Dn(n) + Sn, (2.85)

∂ω

∂t
+ τ

∂∇2
⊥Ti
∂t

= − c
B

[φ, ω]− c

B
[φ,∇2

⊥Ti]− V‖i∇‖ω − V‖i∇‖∇2
⊥Ti+

+
miω

2
ci

e

[

∇‖(V‖i − V‖e) + (V‖i − V‖e)
∇‖n
n

]

+

+
2B
cmi

[

C(Ti) +
Ti
n
C(n) + C(Te) +

Te
n
C(n)

]

+

+
B

3cmin
C(Gi) +Dω(ω) + Sω, (2.86)

men
∂V‖e
∂t

+
en

c

∂ψ

∂t
= −men

c

B
[φ, V‖e]−menV‖e∇‖V‖e −

2
3
∇‖Ge+

−e
2n2

σ‖
(V‖e − V‖i) + en∇‖φ− Te∇‖n− 1.71n∇‖Te +DV‖e(V‖e) + SV‖e , (2.87)

min
∂V‖i
∂t

= −min
c

B
[φ, V‖i]−minV‖i∇‖V‖i −

2
3
∇‖Gi+

−n∇‖Te − Te∇‖n− n∇‖Ti − Ti∇‖n+DV‖i(V‖i) + SV‖i, (2.88)

∂Te
∂t

= − c
B

[φ, Te]− V‖e∇‖Te +
4
3
c

eB

[

7
2
TeC(Te) +

T 2
e

n
C(n)− eTeC(φ)

]

+

+
2
3e

{

Te

[

0.71∇‖V‖i − 1.71∇‖V‖e
]

+ 0.71Te(V‖i − V‖e)
1
n
∇‖n

}

+

+DTe(Te) +D‖Te(Te) + STe , (2.89)
∂Ti
∂t

= − c
B

[φ, Ti] +
4cTi
3eB

[

C(Te) +
Te
n
C(n)

]

− 4c
3B

TiC(φ)+

+
2
3
Ti
n

(

V||i − V||e
)

∇‖n−
2
3
Ti∇‖V||e − V||i ·∇‖Ti −

10
3
cTi
eB

C(Ti)+

+DTi(Ti) + STi , (2.90)

which constitutes the system of equations solved by GBS. The gyroviscous term Gi
can be written as (compare it with Eq. (2.53)):

Gi = −3η0i

[2
3
∇‖V‖i +

1
3
C(φ) +

c

enB
C(pi)

]

, (2.91)

and similarly for Ge:

Ge = −3η0e

[2
3
∇‖V‖e +

1
3
C(φ)− c

enB
C(pe)

]

. (2.92)
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The diffusion operators, D, have been introduced for numerical purpose. The diffu-
sion coefficient D‖Te is derived from the term ∇ ·

(

χ‖e∇‖Te
)

in Eq. (2.78), supposing
χ‖e constant. The source terms are described in Sec. 2.4.5. Finally, Eqs. (2.85)-
(2.90) are solved in a normalized form by GBS. More precisely, we normalize n
to the reference density n0, Te to the reference temperature Te0, Ti to the refer-
ence temperature Ti0, φ to Te0/e, V‖e and V‖i to cs0 =

√

Te0/mi (and therefore cs
to cs0), ψ to βcmics0/(2e) and time t to R/cs0, where R is the major radius and
β = 8πn0Te0/B

2. Lengths in the perpendicular direction are adimensionalized to
ρs0 = cs0/ωi and in theparallel direction to R.
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The system of Eqs. (2.85)-(2.90) in its adimensionalized form reads as:

∂n

∂t
= − R

Bρs0
[φ, n] +

2
B

[

nC(Te) + TeC(n)− nC(φ)
]

+

−n∇‖V‖e − V‖e∇‖n +Dn(n) + Sn, (2.93)

∂ω

∂t
+ τ

∂∇2
⊥Ti
∂t

= − R

Bρs0
[φ, ω]− τ R

Bρs0
[φ,∇2

⊥Ti]− V‖i∇‖ω − τV‖i∇‖∇2
⊥Ti+

+B2

[

∇‖(V‖i − V‖e) + (V‖i − V‖e)
∇‖n
n

]

+

+2B

[

τC(Ti) + τ
Ti
n
C(n) + C(Te) +

Te
n
C(n)

]

+

+
B

3n
C(Gi) +Dω(ω) + Sω, (2.94)

∂V‖e
∂t

+
mi
me

β

2
∂ψ

∂t
= − R

Bρs0
[φ, V‖e]− V‖e∇‖V‖e −

mi
me

2
3
∇‖Ge+

−mi
me

ν(V‖e − V‖i) +
mi
me
∇‖φ−

mi
me

Te
n
∇‖n− 1.71

mi
me
∇‖Te +DV‖e(V‖e) + SV‖e,

(2.95)
∂V‖i
∂t

= − R

Bρs0
[φ, V‖i]− V‖i∇‖V‖i −

2
3
∇‖Gi+

−∇‖Te − Te
∇‖n
n
− τ∇‖Ti − τTi

∇‖n
n

+DV‖i(V‖i) + SV‖i, (2.96)

∂Te
∂t

= − R

Bρs0
[φ, Te]− V‖e∇‖Te +

4
3

1
B

[

7
2
TeC(Te) +

T 2
e

n
C(n)− TeC(φ)

]

+

+
2
3

{

Te

[

0.71∇‖V‖i − 1.71∇‖V‖e
]

+ 0.71Te(V‖i − V‖e)
∇‖n
n

}

+

+DTe(Te) +D‖Te(Te) + STe , (2.97)
∂Ti
∂t

= − R

Bρs0
[φ, Ti] +

4Ti
3B

[

C(Te) +
Te
n
C(n)

]

− 4
3B

TiC(φ)+

+
2
3
Ti
(

V||i − V||e
) ∇‖n

n
− 2

3
Ti∇‖V||e − V||i ·∇‖Ti − τ

10
3B

TiC(Ti)+

+DTi(Ti) + STi . (2.98)

In Eqs. (2.93)-(2.98) we introduce the adimensionalized resistivity, ν = e2nR/
(

miσ‖cs0
)

, and the ion to electron temperature ratio, τ = Ti0/Te0. We note that
the curvature operator (see Eq. (2.81)), appearing in Eqs. (2.93)-(2.98), has been
multiplied by R because of the adimensionalization, resulting in Eq. (2.100).
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2.4.2 Geometry

The mathematical operators introduced in Sec. 2.4 have to be specified for the
geometry of interest. For simplicity, we consider the system of Eqs. (2.93)-(2.98) in
s−α circular geometry [47] with a toroidal limiter positioned on the high field side
equatorial midplane of the device. In this geometry, operators are computed in the
large aspect ratio limit ǫ = a/R→ 0 (a is the tokamak minor radius). We use a right
handed coordinate system [y, x, z], where x is the flux coordinate and corresponds,
in a circular magnetic flux surface configuration, to the radial direction, while y
is the coordinate perpendicular to x and B, see Fig. 2.1. In the ǫ → 0 limit, the
plane (x, y) coincides with the poloidal plane and, as a consequence, y = aθ, where
0 < θ < 2π is the poloidal angle, with θ = 0 and θ = 2π at the outer midplane; z
is the direction parallel to the magnetic field, 0 < z < 2πq, where q = aBϕ/(RBθ)
is the safety factor. Therefore, the Poisson brackets (defined in Eq. (2.83)), the
curvature (defined in Eq. (2.81)), the Laplacian and the parallel derivative (defined
in Eq. (2.65)) operators, reduce to:

[f, g] = ∂yf∂xg − ∂xf∂yg, (2.99)

C (f) = sin θ∂xf + cos θ∂yf, (2.100)

∇2
⊥f = ∂2

xf + ∂2
yf, (2.101)

∇‖f = ∂zf +Rβ/2 [ψ, f ] . (2.102)

While convenient, the [y, x, z] coordinate system has the disadvantage that, in
the presence of magnetic shear, defined as ŝ = (a/q) dq/dx, the pitch of the field
line varies radially. This cannot be easily handled by the numerical algorithm
implemented in GBS. For this purpose the introduction of the magnetic shear in
the GBS code is realized by means of a coordinate transformation:

x′ = x,

y′ = y

(

1 +
xŝ

a

)

,

z′ = z.

(2.103)

The derivative operators change consequently, taking the form:

∂x = ∂x′ +
yŝ

a
∂y′ ,

∂y =

(

1 +
xŝ

a

)

∂y′ ,

∂z = ∂z′ ,

(2.104)
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Figure 2.1: Sketch of the SOL geometry considered in the present thesis. The magnetic field
lines (in white) wrap around the torus in the direction indicated by the red arrows. The white
arrows indicate the direction in which the plasma is perpendicularly transported from the core
to the periphery of the device, by turbulent transport. The source is represented by the grey
shaded surface.

leading to the following expression of the Poisson brackets,

[f, g] =

(

1 +
x′ŝ

a

)

[f, g]x′,y′, (2.105)

of the curvature operator,

C(f) = sin θ∂x′f +

[

sin θ
y′ŝ

a + x′ŝ
+ cos θ

(

1 +
x′ŝ

a

)]

∂y′f, (2.106)

and of the Laplacian in the perpendicular direction,

∇2
⊥f = ∂2

x′f + 2
y′ŝ

a+ x′ŝ
∂2
x′,y′f +

(

y′ŝ

a + x′ŝ

)2

∂2
y′f+

(

1 +
x′ŝ

a

)2

∂2
y′f.

(2.107)

The previous expressions are further simplified according to the assumption x′/a≪
1, i.e. for the SOL width much smaller than a. The Poisson brackets becomes
therefore [f, g] = ∂y′f∂x′g−∂x′f∂y′g, while the curvature operator and the Laplacian
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operator in the perpendicular direction become:

C(f) = sin θ∂x′f +

(

sin θ
y′ŝ

a
+ cos θ

)

∂y′f, (2.108)

∇2
⊥f = ∂2

x′f + 2
y′ŝ

a
∂2
x′,y′f +



1 +

(

y′ŝ

a

)2


 ∂2
y′f. (2.109)

A detailed derivation of the operators including finite aspect ratio effects can be
found in Ref. [46] and a generalization to take into account plasma elongation and
triangularity is being carried out.

2.4.3 Numerics

In GBS the domain is discretized along the x, y and zϕ direction, where zϕ is
the coordinate along the toroidal direction, 0 < zϕ < 2π. The grid points are
defined as xi = (i − 1/2)∆x, for i = 0, . . . , Nx + 1, being the width of the interval
∆x = Lx/Nx. The i = 0 and the i = Nx + 1 points of the grid are the ghost
cells. Similar definitions are valid for the y direction, yj = (j − 1/2)∆y. In the
toroidal direction the n, Te, Ti, φ and ω variables are defined on zϕ,k = k∆zϕ, while
V‖e, V‖i and ψ are shifted by half a cell, zϕ,k = (k − 1/2)∆zϕ, ∆zϕ = 2π/Nzϕ,
k = 0, . . . , Nzϕ + 1, due to numerical stability reasons. Each quantity A(x, y, z)
is then discretized as Ai,j,k ≡ A (xi, yj, zϕ,k). We can take advantage of the fact
that turbulence is mostly aligned in the direction parallel to the field to reduce the
computational cost of the simulations. For this purpose we choose Ny and Nzϕ in
such a way that the discretization points fall on the field lines, i.e. we impose ∆j
to be an integer, where ∆j = Ny/(Nzϕq). This allows us to use a low resolution in
the toroidal direction. The parallel derivative is then approximated as:

(b ·∇)A|i,j,k ≃
1

2∆zϕ
(Ai,j+∆j,k −Ai,j−∆j,k) . (2.110)

The derivatives in the x and y directions are performed using a standard centered
finite difference scheme, such as:

∂A

∂x

∣

∣

∣

∣

∣

i,j,k+1

≃ Ai+1,j,k − Ai−1,j,k−1

2∆x
, (2.111)

except for the Poisson brackets, that are discretized according to the Arakawa
scheme [48].

The Laplacian operator is discretized using a standard second order centered
finite difference scheme. The obtained matrix can be solved either by matrix in-
version, or it can be reduced to the solution of a set of tridiagonal systems, by
applying the fast Fourier transform (FFT) algorithm in the x direction. The first
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approach is applied for a simulation with magnetic shear, the second is suitable for
a shearless simulation. The time stepping is realized with a standard fourth order
Runge-Kutta scheme. Finally, we remark that Eqs. (2.93)-(2.98) are rewritten in
terms of θn = log n, te = log Te, and ti = logTi, to ensure the positivity of n, Te,
and Ti.

The GBS code is parallelized through a domain decomposition using standard
MPI techniques. The parallelization is performed in the x and zϕ directions, along
which the domain is partitioned in Npx and Npzϕ parts, respectively. The total
number of processors used to perform a simulation is therefore Np = NpxNpzϕ .
An additional ghost cell along both the domain-decomposed directions has to be
added. An array containing a physical quantity has therefore size (Nx/Npx + 2)×
(

Nzϕ/Npzϕ + 2
)

× Ny on each processor. A more detailed description of GBS nu-
merics can be found in Ref. [20].

2.4.4 Boundary conditions at the magnetic presheath en-

trance

The boundary conditions for GBS, applied at the magnetic pre-sheath entrance,
have been derived in the cold ion limit in Ref. [49]. In the following, we extend the
study presented in Ref. [49] to the Ti 6= 0 case. The GBS code solves Eqs. (2.93)-
(2.98) in a domain that is periodic in the toroidal direction, but that covers a finite
extension in the radial and poloidal directions. Therefore, it has to be provided by
a proper set of boundary conditions. In the poloidal direction, the plasma touches
the conducting limiter and spontaneously generates a thin layer contiguous to the
wall, the so-called sheath, where quasi-neutrality and the drift approximations are
broken. Due to their higher mobility, electrons tend to reach the wall at a higher
rate than ions. In order to prevent an electron loss to the wall larger than the ion
loss, the plasma naturally builds up a potential drop between the bulk plasma and
the wall. Consequently, an electric field in the direction perpendicular to the wall is
generated on a ρs scale length, and, in closest proximity of the wall, on a λD length,
accelerating the ions towards the wall and slowing the electrons. When the magnetic
field is oblique with respect to an absorbing wall (which happens in most of the cases,
since Bϕ ≫ Bθ), three regions can be identified at the plasma-wall transition: the
collisional presheath (CP), the magnetic presheath (MP), and the Debye sheath
(DS). Although in all these three regions a potential drop proportional to Te is
observed, they are characterized by very different length scales. In the CP, whose
size scales with the ion mean free path, λmfp, the ions are magnetized, i.e. they are
accelerated towards the wall following the magnetic field lines, and the plasma is
quasi-neutral. At the MP entrance the ions reach the sound speed. The width of the
MP scales as ρs. In this region the plasma is still quasi-neutral, but the amplitude of
the electric field increases to the point that ions are demagnetized and accelerated
in the direction perpendicular to the wall. The DS scales as the Debye length, λD,
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Figure 2.2: Coordinate system used for the description of the plasma-wall transition. The
magnetic field B impacts the wall at an angle α. The wall is represented on the right with
the sheath electric field E, along the normal direction s. Source: Ref. [49].

being in this region quasi-neutrality violated. Plasma turbulence fluid codes, such
as GBS, are based on both the quasi-neutrality and the ion drift approximations.
Since quasi-neutrality is violated in the DS and the ion drift approximation loses its
validity in the MP, the validity of the drift-reduced Braginskii equations stops at the
MP entrance, where boundary conditions that properly describe the sheath physics
have to be applied. In the following, in agreement with the hypothesis used in the
derivation of the drift-reduced Braginskii equations, we neglect ion FLR effects. In
particular, we assume that ions are lost to the wall when their gyrocenters are. We
also assume that the ion distribution function remains Maxwellian throughout the
plasma-wall transition.

The dynamics at the plasma-wall transition is described by using the same coor-
dinate system (x, y, z) used in Ref. [49]: z is the direction along B, x is perpendicular
to B and parallel to the wall, and y is perpendicular to both x and z, pointing to-
wards the wall. We also define the coordinate s = y cosα + z sinα, normal to the
wall, being α the angle of incidence of the magnetic field to the wall (see Fig. 2.2).
The magnetic field is assumed constant.

To describe the steady-state dynamics of the plasma in the CP we use the ion
continuity, the parallel ion velocity, and the electron parallel velocity equations.
We consider plasma gradients in the x direction with an ordering ǫ = ρs/Ln ∼
ρs/LT ∼ ρs/Lφ ≪ 1. The plasma dynamics is split into the directions parallel
and perpendicular to the magnetic field (see Sec. 2.3). In the context of the ion
drift approximation, the perpendicular velocity can be written as V⊥i = VE×B +
V∗i+Vpol, where the polarization drift contains first order corrections in (1/ωi)d/dt.
The equations are adimensionalized as follows: electron temperature, Te → Te/Te0,
electric potential, φ → eφ/Te0, space x → x/ρs0, and velocities, V → V/cs0. The
steady-state ion continuity equation reads as ∇ · (nVi) = Sp,i, where Sp,i represents
the ion density source. In the evaluation of ∇ · (nVi) = Sp,i, the perpendicular
components of Vi (Vx,i and Vy,i) are computed by neglecting Vpol, as in Ref. [49],
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therefore retaining only 0th order terms in (1/ωi)d/dt, and assuming ∂sTi = 0:

Vx,i = Vx,Ei + Vx,∗i = −∂yφ− τ
Ti
n
∂yn, (2.112)

Vy,i = Vy,Ei + Vy,∗i = ∂xφ+ τ
Ti
n
∂xn, (2.113)

The validity of the isothermal ion assumption as well as ∂sTe = 0, used later, are
discussed in Appendix A. The first terms on the right hand side of Eqs. (2.112) and
(2.113) represent the E×B drift contribution to the ion velocity, while the second
terms are due to the diamagnetic drift. Using the relation Vs,i = V‖,i sinα+Vy,i cosα,
we obtain, for the ion continuity equation:

∇ · (nVi) =

n∂xVx,Ei + n cosα∂sVy,Ei + Vs,i∂sn− Vy,∗i cosα∂sn + n sinα∂sV‖i + Vx,Ei∂xn =

Sp,i.
(2.114)

The first and the second terms on the right hand side cancel out since n cosα∂sVy,Ei =
n cosα∂s∂xφ = −n∂xVx,Ei. The third and fourth terms are gathered together intro-
ducing V ′s,i = Vs,i−Vy,∗i cosα. We remark that the diamagnetic contribution appear-
ing in the fourth term cancels out with the identical term appearing in the definition
of Vs,i, since the ion diamagnetic flux is divergence free, i.e. ∇ · (nV∗i) = 0. For the
sixth term we have Vx,Ei∂xn = −∂xn cosα∂sφ. Accordingly, Eq. (2.114) is simplified
as:

V ′s,i∂sn+ n sinα∂sV‖,i − ∂xn cosα∂sφ = Sp,i, (2.115)

which constitutes the form of the ion continuity equation that we consider for our
analysis. The steady state ion momentum equation reads as:

n (Vi ·∇) Vi = nE + nVi × b−∇pi + Smi , (2.116)

where Smi represents the ion momentum source. For sake of simplicity, we write
the total derivative dt = ∂t + (V‖i + VE×B) ·∇, by neglecting the polarization drift,
since smaller than the other contributions. We note that the diamagnetic velocity
does not appear in the convective derivative due to diamagnetic cancellation. The
parallel component of Eq. (2.116) can be written therefore as:

n (V ′si∂s + Vxi∂x)V‖i = −n∂sφ sinα− τTi∂sn sinα + S‖mi . (2.117)

Substituting Eq. (2.112) into Eq. (2.117), we find:

nV ′si∂sV‖i + sinα (n∂sφ+ τTi∂sn)− n∂xV‖i cosα∂sφ = S‖mi , (2.118)

where the third term represents the ion pressure contribution. Finally, the momen-
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tum equation for the electrons reads as:

n (Ve ·∇) Ve = −µ (nE + nVe × b +∇pe) + Sme , (2.119)

where Sme is the electron momentum source, and µ = mi/me. Equation (2.119) is
simplified assuming µ ≫ 1 and isothermal electrons in the CP, i.e. ∂sTe = 0. The
parallel component of Eq. (2.119) reads therefore as:

µ sinαTe∂sn− µ sinαn∂sφ = S‖me . (2.120)

Equations. (2.115), (2.118), and (2.120) can be written in the form of a system of
linear equations, MX = S, where X =

[

∂sn, ∂sV‖i, ∂sφ
]

, S =
[

Sp,i, S‖mi , S‖me
]

,
and:

M =









V ′si n sinα −∂xn cosα
sinατTi nV ′si n

(

sinα− ∂xV‖i cosα
)

µ sinαTe 0 −µn sinα









. (2.121)

In the Ti = 0 limit, we retrieve the system of equations reported in Eq. (11) of
Ref. [49]. When Ti dynamics is included, a new term, due to the ion pressure,
appears in Eq. (2.121) and Vs,i is redefined as V ′s,i, to take into account the presence
of the ion diamagnetic drift. Equations (2.115), (2.118), and (2.120) are valid in the
CP, up to the MP entrance. In the CP the source terms are responsible for the small
plasma gradients. Approaching the MP entrance, gradients become large, while the
intensity of the source terms remains the same as in the main SOL plasma. Non-
zero gradients in the MP exist therefore with negligible sources, leading to MX ≃ 0
to define the location of the MP entrance. This condition requires that detM = 0
is satisfied, resulting in:

V ′s,i =
√

Te sinα



θn +

√

(

1 + τ
Ti
Te

)

+ θ2
n −

∂xV‖i
tanα



 , (2.122)

in the case of the coordinate s increasing towards the wall, corresponding to the
boundary condition at the upper side of the limiter plate in the GBS simulations,
and where

θn =

√
Te

2 tanα
∂xn

n
, (2.123)

has been defined. Recalling Vs,i = V‖,i sinα + Vy,i cosα and Vy,i ∼ O (ǫ), from
Eq. (2.122) we have ∂xV‖i = ∂x

√
Te+ O (ǫ2). We can therefore write Eq. (2.122) as:

V ′s,i =
√

Te sinα

[

θn +

√

(

1 + τ
Ti
Te

)

+ θ2
n − θT

]

, (2.124)
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where

θT =

√
Te

2 tanα
∂xTe
Te

. (2.125)

In the following, we neglect terms of order O(ǫ2). By introducing FT = 1 + τTi/Te,
the condition for V ′s,i becomes therefore:

V ′s,i =
√

Te sinα

(

θn +
√

FT −
1

2
√
FT

θT

)

, (2.126)

and the boundary conditions for V‖i are derived from Eq. (2.124), using the relation:

V‖i sinα = Vs,i − Vy,i cosα. (2.127)

In the evaluation of V‖i, we remark that the ion diamagnetic contributions in Vy,i
and in V ′s,i cancel out, so that only Vy,Ei appears in Eq. (2.128). The boundary
condition for V‖i reads as:

V‖i =
√

Te

(

θn +
√

FT −
1

2
√
FT

θT −
2φ
Te
θφ

)

, (2.128)

where

θφ =

√
Te

2 tanα
∂xφ

φ
, (2.129)

and, therefore, the fourth term in Eq. (2.128) is the contribution to V‖i of the E×B

drift. The boundary conditions for the density n and the potential φ can be derived
by solving for detM = 0, the linear system of equations MX = 0, obtaining:

∂sn =
n

Te
∂sφ, (2.130)

and

∂sφ = − V ′s,i∂sV‖i

sin αFT − cosα∂xV‖i
. (2.131)

Keeping only first order terms in ǫ, Eq. (2.130) and Eq. (2.131) can be written as:

∂sn = − n√
Te

(

1√
FT

+
θn
FT

+
θT

2F 3/2
T

)

∂sV‖i,

∂sφ = −
√

Te

(

1√
FT

+
θn
FT

+
θT

2F 3/2
T

)

∂sV‖i.

(2.132)

For what concerns the boundary condition for the vorticity, this is derived from the
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boundary condition for φ:

ω = ∇2
⊥ (φ+ τTi) = ∂2

yφ+ ∂2
xφ = ∂2

yφ+ O(ǫ2), (2.133)

where ǫ2 terms are neglected, as well as ∂sTi. Moreover, we can use ∂2
yφ = cos2 α∂2

sφ,
where we estimate ∂2

sφ at the MP entrance deriving Eq. (2.131) with respect to s.
Finally, neglecting second order terms in ǫ, and substituting V ′s,i with its expression
in Eq. (2.126), we obtain:

ω = − cos2 α

[(

1
FT

+
1
F 2
T

θT

)

(

∂sV‖i
)2

+ ∂2
sV‖i

√

Te

(

1√
FT

+
θn
FT

+
θT

2F 3/2
T

)]

.

(2.134)
The V‖e boundary condition is derived by using a detailed kinetic treatment of the
electron dynamics in the sheath region, including gradients in the x direction, (see
Ref. [49] and references therein) and reads as:

V‖e =
√

Te

(

± exp (Λ− ηm)− 2φ
Te
θφ + 2 (θn + θT )

)

, (2.135)

where ηm = (φMPE − φwall) /Te, being φMPE−φwall the potential drop between the
MP entrance and the wall, and Λ = log

√

µ/2π. Equation (2.135) is valid in the
limit ρe ≪ λD, i.e. when electrons are magnetized all the way to the wall. The
case ρe & λD leads to complex electron trajectories in the DS, preventing us from
obtaining a simple expression of the V‖e boundary conditions, such as the one in
Eq. (2.135).

To summarize, the set of boundary conditions at the magnetic presheath en-
trance, generalized to the case of hot ions, are:

V‖i =
√

Te

(

θn ±
√

FT ∓
1

2
√
FT

θT −
2φ
Te
θφ

)

, (2.136)

V‖e =
√

Te

(

± exp (Λ− ηm)− 2φ
Te
θφ + 2 (θn + θT )

)

, (2.137)

∂sn = − n√
Te

(

± 1√
FT

+
θn
FT
± θT

2F 3/2
T

)

∂sV‖i, (2.138)

∂sφ = −
√

Te

(

± 1√
FT

+
θn
FT
± θT

2F 3/2
T

)

∂sV‖i, (2.139)

∂sTe = 0, (2.140)

∂sTi = 0, (2.141)

ω = − cos2 α

[(

1
FT

+
1
F 2
T

θT

)

(

∂sV‖i
)2

+ ∂2
sV‖i

√

Te

(

± 1√
FT

+
θn
FT
± θT

2F 3/2
T

)]

,

(2.142)
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where the upper signs are for the case when the coordinate s increases towards the
wall and the lower signs are for the opposite case, corresponding to the upper and
the lower side of the limiter for GBS simulations, respectively. In the τ = 0 limit,
we retrieve Eqs. 33-38 of Ref. [49].

The calculation of the ∂sTe, ∂sTi 6= 0 effects on the GBS boundary conditions is
presented in Appendix A.

In the radial direction the SOL boundaries correspond to the tokamak vessel
wall and to the separatrix. Since most of the particles are lost at the limiter plates,
preventing them from reaching the vessel wall because of cross-field transport, the
conditions applied to the outer edge of the simulation domain do not significantly
impact the turbulence. Ad-hoc boundary conditions are therefore applied at this
location. On the other hand, at the separatrix, the hot plasma reaches the SOL
from the core. In GBS a particle and heat source mimic the plasma outflow from
the core (see Fig. 2.1 and a more detailed description in Sec. 2.4.5). This source is
located at a finite distance from the inner boundary of the domain. The region of
the domain between the source and the inner boundary acts as a buffer region and
it has not to be taken into account for turbulence analysis. Therefore, also in this
case, ad hoc boundary conditions (Dirichlet or Neumann boundary conditions can
be chosen) can be used as the impact on turbulence properties is not significant.

2.4.5 Initial conditions and sources

In GBS simulations n, Te, Ti, φ, and ω are initialized as f(t0) = f0 + f̃(x, y, z),
where f0 is a constant value and f̃ is a fluctuation randomly generated. For V‖e and
V‖i a profile that varies linearly from −cs to cs, going from one side of the limiter to
the other side, is used, instead. The source term for the field f = n, Te, Ti is defined
as

Sf = Af exp
{

−
[

(x− xs)2 /σ2
s

]}

, (2.143)

where xs represents the radial position of the source, Af its strength, and σs its
width. Typically Af = 1 xs = 30, and σs = 2.5. We note that this corresponds to a
poloidally symmetric source, and it implies that no ionisation process takes place in
the SOL. As a matter of fact, transport in the tokamak edge is expected to be larger
on the low-field side with respect to the high-field side, which corresponds to a non-
poloidally symmetric plasma source. To test the importance of a non-poloidally
symmetric source, we also performed simulations with a source localized on the
low-field side and we compared it with a simulation carried out with a poloidally
symmetric source. In the cases analyzed, the two scenarios resulted in a similar
pressure profile and similar turbulence properties. Therefore, the results presented
in the present thesis should not depend on the details of the source used.

The sources inject particle and heat in the domain, building up a pressure gra-
dient, until an instability is triggered and turbulence sets in. Turbulence drives
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transport, also through plasma coherent structures that move in the radial direc-
tion and stream along the field lines until they are lost on the limiter plates or at
the vessel walls. After a transient, a quasi-stationary phase is reached, during which
there is a quasi-stationary balance between injected plasma, turbulent transport,
and losses. Our analysis is typically focused on this quasi-stationary phase.

2.5 The linearized drift-reduced Braginskii equa-

tions and the linear solver

The set of Eqs. (2.93)-(2.98) is linearized assuming that the equilibrium n and T
can be described as f = f00 (1 + x/Lf ), where f00 represents the equilibrium value.
All the other equilibrium fields vanish. For the perturbed quantities, the set of
linearized equations that we consider are:

1
n00Te00

∂n

∂t
=

R

Ln

1
Te00

∂φ

∂y
+

2
BTe00

Ĉ (Te) +
2

Bn00

Ĉ (n)− 2
BTe00

Ĉ (φ)− 1
Te00

∇‖V‖e
(2.144)

∂ (∇2
⊥φ+ τ∇2

⊥Ti)
∂t

= 2B
[

Ĉ(Te) +
Te00

n00

Ĉ(n)
]

+ 2Bτ
[

Ĉ(Ti) +
Ti00

n00

Ĉ(n)
]

+

+
B2

Te00

(

∇‖V‖i −∇‖V‖e
)

(2.145)

∂
[

V‖e + (miβ)/(2me)ψ
]

∂t

1
Te00

= −mi
me

1
n00
∇‖n+

mi
me

1
Te00
∇‖φ− 1.71

mi
me

1
Te00
∇‖Te+

+
mi
me

ν
1
Te00

(

V‖i − V‖e
)

(2.146)

∂V‖i
∂t

= −Te00

n00

∇‖n−∇‖Te − τ
(

Ti00

n00

∇‖n+∇‖Ti
)

(2.147)

∂Te
∂t

1
Te00

=
R

LTe

∂φ

∂y
+

4
3B

[7
2
Ĉ(Te) +

Te00

n00
Ĉ(n)− Ĉ(φ)

]

+

+
2
3

0.71
(

∇‖V‖i −∇‖V‖e
)

− 2
3
∇‖V‖e (2.148)

∂Ti
∂t

1
Ti00

=
R

LT i

∂φ

∂y
+

4
3B

Ĉ(Te) +
4

3B
Te00

n00
Ĉ(n)− 4

3B
Ĉ(φ)− 2

3
∇‖V‖e −

10
3B

τĈ(Ti).

(2.149)

According to non-local, linear studies of curvature driven modes and drift waves
(see Refs. [50,36]), the scale length of the turbulence in the radial direction is larger
than in the poloidal direction, i.e. ky/kx ∼

√

kxLp ≫ 1. Therefore, we ignore the
radial mode dependence and assume ky ≫ kx. As a consequence, the curvature
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operator is defined as:

Ĉ =
[

cos
y

a
+
y

a
ŝ sin

y

a

]

∂y, (2.150)

and the Laplacian operator as:

∇2
⊥ =

[

1 +
(

y

a
ŝ
)2
]

∂2
y . (2.151)

In general, the perturbed quantities can be written in the form fn(y, z, t) =
fn(y) exp(inzϕ + γt), where n is the toroidal mode number, γ is the linear growth
rate of the mode, and zϕ is the toroidal angle. This allows to reduce Eqs. (2.144)-
(2.149) to a one-dimensional eigenvalue problem in the y direction for γ, as the
parallel derivative can be evaluated as a combination of the poloidal derivative and
the toroidal mode number, as ∇‖fn = [(a/q)∂yfn + infn] exp(inzϕ + γt).

We have developed a toroidal modes decomposition code that solves the resulting
eigenvalue problem. We discretize y = [0, Ly] with Ny points, y1, · · · , yi, · · · , yNy ,
with yi = (i− 1)Ly/(Ny − 1) and we evaluate n, φ, Te and Ti at these points. The
quantities ψ and V‖i are evaluated on Ny − 1 points, y1, · · · , yi, · · · , yNy−1, with
yi = (i− 1/2)Ly/(Ny − 1) for ψ and V‖i. We denote the grid on which we evaluate
n, φ, Te and Ti as the unshifted grid, while the grid for ψ and V‖i is referred to as
the shifted grid. We also denote ∆y = Ly/(Ny − 1). We introduce the vector x =
[n1, · · · , nNy , φ1, · · · , φNy , ψ1, · · · , ψNy−1, V‖i,1, · · · , V‖i,Ny−1, Te,1, · · · , Te,Ny , Ti,1, · · · ,
Ti,Ny ], and rewrite Eqs. (2.144)-(2.149) as:

L
∂

∂t
x = Mx, (2.152)

where:

L =





















Uu Zu,u Zs,u Zs,u Zu,u Zu,u
Zu,u Dy,2u,u Zs,u Zs,u Zu,u τDy,2u,u
Zu,s Zu,s −me/miDy,2s,s − β/2 Zs,s Zu,s Zu,s
Zu,s Zu,s Zs,s Us Zu,s Zu,s
Zu,u Zu,u Zs,u Zs,u Uu Zu,u
Zu,u Zu,u Zs,u Zs,u Zu,u Uu





















, (2.153)
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and

M =







































2Cu,u R/LnD
y,1
u,u+ Dz,1s,uD

y,2
s,u −Dz,1s,u 2Cu,u Zu,u

−2Cu,u

2Cu,u Zu,u Dz,1s,uD
y,2
s,u Zs,u 2Cu,u τ2Cu,u

−Dz,1u,s Dz,1u,s νDy,2s,s+ Zs,s −1.71Dz,1u,s Zu,s
+ [(1 + 1.71ηe)β/2R/Ln]Dy,2s,s

−Dz,1u,s Zu,s [(1 + ηe)β/2R/Ln ]Dy,2s,s+ Zs,s −Dz,1u,s −τDz,1u,s
+ [τ(1 + ηi)β/2R/Ln]Dy,2s,s

4/3Cu,u R/LnηeD
y,1
u,u+ 2/3 1.71Dz,1s,u −2/3Dz,1s,u 14/3Cu,u Zu,u

−4/3Cu,u

4/3Cu,u R/LnηiD
y,1
u,u+ 2/3Dz,1s,u −2/3Dz,1s,u 4/3Cu,u −10/3Cu,u

−4/3Cu,u







































.

(2.154)

We note that U is the identity matrix, Z is the empty matrix, while the D
matrices are discretized differential operators for which the first superscript indicates
the variable with respect to which the derivative is calculated, the second superscript
indicates the order of the derivative. For every matrix the first subscript indicates
the shifted (s) or unshifted (u) grid on which the operator is acting, the second
subscript indicates the grid type or the resulting variable. Both Du,u and Ds,s are
square matrices, the first with Ny ×Ny dimensions and the second with (Ny − 1)×
(Ny − 1) dimensions. The generic differential operators are written as:

Dk,pBi =
∂kB

∂yk

∣

∣

∣

∣

∣

y=yi

≃ 1

(∆y)k

p/2
∑

n=−p/2
Ak,pn Bi+n, (2.155)

where p is the accuracy order of the scheme. Coefficients for Du,u and Ds,s are
similar. Coefficients Ank are obtained by Taylor expanding Bi+n = B (yi+n) around
yi. Coefficients for Du,s and Ds,u are obtained in a similar way by replacing i
by i + 1/2. The C matrix is the curvature operator, constructed by combining
the appropriate differential operators defined above, according to Eq. (2.150). We
remark that the parallel derivative is calculated as ∂zfn = a/q∂yfn + infn.

The eigenvalue problem is solved using three different approaches. The first one
is the direct solution of the problem associated to Eq. (2.152), providing the whole
spectrum of eigenmodes and eigenvalues of the system. This was accomplished by
using the LAPACK library [51]. The second method is an iterative solver that
integrate the time evolution of the system (2.152) by discretizing it with an implicit
scheme in the form:

xt+∆t − xt

∆t
= (1−Θ)L−1Mxt + ΘL−1Mxt+∆t, (2.156)

where the choice of Θ = 0 leads to a fully explicit scheme, while Θ 6= 0 leads to an
implicit scheme. The growth rate is calculated by comparing the solution at two
different time steps. The third approach is based on considering the time evolution
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of the system (2.152) and evaluating the exponential of the matrix L−1M∆t, having
fixed a desired time step ∆t. The employed method is the Padé approximation
described in Ref. [52]. The growth rate can be calculated comparing the solution
at two different time steps. The calculation of the exponential matrix is costly, but
the successive iterations are extremely fast. The iterative solver is usually faster
than the other two methods. We have verified that the three methods, applied to
the same set of parameters, give similar results. For the linear global calculations
presented in the present thesis we use the spectral solver with a fourth order finite
difference scheme.

The linear problem can also be solved by a field line following approach. In this
case each perturbed quantity is Fourier decomposed in the y direction: f (y, z, t) ∝
exp(ikyy + γt). The ∂y operator is substituted by iky and the parallel derivative
is calculated directly on the discretized parallel direction z with a finite difference
scheme. Within this approach, the Laplacian operator is:

∇2
⊥ = −k2

⊥ = −k2
y



1 +

(

z

q
ŝ

)2


 , (2.157)

and the curvature operator is defined as Ĉ = ikyC, where C = cos(z/q) +
(z/q) ŝ sin(z/q).
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Chapter 3

Linear modes in the tokamak SOL

3.1 Introduction

Ballooning modes (BM) and drift waves (DW) are thought to be the instabilities
that play the major role in the edge and SOL dynamics. The linear and non-
linear properties of BM and DW have been studied extensively (see, for example,
Refs. [11,26,22,6,53,54,55,56,57,58,59,60,61,25,39,40,62,63,64,65,66]). Ballooning
modes are driven unstable in the bad curvature region [53, 54, 55, 56, 57, 58], in the
presence of resistivity or finite electron mass, or, in their absence, if the plasma β
is sufficiently high. Drift waves, on the other hand, arise from E ×B convection
of the electron density profile, and they become destabilized in the presence of
a non-adiabatic electron response, due to, e.g., resistivity or finite electron mass
[62, 63, 64, 65, 66].

In agreement with experimental results, past studies carried out with low-frequency
non-linear electromagnetic models (both fluid and gyro-fluid) have showed that DW
and BM instabilities determine the plasma turbulent dynamics [67, 11, 26, 22, 6],
without, however, clarifying their relative importance, and non-linear simulations
of edge and SOL turbulent dynamics have addressed both instabilities. The SOL
region, in particular, is characterized by a wide range of density gradients and re-
sistivities [68, 69, 70, 71, 67, 72, 73, 74, 75], allowing the interplay between E × B

convection and curvature effects to change considerably, depending on the plasma
scenario.

The present chapter constitutes a first step in the understanding of the relative
importance of DW and BM, and of their branches, by defining the linear-mode
regimes in the SOL parameter space, i.e. pointing out the fastest growing linear
instability once the parameters that characterize a SOL scenario are given, in par-
ticular the SOL plasma width. Leveraging the study presented here, in Chap. 4
we study the turbulent regimes, i.e. we identify the linear instability driving non-
linear transport, considering a plasma gradient that is not fixed a priori, but it is

43



Chapter 3. Linear modes in the tokamak SOL

the self-consistent result of the interplay between turbulent transport and plasma
losses at the vessel wall. It is noted that modes other than BM and DW could
become unstable in the edge and SOL regions of tokamak plasmas. Among those,
we mention peeling-ballooning modes, external kinks, and sheath modes [76,77,78],
while trapped electron modes are stable in the SOL due to the fact that the bounce
frequency of trapped electrons is smaller than the collision frequency. To start with
a relatively simple system, we consider the cold-ion regime, therefore ion tempera-
ture gradient modes [6, 60] are excluded. The description of these modes, and, in
general, the role of finite ion temperature will be the subject of Chap. 5.

Our study provides a simple way of identifying the underlying instabilities for a
given set of parameters, a starting point for the interpretation of non-linear simula-
tions. Our stability study is based on a linearization of the drift-reduced Braginskii
fluid equations described in Chap. 2, in s− α geometry, in the cold ion limit, with
a toroidal limiter placed on the tokamak high-field side. The relative simplicity
of the model chosen allows to capture the fundamental properties of both BM and
DW by retaining density and temperature gradients, magnetic field curvature, mag-
netic shear, resistivity, electron inertia, and finite β effects. Within this linear fluid
framework, we remark that the main parameters characterizing the SOL are: the
typical gradient scale length, Ln, the ratio between the density and the electron
temperature gradient length, ηe = Ln/LTe , the plasma β, the parallel resistivity, ν,
the magnetic shear, ŝ, the tokamak major and minor radii, R and a, and the safety
factor q.

The chapter is organized as follows: in Sec. 3.2 we present the main charac-
teristics of BM and DW. Sec. 3.3 is focused on the transition among the different
instabilities, in order to define the linear-mode regimes in the SOL parameter space,
while Sec. 3.4 demonstrates how our analysis can be used to interpret the results of
SOL studies. Finally, we draw our conclusions in Sec. 3.5. The study presented in
this chapter has been the subject of a recent publication [79].
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3.2 The linear SOL instabilities

To study the plasma instabilities present in the SOL, we consider the drift-reduced
linearized Braginskii equations, in the cold ion limit:

∂n

∂t
=

R

Ln

∂φ

∂y
+ 2Ĉ (Te + n− φ) +∇‖∇2

⊥ψ −∇‖V‖i,

∂∇2
⊥φ

∂t
= 2Ĉ (n + Te) +∇‖∇2

⊥ψ,

∂ψ

∂t

β

2
− me
mi

∂

∂t
∇2
⊥ψ = ν∇2

⊥ψ +∇‖ (φ− n− 1.71Te) + (1 + 1.71ηe)
β

2
R

Ln
∇2
⊥ψ,

∂Te
∂t

= ηe
R

Ln

∂φ

∂y
+

2
3

2Ĉ
(7

2
Te + n− φ

)

+
2
3

1.71∇‖∇2
⊥ψ −

2
3
∇‖V‖i,

∂V‖i
∂t

= −∇‖ (n + Te) +
β

2
R

Ln
(1 + ηe)∇2

⊥ψ,

(3.1)
where we have used V‖e = −∇2ψ. A number of instabilities are described by
the system of Eqs. (3.1). In the following two sections, Sec. 3.2.1 and 3.2.2, we
concentrate our attention on the BM and DW.

Ballooning modes are interchange-like modes driven by the curvature of the
magnetic field lines and plasma pressure gradient, unstable in the presence of col-
lisions or finite electron mass, or, in their absence, if the plasma β is sufficiently
high to allow magnetic field lines bending. A simple explanation of the mechanism
leading to the ballooning mode instability can be found in Ref. [6]. We can split
the electron diamagnetic drift defined by Eq. (2.50) in two contributions:

V∗e = +
c

en
∇× peb

B
− 2

cTe
eB

b× κ, (3.2)

where we have used the identity ∇ × (b/B) = 2/B (b× κ) [6]. Since the diamag-
netic velocity appears in terms of the form ∇ · (nV∗e) in the continuity equation,
the first term on the right hand side of Eq. (3.2) does not contribute to the first
equation of the system of Eqs. (3.1). The second term leads to a drift in the
direction perpendicular to both b and κ, which is responsible for the ballooning
instability on the low field side of a tokamak (see Fig. 3.1 from Ref. [6]). On the
left of the figure the plasma is more dense, leading to a density gradient pointing
to the left. The magnetic field points towards the figure, generating a diamagnetic
drift shifting the electrons downwards. In presence of a small density perturbation
(represented by the waves), a charge separation is generated, resulting in an elec-
tric field. The electric field is in turn responsible for the appearance of an E ×B

drift that amplifies the original density perturbation, leading to an instability. The
opposite situation at the high field side of the torus, where κ and ∇n point into
opposite directions is, instead, stable, because the initial density perturbation is
damped by the particle flow due to the generated E × B drift. It is clear from
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Figure 3.1: Rosenbluth-Longmire picture of curvature driven instabilities. The initial density
perturbation results in a charge separation due to the diamagnetic drifts. This leads to the
generation of an electric field, that in turn creates a E ×B drift that amplifies the original
perturbation. Source: Ref. [6].

this picture that the instability requires a non-vanishing phase shift between the
density and the potential perturbations. For the shift to exist, the adiabaticity has
to be broken by finite resistivity, finite electron mass, or electromagnetic effects,
giving rise to resistive ballooning modes (RBM), inertial ballooning modes (InBM),
or ideal ballooning modes (IdBM). A similar scenario describes the rising of temper-
ature driven instabilities, but the density is replaced by the temperature. A more
complete description of the ion temperature gradient mode will be given in Chap.
5.

The DW instability is caused by E × B convection of the plasma pressure
accompanied by the breaking of the electron adiabaticity in Ohm’s law, which is
due to resistivity or finite electron mass [39,40]. A simple picture of the mechanism
driving the DW instability is described in Ref. [80]. In Fig. 3.2 we consider a plasma
with a density gradient pointing downwards. In presence of a density perturbation,
if we assume a plasma close to adiabaticity, zones of high density correspond to zone
of high electric potential and viceversa. The modulation of the electric potential
causes the rise of an electric field and, consequently, of an E×B drift. The E×B

velocity, in presence of the density gradient, convects high density plasma to the left
of density peak in the perturbation and low density plasma to the right of the density
peak, generating a propagation of the density perturbation to the left, in the same
direction of the electron diamagnetic velocity. In the presence of finite resistivity
or finite electron mass the DW is destabilized, giving rise to the resistive drift wave
(RDW) or the inertial drift wave (InDW). Electromagnetic effects stabilize the DW
instability, as shown in Sec. 3.3.5. For DW typically γ ∼ ω∗, ky ∼ 1, while k‖ takes
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δn<  δΦ<  δn<  δΦ<  δn>  δΦ>  

∇n

de

Figure 3.2: Mechanism for the generation of the drift wave. In adiabatic conditions, in
presence of a density perturbation, an electric field is generated. In turn, this creates an
E × B velocity that, in presence of a density gradient, convects high density plasma to the
left of a peak in the density perturbation, and low density plasma to the right of a peak. This
results in a movement of the density perturbation to the left, giving rise to a wave that moves
in the electron diamagnetic velocity direction, the so called drift wave. Source: Ref. [80].

a finite value.

In the following we describe separately the main properties of BM and DW in
detail. This is fundamental in order to identify the parameter regime where those
modes dominate, which is the subject of Sec. 3.3.

3.2.1 Ballooning instabilities

For the study of BM, we simplify the system of Eqs. (3.1), avoiding the coupling with
sound waves, i.e. by considering the limit k‖ ≪ γ (in dimensional units cs0k‖ ≪ γ),
and therefore neglecting the V‖i dynamics. We also drop the compressibility terms
due to magnetic curvature, ascribed to VE×B and V∗e convection, in the continuity
and temperature equations, because they are much smaller than the R/Ln terms.
Finally, we neglect the ∇‖ terms in the continuity and in temperature equations
and the diamagnetic term, ∇‖ (n+ 1.71Te), in Ohm’s law, to avoid coupling with
DW, therefore assuming ω∗ < γ, where ω∗ = kyR/Ln is the diamagnetic frequency.
In the fluxtube geometry, Eqs. (3.1) reduce to:

γn =
R

Ln
ikyφ,

−k2
⊥γφ = 2Ĉ (n+ Te)− k2

⊥∇‖ψ,

γψ
β

2
+ k2
⊥
me
mi

γψ = −k2
⊥νψ +∇‖φ+ ik⊥ (1 + 1.71ηe)

β

2
R

Ln
ψ,

γTe = ηe
R

Ln
ikyφ

(3.3)
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In the following subsections we detail the main characteristics of the resistive, the
inertial, and the ideal branches of the BM (RBM, InBM and IdBM, respectively).
We find that in all cases the maximum growth rate is γmaxB =

√

2R/Lp. The RBM
and InBM have γ → γmaxB for k‖ → 0, therefore the fastest growing mode has
the smallest possible k‖, approaching the minimum allowed value k‖ ∼ 1/(2πq).
The poloidal mode number ky can vary within a range set by the competition
between parallel and perpendicular dynamics (lower ky limit) and by the plasma
compressibility (upper ky limit). On the other hand, the IdBM is a global instability
that develops with the maximum growth rate at smallest possible ky.

Resistive ballooning mode

The resistive branch of the ballooning mode is destabilized by finite parallel resis-
tivity. If electron inertia and electromagnetic effects are neglected, the system of
Eqs. (3.3) can be reduced to the following equation for φ:

γ̂φ
[

1 + (ẑŝ)2
]

= σR
∂2φ

∂ẑ2
+

2C
2γ̂
φ, (3.4)

where we define ẑ = z/q (0 ≤ ẑ ≤ 2π), γ̂ = γ/γmaxB and σR = 1/(γmaxB k2
yq

2ν),
which describes the damping of the mode due to the resistive parallel spread.

Figure 3.3a shows the growth rate as a function of the magnetic shear ŝ and the
σR parameter obtained solving the eigenvalue problem of Eq. (3.4). We observe that
the peak of the growth rate is at ŝ ≃ 0.5 and it decreases asymmetrically moving
away from this value. This result agrees with the observations reported in Refs. [6]
and [81]: for curvature driven modes, positive magnetic shear has a destabilizing
effect, while negative shear reduces the region in which the instability can be driven.
Moreover, in agreement with our findings, in Ref. [56] it was found that a branch
of the resistive ballooning instability was highly unstable up to ŝ = 1. Negative
shear stabilization of RBM has been invoked as one of the possible mechanisms
behind the formation of transport barriers in the L-H transition (see Ref. [82]) as
it reduces the fluxes of particles [11, 61], globally enhancing plasma confinement.
The reduction of the growth rate for high values of the σR parameter is due to
the competition between the parallel dynamics and the ballooning drive, i.e. the
two terms appearing on the right hand side of Eq. (3.4). The ballooning drive
prevails on the parallel dynamics for k2

‖σR . 1, leading to an estimate of the value
of ky below which the growth rate is reduced by the parallel dynamics, given by
kminy = 1/(2πq

√
γmaxB ν) (see Ref. [6]).

An analytical estimate for the eigenvalues of Eq. (3.4) can be calculated in the
strong ballooning regime (see, e.g., Refs. [6] and [56]). Assuming strong ballooning
character of the mode, i.e. a strong localization of the solution near the outer mid
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plane, we can Taylor expand the curvature operator around that location and derive
a Weber-type equation for φ, of the form:

a
d2φ

dz2
+
(

b+ cz2
)

φ = 0, (3.5)

where a = σRγ̂, b = 1 − γ̂2 and c = −γ̂2ŝ2 + ŝ − 1/2. The solution of Eq. (3.5) is
φ = exp (−λ2z2/2), where λ2 = −c/b, for λ2 > 0. Since the coefficients a, b and c
have to satisfy b2 + ac = 0, the relation between γ̂, ŝ and σR is:

σR =
2γ̂2 − γ̂4 − 1

γ̂ŝ− γ̂/2− γ̂3ŝ2
. (3.6)

The accuracy of Eq. (3.6) is higher for localized modes, i.e. with large λ, which
is the case at strong positive and strong negative shear. In Fig. 3.3a the black
line shows the relation between σR and ŝ evaluated from Eq. (3.6) for γ̂ = 0.7.
Compared to the numerical solution of Eq. (3.4), one sees that Eq. (3.6) is able to
describe the effect of magnetic shear on the RBM for ŝ . 0 and for ŝ & 2. In fact
for 0 . ŝ . 2 the strong ballooning assumptions are not satisfied and the analytical
solution is not accurate. We remark that, according to Eq. (3.6), the system is
unstable even for σR → 0.

According to the evaluation of the eigenvalues of Eq. (3.4), γ → γmaxB for ky →
∞. However, the solution of Eqs. (3.1) shows that γ → 0 for ky → ∞. We find
that this is due to magnetic curvature induced plasma compressibility, that is not
included in the simplified system (3.3). This effect can be understood by considering
a relatively simple model, Eqs. (3.1) in the k‖ = 0 limit and assuming constant
curvature evaluated at the outer mid plane. The linear dispersion relation associated
to such a system is [40] b0 + b1γ + b2γ

2 + b3γ
3 = 0, where b0 = 20ik3

y (2−R/Ln) /3,

b1 = 20
(

k2
y − 1

)

k2
y/3 + 2 (1 + ηe) k2

yR/Ln, b2 = 20ik3
y/3, b3 = −k2

y . The solution of
this dispersion relation shows reduction of the growth rate for ky & 0.3γmaxB ; our
numerical tests show that this reduction is due to the compressibility terms in the
density and temperature equations. In conclusion, the RBM grows for kminy < ky <
kmaxy , being kminy = 1/(2πq

√
γmaxB ν) and kmaxy = 0.3γmaxB .

In a previous study (see Ref. [6]) BM analysis demonstrated that their growth
rate is reduced by diamagnetic effects when αD = Rkminy /(LnγmaxB ) > 1. We observe
a reduction of the growth rate at high ky due to compressibility effects, ascribed
to both the diamagnetic terms (ĈTe and Ĉn) and the potential term (Ĉφ) in the
density and temperature equations. Our approach separates the compressibility
damping from the diamagnetic effects in Ohm’s law, while in Ref. [6] the two con-
tributions were not clearly separated.
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Inertial ballooning mode

In the limit of negligible resistivity and negligible electromagnetic effects, one finds
the inertial branch of the BM instability. In this limit Eqs. (3.3) can be reduced to
the following equation for φ:

γ̂φ
[

1 + (ẑŝ)2
]

=
σ2
In

γ̂

∂2φ

∂ẑ2
+

2C
2γ̂
φ, (3.7)

where σIn =
√
mi/

(

γmaxB kyq
√
me
)

, which describes the damping of the mode
due to the inertial parallel spread. In Fig. 3.3b we show the growth rate as a
function of ŝ and σIn, solution of the eigenvalue problem of Eq. (3.7). We observe
that the reduction of γ due to the magnetic shear is asymmetric with respect to the
peak value occurring at ŝ ≃ 0.5. As for the RBM, we remark that the diminution
of the growth rate with σIn is due to the competition between the ballooning drive
and the parallel dynamics terms appearing on the right hand side of Eq. (3.7). By
comparing the two terms on the right hand side of Eq. (3.7), we find the minimum
value of ky, below which we have a considerable suppression of the growth rate,
which is kminy =

√
mi/(2πqγmaxB

√
me). As in the case of RBM, it is possible to solve

the Eq. (3.7) within the strong ballooning limit (see Refs. [6] and [56]). In this case
the coefficients of the Weber equation, Eq. (3.5), are a = σ2

In, b = −γ̂2 + 1 and
c = −γ̂2ŝ2 + ŝ− 1/2 and the relation between σIn, ŝ and γ̂ is given by:

σIn =

√

√

√

√

2γ̂2 − γ̂4 − 1
ŝ− 1/2− γ̂2ŝ2

. (3.8)

In Fig. 3.3b the black line shows the relation between σIn and ŝ given by Eq. (3.8)
for γ̂ = 0.7 compared to the numerical solution of Eq. (3.7), as in the RBM case.
We notice that the agreement between the analytical and the numerical solution
is good for ŝ . 0 and for ŝ & 2. In fact for 0 . ŝ . 2 the strong ballooning
assumption is not valid and the analytical solution, Eq. (3.8), is not accurate. We
remark that, according to Eq. (3.8), the system is unstable even for σIn → 0. As
stated for the RBM case, also for the InBM the compressibility reduces the growth
rate for ky & 0.3γmaxB [40].

Ideal ballooning mode

The ideal ballooning instability persists in the absence of plasma resistivity and
electron inertia, and it is characterized by magnetic field lines bending outward
in the bad curvature region due to interchange drive. In the limit of negligible
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resistivity, ν, and negligible electron mass, me, the system of Eqs. (3.3) can be
reduced to the following equation for φ:

−γ̂φ
[

1 + (ẑŝ)2
]

= −
[

1 + (ẑŝ)2
]

αMHDγ̂

∂2φ

∂ẑ2
− 2C

2γ̂
φ, (3.9)

where αMHD = q2β(1+ηe)R/Ln and it represents the ratio between interchange
drive and parallel spread. The growth rate as a function of ŝ and αMHD is shown
in Fig. 3.3c, as a solution of the eigenvalue problem of Eq. (3.9). When the parallel
stabilization is overcome, i.e. for αMHD ∼ 1, the IdBM is unstable independently
of ky (see Ref. [6]), since αMHD is independent of ky. The magnetic shear has a
stabilizing effect that is not symmetric with respect to the peak value occurring at
ŝ ≃ 0.5, the damping of the growth rate for ŝ < 0 being more effective than for ŝ > 0.
In the strong ballooning regime the coefficients of the Weber equation, Eq. (3.5),
associated with Eq. (3.9) are: a = 1, b = αMHD(1− γ2), c = αMHD(−ŝ2 + ŝ− 1/2).
For the IdBM case the analytical solution in the strong ballooning limit leads to
the relation among αMHD, ŝ and γ̂ given by:

αMHD =
ŝ− 1/2− ŝ2

2γ̂2 − γ̂4 − 1
. (3.10)

The black continuous line in Fig. 3.3c shows the relation between αMHD and
ŝ, Eq. (3.10), for γ̂ = 0 (marginal ideal stability), while the dotted line shows the
same relation for γ̂ = 0.5, compared to the numerical solution of Eq. (3.9). The
numerical solution of Eq. (3.9) shows good agreement with the solid curve in Fig. 1
of Ref. [53], which was obtained following the hypothesis described in Ref. [83]. In
that case the marginal ideal stability was computed from the ideal MHD energy
principles, imposing zero boundary conditions in the poloidal direction. We remark
that, according to Eq. (3.10), the system is stable for αMHD → 0, showing the
existence of a pressure threshold for the destabilization of the IdBM. As in the
RBM and InBM cases, when compressibility effects are retained in Eqs. (3.1), we
verified a reduction of the growth rate with increasing ky that becomes important
for ky & 0.3γmaxB [40]. Therefore the maximum growth rate of the IdBM develops
for ky → 0.

3.2.2 Drift Wave instability

In order to model the DW instability we simplify Eqs. (3.1) by neglecting the sound
waves coupling, i.e. by assuming γ ≫ k‖. Moreover, we turn off the balloon-
ing drive, i.e. the curvature terms in the vorticity equation, in order to exclude
BM from the system. We also neglect the compressibility terms in the continuity
and temperature equations, since they have a stabilizing effect that we ignore for
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ŝ

α
M

H
D

 

 

−3 −2 −1 0 1 2 3

0.2

0.4

0.6

0.8

1

1.2

1.4

γ
/
γ
m
ax

B

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c)

Figure 3.3: The normalized growth rate of the resistive ballooning mode (a), γ/γmaxB , solution
of Eq. (3.4), is plotted as a function of ŝ and σR; the black line shows the analytical solution
given by Eq. (3.6) for γ/γmaxB = 0.7. The normalized growth rate of the inertial ballooning
mode (b), γ/γmaxB , solution of Eq. (3.7), is plotted as a function of ŝ and σIn; the black line
shows the analytical solution given by Eq. (3.8) for γ/γmaxB = 0.7. The normalized growth
rate of the ideal ballooning mode (c), γ/γmaxB , solution of Eq. (3.9), is plotted as a function
of ŝ and αMHD ; the dotted black line shows the analytical solution for γ/γmaxB = 0.5, while
the continuous black line shows the ideal marginal stability, γ = 0, both given by Eq. (3.10).
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sake of simplicity. The reduced system of equations able to take into account the
fundamental elements of the DW is:

γn = iky
R

Ln
φ− k2

⊥∇‖ψ,

−k2
⊥γφ = −k2

⊥∇‖ψ,

γψ
β

2
+
me
mi

γk2
⊥ψ = −k2

⊥νψ +∇‖ (φ− n− 1.71Te) + ik⊥ (1 + 1.71ηe)
β

2
R

Ln
ψ,

γTe = ikyηe
R

Ln
φ− k2

⊥
2
3

1.71∇‖ψ.
(3.11)

We analyze this system in more detail by separating the resistive and the inertial
branches of the DW.

Resistive drift waves

In the case of resistive DW (RDW) the adiabaticity is broken by the presence of
a finite parallel resistivity. Neglecting electron inertia and electromagnetic effects,
the system of Eqs. (3.11) can be reduced to the following equation for φ:

γ̌k2
⊥φ =

∂2φ

∂ž2
+ 2.94

∂2(k2
⊥φ)

∂ž2
− 1
γ̌

[iky (1 + 1.71ηe)]
∂2φ

∂ž2
, (3.12)

where ž = z
√

νR/Ln, γ̌ = γLn/R, k2
⊥ = k2

y [1 + (žαRŝ)2], and αR =
√
Ln/(q

√
νR).

In Fig. 3.4 the growth rate of the fastest growing mode, found from Eq. (3.12) and
the corresponding ky are shown as a function of ŝ and αR, assuming ηe = 1. Mag-
netic shear damps the instability almost independently of αR in the observed range
of values, with the maximum growth rate at ŝ = 0. The typical wavenumber of the
fastest growing mode is in the range 0.2 < ky < 0.8. We remark that for ŝ = 0, with
the substitution ∂/∂z → ik‖, Eq. (3.12), can be reduced to an algebraic equation,
νk2
yγ

2 + k2
‖
(

1 + 2.94k2
y

)

γ − (1 + 1.71ηe) ik2
‖kyR/Ln = 0, with a maximum growth

rate of γmaxRDW ≃ 0.085 (1 + 1.71ηe)R/Ln at ky ≃ 0.57 and k‖ ≃ 0.24
√

νR/Lp [40].
We note that the influence of magnetic shear on the RDW has been discussed, for
example, in Ref. [84], in the collisionless limit, and in Ref. [85], with the inclusion
of resistivity. For a constant value of R/Ln, in both cases it has been found that
the DW instability in a sheared slab geometry is unconditionally stable. We find
that the growth rate of DW is suppressed by shear effects, but the instability is not
unconditionally stable for ŝ 6= 0. In Refs. [84] and [85] the radially non-local DW
dispersion relation is studied, neglecting the electron temperature dynamics and
assuming k‖ = 0 at the center of the flux tube. In our approach we allow k‖ 6= 0,
leading to the development of an unstable DW instability, even in the presence of
magnetic shear.
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Inertial drift waves

In the inertial branch of the DW (InDW) the electron adiabaticity is broken by the
presence of a finite electron mass. Neglecting resistivity and electromagnetic effects,
the system of Eqs. (3.11) can be reduced to the following equation for φ:

γ̌2k2
⊥φ =

∂2φ

∂z̄2
+ 2.94

∂2(k2
⊥φ)

∂z̄2
− 1
γ̌

[iky (1 + 1.71ηe)]
∂2φ

∂z̄2
, (3.13)

where z̄ = zR
√
me/(Ln

√
mi), k2

⊥ = k2
y [1 + (žαI ŝ)2] and αI = Ln

√
mi/(qR

√
me).

In Fig. 3.5 the solution of Eq. (3.13) and the ky related to the maximum growth
rate are shown as a function of ŝ and αI , assuming ηe = 1. As for the RDW, the
maximum growth rate is reached for ŝ = 0 and magnetic shear causes a damping of
the instability, almost independently of αI in the observed range of values. We note
that the magnetic shear damps more efficiently the RDW instability than the InDW
instability. For example, the growth rate of the InDW is reduced approximately to
30% of the shearless value at ŝ = ±3 while, in the RDW case, the growth rate
is reduced to approximately 10%. The typical wavenumber of the fastest growing
mode is in the range 0.35 < ky < 0.6. For the ŝ = 0 case, Eq. (3.13) can be reduced
to an algebraic equation, me/mik2

yγ
3 +k2

‖
(

1 + 2.94k2
y

)

γ−(1 + 1.71ηe) ik2
‖kyR/Ln =

0, with a maximum growth rate given by γmaxInDW ≃ 0.17 (1 + 1.71ηe)R/Ln, at ky ≃
0.57 and k‖ ≃ 0.2R

√
me/(Lp

√
mi) [40]. The maximum growth rate is double the

value obtained for RDW.

3.3 Parameter space of the linear instabilities

We now identify the parameter space of the previously described linear instabilities.
Our goal is to provide a framework according to which, given the set of parameters
necessary to characterize the SOL, it is possible to state which is the dominant
linear mode, i.e. the one that has the fastest growth rate. Within our model, the
parameters necessary to characterize the SOL are: R/Ln, ν, me/mi, β, ŝ, and q. In
Fig. 3.6 the different regimes of linear instabilities are schematically identified in the
parameter space. Our analysis starts from the electrostatic limit, β = 0, represented
in Fig. 3.6a. Since DW have a growth rate of the order γ ∼ ω∗ ∼ R/Ln, while BM
growth rate scales as

√

R/Ln, we expect the DW to overcome the BM growth rate
for sufficiently steep density gradients. In fact, four regimes can be distinguished:
at high values of R/Ln the DW is the dominant instability, the resistive branch
prevailing at high resistivity and the inertial branch at low resistivity. For low
values of R/Ln BM dominate, in particular the resistive branch at high resistivity
and inertial branch at low resistivity. Finite β effects are described in Fig. 3.6b.
At high values of R/Ln, for increasing values of β, first DW suppression due to
electromagnetic effects is observed and then the IdBM becomes unstable, once the
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ŝ

α
R

=
1
/
(q

√

R
/
L

n
ν)

 

 

0 1 2 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

γ
/
(R

/
L

n
)

0.05

0.1

0.15

0.2

a)

0.2

0.
2

0.2

0.3

0.
3

0.
4

0.
4

0.3

0.3

0.
5

0.5

0.4
0.5
0.6

0.7
0.8

0.
6

ŝ
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Figure 3.4: The normalized growth rate of the resistive drift wave, γLn/R, maximized over
ky, (a) and ky of the maximum growth rate (b), solution of Eq. (3.12), are plotted as a function
of ŝ and αR. ŝ > 0 is represented, since Eq. (3.12) is invariant for ŝ→ −ŝ transformation.
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Figure 3.5: The normalized growth rate of the inertial drift wave, γLn/R, maximized over
ky, (a) and ky of the maximum growth rate (b), solution of Eq. (3.13), are plotted as a function
of ŝ and αI . ŝ > 0 is represented, since Eq. (3.13) is invariant for ŝ→ −ŝ transformation.
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αMHD threshold is overcome. For small values of R/Ln, the RBM and the InBM
dominate at small β and the IdBM at high β.

In the following paragraph we first provide a description of the transition among
the different instabilities in the electrostatic case. We then discuss the role of
electromagnetic effects.

3.3.1 Transition between resistive ballooning mode and re-

sistive drift wave

An estimate of the transition between the RDW and RBM can be obtained by com-
paring their maximum growth rates. In the shearless case, a very simple estimate
can be obtained by equating the maximum growth rate for RDW, γmaxRDW , defined in
Sec. 3.2.2, to the maximum growth rate for RBM, γmaxB , defined in Sec. 3.2.1. One
obtains a transition value of R/Ln, that is R/Ln = 2(1 + ηe)/[0.085(1 + 1.71ηe)]2 ≃
75.2 at ηe = 1.

In the general case, the threshold value of R/Ln depends on ŝ, σR and αR
and is obtained by comparing the solutions of Eqs. (3.4) and (3.12), namely γRBM
and γRDW , respectively. We identify the R/Ln threshold in correspondence to
γRDW/γRBM = 1. In the following analysis we fix αR = 0.35, since the DW depend
weakly on this parameter. In Fig. 3.7a we show the R/Ln threshold as a function
of ŝ and σR. The R/Ln threshold decreases for increasing σR, since the RBM is
suppressed by the parallel dynamics. For ŝ = 0, while at σR ≃ 0 the transition
between RDW and RBM occurs at R/Ln ≃ 75 (in agreement with our analytical
estimate), at σR ≃ 0.5 the RDW grows faster than the RBM for R/Ln & 45. The
R/Ln threshold decreases to R/Ln ≃ 15 for ŝ = 0 at σR ≃ 3. The decrease of
the R/Ln threshold is more noticeable for ŝ < 0, as the RBM is more efficiently
suppressed by negative shear (see Fig. 3.3a) and the asymmetry with respect to
ŝ = 0 becomes evident at high values of σR. In the white region the R/Ln threshold
is at values greater than 300 and the RBM always prevails on the RDW.

3.3.2 Transition between inertial ballooning mode and in-

ertial drift waves

In order to estimate the threshold value of R/Ln above which the InDW grows faster
than the InBM we can proceed as for the resistive case. For ŝ = 0, a simple analytical
estimate of the threshold can be obtained by equating the maximum growth rate for
InDW, γmaxInDW , defined in Sec. 3.2.2, to the maximum growth rate for InBM, γmaxB ,
defined in Sec. 3.2.1. The normalized gradient below which the InBM growth rate
is larger than the one for the InDW is R/Ln = 2(1 + ηe)/[0.17(1 + 1.71ηe)]2 ≃ 18.8
at ηe = 1. In general, the threshold depends on ŝ, σIn and αI and can be evaluated
comparing the solution of Eqs. (3.7) and (3.13), γInBM and γInDW , respectively,
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identifying the R/Ln threshold in correspondence to γInDW/γInBM = 1. In Fig.
3.7b we show the R/Ln threshold as a function of ŝ and σIn, for αI = 0.30. The
R/Ln threshold decreases for increasing σIn, since the InBM is suppressed by the
parallel dynamics. As for the RBM, the decrease is more evident for ŝ < 0. For
σIn ≃ 0 we observe that the R/Ln threshold is very close to the analytical estimate
previously calculated for ŝ = 0 and that, because of the shear damping of the
InDW, at ŝ = ±1 the transition occurs at R/Ln ≃ 55. The threshold decreases to
R/Ln ≃ 10, due to the smaller growth rate of the InBM at σIn ≃ 0.5 and ŝ = 0. In
the white region of Fig. 3.7b the InDW always prevails on the InBM.

3.3.3 Transition between resistive drift wave and inertial

drift wave

In the parameter space region where R/Ln is sufficiently high, and therefore the
DW are the dominant instability, the relative influence of the resistive term with
respect to the inertial term governs the transition between the RDW and the InDW.
The threshold value of resistivity for the transition between these two branches of
the DW can be roughly estimated by balancing the resistive term and the inertial
term in Ohm’s law: if ν > γme/mi, resistive effect dominates, leading therefore
to the development of the RDW instability, otherwise inertial effects do, i.e. the
InDW prevail.

A more precise estimate of the transition value of the resistivity can be obtained
by studying the behaviour of the system of Eqs. (3.11), considering the β = 0 limit,
as a function of δ = νLnmi/(Rme), which defines the ratio between the resistive
and inertial effects. In Fig. 3.8a, we plot the growth rate of DW as a function of δ,
for different values of ŝ. From low to high values of δ, one observes the transition
from the InDW to the RDW region. The maximum RDW growth rate is half the
one for the InDW for ŝ = 0. In general, it is always smaller than the one for InDW,
even for ŝ 6= 0. Therefore one can obtain the value of δ at which the transition
takes place, by evaluating the value of δ at which the growth rate is the average of
the growth rates for RDW and InDW. We observe that, for increasing ŝ, the value
of δ at which the transition from InDW to RDW occurs decreases. This is plotted
in Fig. 3.8b: the δ threshold passes from δ ∼ 3.55 for ŝ = 0 to δ ∼ 1.12 for ŝ = 5.

3.3.4 Transition between resistive ballooning mode and in-

ertial ballooning mode

The threshold between RBM and InBM has been calculated by comparing the
growth rate of the two linear modes, solutions of Eqs. (3.4) and (3.7), γRBM and
γInBM , respectively. In the resistive limit, γ is a function of ŝ and σR and, in the
inertial limit, it depends on ŝ and σIn, therefore the ratio γInBM/γRBM has to be
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Figure 3.6: Sketch of the linear instability regimes in the parameter space: electrostatic limit
(a) and full electromagnetic analysis (b): different colours identify the region of influence of
different instabilities: resistive ballooning (pink), inertial ballooning (orange), resistive drift
wave (light blue), inertial drift wave (dark blue), ideal ballooning (violet), region of suppression
of drift waves (green).
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Figure 3.7: Transition between resistive drift waves and resistive ballooning mode (a). The
R/Ln value for which the growth rate of the RDW, solution of Eq. (3.12), and of the RBM,
solution of Eq. (3.4), are equal, γRDW = γRB,is plotted as a function of ŝ and σR. In the
white region the RBM always prevails on the RDW for R/Ln > 300. Transition between
inertial drift waves and inertial ballooning mode (b). The R/Ln value for which the growth
rate of the InDW, solution of Eq. (3.13), and of the InBM, solution of Eq. (3.7), are equal,
γInDW = γInB, is plotted as a function of ŝ and σIn. In the white region the InDW always
prevail on the InBM.
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evaluated as a function of σR, σIn, and ŝ. We observe that the ratio is larger or
smaller than 1, independently of ŝ, in a wide region of the plane (σR, σIn). In
Fig. 3.9 the red surface identifies the region in which the ratio γInBM/γRBM is
larger than 1 for all values of ŝ, i.e. the InBM prevails, while the blue surfaces
identify the region where the ratio γInBM/γRBM is smaller than 1, i.e. the RBM
prevails, independently of ŝ. The narrow regions of the plane (σR, σI) in which the
threshold depends on ŝ are colored in white. The value of σR for which we observe
the transition depends on σIn as σR ≃ 0.56σ1.82

In , which provides therefore a simple
estimate of the transition between RBM and InBM.

3.3.5 The role of electromagnetic effects

We extend the analysis of the linear instability regime to finite β plasmas and there-
fore we consider the effect of the electromagnetic terms on the system of Eqs. (3.1).
Two main phenomena are observed related to finite β: suppression of the DW
instability, and the appearance of the IdBM, when the ideal limit is overcome.

In order to describe the effect of the electromagnetic terms, the simplest model
to consider consists of the system of Eqs. (3.1), excluding the coupling with sound
waves, i.e. k‖ ≪ γ and analyzing the resistive (me/mi = 0) and inertial (ν = 0)
limits. The system can be reduced to the following eigenvalue equation for φ:

γk2
⊥φ = −2Ĉ

{

A0 +
1
A1

[

A02Ĉ
( 1

1.71
− 1

)

+ A2

]}

φ+

+
k2
⊥
A3

{

1− A0 −
1.71
A1

[

A02Ĉ
( 1

1.71
− 1

)

+ A2

]}

∂2φ

∂ẑ2
,

(3.14)

where A0 = Riky/(γLn) − k2
⊥ − 2Ĉ/γ, A1 = 0.88γ − 2.09Ĉ, and A2 = −k2

⊥γ +
0.88ηeRiky/Ln + 1.17Ĉ. In the resistive case X = β/(2ν), 0 < ẑ < 2πq

√
ν, and

A3 = γX + k2
⊥+ k2

⊥XR (1 + 1.71ηe) /Ln, while in the inertial case X = βmi/(2me),
0 < ẑ < 2πq

√

me/mi, and A3 = γX + γk2
⊥ + k2

⊥XR (1 + 1.71ηe) /Ln.

In order to illustrate the role of electromagnetic effects, we consider two specific
cases, which reflect the typical impact of β 6= 0 on the instabilities. The maximum
growth rate of the instability, solution of Eq. (3.14), is plotted in Fig. 3.10 in the
resistive limit for ν = 0.01 and q = 4, and in Fig. 3.11 in the inertial limit, for
me/mi = 2.72 × 10−4 and q = 4. In both cases ηe = 1. Focusing on the resistive
case, a number of observations can be made. For ŝ = 0 (Fig. 3.10a), at high values
of R/Ln, the RDW is suppressed. As it will be demonstrated in the following, this
occurs for β/(2ν) ≃ 1.17Ln/ [R(1 + 1.71ηe)]. We also observe the appearance of the
IdBM instability once the αMHD threshold is overcome. Since αMHD is proportional
to βR/Ln, the β threshold for IdBM is inversely proportional to R/Ln, i.e. the
IdBM develops at lower β for higher values of R/Ln. For ŝ 6= 0 the suppression of
the RDW and the appearance of the IdBM is also observed (see Figs. 3.10b and
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3.10c, that consider ŝ = 1 and ŝ = −1, respectively). With respect to the ŝ = 0
case we also point out: (i) a reduction of the RDW growth rate (high R/Ln) to
half of the shearless value, as expected from Fig. 3.4; (ii) an increase of the RBM
growth rate for ŝ = 1 and a decrease for ŝ = −1 with respect to the shearless value,
as expected from Fig. 3.3a; (iii) an increase of the IdBM growth rate for ŝ = 1
and a decrease for ŝ = −1 with respect to the shearless value, as expected from
Fig. 3.3b. We finally note that for ŝ < 0 IdBM is less suppressed by magnetic shear
than RBM. This is due to the fact that for the characteristic values of αMHD in
Fig. 3.10, the ŝ damping is minimum: for example, for β = 2× 10−3, R/Ln = 50,
we have αMHD = 3.2, consequently the mode is highly unstable for any value of the
magnetic shear (see Fig. 3.3c). On the other hand, we are considering the RBM
instability at high values of σR and the dependence of the growth rate on the shear
is more evident: for the same set of parameters σR = 1.77 and ŝ reduces the growth
rate (see Fig. 3.3a). In the inertial case (Fig. 3.11) similar observations as in the
resistive case can be made. For ŝ = 0 (see Fig. 3.11a), at high values of R/Ln, the
InDW instability is suppressed for βmi/(2me) & 0.17, as it will be shown in the
following. We also observe the appearance of the IdBM instability, at β value that
is inversely proportional to R/Ln. For ŝ = ±1 the remarks made for the resistive
case remain valid.

Now we analyze in details the suppression of the DW instability due to the
electromagnetic effects by considering a relatively simple model. We reduce the
system of Eqs. (3.11) to an algebraic dispersion relation by considering the ŝ = 0
case and substituting ∂/∂z → ik‖, and we consider electromagnetic effects acting on
both the InDW (by setting ν = 0) and the RDW (with me/mi = 0). Within these
hypothesis, the dispersion relation has the form γ̄3b3 + γ̄2b2 + γ̄b1 + b0 = 0, where
γ̄ = γ/ [(1 + 1.71ηe)R/Ln]. In the resistive case the coefficients in the dispersion
relation are: b3 = iX, b2 = ik2

y + Xky, b1 = iZ2
[

(1 + 2.95k2
y)
]

, b0 = Z2ky, being

X = (1 + 1.71ηe) βR/(2νLn) and Z = k‖
√
Ln/

√

νR (1 + 1.71ηe). In Fig. 3.12a we
show the maximum growth rate over ky and k‖ as a function of X. Numerically we
verify that the growth rate is reduced to half of the maximum for X > 1.17, i.e. the
RDW is suppressed by electromagnetic effects for β > 2.34νLn/ [R (1 + 1.71ηe)]. On
the other hand, in the inertial case, b3 = ik2

y + iX, b2 = Xky, b1 = iZ2(1 + 2.95k2
y),

b0 = Z2ky, with X = βmi/(2me) and Z = k‖Ln
√
mi/

[

R
√
me (1 + 1.71ηe)

]

. In
Fig. 3.12b we show the maximum growth rate over ky and k‖ as a function of X:
the growth rate is reduced to the half of the maximum for X > 0.17, i.e. the InDW
is suppressed for β > 0.34me/mi.

To summarize, with the introduction of electromagnetic effects we observe two
main phenomena in our system. At high values of R/Ln the RDW and the InDW
are suppressed at β > 2.34νLn/ [R (1 + 1.71ηe)] and β > 0.34me/mi, respectively.
When the αMHD threshold is overcome, then the IdBM starts to play a role and we
expect the shift of the instability from finite ky values to the smallest allowed ky
value.
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3.4 Examples of linear stability analysis

In this section we use the framework built in Sec. 3.3 to identify and analyze the
linear instability present in three typical SOL scenarios. For this purpose we use
a linear code that solves the system of Eqs. (3.1) as a function of the toroidal
mode number n (see Sec. 2.5 for details) and we identify the dominant instability
according to our parameter space, testing the reliability of our analysis by exploring
the dependence of the instability on ŝ and β. We focus our attention on the following
sets of parameters: first, a parameter set with R/Ln = 10, Ly = 1000, q = 4,
ν = 0.1, me/mi = 2.72 × 10−4, called "low-gradient"; second, a "high-gradient"
parameter set, with R/Ln = 90, ν = 0.01, being the other parameters the same
as in the first set; third, we apply our analysis to a TCV tokamak [86] L-mode
discharge, where the plasma with approximately circular flux surfaces is created
close to the high-field side of the machine, creating a scenario that reproduces the
toroidal limiter configuration considered here: R/Ln = 25, R/LT = 35 Ly = 1610,
R = 1025, q = 3, ν = 3.16× 10−3, me/mi = 2.72× 10−4. The parameter sets used
are summarized in Table 3.1.

We first consider the low-gradient set of parameters. Our analysis indicates that
the SOL corresponding to this parameter set is in the BM dominated regime. In fact,
R/Ln is smaller than the threshold value between RBM and RDW, as calculated
in Sec. 3.3.1, and it is also smaller than the threshold between InBM and InDW,
as calculated in Sec. 3.3.2. Moreover, according to the results shown in Fig. 3.9,
since σR ≃ 0.44 and σI ≃ 5.25, the instability belongs to the resistive branch of
the BM. We first consider the effect of ŝ on the instability. In Fig. 3.13a we show
γ as a function of n, for different values of the magnetic shear, in the β = 0 limit.
Our analysis (see Sec. 3.2.1) shows that the maximum expected growth rate is for
1/(2πq

√
γmaxB ν) < ky < 0.3γmaxB , that in our case corresponds to 0.052 < ky < 1.73,

therefore, the peak growth rate is expected at ky ≃ 1. Since k‖ ≪ ky, we can
estimate the toroidal mode number as n ≃ m/q, where m is the poloidal mode
number, thus the interval can also be expressed as 2 < n < 69. Effectively, the
results of the linear code shows that the maximum growth rate, γ ≃ 0.53γmaxB , is
reached for ky ≃ 0.50, which corresponds to a toroidal mode number n ≃ 20, in
agreement with our estimate. We also observe, as expected from the analysis in
Sec. 3.2.1, the maximum of the growth rate for ŝ ≃ 1 (see Fig. 3.3a). The influence
of electromagnetic effects is studied in Fig. 3.13b, where we show γ as a function of
n for different values of β. We verify the development of the IdBM when the ideal
threshold is overcome. At ŝ = 0 the IdBM growth rate rises up to 0.5γmaxB when
αMHD ≃ 0.58, according to the results shown in Fig. 3.3c, and consequently the
limit for the development of the IdBM is overcome when β > 1.8×10−3. According
to our observations, we remark a shift of the maximum growth rate from finite ky
towards ky → 0, typical of the IdBM instability, at the expected β threshold.

Considering the high-gradient parameter set, from the analysis in Sec. 3.3 we
conclude that it falls in the parameter space region where the RDW is the fastest
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ŝ = 5

a) 0 1 2 3 4 5
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

ŝ
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Figure 3.8: The transition between inertial and resistive drift waves. The drift wave insta-
bility growth rate, γ, solution of Eq. (3.11), is plotted as a function of δ = νLnmi/(Rme) and
ŝ (a) and the value of δ at the transition is plotted as a function of ŝ (b)(in (a) the bullets
indicate the threshold between the two modes).

name 2πa q ν me/mi R/Ln ηe
low-gradient 1000 4 0.1 2.72× 10−4 10 1
high-gradient 1000 4 0.01 2.72× 10−4 90 1
TCV L-mode 1610 3 3.16× 10−3 2.72× 10−4 25 0.71

Table 3.1: List of the parameters for the three cases analyzed in the linear stability
analysis. The TCV L-mode parameter set reflects the equilibrium of shot #42237.
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Figure 3.9: The transition between resistive and inertial ballooning modes. The ratio
γInBM/γRBM between the growth rate of RBM, solution of Eq. (3.4), and of the InBM, solu-
tion of Eq. (3.7), is plotted as a function of σIn and σR; in the red area γInBM/γRBM > 1, in
the blue area γInBM/γRBM < 1, while the white area shows the region where the ratio depends
on ŝ.
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Figure 3.10: Role of electromagnetic effects on the resistive instabilities. The normalized
growth rate γ/γmaxB , solution of Eq. (3.14), is plotted as a function of β/(2ν), R/Ln for ŝ = 0
(a), ŝ = 1 (b), and ŝ = −1 (c).
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Figure 3.11: Role of electromagnetic effects on the inertial case. The normalized growth
rate γ/γmaxB , solution of Eq. (3.14), is plotted as a function of βmi/(2me), R/Ln for ŝ = 0
(a), ŝ = 1 (b), and ŝ = −1 (c).
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growing instability. In fact R/Ln is above both the threshold between RBM and
RDW (see Sec. 3.3.1) and the threshold between InBM and InDW (see Sec. 3.3.2).
Moreover, according to the results shown in Fig. 3.8, for δ ≃ 0.41 (γ ≃ 34.20) the
DW is in the parameter range of the resistive branch, although marginal influence
by inertial effects may be expected. In Fig. 3.14a we show γ as a function of n, for
different values of ŝ, as calculated by the linear code. The maximum growth rate is
γ ≃ 32.15, while, with the considered parameters γmaxRDW ≃ 20.73. The difference is
due to the presence of inertial effects, which increases the growth rate with respect
to the purely resistive case. The analysis in Sec. 3.2.2 shows that the peak growth
rate is expected at ky ≃ 0.57 and, since k‖ ≪ ky, corresponding to n ≃ m/q ≃ 22.
The linear code confirms that the maximum growth rate is reached at ky ≃ 0.57
and n ≃ 22, close to the poloidal and toroidal mode number estimate. The peak
growth rate is observed at ŝ = 0 and, for both ŝ > 0 and ŝ < 0, we remark a
decrease of the growth rate, according to the results in Fig. 3.4. We underline that
in the linear code the curvature term is retained in all the equations, while in the
simplified fluxtube model used to compute the results in Fig. 3.4 it is neglected.
This introduces an asymmetric behaviour of the solutions with respect to ŝ > 0
and ŝ < 0. Finally, we analyse electromagnetic effects on the RDW instability
that we are considering here. In Fig. 3.14b we show γ as a function of n, for
different values of β. For β = 1 × 10−4 we observe that the growth rate decreases
to about 1/3 of the maximum value obtained for β = 1 × 10−5. This is due to
the electromagnetic damping of the RDW. The effect starts to be noticeable for
β > 2.34Lnν/ [R(1 + 1.71ηe)] ≃ 9.59× 10−5, according to Sec. 3.3.5. Since, for the
parameters under consideration, the αMHD limit for the IdBM is overcome when
β & 2.01 × 10−4, we note that there is a window of β values in which the RDW
instability is suppressed and the IdBM is not unstable. For β = 1×10−3 we observe
the appearance of the IdBM instability, where we note the shift of the maximum
growth rate from finite ky to ky → 0, as expected for the IdBM instability. The
maximum growth rate decreases to γ ≃ γmaxB ≃ 18.52, close to the maximum growth
rate of BM instabilities.

Finally we analyze the L-mode discharge in the TCV tokamak. We find that,
according to the parameter space analysis, the SOL of this configuration is in the
InDW region. In fact, for this set of parameters we evaluate δ ≃ 0.46, σR ≃ 20.54,
and σIn ≃ 5.10, therefore inertial effects partially dominate over resistive effects,
as shown in Fig. 3.8. Moreover, since R/Ln ≃ 25, we are in the regime where the
DW grow faster. The highest growth rate of γ = 10.58 is reached at n = 39 and
m = 112, corresponding to ky = 0.44; for comparison we note that the maximum
InDW growth rate for the considered parameters is γmaxInDW = 9.44 at ky = 0.57.
The nature of the instability changes with ŝ. In fact, at ŝ = 2 the InBM prevails,
with the maximum growth rate of γ = 3.42 at n = 13 and m = 40, corresponding
to ky = 0.16. At this ky value, σIn = 43.06, causing a damping of the growth rate
for InBM to γ ≃ 0.3γmaxB ≃ 2.78, according to the parameter space analysis. At
ŝ = −2 both the InBM and the InDW are suppressed.
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Figure 3.12: Role of electromagnetic effects on the drift waves: suppression of the drift
waves growth rate in the resistive limit (a) and in the inertial limit (b) for increasing β.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4

n

γ
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Figure 3.13: Linear growth rate γ, solution of Eqs. (3.1), as a function of the toroidal mode
number n, for different values of ŝ (a), and for different value of β (b), for the "low-gradient"
set of parameters.
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Figure 3.14: Linear growth rate γ, solution of Eqs. (3.1), as a function of the toroidal mode
number n, for different values of ŝ (a), and for different value of β (b), for the "high-gradient"
set of parameters.

3.5 Conclusions

In this chapter we provide a framework to identify the fastest growing instabilities
as a function of the parameters characterizing the tokamak SOL region. We have
identified the regimes of linear instabilities due to the presence of the resistive and
inertial branches of the DW and the resistive, inertial, and ideal branches of the
BM. Starting from a detailed analysis of each instability, we have identified the
boundaries of the SOL parameter space regions dominated by each mode.

In the electrostatic limit, we observe that DW dominates over the BM at steep
gradients. In general, the R/Ln threshold depends on σR = 1/(γmaxB k2

yq
2ν), σIn =

√
mi/

(

γmaxB kyq
√
me
)

, and ŝ (Figs. 3.7a and 3.7b). The transition between RDW
and InDW is governed by the δ = νLnmi/(Rme) parameter and it occurs at δ ≃ 3.55
for ŝ = 0, with the transition value of δ decreasing with the increase of |ŝ| (Fig. 3.8).
The regions of influence of the RBM and the InBM has been evaluated as a function
of σR and σIn, the boundary between those is independent of ŝ for most of the
values of σR and σIn and the transition occurs for σR ≃ 0.56 × σ1.82

In (Fig. 3.9).
Electromagnetic effects cause, at high R/Ln, the damping of the DW instability at
β/(2ν) ≃ 1.17Ln/ [R(1 + 1.71ηe)] in the resistive case, and at βmi/(2me) ≃ 0.17 in
the inertial case (Fig. 3.12). The appearance of the IdBM instability is observed
when the αMHD = q2β(1 + ηe)R/Ln threshold is overcome (Figs. 3.10 and 3.11).

We have used our framework to interpret the results of a linear code that evalu-
ates the growth rate of the SOL instabilities. By considering three different sets of
SOL parameters, we have identified the main instability governing the physical sys-
tem in each scenario, showing that we can predict the dependence of each instability
on magnetic shear and plasma β.
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3.5. Conclusions

We notice that in existing tokamaks R/Ln spans one order of magnitude and ν
two orders of magnitude (see, e.g. Refs. [68, 69, 70, 71, 67, 72, 73, 74, 75]). Both DW
and BM instabilities can exist in this range of R/Ln and both resistive and inertial
effects are important, and therefore we expect the behaviour of the SOL to change
remarkably in these wide intervals of parameters. Our parameter space analysis has
been conceived as a first stage tool to be used in the understanding of turbulence in
the SOL of tokamaks, necessary to interpret the results of non-linear simulations.
This is the subject of Chap. 4 of the present thesis.
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Chapter 4

Tokamak SOL turbulence regimes

in the cold ion limit

4.1 Introduction

The turbulent regimes in the tokamak SOL are identified according to the linear
instability responsible for the perpendicular transport. Four regions of the SOL
operational parameters are determined where turbulence is driven by the inertial
or resistive branches of the ballooning mode or of drift waves. The linear and non-
linear behavior of these modes have been extensively studied [11,26,22,6,53,54,55,
56, 57, 58, 59, 60, 61, 25, 39, 40, 62, 63, 64, 65, 66].

In this chapter we identify the SOL turbulent regimes, determining the instabil-
ity driving turbulent transport, as a function of the SOL operational parameters.
In Chap. 3, we have presented a detailed description of the linear properties of
the BM and DW modes, providing also a tool to identify the nature of the fastest
growing linear modes, once the SOL pressure gradient length is known. This is a
starting point of the present work, where we determine the instability dominating
the nonlinear plasma dynamics, i.e. the mode that leads to the major contribution
to turbulent transport. Here, our analysis considers the pressure scale length as the
self-consistent result of the interplay between plasma losses and turbulent transport,
and that the mode dominating the nonlinear plasma dynamics does not necessarily
correspond to the fastest growing mode. Our study requires therefore the under-
standing of the mechanism leading to the saturation of the linearly unstable modes.
These have been subject of a detailed analysis presented in Ref. [87].

For typical SOL parameters, the saturation is provided by the gradient removal
mechanism, i.e. the saturation of the linear mode due to the non-linear flattening of
the driving plasma gradients. The gradient removal theory provides an estimate of
the plasma pressure scale length as a function of the SOL operational parameters,
in quantitative good agreement with simulation [87] and experimental results [88].
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As a consequence, it also allows us to identify the instability that dominates the
non-linear dynamics. By studying the nature of this instability, we can determine
the SOL turbulent regimes as a function of the SOL operational parameters, i.e.
the safety factor, q, the magnetic shear, ŝ, the resistivity, ν and the ion to electron
mass ratio, mi/me. With respect to Chap. 3, we consider only the electrostatic limit.
As in the rest of the present thesis, our work concentrates on a relatively simple,
circular, inner-wall limited configuration. Understanding a circular configuration is
a starting point for studying more complicated geometries and regimes. We also
report on a set of non-linear simulations that support our methodology to identify
the SOL turbulent regimes. The simulations are performed by using the GBS code.

The chapter is organized as follows. After the Introduction, in Sec. 4.2 we
describe the gradient removal saturation mechanism at play in the SOL, using which
we estimate the equilibrium pressure scale length depending on the SOL operational
parameters. In Sec. 4.3 we describe the SOL turbulent regimes, and we present the
investigation of the transitions among those. Sec. 4.4 is focused on the description of
non-linear simulations carried out with the GBS code, supporting the methodology
previously outlined. Finally, we draw our conclusions in Sec. 4.5. The study
presented in this chapter has been the object of a recent publication [43].

4.2 Estimate of the SOL plasma gradient length

In the SOL, the plasma pressure scale length results from a balance between turbu-
lent radial transport and parallel losses. Different possible mechanisms have been
proposed to provide saturation of the linear modes during the non-linear phase (see,
e.g., Refs. [87,25,26,8]), therefore setting the amplitude of the plasma fluctuations
and the related radial turbulence level. In Ref. [87], two saturation mechanisms are
shown to play a role in the SOL: the growth of the Kelvin-Helmholtz (secondary) in-
stability and the gradient removal mechanism, i.e. the local flattening of the plasma
gradients and associated removal of the instability drive. Analytical estimates and
numerical simulations show that the gradient removal saturation mechanism is at
play in the typical regime of SOL turbulence [87]. In the following we summarize
the main features of the gradient removal mechanism.

Starting from the continuity equation, Eq. (2.93), and the electron temperature
equation, Eqs. (2.97), we can derive a relation between the pressure flux and the
parallel losses at the limiter plates. Ignoring the curvature terms, and the diffusion,
as they are smaller terms in comparison to the E ×B convection and the parallel
terms, in the SOL we have:

∂p

∂t
= −R [φ, p]−

∂
(

pV||e
)

∂z
, (4.1)
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where the Poisson bracket can be written as [φ, p] = ∇ ·Γ, being Γ = p∂yφex −
p∂xφey the adimensionalized pressure flux. Equation (4.1) can be time averaged
during the quasi-steady state phase and along the toroidal and poloidal directions.
All quantities are written as f = f + f̃ , being f the time average, and f̃ the
fluctuating component. As ∂z = a/q∂y + ∂zϕ , we therefore obtain:

∂Γx
∂x

+
1

2πa
Γy
∣

∣

∣

limiter
= − 1

2πqR
pV‖e

∣

∣

∣

limiter
, (4.2)

Γy
∣

∣

∣

limiter
and pV‖e

∣

∣

∣

limiter
are the pressure flux in the poloidal direction and the parallel

losses averaged over time and in the toroidal direction, evaluated at the limiter
plates. Estimating the parallel losses as

pV‖e
∣

∣

∣

limiter
≃ p cs, (4.3)

and neglecting the Γy, since considerably smaller with respect to Γx, we finally
obtain:

∂Γx
∂x
≃ − 1

2πqR
p cs, (4.4)

Equation (4.4) is the balance between radial flux and parallel losses, and it can be
estimated as:

Γx
Lp
∼ p cs

Rq
, (4.5)

where Lp is the radial length of the background pressure. We write the radial flux
as:

Γx = p
∂φ

∂y
+ p̃

∂φ̃

∂y
, (4.6)

being the first term on the right hand side of Eq. (4.6) the equilibrium component of
the radial flux, and the second term the turbulent part. The equilibrium component
of the E ×B flux is negligible compared to the turbulent one, and therefore it is
neglected here. We can therefore approximate the radial flux as:

Γx ≃
∂φ̃

∂y
p̃ ∼ kyφ̃p̃, (4.7)

being ky the typical poloidal wavelength of the mode driving transport. We assume
that the growth of the linearly unstable modes saturates when the radial gradient of
the perturbed pressure becomes comparable to the radial gradient of the background
pressure:

dp̃

dx
∼ dp

dx
, (4.8)
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which can also be written as
kxp̃ ∼

p

Lp
, (4.9)

where kx denotes the typical radial wavevector of the instability. From Eq. (4.9) we
obtain an estimate of the perturbed pressure:

p̃ ∼ p

Lpkx
. (4.10)

From the leading term of the pressure equation, Eq. (4.1), we can derive an estimate
for φ̃:

γp̃ ∼ R

Lp
kyφ̃, (4.11)

from which we obtain:
φ̃ ∼ γp̃Lp

Rky
(4.12)

Following non-local linear theory methods outlined in Refs. [39], [36], and [50], we
can derive an estimate for kx for DW and BM that reads as:

kx ∼
√

√

√

√

ky
Lp
. (4.13)

Plugging Eqs. (4.10), (4.12) and (4.13) into Eqs. (4.5) and (4.7), we finally obtain
the gradient removal theory estimate for the pressure scale length:

Lp ∼
q

cs

(

γ

ky

)

. (4.14)

Equation (4.14) allows us to predict Lp as a function of the SOL operational param-
eters: me/mi, ν, q, R/ρs, and ŝ. For this purpose, we first evaluate the growth rate
of the linear modes described by the system of Eqs. (2.144)-(2.149), considering the
cold ion limit for the present chapter, as a function of ky and R/Lp, having fixed the
SOL operational parameters. We then maximize γ/ky over ky, obtaining (γ/ky)max

as a function of R/Lp (with all the other parameters fixed). We then seek for the
value of R/Lp that satisfies Eq. (4.14), obtaining our Lp prediction. For simplicity,
in the following we assume ηe = 1. This is justified by simulation and experimental
results showing that ηe is of order unity. In fact, in the non-linear simulation results
presented herein, ηe ≃ 0.7, which corresponds to the typical value observed in the
simulations [36]. Moreover, limited plasmas realized in the JET, Alcator C-MOD,
COMPASS, and Tore Supra tokamaks (Ref. [44] and references therein), covering
a wide range of parameter, show 0.3 . ηe . 1.25.

The R/Lp estimate as a function of ν and ŝ is showed for q = 4 in Fig. 4.1a and
for q = 8 in Fig. 4.1b (mi/me = 1836). We observe that the gradient is steeper for
negative ŝ and low ν, for both the q = 4 and the q = 8 case. Moreover, for q = 4,
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Figure 4.1: Gradient removal estimate of R/Lp, as a function of ŝ and ν for q = 4 (a), and
for q = 8 (b).

R/Lp is higher than in the q = 8 case.

The Lp estimates obtained by the methodology outlined in this paragraph has
been successfully compared to experimental data for different tokamaks, showing
good agreement, in Ref. [44]. Moreover, Ref. [44] and [89] also report remarkable
agreement between the gradient removal Lp estimates and a large set of GBS nu-
merical simulation results.

4.3 The SOL turbulent regimes

As pointed out by our analysis of the SOL linear modes (see Chap. 3), the main
instabilities expected to play a role in the SOL are the resistive and inertial branches
of the ballooning modes (RBM and InBM) and of the drift waves (RDW and InDW).
Ballooning modes have an interchange character and are driven by the presence
of magnetic field line curvature and plasma pressure gradients. The dispersion
relation that describes the fundamental properties of BMs can be obtained from
Eqs. (2.144)-(2.149), in the cold ion limit, by neglecting coupling with sound waves,
plasma compressibility, parallel flows in the density and temperature equations, and
the ∇‖(n + 1.71Te) term in Ohm’s law. The obtained boundary value problem for
φ reads as:



1 +

(

z

q
ŝ

)2


φγ = 2C
R

Ln

(1 + ηe)
γ

φ+
1
ν̂k2
y

∂2φ

∂z2
, (4.15)

where ν̂ = ν + γme/mi. In the limit ν → 0, Eq. (4.15) reduces to the dispersion
relation for the InBM, while forme/mi → 0 the RBM dispersion relation is retrieved,
corresponding to Eqs. (3.7) and (3.4) in Sec. 3.2.1, respectively. Both the RBM and
InBM growth rates are such that γ/γI → 1, where γI =

√

2R/Lp, respectively for
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σR = 1/(γIk2
yq

2ν)→ 0, and σI = mi/(γIkyq
√
me)→ 0 (see Chap. 3). Stabilization

of BMs is observed for ky & 0.3γI , due to plasma compressibility. The effect of
magnetic shear is a reduction of the growth rate for ŝ . 0 and ŝ & 1 (see Ref. [79]
and Chap. 3).

The DW instability is driven by the E ×B convection of the background pres-
sure gradient, coupled with the breaking of the electron adiabaticity due to finite
resistivity or finite electron mass. In order to describe the fundamental properties
of the DW, the following equation for φ can be used:

γk2
⊥φ =

1
ν̂

∂2φ

∂z2
+

2.94
ν̂

∂2(k2
⊥φ)

∂z2
− R

Lnν̂γ
[iky (1 + 1.71ηe)]

∂2φ

∂z2
, (4.16)

where the curvature terms in Eqs. (3.1) are neglected as well as the coupling with
sound waves. In Eq. (4.16), we retrieve the dispersion relation for the InDW, in
the limit ν → 0, and the RDW dispersion relation for me/mi → 0, corresponding
to Eqs. (3.13) and (3.12) in Sec 3.2.2, respectively. Typically γ ∼ ω∗, where ω∗ =
kyR/Ln is the diamagnetic frequency, ky ∼ 1 and k|| assumes a finite value.

Which of these instabilities drives the SOL turbulent dynamics? The goal of
the present chapter is to describe the non-linear turbulent regimes as a function of
the SOL operational parameters, i.e. to understand the nature of the instability
responsible for the largest fraction of the radial transport. This is achieved by
evaluating the growth rate of InBM, RBM, InDW, and RDW, the inertial and
resistive limits of Eqs. (4.15) and (4.16), as a function of the SOL operational
parameters, at the ky and R/Lp given by Eq. (4.14). The turbulent regime is
defined according to the instability among those four that has the highest γ/ky
value.

In Fig. 4.2 different colors are used to represent the non-linear turbulent regimes
at q = 4 and q = 8. At both values of q we retrieve some of the linear results of
Chap. 3: DWs are the dominant instability at low ν and negative ŝ, where R/Ln is
high. At ν . 10−2 the dominant instability is the InDW. On the other hand, the
BM regime extends in the region where gradients are more relaxed, (ŝ > 0 and large
ν). We also remark that, with respect to q = 4, the safety factor q = 8 favours BMs.
This is in agreement with Chap. 3, which shows that the R/Ln value at which the
transition from BMs to DWs occurs is a decreasing function of σR and σI , meaning
that, at higher q, steeper gradients are needed to develop DWs. We finally note
that, at q = 8, the InBM dominates at the lowest values of ν and positive ŝ, while
it is not present at q = 4.

In order to provide a complete and general estimate of the parameter ranges
where the different instabilities dominate, we proceed to a more detailed analysis of
the transition between the instabilities. More precisely, we evaluate the location in
the operational parameters space of the five transitions observed in Fig. 4.2: RBM
and InBM, RBM and InDW, RBM and RDW, RDW and InDW, and InDW and
InBM.
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Figure 4.2: Turbulent regimes for q = 4 (a), and for q = 8 (b); different colors identify
different regimes: RBM (black), InBM (grey), InDW (light blue), and RDW (white). The red
symbols indicate the estimate of the transition between regimes obtained in Sec. 4.3.

We first consider the transition between the RBM and the InBM. We use the
dispersion relations of the RBM and InBM (the resistive and inertial limits of
Eq. (4.15)) to obtain, separately for these two branches, the expected R/Ln and
the γ/ky of the mode dominating the non-linear dynamics. The transition between
the RBM and InBM regimes takes place when their γ/ky are equal, at a ν value
that depends on ŝ and q, which is plotted in Fig. 4.3a. We note that the white
region in Fig. 4.3a represents the parameter region in which the RBM dominates
over the InBM independently of ν. This region extends at ŝ < 0. BMs are, in
fact, suppressed by negative shear, and the stabilisation is more efficient for the
InBM than for the RBM. For ŝ > 0, as the threshold occurs at ν ∼ 1 × 10−3, we
expect the RBM to prevail over the InBM in typical experimental conditions, where
ν ∼ 10−2 − 10−3.

Following a similar procedure and considering the resistive and inertial limits of
Eqs. (4.15) and (4.16) respectively, it is possible to evaluate the transition between
the RBM and the InDW. This is shown in Fig. 4.3b, which provides the value of ν
above which the RBM prevails over the InDW. We observe that the RBM dominates
at positive values of ŝ and high q, which are favourable to its growth, as previously
noted.

In Fig. 4.3c, we also show the value of ν above which the RBM prevails over the
RDW. This is evaluated considering the resistive limit of Eqs. (4.15) and (4.16).
The ν threshold diminishes with increasing q and ŝ. In Chap. 3 it is noticed that
the RBM dominates over the RDW for highly positive and highly negative values
of ŝ, and for high values of q, which corresponds to low σR. These predictions agree
with the findings showed in Fig. 4.3c. In the white region the RBM prevails on the
RDW for all values of ν.
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In order to accurately describe the transition between RDW and InDW, we fol-
low a slightly different procedure. In fact, as the growth rate of InDW is sensitive
to ky, and ky can be affected by the inclusion of even a small resistivity, we can-
not decouple the two instabilities. Therefore, we compute the expected R/Ln by
considering, for the gradient removal mechanism, the linear growth rate given by
Eq. (4.16), which includes both RDW and InDW. At the R/Ln and ky found, we
then calculate the RDW and InDW growth rates, which we compare, finding the
value of ν above which the RDW prevail over the InDW, as a function of ŝ and q.
This is shown in Fig. 4.3d. We note that the transition is symmetric with respect to
ŝ = 0, as a consequence of the symmetry of Eq. (4.16). The RDW onsets at values
of ν decreasing with q. This is different than the conclusions reported in Chap. 3,
where the transition between the peak growth rate of two instabilities was shown
to depend on ŝ and to be independent of q.

Finally, we consider the transition between the InBM and the InDW. To esti-
mate this transition, we consider the inertial limits of Eqs. (4.15) and (4.16), which
are independent of ν, as it is our estimate of the transition between these two in-
stabilities. We find that, for ŝ . 1, the InDW prevail over the InBM for all the
values of q. For ŝ & 1 InBM dominates over InDW above a q values that varies
approximately linearly from q ≃ 10 at ŝ = 1 to q ≃ 7 at ŝ = 3. The InBM is
therefore the leading instability for high q and for ŝ > 0; this generally agrees with
the observations presented in Chap. 3.

We can now use the transition estimates discussed above to explain the SOL
non-linear regimes displayed in Fig. 4.2. Our estimates are plotted by using red
symbols, showing a good agreement with the observed transitions. For q = 4 and for
q = 8, for ŝ < 0, from low to high values of ν, we essentially observe the transition
between three regimes: InDW, RDW and RBM. According to the results in Figs.
4.3d and 4.3c, the transition between the InDW and the RDW, and between the
RDW and the RBM, respectively, occur at higher ν for q = 4 with respect to q = 8.

For ŝ > 0 we observe that the RDW regime disappears as the RBM prevails
on the RDW (see Fig. 4.3c). At q = 4, we observe the presence of two regimes;
InDW and RBM from low to high ν, while at q = 8, at the highest ŝ and lowest
ν values, also the InBM instability appears, in agreement with the results in Fig.
4.3a. We also observe that the RBM prevails on the InDW for smaller values of ν
with respect to the q = 4 case (see Fig. 4.3b, where the ν threshold between RBM
and InDW decreases with increasing q). Finally, we note that the application of
our SOL turbulent regime analysis for predicting the turbulent regime of a typical
L-mode discharge in the TCV tokamak [86] (for ν ≃ 10−2, q ≃ 5 and ŝ ≃ 2) points
to the RBM regime.
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Figure 4.3: Value of ν, as a function of ŝ and q, of the transition between RBM and InBM
(in the white region RBM prevails on InBM independently of ν) (a), transition between RBM
and InDW (b), transition between RBM and RDW (in the white region RBM prevails on
RDW independently of ν) (c), and transition between RDW and InDW (d). In all cases the
first instability prevails over the second one at ν values larger than the ones plotted.
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4.4 Non-linear simulations

In Secs. 4.2 and 4.3 the equilibrium gradient length, Lp, and the instability regimes
are predicted, based on the gradient removal theory and the evaluation of the linear
growth rate. Here we present the results of non-linear simulations of SOL turbu-
lence that support our methodology to determine the SOL turbulent regimes. The
simulations have been performed using the GBS code, described in Chap. 2.

Typical SOL simulations results are described in Ref. [20]. The plasma outflow
from the core is mimicked by a density and a temperature source, Sn and ST , defined
as Sn,T = exp

{

−
[

(x− xs)2 /σ2
s

]}

, with xs = 30 and σs = 2.5. Other simulation pa-
rameters are the major radius, R = 500, and the domain dimensions, Lx = 100 and
Ly = 800. After an initial transient, a non-linear quasi-steady regime is reached,
as a balance between plasma outflow from the core, turbulent transport and par-
allel losses at the vessel. Our analysis is focused on this quasi-steady state regime.
Among a number of simulations that we have carried out, we focus and we present
the results of four simulations that belong to the four predicted instability regimes:
RBM, InBM, RDW, and InDW. The plasma parameters of these four simulations
are listed in Table 4.1. We first estimate the equilibrium R/Lp, using the gradient
removal theory, and we compare our prediction with the results of the non-linear
simulations. As reported in Table 4.1, our estimates show reasonable agreement
with the simulations results, the maximum relative error being approximately 40%.
In Table 4.1 we also compare the gradient-removal predicted ky of the dominant
mode with the time averaged ky of the mode leading to the maximum turbulent
flux in the simulations. The uncertainty affecting ky is estimated by considering a
10% variation of the γ/ky value with respect to its maximum at the predicted R/Lp
(for comparison, we note that the standard deviation of the time averaged particle
flux, proportional to γ/ky, is approximately 25% of the time averaged particle flux).
We verify that all the non-linear simulations studied herein satisfy the inequality
√

kyLp < 3 [87], and that they belong to the regime where the gradient removal
mechanism is responsible for turbulence saturation. In Table 4.1, we list the growth
rate of each instability separately, in order to identify the regime of the four sim-
ulations. A detailed description and analysis of the properties of the non-linear
simulations follows, in order to identify and discuss the nature of the transport.

Figs. 4.4-4.7 show the pressure equilibrium profiles, p, and typical snapshots of
the pressure fluctuation, p̃, in the (x, y) plane, for the identified RBM, InBM, RDW
and InDW simulations, respectively. We define p as the time and toroidal average
of the pressure, evaluated during the quasi-steady state phase of the simulation,
and we calculate the fluctuating part of the pressure as p̃ = p− p. We now discuss
a number of tests that show that it is justified to identify the turbulent regime
according to the procedure used in Sec. 4.3.

First, for an identified resistive mode, a simulation with a reduced value of
me/mi is performed, or, for an identified inertial mode, we carry out a simulation
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with reduced ν. As shown in Figs. 4.4-4.7, the change in the radial equilibrium
gradient length and the radial extent of the fluctuations is small, confirming our
prediction of being in a resistive or inertial regime.

Second, in the four simulations considered, we turn off the interchange drive
(ID), i.e. the curvature terms in the vorticity equation. We can infer the BM nature
of turbulence, by observing major effects following the ID turn off, while small
changes point to a DW regime. For BM simulations we remark that the average
profiles in Figs. 4.4 and 4.5 lose their ballooning character once the ID is turned off,
R/Lp becomes steeper, and the long streamers are broken into smaller structures in
the case without ID (therefore kx increases). This is due to the fact that, while ky
does not change significantly, Lp decreases from the base case to the case without
ID, and therefore kx increases, according to the non-local estimate of the radial eddy
extension. For DW simulations, instead, there is no observable difference between
the equilibrium profiles, following the ID turn off, and the nature of the fluctuations
is very similar (see Figs. 4.6 and 4.7). Moreover, in the simulation with and without
ID, the plasma profile is weakly dependent on the poloidal angle, showing a non-
ballooning character. We conclude from this analysis that our simulations can be
classified as BM or DW dominated, as pointed out by our methodology.

Finally, in order to reinforce the validity of our analysis, we analyze the relation
between potential and density fluctuations, according to the methods proposed
in Refs. [11] and [25]. For BMs, the vorticity equation imposes a π/2 phase shift
between φ and n fluctuations, which are not correlated. In case of DWs, the electrons
are close to adiabaticity and the amplitudes of φ and n fluctuations are clearly
correlated [22], [25]. Following Ref. [25], we introduce two analysis techniques to
investigate the relation between φ and n: the phase shift probability and the cross
coherence analysis.

The phase shift probability is calculated at a fixed radial position, by considering
the FFT along y of the φ and n fluctuations, as a function of toroidal position and
time. From the FFT, we then compute the phase shift, −π ≤ χ < π, corresponding
to each ky, and we bin them as a function of the toroidal position and time, with
the proper weight given by the power spectral density of the φ and n fluctuations.
The phase shift probability between φ and n is showed in Fig. 4.8. As expected,
for the BM simulations (Figs. 4.8a and 4.8b), the phase shift has a maximum at
χ ≈ 0.5π for the dominant mode ky ≈ 0.1. For DW simulations (Figs. 4.8c and
4.8d), we observe a phase shift with a maximum at χ ≈ 0 for the dominant mode
ky ≈ 0.1.

The cross coherence is computed at a fixed radial position. The φ and n fluctu-
ations are considered as a function of the poloidal and toroidal directions, and time,
and normalized to their standard deviation. We then evaluate the probability of
finding both fluctuations at a certain ordered pair of amplitudes and we display it
in Fig. 4.9. The cross coherence in Figs. 4.9a, for the RBM, and 4.9b, for the InBM,
does not show correlation between φ and n, while the cross coherence in Figs. 4.9c,
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for the RDW, and 4.9d, for the InDW, shows a high correlation between φ and
n fluctuations. This additional analysis supports our methodology to identify the
turbulent regime of the non-linear simulations.

4.5 Conclusions

In the present chapter we have identified the non-linear SOL turbulent regimes as
a function of the SOL operational parameters (q, ν, ŝ, and mi/me) depending on
the instability responsible for the non-linear transport. We have assumed that the
linear instabilities are saturated when the plasma pressure gradient is non-linearly
flattened by the growth of the unstable modes. This has allowed us to predict the
time-averaged plasma gradient length, which is proportional to γ/ky, where γ is the
linear growth rate and ky the poloidal wavenumber of the instability that dominates
the non-linear dynamics.

We note that a number of modes are possibly unstable in the edge and SOL
regions of tokamak plasmas. While the instabilities playing a major role in the
tokamak SOL are believed to be the resistive and inertial branches of BMs and
DWs, peeling-ballooning modes, external kinks, and sheath modes [76,77,78] might
also become unstable. In the cold-ion regime considered here, ion temperature
gradient modes [6,60] are excluded, while trapped electron modes are also stable in
the SOL due to the fact that the bounce frequency of trapped electrons is smaller
than the collision frequency.

In the present study we have focused our attention exclusively on the resistive
and inertial branches of BMs and DWs. Using simplified models that retain the ba-
sic linear characteristics of these instabilities, we have built a map in the operational
parameter space, defining the region in which each instability drives transport (see
Figs. 4.2a and 4.2b for q = 4 and q = 8). We have observed that DWs prevail
at negative shear, InDW dominates at low ν, while positive shear and high q are
favourable for BMs. We have investigated the transition among the different insta-
bilities (the RBM-InBM, the RBM-InDW, the RBM-RDW, and the RDW-InDW
transitions) determining, in general, the threshold value of ν at which they take
place. This is shown in Fig. 4.3. Being the transition between InBM and InDW
independent of ν, we have estimated the value of q at which this transition takes
place as a function of ŝ. The estimates are in good agreement with the transitions
observed with the full model.

In order to verify the validity of our methodology, we have performed a set of
non-linear simulations, and we have presented four of those, each belonging to a
different instability regime. The simulations have been carried out with GBS. For
each set of SOL parameters of the non-linear simulations, we have predicted the
instability regime, R/Lp, and the ky of the saturated non-linear mode, according
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to the gradient removal hypothesis. The predictions and the results of the non-
linear simulations show reasonable agreement. In particular, the analysis of the
turbulence character (see Figs. 4.4-4.9) supports our methodology to identify the
non-linear turbulent regimes.

We remark that our analysis leads not only to the identification of the SOL tur-
bulence regimes, but also to the prediction of the steady state gradient and poloidal
wavelength at saturation, and therefore to the prediction of the main turbulence
properties. The model that we have presented is relatively simple and constitutes
a framework which can be generalized to the analysis of more complicated SOL
configurations.

Turbulent regimes in the tokamak scrape-off layer 83



Chapter 4. Tokamak SOL turbulence regimes in the cold ion limit

(a)

(b)

Figure 4.4: Pressure equilibrium profile (top panels) and pressure fluctuation profile (bottom
panels) in the x− y plane for RBM simulation (left), the RBM with reduced me/mi (center),
and the RBM without ID (right). xs is the radial position of the last closef flux surface, where
the plasma source is located.
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(a)

(b)

Figure 4.5: Same as Fig. 4.4, for the InBM.
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(a)

(b)

Figure 4.6: Same as Fig. 4.4, for the RDW.
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(a)

(b)

Figure 4.7: Same as Fig. 4.4, for the InDW.
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Figure 4.8: Phase shift probability between φ and n weighted according to the power spectral
density for the RBM (a), InBM (b), RDW (c), and InDW (d).
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Figure 4.9: Cross coherence between φ and n for the RBM (a), InBM (b), RDW (c), and
InDW (d).
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simulation ν me/mi ŝ q ID R/Lp
simula-
tion

R/Lp
esti-
mated

ky sim-
ulation

ky esti-
mated

ky,min
esti-
mated

ky,max
esti-
mated

γRBM γInBM γRDW γInDW

RBM 0.5 1/800 1 8 on 4.42 5.35 0.09 0.04 0.03 0.06 2.28 ≃ 0 0.12 ≃ 0

RBM re-
duced
me/mi

0.5 1/1600 1 8 on 7.26 / / / / / / / / /

RBM with-
out ID

0.5 1/800 1 8 off 18.93 / / / / / / / / /

InBM 0.005 1/50 1 8 on 8.68 8.09 0.09 0.10 0.08 0.14 0.64 2.88 0.01 1.05

InBM
reduced ν

0.0005 1/50 1 8 on 9.51 / / / / / / / / /

InBM with-
out ID

0.005 1/50 1 8 off 18.94 / / / / / / / / /

RDW 0.05 1/800 −0.7 4 on 28.21 18.07 0.15 0.16 0.12 0.20 1.20 ≃ 0 1.46 ≃ 0

RDW
reduced
me/mi

0.05 1/1600 −0.7 4 on 29.32 / / / / / / / / /

RDW with-
out ID

0.05 1/800 −0.7 4 off 30.13 / / / / / / / / /

InDW 0.005 1/200 −1 4 on 28.72 16.90 0.18 0.17 0.14 0.21 0.13 ≃ 0 0.03 2.92

InDW
reduced ν

0.0005 1/200 −1 4 on 28.39 / / / / / / / / /

InDW
without ID

0.005 1/200 −1 4 off 22.79 / / / / / / / / /

Table 4.1: Parameters for the non-linear simulations. The domain dimensions are Ly = 800 and Lx = 100. The major radius is R = 500.
The radial window over which the non-linear R/Lp and ky are evaluated is 5 < x−xs < 17. The two values ky,min and ky,max are computed
considering the ky range corresponding to a 10% variation of the value γ/ky with respect to its maximum at the R/Lp and ky predicted.
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Chapter 5

Hot ion effects on SOL turbulence

5.1 Introduction

Ion temperature determines the sputtering yields of the materials in contact with
a plasma. Therefore, both in the steady state and during transient events (such
as ELMs), understanding the mechanisms regulating the ion temperature in the
tokamak SOL is important for estimating the lifetime of the materials of the first
wall.

As a matter of fact, because of its critical role, in the last years an increased
effort has been devoted to the ion temperature measurement in the tokamak edge.
While most of the experimental campaigns are based on the use of retarding field
analyzer probes (see Ref. [90] and references therein for a review of measurements
before 2010, and Refs. [91, 92, 93, 94, 95] for more recent experimental campaigns),
also other techniques are employed, such as the charge exchange recombination
spectroscopy [96], the ion sensitive probe [97], or the pinhole probe [98]. In Ref. [90]
a collection of Ti/Te measurements from a number of tokamak SOL has been exam-
ined, showing values that range from the lower Ti/Te ∼ 1 to the extreme Ti/Te ∼ 10,
with most of the data falling between 1 and 4 (see, e.g., Ref. [90] and references
therein for measurements taken before 2010, and, for more recent measurements,
Ref. [92] for HL-2A, Ref. [93] for MAST, and Refs. [96, 97] for Alcator C-MOD).
The ion temperature is therefore usually higher than Te in the SOL. Moreover, in
Ref. [90], the SOL e-folding lengths for Te and Ti are shown for different tokamaks,
indicating that the electron profile is usually steeper than the ion profile, leading
to ηe(= Ln/LTe) > ηi(= Ln/LTi). The ηi value has been measured, e.g. during lim-
ited discharges in Tore Supra [99], and during diverted discharges in JFT-2M [100]
resulting in ηi < 1 in both cases.

The numerical simulation of edge turbulence in the presence of ion temperature
dynamics has been subject of numerous studies [6, 35, 60, 101, 22, 21, 25, 9, 102]. Ion
temperature gradient is responsible for the rising of an instability called ion tem-
perature gradient (ITG) (see, e.g., Ref. [6]), which can drive cross-field transport
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of particles and energy. Moreover, Ti effects have an impact on SOL instabilities
that exist in the cold ion limit, as BM and DW instabilities. In general, both the
ratio between the background ion and electron temperature, τ = Ti0/Te0, and ηi,
are found to be the crucial parameters for determining the role of ITG turbulence
in the SOL, and of the Ti effects on other instabilities. Zeiler et al. [35, 60, 6, 101],
describe the linear and non-linear transition between RBM and ITG driven tur-
bulence in the SOL by using a gradient-driven flux-tube code [22], identifying the
non-linearly prevailing instability as a function of the gradient scale length and the
αd parameter, that represents the ratio between the diamagnetic frequency and the
BM growth rate. It is found that at steep gradients the RBM drives turbulence
when diamagnetic effects are negligible (small αd) and it is overpowered by the
non-linear drift wave instability for increasing values of αd. The ITG instability
dominates instead at high values of αd and broad gradients. In a later study [101],
Hallatschek and Zeiler focus on non-locality effects on the transition between RBM
and ITG, finding a general quenching of the instability when the turbulence scale
length becomes comparable to the gradient scale length (increasing non-locality).
Scott et al. also developed a suite of numerical tools for the simulation of the SOL
turbulence with ion dynamics; in particular, the fluid DALF code [21, 25] and the
gyrofluid GEM code [25, 103]. The ITG signature is identified in large and dom-
inant Ti fluctuations associated with a higher ion with respect to electron radial
transport [21].

The goal of our investigation is to improve the understanding of the role of hot
ions in SOL turbulence. First, we study Ti effects on the SOL linear instabilities
that exist also in the cold ion limit, and we introduce the main properties of the ITG
instability. Second, we identify the SOL turbulent regimes based on the instability
that drive the non-linear transport as a function of the SOL operational parameters.
The methodology we use to identify the non-linear SOL instability is supported by
the analysis of GBS simulations. The GBS code represents an ideal tool to study Ti
effects on SOL turbulence, as it is capable of simulating self-consistently the SOL
instabilities and the formation of the plasma profile, allowing fluctuations of the
same order of the background quantities.

The drift-reduced Braginskii model we use includes the effect of the polarisa-
tion drift in the Ti equation, that become important for kyρs ∼ 1 (see Refs. [60]
and [103]). Nevertheless, FLR effects contained in the stress tensor are neglected,
and the electric potential is evaluated at the particle gyrocentre contrary to what it
is done in gyrofluid models (see, e.g. Ref. [17]). We also remark that other effects
present in collisionless plasmas, such as trapped particles and wave-particle reso-
nances, are not contained in the Braginskii equations. Therefore our model does
not describe accurately perturbations with a perpendicular wavelength of the order
of ρi, or where kinetic effects are important. However, for typical SOL parame-
ters, turbulence is dominated by modes with perpendicular scales much larger than
ρi, and kinetic effects are expected to be negligible due to the large collisionality,
justifying our model assumptions.
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The present chapter is organized as follows. Section 5.2 discusses qualitatively
the results of non-linear GBS simulations with hot ions. Ion temperature effects on
the linear SOL instabilities are presented in Sec. 5.3. In Sec. 5.4 we first define the
role of the ITG instability in SOL turbulence, defining under which conditions the
RBM, the ITG, or the DW drive SOL turbulence. Then, we estimate the non-linear
prevailing instability and we compare our expectations to the GBS results. Finally,
in Sec. 5.5, we draw our conclusions.

5.2 Non-linear turbulence simulations with hot

ions

In order to study the influence of the ion temperature on SOL turbulence, we
perform a series of non-linear simulations, having set ŝ = 0, ν = 0.1, me/mi =
1/200, Ly = 800, Lx = 100, and R = 500, while τ is varied from 0 to 4. In
Fig. 5.1 we present a poloidal cross section of the different fields evolved during
the simulation with τ = 1: the density, n, the electron temperature, Te, the ion
temperature, Ti, the vorticity, ω, the electron parallel velocity, V‖e, and the ion
parallel velocity, V‖i.

The plasma injected from the core is transported radially by streamers elongated
in the radial direction. This is visible in the ion temperature snapshot, which is
similar to the electron temperature and the density snapshots (this in not surprising,
since the nature of the equations governing these quantities is similar). The analysis
of the ion and the electron parallel velocities show that the particles flow towards
the limiter plates, although fluctuations of the electron parallel velocity field are
larger than the ion ones, due to the higher electrons mobility.

In Table 5.1 we summarize the most important properties of our simulations,
among which the pressure gradient length, R/Lp, and the mode number in the
poloidal direction, ky. We note that, in the present chapter, the pressure gradient
is referred to the total pressure p = pe + pi. The comparison between the observed
values and their estimates will be described later in the chapter. We observe that
both R/Lp and ky values are almost independent of τ .

In order to have a first insight into the nature of the turbulent transport, we
compute the cross coherence between n and φ fluctuations in Fig. 5.2, and their
phase shift in Fig. 5.3, for τ = 1, 2, 3, 4, according to the methodology explained
in Sec. 4.4. For all the considered values of τ , we observe that there is not a clear
correlation between n and φ fluctuations; moreover, the phase shift between the
two fluctuations is close to π/2. These results are the footprint of a ballooning type
of instability (see Sec. 4.4). This is confirmed in Sec. 5.4, by using the gradient
removal theory method presented in Chap. 4.

From these qualitative observations it emerges that Ti effects have a relatively
minor influence on the turbulent properties. In the following, we explain the physics
behind these observations.
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Table 5.1: Parameters for the non-linear simulations; ŝ = 0, ν = 0.1, me/mi = 1/200. The domain dimensions are Ly = 800 and
Lx = 100. The major radius is R = 500. The major radius to the pressure gradient length ratio, R/Lp, is evaluated by fitting n, Te, and Ti
with an exponential function 0 < x− xs < 70. The radial window over which ky is evaluated is 5 < x− xs < 17. The two values ky,min and
ky,max are computed considering the ky range corresponding to a 10% variation of the value γ/ky with respect to its maximum at the R/Lp
and ky predicted.
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5.3. Linear instabilities in the presence of hot ions

5.3 Linear instabilities in the presence of hot ions

In this section we present the main linear SOL instabilities in the presence of
hot ions, focusing on the electrostatic limit. In Chap. 3 the resistive and inertial
branches of the drift wave (RDW and InDW) and of the ballooning mode (RBM
and InBM) instabilities are described in the cold ion limit, identifying the instability
with the largest growth rate as a function of the SOL parameters. In the following,
we first describe the impact of the hot dynamics on the forementioned instabilities.
We then introduce an instability driven unstable by the presence of the ion tem-
perature gradient, the so-called ion temperature gradient instability (ITG), with its
slab (sITG) and toroidal (tITG) branches.

5.3.1 Drift waves instability with hot ions

The linear DW instability has been described in the cold ion limit in Sec. 3.2.2,
by neglecting the sound wave coupling, i.e. by assuming γ ≫ k‖, the ballooning
drive, and the compressibility terms in the continuity and temperature equations.
By introducing hot ion dynamics, the system of Eqs. (3.11) is modified as follows:

γn = iω∗φ−∇‖V‖e,
−k2
⊥γ (φ+ τTi) = −∇‖V‖e,

me
mi

γV‖e = −νV‖e +∇‖ (φ− n− 1.71Te) ,

γTe = iω∗ηeφ−
2
3

1.71∇‖V‖e,

γTi = iω∗ηiφ−
2
3
∇‖V‖e,

(5.1)

where we have neglected finite β effects. If we assume ∇‖ → ik‖, we can reduce
Eqs. (5.1) to an algebraic dispersion relation in the form

γ3a+ γ2b+ γc + d = 0, (5.2)

where the coefficients are:

a = −me
mi

k2
y,

b = −k2
y

(

ν + iτηi
me
mi

ω∗

)

,

c = −k2
‖
(

1 + 2.95k2
y

)

− τk2
y

(

iηiνω∗ +
2
3
k2
‖

)

,

d = ik2
‖ω∗ (1 + 1.71ηe) + iτk2

‖ω∗k
2
y

[2
3

(1 + 1.71ηe)− 2.95ηi
]

.

(5.3)
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(a) density, n (b) electron temperature, Te

(c) ion temperature, Ti (d) vorticity, ω

(e) electron parallel velocity,
V‖e

(f) ion parallel velocity, V‖i

Figure 5.1: Snapshots of density (a), electron temperature (b), ion temperature (c), vorticity
(d), electron parallel velocity (e), and ion parallel velocity (f), in a poloidal cross section for
the non-linear simulation with ŝ = 0, ν = 0.1, me/mi = 1/200, τ = 1.
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(ñ− n̄) /σn

(Φ̃
−

Φ̄
)/
σ
Φ

 

 

−4 −3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

lo
g 10

(p
ro

ba
bi

lit
y)

−5

−4.5

−4

−3.5

−3

−2.5

(c) τ = 3
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Figure 5.2: Cross coherence between φ and n fluctuations for τ = 1 (a), τ = 2 (b), τ = 3
(c), and τ = 4 (d)
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Figure 5.3: Phase shift between φ and n fluctuations for τ = 1 (a), τ = 2 (b), τ = 3 (c),
and τ = 4 (d)
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Figure 5.4: Maximum γ̌/ γ̌|τ=0
, solution of the DW dispersion relation, Eq. (5.2), in the

resistive limit (a), and corresponding ky/ ky|τ=0
(b) and k∗‖/ k‖∗

∣

∣

τ=0
(c). The white surface

indicates regions where the RDW is stable.

First, we note that in the limit τ → 0, we retrieve the dispersion relation of the
RDW, if me/mi → 0, or the dispersion relation of the InDW, if ν → 0. These
dispersion relations are presented in Sec. 3.2.2. Second, we observe that, in the
resistive limit, Eq. (5.2) can be rewritten by using only the following parameters:
γ̌ = γ/ [R/Ln(1 + 1.71ηe)], k2

‖∗ = k2
‖/
[

k2
yνω∗(1 + 1.71ηe)

]

, ky, ηi∗ = ηi/(1 + 1.71ηe),
and τ . For τ = 0 we retrieve the cold ion limit results: peak growth rate at ky ≃ 0.57
and k‖∗ ≃ 0.56, with γ̌ = γ̌0 ≃ 0.085 (see Sec. 3.2.2). In Fig. 5.4a we show γ̌/γ̌0,
solution of Eq. (5.2), in the resistive limit, maximized over k‖∗ and ky, as a function
of τ and ηi∗. In Figs. 5.4b and 5.4c we present ky and k‖∗ at the maximum growth
rate. The maximum growth rate decreases with ηi∗ and this effect is more evident
at large τ . The ηi∗ terms in the d and c coefficients of Eq. (5.3) are responsible for
the decrease of the growth rate for 0.5 . ηi . 1, and for ηi∗ & 1, respectively.
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Figure 5.5: Maximum γ̄/ γ̄|τ=0
, solution of the DW dispersion relation, Eq. (5.2), in the

inertial limit (a), and corresponding ky/ ky|τ=0
(b) and k∗‖/ k‖∗
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∣
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(c). The white surface

indicates regions where the InDW is stable.

Similarly, in the inertial limit, Eq. (5.2) can be rewritten by introducing γ̄ =
γ/ [R/Ln(1 + 1.71ηe)], k2

‖∗ = k2
‖/
[

k2
yω
∗2me/mi(1 + 1.71ηe)2

]

, and ηi∗ = ηi/(1 +
1.71ηe). For τ = 0 we retrieve the cold ion limit results: peak growth rate
γ̄ = γ̄0 ≃ 0.17 at ky ≃ 0.57 and k‖∗ ≃ 0.6 (see Sec. 3.2.2). In Fig. 5.5a we
show γ̄/γ̄0, solution of Eq. (5.2), in the inertial limit, maximized over k‖∗ and ky,
as a function of τ and ηi∗. In Figs. 5.5b and 5.5c we present ky and k‖∗ at which
the maximum growth rate is found. As in the resistive limit, the maximum growth
rate decreases with ηi∗ and this effect is more evident at large τ . Moreover, as in
the resistive limits, the ηi∗ term in the d coefficient of Eq. (5.2) is responsible for
the decrease of the growth rate at 0.5 . ηi . 1, while the ηi∗ term in b reduces the
growth rate at ηi∗ & 1.
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5.3.2 Ballooning modes with hot ions

The BM instability is described in the cold ion limit in Sec. 3.2.1, by neglecting
the coupling with sound waves, i.e. γ ≫ k‖, and compressibility terms in the
continuity and temperature equations. Moreover, ∇‖ terms in the density and
temperature equations, as well as the diamagnetic terms in Ohm’s law are neglected,
in order to avoid the coupling with DW. We describe the BM with hot ion dynamics
generalizing Eqs. (3.3) to Ti 6= 0, but ignoring finite β effects, as:

γn = iω∗φ,

−k2
⊥γ (φ+ τTi) = iωκ [n (1 + τ) + Te + τTi]−∇‖V‖e,

me
mi

γV‖e = ∇‖φ− νV‖e,

γTe = iω∗ηeφ,

γTi = iω∗ηiφ,

(5.4)

where ωκ = 2ky cos θ is the frequency associated with the curvature and the gradient
of the magnetic field. Assuming ∇‖ → ik‖, we can obtain a dispersion relation in
the form of a second order algebraic equation:

γ2a+ γb+ c = 0, (5.5)

where
a = 1,

b = i
R

Ln
kyτηi +

1
ν

k2
‖
k2
y

,

c = −2
R

Ln
(1 + τ + ηe + τηi) +

mi
me

k2
‖
k2
y

,

(5.6)

which reduces to the results of Secs. 3.2.1, for τ = 0. In the limit k‖/ky → 0, the

maximum growth rate of the BM is attained, γmaxB =
√

2R/Ln (1 + τ + ηe + τηi),
which is larger than the cold ion growth rate because of the presence of the (τηi+τ)
term. Finite values of k‖/ky reduce the growth rate. In the resistive case, this effect
is ascribed to the k2

‖/(νk
2
y) term in the b coefficient of Eq. (5.6); in the inertial case

this is due to the mik2
‖/(mek

2
y) term in the c coefficient of Eq. (5.6). Similarly to

what observed in Sec. 3.2.1, we find that the BM are stabilized for ky < kminy , where
kminy = k‖/

√
γmaxB ν for the RBM, and kminy = k‖

√
mi/(γmaxB

√
me) for the InBM.

We use the linear solver described in Sec. 2.5, to determine the eigenfunctions
and γ, solution of the system (5.4) and, in particular, the dependence of the eigen-
functions on the parallel coordinate. In Figs. 5.6 and 5.8 we show γ/γmaxB , solution
of Eqs. (5.4), maximized over ky, with q = 4, in the resistive (ν = 0.1) and inertial
(me/mi = 1/200) limits, respectively. In Figs. 5.7 and 5.9 we present the ky corre-
sponding to the peak growth rate. For both RBM and InBM, the reduction of the
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Figure 5.6: Growth rate of the RBM, solution of Eqs. (5.4) for ν = 0.1, me/mi → 0,
ηe = 0.67, and for τ = 1 (a), τ = 2 (b), τ = 3 (c), and τ = 4 (d).

growth rate observed at high ηi is due to finite k‖ effects. In fact, at large ηi, γ peaks
at low ky, such that the term k2

‖/k
2
y in the b and c coefficients of Eq. (5.6) becomes

larger, therefore reducing γ with respect to its maximum value. We remark that,
for both RBM and InBM, the ky corresponding to the maximum growth rate is
large at low R/Ln, since kminy is a decreasing function of R/Ln. Finally, we observe
that, for both RBM and InBM, the growth rate decreases with τ due to the term
proportional to τ in the b coefficient of Eq. (5.5).

5.3.3 Ion temperature gradient instability

The presence of an ion temperature gradient can lead to the ITG instability, which
has two branches, the slab and the toroidal ones (sITG and tITG). We can derive
a simple dispersion relation that includes both branches of the ITG instability,
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Figure 5.7: Poloidal wavenumber ky at the maximum RBM growth rate for ν = 0.1,
me/mi → 0, ηe = 0.67, and for τ = 1 (a), τ = 2 (b), τ = 3 (c), and τ = 4 (d).
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Figure 5.8: Growth rate of the InBM, solution of Eqs. (5.4) for ν → 0, me/mi = 1/200,
ηe = 0.67, and for τ = 1 (a), τ = 2 (b), τ = 3 (c), and τ = 4 (d). The white surface indicates
regions where the InBM is stable.
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Figure 5.9: Poloidal wavenumber ky at the maximum InBM growth rate for ν → 0, me/mi =
1/200, ηe = 0.67, and for τ = 1 (a), τ = 2 (b), τ = 3 (c), and τ = 4 (d). The white surface
indicates regions where the InBM is stable.
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within the hypothesis of isothermal electrons. We consider the continuity equation
for electrons,

γn = i (ω∗ − ωκ)φ+ iωκn−
∂V||e
∂z

, (5.7)

the vorticity equation,

γ
(

k2
⊥φ+ τk2

⊥Ti
)

= −iωκ(1 + τ)n +
∂V||e
∂z
− ∂V||i

∂z
− iωκτTi, (5.8)

the adiabatic Ohm’s law,
∂n

∂z
=
∂φ

∂z
, (5.9)

the ion parallel velocity equation,

γV‖i = −∂n
∂z

(1 + τ)− ∂Ti
∂z

τ, (5.10)

and the ion temperature equation,

γTi = i
2
3
ωκn +

(

iω∗ηi − i
2
3
ωκ

)

φ− 2
3
∂V‖e
∂z
− 5

3
τiωκTi. (5.11)

From Eqs. (5.7)-(5.11), assuming ∇‖ → ik‖, we obtain the following dispersion
relation:

aγ3 + bγ2 + cγ + d = 0, (5.12)

where
a = 1 + k2

y

(

1 +
2
3
τ
)

,

b = i
{

ω∗

[

−1 + k2
yτ
(

ηi −
2
3

)]

+ ωκ

[

1 +
5
3
τ
(

2 + k2
y

)

]}

,

c = k2
‖

(

1 +
5
3
τ
)

+ ωκτ
[

ω∗

(7
3
− ηi

)

− 5
3
ωκ (1 + τ)

]

,

d = ik2
‖τ
[

ω∗

(

ηi −
2
3

)

+
5
3
ωκ (1 + τ)

]

,

(5.13)

which describes both the slab and toroidal branches of the ITG instability, analyzed
below. As an aside, we note that a second instability developing at ky & 1, for
small R/Ln and small ηi is also present in Eq. (5.12). This mode, dependent on
the Boussinesq’s approximation used in deducing the vorticity equation (5.8) and
driven by magnetic curvature, is typically overpowered by the ITG instability. We
exclude this mode for the analysis that follows, as it appears in a parameter regime
that is not of relevance for SOL turbulence.

The dispersion relation of sITG is derived from Eqs. (5.7)-(5.12), by setting
ωκ = 0. A simple description of the mechanism behind the growth of the sITG an
be found in Ref. [6]. The sITG mode arises as a combination of plasma parallel
compression and E×B convection, similarly to the DW instability (see Sec. 3.2.2),
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in the absence of B gradient and curvature. The balance between E × B flow
and parallel compression in the density equation, Eq. (5.7), leads to iω∗φ ≃ ∂zV‖e,
when ωκ = 0. Replacing this in the ion temperature equation, Eq. (5.11), and using
the electron adiabaticity condition, in the long wavelength regime, such that the
vorticity equation reduces to∇‖j‖ = 0, one obtains γTi ∼ iω∗ (ηi − 2/3)φ. This link

between φ and Ti shows that the E×B radial transport, ΓTi ≃ kyφ̃T̃i decreases the
Ti equilibrium gradient if ηi > 2/3. By removing free energy from the system, this
provides the drive for the sITG instability. Therefore it is the parallel compression
of the plasma, that in a homogeneous plasma simply develops a parallel sound wave,
that in a inhomogeneous plasma drives the ITG instability.

An estimate of the peak value of γ for the ITG instability, and of the corre-
sponding k‖, can be found by simplifying the dispersion relation Eq. (5.12). Beside
neglecting ωκ in Eq. (5.12) and assuming ∇‖j‖ = 0, we suppose ω∗ ≪ γ and ηi ≫ 1.
The ITG dispersion relation becomes

γ̂3 +
(

1 +
5
3
τ
)

k2
‖∗γ̂ + ik2

‖∗τ = 0, (5.14)

where γ̂ = γ/ (ω∗ηi) and k‖∗ = k‖/ (ω∗ηi). Therefore, the peak growth rate can be
written as γmax ≃ g(τ)ω∗ηi, and it occurs at k‖ ≃ f(τ)ω∗ηi. The γ̂, solution of
Eq. (5.14), is shown in Fig. 5.10.

We now consider the tITG branch. The tITG instability is a curvature driven
instability, similarly to the BM and contrary to the sITG, due to the presence of
an ion temperature gradient in the plasma. The instability mechanism is similar to
the one of the BM (see Fig. 3.1) but, while the drive of the BM, leading to a charge
separation, is a density fluctuation, for the tITG this is provided by Ti fluctuations.
In fact, since the diamagnetic velocities are proportional to the particles tempera-
tures (see Eqs. (2.50) and (2.51)), hot and cold particles drift at different speeds,
generating a charge separation and, hence an E ×B drift that, in the presence of
a temperature gradient, amplifies the original temperature fluctuation. While, in
case of BM, a π/2 shift between n and φ characterizes the instability, in case of
tITG a π/2 shift between Ti and φ is maintained, and electrons can be adiabatic.
With respect to the sITG, the tITG branch exists in the absence of k‖ effects.

We can retrieve a simple dispersion relation of the tITG starting from Eq. (5.12),
by neglecting the ∇2

‖ terms:

γ2
[

1 + k2
⊥

(

1 + τ
2
3

)]

+ γi
[

−ω∗ + ωκ

(

1 +
10
3
τ
)

+k2
⊥τ
(

ω∗

(

ηi −
2
3

)

+
5
3
ωκ

)]

+

−ωκτ
[

ω∗

(

ηi −
7
3

)

+
5
3
ωκ (1 + τ)

]

.

(5.15)
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Figure 5.10: γ̂, solution of Eq. (5.14)

We note that the tITG mode follows the scaling derived in the adiabatic limit,
even when resistivity is introduced in the model. We also remark that this results
is different from the ITG dispersion relation in Ref. [60] because of the different
Boussinesq’s approximation of the ion density fluctuations used in the evaluation of
the polarisation drift in the vorticity equation. Since the coefficient of the quadratic
term in Eq. (5.15) is always positive, a necessary condition for an instability is given
by setting ωκ = 2ky, i.e. focusing on the dynamics at the equatorial outboard mid
plane:

ωκτ
[

ω∗

(

ηi −
7
3

)

+
5
3
ωκ (1 + τ)

]

> 0, (5.16)

leading to

ηi >
7
3
− 5

3
ωκ
ω∗

(1 + τ) . (5.17)

It is also possible to verify (see Ref. [60]) that the modes with the largest growth
rate are the ones for which the linear term of Eq. (5.15) is close to 0. Since ωκ/ω∗ ∼
Ln/R≪ 1, this can be written as:

k2
⊥ ≃

1

τ
(

ηi − 2
3

) . (5.18)

Having described the two branches of the ITG instability, we now analyze the solu-
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tion of the full ITG dispersion relation, Eq. (5.12), that includes both the slab and
the toroidal branches. In Fig. 5.11 we show the growth rate, solution of Eq. (5.12),
again for ωκ = 2ky, normalized to ηiR/Ln, i.e. γ̂ky = γ/(ηiR/Ln), as suggested by
Eq. (5.14), and maximized over ky and k‖, as a function of R/Ln and ηi, and for τ
ranging from 1 to 4. The normalized growth rate γ̂ky can be estimated, following
the results for the sITG, as g(τ)ky, where g(τ)(see Fig. 5.10) is an increasing func-
tion of τ . We find that the normalized growth rate decreases with τ , despite the
fact that g(τ) increases with τ . This is in fact due to the decrease of ky with τ .

In Figs. 5.12 and 5.13 we show ky and k‖∗ky = k‖/(ηiR/Ln) at the maximum
growth rate. The normalized parallel wavenumber, k‖/(ηiR/Ln), can be estimated
as f(τ)ky, where both f(τ) (from Fig. 5.10), as well as ky, are decreasing functions
of τ . We also observe that both the normalized growth rate, γ/(ηiR/Ln) and the
normalized parallel wavenumber, k‖/(ηiR/Ln) are almost independent of ηi and
R/Ln for ηi & 1. The poloidal wavenumber, ky, decreases with τ and ηi, according
to Eq. (5.18), which predicts the ky at the maximum growth rate to be inversely
proportional to both

√
τ and

√
ηi. Finally, we remark that, according to Fig. 5.11,

the ITG instability is unstable above a certain ηi threshold, that decreases with
R/Ln, and for values R/Ln & 15 it is ηi ≃ 1.

5.4 Turbulent regimes in the presence of hot ions

We now determine the instability driving turbulence and transport in the SOL, by
identifying the turbulent regimes in the τ and ν parameter space. We use the same
methodology described in Chap. 4, based on the gradient removal theory [87,88,44,
43], which assumes that turbulence saturation occurs when the background time-
averaged pressure radial gradient is comparable to the perturbed pressure radial
gradient, kxp̃ ∼ p/Lp. The range of applicability of the gradient removal hypothesis
in estimating the turbulent saturation level, versus other mechanism, i.e. Kelvin-
Helmholtz secondary instability, is discussed in Ref. [87].

From a time, toroidal, and poloidal average of the pressure equation, it is possible
to write a balance between radial transport and parallel losses, ∂xΓx ∼ p cs/(qR).
Estimating the radial flux, appearing in the balance, as Γx ∼ kyφ̃p̃, the potential
fluctuations from the leading term of the pressure equation, γp̃ ∼ ikyφ̃R/Lp, and
the density fluctuations from the gradient removal hypothesis, we can derive an
estimate of Lp:

L2
p =

γq

k2
xcs
√

1 + τ
. (5.19)

Equation (5.19) constitutes the equation that provides Lp as a function of the SOL
operational parameters. The calculation of the linear growth rate, γ, appearing in
Eq. (5.19), requires the estimate of the ηe and ηi values. The derivation of these
estimates is the subject of Sec. 5.4.1. Thanks to these estimates, it is possible to
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Figure 5.11: Normalized growth rate γ̂ky = γ/(ηiR/Ln) for the ITG mode as a function of
ηi and R/Ln for τ = 1 (a), τ = 2 (b), τ = 3(c), and τ = 4 (d).
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Figure 5.12: Poloidal wavenumber ky at the maximum growth rate of the ITG mode as a
function of ηi and R/Ln for τ = 1 (a), τ = 2 (b), τ = 3 (c), and τ = 4 (d).
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Figure 5.13: Normalized parallel wavenumber k‖∗ky = k‖/(ηiR/Ln) at the maximum growth
rate of the ITG mode as a function of ηi and R/Ln for τ = 1 (a), τ = 2 (b), τ = 3 (c), and
τ = 4 (d).
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deduce the role of the hot ions in the SOL turbulence (Sec. 5.4.2), and determine
the turbulence regimes as a function of τ , ν, and ηi.

5.4.1 Estimates of ηe and ηi

In Table 5.1 the values of ηe and ηi computed from non-linear simulation results
are listed. We note that, ηe decreases from ηe ∼ 0.72 to ηe ∼ 0.55, for τ from
τ = 0 to τ = 4, while ηi decreases from 0.59, for τ = 1, to 0.31, for τ = 4.
We now theoretically estimate the ηe and ηi values by generalizing the method
described in Ref. [36], by considering the leading terms in the density, the electron
temperature, and the ion temperature equations, neglecting curvature and diffusion
contributions, since much smaller than the radial E×B turbulent transport and the
parallel advection terms. We can therefore write, by time, toroidally and poloidally
averaging the density equation:

∂Γn
∂x
≃ − 1

2πqR
nV‖e

∣

∣

∣

limiter
, (5.20)

where ∂xΓ is the radial flux, toroidally and poloidally averaged. We note that
nV‖e

∣

∣

∣

limiter
is the toroidally and time averaged parallel flux of n evaluated at the

two limiter plates. The same notation is used for the Te and Ti parallel fluxes, i.e.
TeV‖e

∣

∣

∣

limiter
and TiV‖e

∣

∣

∣

limiter
. Similarly, for the electron temperature equation:

∂ΓTe
∂x
≃ −2

3
1

2πqR
TeV‖e

∣

∣

∣

limiter
. (5.21)

In the ion temperature equation, we keep a curvature term, which, although neg-
ligible for small values of τ , can become important for increasing values of τ , as
confirmed by the analysis of non-linear simulation results.

∂ΓTi
∂x
≃ −2

3
1

2πqR
TiV‖e

∣

∣

∣

limiter
− 10

3R
τTiC (Ti), (5.22)

The parallel outflow terms appearing in Eq. (5.22) can be estimated as follows:

2
3

1
2πqR

TiV‖e
∣

∣

∣

limiter
∼ 2

3
1

2πqR
Ti

√

Te(1 + τ), (5.23)

while for the curvature term we have:

10
3R

τTiC (Ti) ∼
10τ
3R

Ti
2

2πLTi
, (5.24)

where the poloidal gradient of Ti has been neglected with respect to the radial
gradient. The ratio of the parallel outflow term with respect to the curvature term
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is LTi
√

1 + τ/(5qτ). Since, from non-linear simulations results, LTi ∼ 200, and
typically q ∼ 4, the curvature term is ∼ 10 times smaller than the parallel outflow
term for τ ≃ 1, but the two terms can become comparable at large τ . In the
following analysis we neglect the curvature term, and we discuss its role later while
comparing our analytical estimates with the simulation results.

From Ref. [36], we can write the radial density flux, Γn, as:

Γn = kyñφ̃, (5.25)

The density fluctuations, ñ, are estimated from the leading order term of the conti-
nuity equation as ñ ∼ φ̃nRky/(γLn). The electric potential fluctuations, φ̃, can be
estimated as φ̃ ∼ γp̃Lp/(pRky), from the leading order terms of the pressure balance,
which is obtained by summing up the n, Te, and Ti equations. Finally, according
to the gradient removal theory, p̃/p = 1/(kxLp). Inserting these approximations in
Eq. (5.25), the radial density turbulent flux becomes therefore:

Γn ∼
γn

k2
xRLn

, (5.26)

and analogous expressions can be written for ΓTe ∼ γTe/ (k2
xRLTe) and ΓTi ∼

γTi/ (k2
xRLTi). We assume that n admits solutions in the form n = nmax exp [(x− xs)

/Ln], in the SOL, for x > xs, where xs is the radial position of the source, and corre-
sponds to the location of the LCFS. Analogous assumptions are made for Te and Ti.
Moreover, we write the linear growth rate as γ = fTe

1/2
, where f = f(R/Lp, ηe, ηi),

and depends also on the SOL operational parameters. This representation is valid
for all the linear instabilities under investigation. Substituting the expressions for
n, Te, Ti and for γ into Eq. (5.26), we obtain:

∂Γn
∂x

=
fnmaxT

1/2
e,max

k2
xRLn

(

1
Ln

+
1

2LTe

)

exp

[

(x− xs)
(

1
Ln

+
1

2LTe

)]

, (5.27)

and analogous expressions can be written for ∂xΓTe and ∂xΓTi . Inserting Eq. (5.27),
and the analogous expressions for ∂xΓTe and ∂xΓTi into Eqs. (5.20)-(5.22), we obtain:

f

k2
xLn

(

1
Ln

+
1

2LTe

)

=
1

2πq
,

3f
2k2
xL

2
Te

=
1

3πq
,

f

k2
xLTi

(

1
LTi

+
1

2LTe

)

=
1

3πq
,

(5.28)

where we have approximated nV‖e
∣

∣

∣

limiter
∼ nmaxT

1/2
e,max exp

[

(x− xs)
(

1
Ln

+ 1
2LTe

)]

.

Similar estimates are used for TeV‖e
∣

∣

∣

limiter
and TiV‖e

∣

∣

∣

limiter
. Combining Eqs. (5.28),
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we obtain that ηe = ηi and that ηe is the solution of a second order equation in the
form:

η2
e −

2
9
ηe −

4
9

= 0. (5.29)

We retrieve the result of Ref. [36], ηe = ηi = 0.79. By comparing these estimates
with the ηe and ηi values from non-linear simulations, reported in Table 5.1, we
observe that they are in reasonable agreement. In particular, while the theoretical
estimate is definitely good for ηe, the simulation values of ηi are in general smaller
than the theoretical estimate, particularly at large τ , when the curvature term in
Eq. (5.22) becomes important.

5.4.2 Role of ITG in the SOL turbulence

According to the analysis of Sec. 5.4.1 and the simulation results, ηi in the SOL is
below the ITG linear instability threshold. In fact, as showed in Fig. 5.11, based
on the linear analysis, the ITG is unstable for ηi & 1. We therefore expect the ITG
to play a negligible role in SOL turbulence. This statement is confirmed by our
non-linear results. In the following, we demonstrate that the ITG instability is non-
linearly overpowered by the RBM instability for a wide range of parameters. We
compare the ITG instability with the RBM, as RBM is the instability expected to
drive turbulence, according to our estimate in the Ti → 0 limit, at the typical SOL
resistivity [43]. We therefore calculate the estimate of Lp for the ITG instability
(Lp,ITG), according to Eq. (5.19), and we compare it to the estimate for the RBM
(Lp,RBM ). The instability driving turbulence in the SOL is expected to be the one
leading to the largest Lp, since it allows the system to relax to the state with the
lowest turbulent drive.

To calculate Lp,ITG according to Eq. (5.19), we first estimate the ITG typical
radial extension of the unstable mode, kx. Applying the non-local linear method
outlined in Ref. [104], we write the dispersion relation of the ITG, taken Eq. (5.12),
for simplicity in the k‖ → 0 limit, as:

∂2φ

∂x2
− k2

y [1 +G(x)]φ = 0, (5.30)

where

G(x) =
−γ − 2iky(1 + τ) + ikyR/Ln − 2ikyτ [2γ+i(−2+3ηi)kyR/Ln]

3γ+10ikyτ

γk2
y

{

1 + τ [2γ+i(−2+3ηi)kyR/Ln]
3γ+10iky .τ

} (5.31)

Then, we Taylor expand G(x) around x0, the point of steepest gradient:

G(x) ≃ G0 +G′′0(x− x0)2/2, (5.32)
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obtaining a harmonic oscillator equation, ∂2
xφ− k2

y [1 +G0 +G′′0(x− x0)2/2]φ = 0,
whose solution can be written as:

φ ∼ exp

[

−a(x − x0)2

2

]

, (5.33)

being

a = ky

√

|G′′0|
2
, (5.34)

and where G′′0 = ∂2
xG(x) at x = x0. The estimate of the ITG radial eddy extension

is kx =
√
a. The Lp,ITG, evaluated according to Eq. (5.19), is showed in Fig. 5.14,

where γ is evaluated from Eq. (5.12), in the k‖ → 0 limit, and G′′0 has been evaluated
by deriving Eq. (5.31) to estimate k2

x. A simplified scaling law for Lp,ITG can be
analytically obtained to explain qualitatively the results in Fig. 5.14. The growth
rate, γ, solution of Eq. (5.12), is developed to the lowest order in ky, and in the
limit R/Ln ≫ 1, it is:

γ = ky





iR

2Ln
+

1
6

√

√

√

√−9R2

L2
n

+
72ηiRτ
Ln

− 160τ 2



 . (5.35)

The kx estimate is obtained from Eq. (5.34), in the limit R/Ln ≫ 1, and considering
only the lowest order terms in ky. This gives:

k2
x =

√

√

√

√

9(1 + ηiτ)
2L2
n(3 + 2τ)2

. (5.36)

Substituting Eqs. (5.35) and (5.36) into Eq. (5.19), we obtain a polynomial equation
for Lp, that reads as:

aL4
p + cL2

p + dLp + e = 0, (5.37)

a = 18(1 + τ)(1 + ηiτ),

c = 160/9k2
yq

2(3 + 2τ)2(1 + ηi)2τ 2,

d = −8k2
yq

2Rηiτ(3 + 2τ)2(1 + ηi),

e = 4k2
yq

2R2(3 + 2τ)2.

(5.38)

For large τ , the Lp estimate can be evaluated as a balance between the 2nd and the
1st order terms, leading to:

Lp,ITG ∼
9Rηi

20τ(1 + ηi)
. (5.39)

Equation (5.39) describes qualitatively the Lp,ITG estimates showed in Fig. 5.14:
Lp,ITG decreases with τ , and increases with ηi, becoming weakly dependent on ηi
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Figure 5.14: Estimate of the equilibrium pressure scale length, LpITG, from Eq. (5.19), in
the hypothesis of ITG modes driving turbulence and transport.

at large values of ηi.

Finally, we proceed to the comparison between Lp,ITG and Lp,RBM and to the
estimate of the parameters where turbulence is driven by the ITG or the RBM. A
scaling law for Lp,RBM has been obtained in Ref. [44]. Starting from Eq. (5.19) and
assuming γ ≃ γmaxB , kx =

√

ky/Lp, and ky ≃ kminy (see Sec. 5.3.2), the following
scaling law Lp,RBM is derived:

Lp,RBM = R3/723/7q8/7(1 + τ)1/7ν2/7. (5.40)

In Fig. 5.15 we show the ratio between Lp,ITG and Lp,RBM , evaluated according to
the results showed for the ITG case in Fig. 5.14, and Eq. (5.40). For the RBM case,
we consider ν = 0.1. We observe that the ITG leads to larger pressure scale lengths
at small values of τ and large values of ηi. The white area represents a region in
which Eq. (5.19) has no solution.

In general we expect that turbulence will be driven by the ITG when Lp,ITG >
Lp,RBM . Figure 5.15 shows that this occurs when ηi overcomes a certain threshold.
As Lp,RBM depends on ν, the ηi threshold at which Lp,ITG = Lp,RBM depends on
ν. In Fig. 5.16 we show the ηi threshold above which LpITG > LpRBM as a function
of τ and ν. At low τ and ν, turbulence is driven by ITG modes at ηi & 2: the
ηi threshold increases with τ and ν. Finally, in the white area, for high τ and ν,
the RBM always drives transport. This analysis confirms therefore our predictions
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Figure 5.15: LpITG/LpRBM at ν = 0.1.
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Figure 5.16: ηi threshold above which the turbulence is driven by the ITG.
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based on the linear result: the ITG instability is active in the SOL when ηi overcomes
a threshold that depends on τ and ν, being in any case ηi & 2 necessary to have
development of ITG-driven turbulence.

5.4.3 Scrape-off layer turbulent regimes with hot ions

The findings of Sec. 5.4.2 confirm that RBM overcomes the ITG for the ηi values
observed in the non-linear simulations. As a matter of fact, this also proves that the
ITG mode is sub-dominant with respect to the DW in the case the latter dominates
over the RBM. We now identify the SOL turbulent regimes in the presence of hot
ions following the same technique described in Sec. 4.2, concentrating on DW and
BM only. We first calculate the equilibrium pressure gradient length resulting from
the interplay of turbulent tranport and parallel losses using Eq. (5.19). Since we
focus on DW and BM only, we can estimate the radial wavenumber as kx ≃

√

ky/Lp,
as discussed in Refs. [50], [36], and [39]. Equation (5.19) results in:

Lp ∼
q

cs
√

1 + τ

(

γ

ky

)

max

. (5.41)

We consider the theoretically estimated values ηe = 0.79 and ηi = 0.79, ν varying
between 10−3 and 1, me/mi = 1/200 (the value used in the GBS simulations), τ
varying between 0 and 5, and q = 4. The estimated values of R/Lp are shown in
Fig. 5.17a. Finally, we use the values of R/Lp and ky previously determined to
calculate the growth rate of the four instabilities: RBM, InBM, RDW, and InDW.
The instability driving turbulence is the one with the largest growth rate. The
result of this calculation is shown in Fig. 5.17b. We observe that for ν & 10−2

RBM drives turbulence while, for lower values of ν, InDW overcomes the other
instabilities and, finally, the InBM appears at the lowest value of ν and the largest
value of τ . A similar calculation is performed by considering the experimental
relevant value me/mi = 1/1836, with the same other parameters. In Fig. 5.18a
and Fig. 5.18b we show the estimated values of R/Lp and the instability driving
turbulence, respectively. The RBM drives turbulence for ν & 5 × 10−3, while for
lower values of ν the InDW prevails. The RDW appears at ν = 10−2 and τ = 0.

In order to test the validity of our predictions, we compare R/Lp and ky of
the non-linear simulations described in Sec. 5.2 to the gradient removal estimates
in Table 5.1. The maximum difference of R/Lp between our estimate and the
simulation results is of order 10%. The uncertainty affecting ky is estimated by
considering a 10% variation of the γ/ky value with respect to its maximum at
the predicted R/Lp, and evaluating the ky range corresponding to this variation.
In Table 5.1 we also list the growth rates of each instability separately, in order
to identify the instability regime of the non-linear simulations. We observe that
turbulence is RBM driven in all simulations. This result is in agreement with the
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Figure 5.17: R/Lp estimate (a) and turbulent regimes (b) at mi/me = 200; different colors
identify different regimes: RBM (black), InBM (grey), InDW (light blue). The white star
symbols indicate the parameters at which non-linear simulations have been performed.

results illustrated in Fig. 5.17b, where the four non-linear simulations are indicated
by a white star symbol falling in the RBM regime.

5.5 Conclusions

In the present chapter we discuss the effects of hot ion dynamics on SOL turbulence,
by using the drift-reduced Braginskii equations, in the electrostatic limit. This study
is motivated by experimental observations that show Ti & Te in the SOL. Hot ion
dynamics introduces the ITG mode, and modifies the properties of the instabilities
that exist in the cold ion limit, like the inertial and resistive branches of the DW,
and of the BM.

First, we present the results of a set of non-linear GBS simulations with hot
ions, for τ ranging from 1 to 4. By means of the cross coherence analysis between φ
and n fluctuations, and their phase shift, we conclude that the observed instability
has the typical footprint of a BM, being φ and n weakly correlated and exhibiting
a phase shift close to π/2.

Second, we investigate the effect of hot ion dynamics on the linear SOL insta-
bilities. Both the RDW and the InDW instabilities show a decreasing growth rate
for increasing ηi. For the two branches of the BM instability, the introduction of
hot ions increases the maximum growth rate with respect to the cold ion limit. As
in the cold ion limit, the BM instability is damped for ky < kminy , where kminy is
determined by the stabilization due to the parallel dynamics. At large ηi, finite k‖
effects decrease the growth rate with respect to its maximum. Then, we describe
the ITG instability, discussing its slab and toroidal branches. The ITG mode is
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Figure 5.18: R/Lp estimate (a) and turbulent regimes (b) at mi/me/1836; different colors
identify different regimes: RBM (black), RDW (white), InDW (light blue).

unstable at ηi above a threshold that decreases with R/Ln and it is ηi ≃ 1 for
R/Ln & 15. Ion temperature gradient modes show a growth rate γ ∼ ηiω∗ and
a corresponding k‖ ∼ ηiω∗. The ky corresponding to the maximum growth rate is
inversely proportional to both

√
τ and

√
ηi.

The ηi observed in the non-linear simulations of Sec. 5.2 and theoretically esti-
mated, also in agreement with experimental observations [99, 100], is smaller than
the linear threshold for ITG instability. Therefore we expect ITG to have a negligi-
ble role on SOL turbulence. This is confirmed by the analysis of the SOL turbulent
regimes. Indeed, by comparing Lp estimates for the ITG and for the BM, obtained
by means of the gradient removal theory, we show that the ITG is either not active,
or overcome by the BM, unless ηi exceeds a threshold that is an increasing function
of τ and ν, being its lowest value ∼ 2. As a consequence, we conclude that, in the
SOL scenario considered here, the ITG instability is expected to play a negligible
role in driving and regulating SOL turbulence.
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Conclusions and outlook

Understanding the plasma dynamics in the tokamak SOL region is of crucial impor-
tance for the success of the entire fusion program. Scrape-off layer physics deter-
mines the boundary conditions for the plasma in the whole machine, it is expected
to play a role in the L-H transition, and it regulates the power exhaust. In the
SOL region, plasma is lost to the divertor, or the limiter, by streaming along the
magnetic field lines, while it is transported in the perpendicular direction because of
turbulence driven by different free energy sources present in the SOL. It is therefore
important to identify the SOL turbulent regimes and their main features in order
to predict, and eventually control, plasma behaviour in the SOL. The present thesis
is focused on the investigation of the turbulent regimes in the tokamak SOL by
identifying the mechanisms driving turbulence depending on the SOL parameters.
Our investigations are limited to the cases where E × B velocity shear does not
play a significant role in stabilizing turbulence.

In Chap. 2 we present the model we use throughout the thesis, based on the
drift-reduced Braginskii equations, considering a limited plasma configuration in
s − α equilibrium. We also derive a new set of boundary conditions to apply to
these equations at the magnetic presheath entrance, including hot ion dynamics.

In Chap. 3, we describe the main linear instabilities included in our model, in the
cold ion limit, identifying the inertial and resistive DW, and the resistive, inertial
and ideal BM branches. In general the DWs have a larger growth rate than BMs
for steep gradients, being the R/Ln threshold dependent on the two parameters
σR = 1/(γmaxB k2

yq
2ν) and σIn =

√
mi/

(

γmaxB kyq
√
me
)

, describing the competition
between parallel and perpendicular dynamics. The transition between RDW and
InDW is governed by the δ = νLnmi/(Rme) parameter and it occurs at δ ≃ 3.55
for ŝ = 0, with the transition value of δ decreasing with the increase of |ŝ|. The
regions of influence of the RBM and the InBM has been evaluated as a function
of σR and σIn, the boundary between those is independent of ŝ for most of the
values of σR and σIn. The electromagnetic effects cause a damping of the DW
instabilities at high R/Ln and the appearance of the IdBM instability, when the
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αMHD = q2β(1 + ηe)R/Ln threshold is overcome. Since in existing tokamaks R/Ln
spans one order of magnitude and ν two orders of magnitude (see, e.g. Refs. [68,69,
70,71,67,72,73,74,75]), we expect the behaviour of the SOL to change remarkably in
these wide intervals of parameters. Our parameter space analysis of the linear SOL
instabilities has been conceived as a first stage tool to be used in the understanding
of turbulence in the SOL of tokamaks, necessary to interpret the results of non-linear
simulations.

The analysis presented in Chap. 4 extends the results of Chap. 3 to the non-
linear dynamics, identifying the SOL turbulent parameter space in the electrostatic
limit. We ascribe the saturation of linear modes in the SOL to the gradient removal
mechanism, which is active in standard SOL scenarios (see Ref. [87]). Saturation
occurs when the radial derivative of the background pressure gradient is comparable
to the radial derivative of the pressure fluctuations. This allows us to predict the
time-averaged plasma gradient length, which is proportional to γ/ky, where γ is the
linear growth rate and ky the poloidal wavenumber of the instability that dominates
the non-linear dynamics. We build a map in the parameter space, where we identify
the transport regime, depending on the driving instability as a function of the
magnetic shear, ŝ, and the resistivity, ν, having fixed the mass ratio, me/mi, and
the safety factor, q. We observe that DWs drives turbulence at negative shear,
InDW dominates at low ν, while positive shear and high q are favourable for BMs.
We investigate the transition among the different instabilities (the RBM-InBM, the
RBM-InDW, the RBM-RDW, and the RDW-InDW transitions) determining, in
general, the threshold value of ν at which they take place. Being the transition
between InBM and InDW independent of ν, we estimate the value of q at which
this transition takes place as a function of ŝ. The validity of our methodology is
verified by performing a set of non-linear simulations carried out with the GBS code,
and we present four of those, each belonging to a different instability regime. For
each set of SOL parameters of the non-linear simulations, we predict the instability
regime, R/Lp, and the ky of the saturated non-linear mode, according to the gradient
removal hypothesis. The predictions and the results of the non-linear simulations
show reasonable agreement. In particular, the analysis of the turbulence properties
shows the capability of our methodology to identify the non-linear turbulent regimes.

In Chap. 5 we further develop our model by including the hot ion dynamics.
We analyse the effect of hot ions on the linear SOL instabilities existing in the cold
ion limit. Both RDW and InDW show a decreasing growth rate for increasing ηi.
Hot ion dynamics increases the BM growth rate with respect to the cold ion limit.
Similarly to what is observed in the cold ion limit, the BM is damped for ky < kminy ,
where kminy is determined by the stabilization due to the parallel dynamics. We
also describe the ITG instability with its slab and toroidal branches. The ITG
mode is unstable when ηi overcomes a threshold that decreases with R/Ln, and
it is ηi ≃ 1 at R/Ln & 15. Ion temperature gradient modes show a growth rate
γ ∼ ω∗ηi and a corresponding k‖ ∼ ω∗ηi. The ky at the maximum growth rate
is inversely proportional to

√
τηi. Since non-linear simulations including hot ion
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dynamics and theoretical estimates, in agreement with experimental results, show
that ηi is below the linear instability threshold for ITG, we expect ITG to play a
negligible role in SOL turbulence. This result is confirmed by the analysis of the
SOL turbulent regimes by means of the gradient removal theory: the comparison
between Lp obtained for ITG and for BM regimes show that ITG is overcome by
BM, unless ηi is larger than a threshold which, in turn, is an increasing function of
τ and ν and whose minimum value is around 2. Moreover, a weak cross coherence
and a phase shift around π/2 between the density and the potential fluctuations in
the non-linear simulations show the typical footprint of the BM regime, supporting
the evidence that BM is driving SOL turbulence in typical operating conditions.

To conclude, the present thesis identifies the main SOL turbulent regimes in a
toroidally limited configuration, in s − α geometry, using a drift-reduced Bragin-
skii model, and defines the regime driving turbulent transport as a function of the
magnetic shear, ŝ, the resistivity, ν, the ion to electron temperature ratio, τ , the
safety factor, q, and the electron to ion mass ratio, me/mi. The work focuses on
the gradient removal as the mechanism causing non-linear turbulent saturation, by
which the gradient length, Lp, and the poloidal mode number, ky, are estimated.
The methodology for the turbulent regimes identification is supported by compar-
isons against non-linear simulation results performed with the GBS code. The main
turbulent regimes identified are the resistive and inertial branches of the DW and
of the BM modes, and the ITG mode.

Future extensions of the present work include the analysis of the coupling of the
SOL dynamics with the closed flux surface region, in order to achieve full under-
standing of the turbulent regimes in the tokamak edge. This will allow us to address
the physics related to the E ×B shear suppression and approach the study of the
L-H transition. Moreover, more complicated magnetic topologies, which include the
X-point geometry and the presence of divertor plates, need to be considered for the
analysis of the reactor relevant configurations. In this work we consider a convection
limited scenario, in which ionization takes place in the tokamak core, and neutral
dynamics is neglected. The introduction of the latter effects in GBS, in order to
achieve a high-recycling and detached regimes, is currently under implementation.
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Appendix A

Boundary conditions at the

magnetic presheath entrance of

non-isothermal plasmas

The derivation of boundary conditions at the magnetic presheath entrance, includ-
ing hot ion dynamics, in the limit of isothermal ions and electrons, has been the
subject of Sec. 2.4.4. We now relax the isothermal hypothesis and we verify that
the boundary conditions derived in Sec. 2.4.4 are reasonable. For this purpose,
we follow a derivation similar to the one presented in the Appendix of Ref. [49].
We include both non-isothermal ions and electrons. For sake of simplicity, we con-
sider the case of no gradients along the x direction. We consider the ion continuity
equation, the ion and electron parallel velocity equations, and the electron and ion
temperature equations. We use the adimensionalization introduced in Sec. 2.4.4.
The ion continuity equation, Eq. (2.115) holds also in the case of non-isothermal
ions and electrons. The ion parallel momentum equation, Eq. (2.118), is modified
as follows:

nV ′si∂sV‖i + sinα (n∂sφ+ τTi∂sn) + sinατn∂sTi = S‖mi , (A.1)

the last term on the left hand side representing the non-isothermal ion contribution.
The electron parallel velocity equation, Eq. (2.120), is also modified, obtaining:

µ sinαTe∂sn− µ sinαn∂sφ+ 1.71µn sinα∂sTe = S‖me , (A.2)

the last term on the left hand side representing the non-isothermal electron con-
tribution. The electron temperature equation is derived from Eq. (2.89), in steady
state, neglecting inertia, diffusion and resistivity effects:

nV‖e sinα∂sTe +
2
3
Te
[

1.71n sinα∂sV‖e − 0.71n sinα∂sV‖i
]

+

−0.71
(

V‖i − V‖e
)

sinα∂sn+
2
3

sinα∂sqe = STe .
(A.3)
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non-isothermal plasmas

The last term on the left hand side represents the microscopic heat flux and it takes
into account the heat flux associated to a non-Maxwellian velocity distribution
function. In fact, when a plasma is in contact with an absorbing wall, a non-neutral
sheath develops, where the electrostatic potential drops, causing the repulsion of
the electrons. As the electrons having an energy higher than the potential barrier
can flow out of the system, without being reflected, the electron population can
be described as a truncated maxwellian. The heat flux in the direction parallel to
the magnetic field, associated with the truncated maxwellian distribution, can be
expressed as (see Ref. [105]):

qe =
nT 3/2
e√

2πI(η)

(

mi
me

)1/2
[

e−η
(

η − 1
2

)

+
3
2

√

η

π

e−2η

I(η)
+

e−3η

2πI2(η)

]

, (A.4)

where η = φ/Te, and I(η) =
[

1 + erf(
√
η)
]

. The last term on the left hand side of
Eq. (A.3) can therefore be expressed as:

2
3

sinα∂sqe =
2
3

sinα
1
Te
∂sφ∂ηqe. (A.5)

Introducing Eq. (A.4) into Eq. (A.5), we obtain:

2
3

sinα∂sqe =
2
3

sinα
1√
2π
n
√

Te

√

mi
me

A1∂sφ, (A.6)

where A1 is:

A1 =
∂

∂η

(

1
I(η)

[

e−η
(

η − 1
2

)

+
3
2

√

η

π

e−2η

I(η)
+

e−3η

2πI2(η)

])

. (A.7)

Finally, the ion temperature equation is derived from Eq. (2.69), where Vpol has
been neglected in V⊥i:

2
3
Ti sinα∂sV‖i + V‖i sinα∂sTi = STi . (A.8)

Equations (2.115), (A.1), (A.2), (A.3), and (A.8) can be written as a linear system
of equations, MX = S, where X =

(

∂sn, ∂sV‖i, ∂sφ, ∂sTe, ∂sTi
)

, S is the source
vector, and the M matrix is:

M =



















V ′
si

n sinα 0 0 0

sinατTi nV ′
si

n sinα 0 sinατn

µ sinαTe 0 −µn sinα 1.71µn sinα 0

2/3 0.71Te sinαV‖e+ −2/3 0.71nTe sinα 2/3 1.71cφnTe sinα+ 2/3 1.71cTenTe sinα+ 0

−2/3 0.71Te sinαV‖i +n
√
TeA2 sinα +nV‖e sinα

0 2/3Ti sinα 0 0 V‖i sinα



















,

(A.9)
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where A2 = 2A1
√
mi/(3

√
2πme). In Eq. (A.9) we have assumed that ∂sV‖e =

cφ∂sφ + cTe∂sTe, where cφ = ∂φV‖e and cTe = ∂TeV‖e are assumed to be known
functions. Imposing again detM = 0 at the magnetic presheath entrance, we find:

V 2
‖i = Te

0.19 + 1.14ĉTe + ττf [3.25ĉφ + 3.1 ˆcTe + 5/3 + 2.85A2]
1.14 (1.71ĉφ + ˆcTe) + 1 + 1.71A2

. (A.10)

where τf = Ti/Te, ĉφ = cφTe/V‖e = −1, and ˆcTe = cTeTe/V‖e = 0.5 +φ/Te ≃ 0.5 + Λ.
For Λ = 3, and mi/me = 1836, V‖i/cs is a decreasing function of τ , at τ = 0 its
value is 1.70, at τ = 1 its value is 1.51, and its limit for τ → ∞ is 1.29. The
previous result shows therefore that the Bohm-Chodura criterion, V‖i = cs at the
magnetic presheath entrance does not hold perfectly, even in the τ = 0 limit, when
non-isothermal ion and electron dynamics is taken into account. Finally, we can
obtain an expression for ∂sTi:

∂sTi = ∂sφ
τf

F3/2− 5/2ττf
≃ 0.23 ∂sφ, (A.11)

where F = V 2
‖i/Te. We remark that the value of ∂sTi does not depend on τ . Anal-

ogously, we obtain for ∂sTe:

∂sTe = ∂sφ
1.71 + 3/2 A2 − 0.71/(F − ττf )

1.71(0.5 + Λ) + 3/2
. (A.12)

The function ∂sTe increases with τ . At τ = 0 we find ∂sTe/∂sφ ≃ 1×10−3, at τ = 1
∂sTe/∂sφ ≃ 0.015, and in the limit τ → ∞, it is ∂sTe/∂sφ ≃ 0.04. According to
Eqs. (A.11) and (A.12), ∂sTi and ∂sTe can be therefore neglected in comparison with
∂sφ, confirming the validity of the derivation of the boundary conditions presented
in Sec. 2.4.4.
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