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CONVEX COMPUTATION OF THE MAXIMUM CONTROLLED
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Abstract. We characterize the maximum controlled invariant (MCI) set for discrete- as well
as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear
programming problem. For systems with polynomial dynamics and compact semialgebraic state
and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI)
relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations
are sum-of-squares (SOS) problems providing a converging sequence of outer approximations to the
MCI set. The approach is simple and readily applicable in the sense that the approximations are the
outcome of a single semidefinite program with no additional input apart from the problem description.
A number of numerical examples illustrate the approach.
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1. Introduction. Given a controlled dynamical system described by a differen-
tial (continuous-time) or difference (discrete-time) equation, its maximum controlled
invariant (MCI) set is the set of all initial states that can be kept within a given con-
straint set ad infinitum using admissible control inputs. This set goes by many other
names in the literature, e.g., viability kernel in viability theory [5], or (A,B)-invariant
set in the linear case [13].

Set invariance is a ubiquitous and essential concept in dynamical systems theory
as far as both analysis and control synthesis is concerned. In particular, by its very
definition, the MCI set determines fundamental limitations of a given control system
with respect to constraint satisfaction. In addition, there is a very tight link between
invariant sets and (control) Lyapunov functions. Indeed, sublevel sets of a Lyapunov
function give rise to invariant sets. Conversely, at least in the linear case, any con-
trolled invariant set gives rise to a control Lyapunov function, and therefore these
sets can be readily used to design stabilizing control laws; see, e.g., [9] for a general
treatment and, e.g., [17, 26] for applications in model predictive control design.

The problem of (maximum) controlled invariant set computation for discrete-
time systems has been a topic of active research for more than four decades. The
central tool in this effort has been the contractive algorithm of [7] and its expansive
counterpart [18]. For an exhaustive survey and historical remarks see the survey [9]
and the book [12].
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Both algorithms, although conceptually applicable to any nonlinear system, have
been predominantly applied in a linear setting where they boil down to a sequence of
linear programs (LPs) and polyhedral projections. Finite termination of this sequence
is a subtle problem, and sharp results are available only in the uncontrolled setting
where no projections are required [16]; for discussion of finite-termination in the con-
trolled case see [45]. The contractive and expansive algorithms were combined in [17]
to design an algorithm terminating in a finite number of iterations and outputting an
ε-accurate inner approximation of the MCI set (with the accuracy measured by the
Hausdorff distance). Another line of research, culminating in [42], exploits the linear-
ity of the system dynamics in a more systematic way and approximates the maximum
(or minimum) robust controlled invariant set by the Minkowski sum of a parametrized
family of sets. Very recently, in continuous time, [30] developed a parallel algorithm
for ellipsoidal approximations of the robust MCI set scalable to very high dimensions.
Computation of low-complexity polyhedral controlled invariant sets was investigated
in [10] and [11].

In the nonlinear case, a common practice is to exploit the tight connection be-
tween invariance and Lyapunov functions and seek invariant sets as sublevel sets of
a (control) Lyapunov function; see, e.g., [14, 51] and references therein for recent
theoretical developments on the related problem of region of attraction (ROA) com-
putation and, e.g., [34] for practical applications of these techniques. This, however,
typically leads to nonconvex bilinear optimization problems which are notoriously
hard to solve. Therefore, one often has to resort to ad hoc analysis of the specific
system at hand, which is typically tractable only in small dimensions; see [46, 47] for
concrete examples. Related in spirit is the localization technique of [25] for discrete-
time uncontrolled systems, also requiring considerable effort in analyzing the system.

Recently, a general approach using a hierarchy of finite-dimensional LPs was used
in [6] to design a controller ensuring invariance of a given candidate polyhedral set.
In our opinion, although being the current state of the art, this work still suffers from
the following drawbacks: (1) the sets obtained are convex polytopes (not general
semialgebraic sets, a fact particularly limiting in the nonlinear case where nonconvex
MCI sets are common); (2) the geometry of the candidate polytopic set must be given
a priori; and (3) there are no convergence guarantees to the MCI set. In this paper,
we explicitly address all these points.

Building upon our previous work [19] on the computation of the ROA for polyno-
mial control systems, in this paper we characterize the MCI set for discrete- as well as
continuous-time polynomial systems as the solution to an infinite-dimensional linear
programming problem in the cone of nonnegative measures. The dual of this problem
is an infinite-dimensional LP in the space of continuous functions. Finite-dimensional
relaxations of the primal LP and finite-dimensional approximations of the dual LP
turn out to be semidefinite programs (SDPs) also related by duality. The primal re-
laxations lead to a truncated moment problem, while the dual approximations lead to
a sum-of-squares (SOS) problem. Superlevel sets of one of the polynomials appearing
in the dual SOS problem then provide outer approximations to the MCI set with
guaranteed convergence as the degree of the polynomial tends to infinity.

The main mathematical tool we use are the so-called occupation measures, which
allow us to study the time evolution of the whole ensemble of initial conditions (de-
scribed by a measure) rather than studying trajectories associated to each initial
condition separately. The use of measures to study dynamical systems has a very
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long tradition: see [44] for probably the first systematic treatment;1 for a purely
discrete-time treatment see [22, Chapter 6]. To the best of the authors’ knowledge
our paper is the first to use occupation measures for MCI set (approximate) compu-
tation. The MCI set was previously characterized using occupation measures in [15],
but there the characterization is rather indirect and not straightforwardly amenable
to computation. Apart from the authors’ work [19], the related problem of ROA
computation was tackled using measures in [52]. There, however, a very different
approach was taken, not using occupation measures but rather analyzing convergence
via discretization of the state-space and propagating the initial distribution by means
of a discretized transfer operator. Here, instead, we employ the (discounted) occu-
pation measure, which captures the behavior of the trajectories emanating from the
initial distribution over the infinite time horizon. As a result, our approach requires
no discretization and, contrary to [52], provides true guarantees (not in an “almost-
everywhere” or “coarse” sense) and, more importantly, is applicable in a controlled
setting. Closely related to the occupation measures used here is the Rantzer den-
sity [43], which was used in [41] to assess the stability of attractor sets of uncontrolled
nonlinear systems. That approach, however, does not immediately yield approxima-
tions of the MCI set (or the ROA) and applies to uncontrolled systems only.

Similar in spirit to our approach, from the dual viewpoint of optimization over
functions, are the Hamilton–Jacobi approaches (e.g., [35, 36]). However, contrary to
these methods, our approach does not require state-space discretization and comes
with convergence guarantees.

The contribution of our paper with respect to previous work on the topic can be
summarized as follows:

• We deal with fully general continuous-time and discrete-time polynomial dy-
namics under semialgebraic state and control constraints.

• Our approximated MCI set is described by (the intersections of) polynomial
superlevel sets, including more restrictive classes (e.g., polytopes and ellip-
soids).

• We provide a convex infinite-dimensional linear programming characteriza-
tion of the MCI set.

• We describe a hierarchy of convex finite-dimensional SDPs to solve the LP
with convergence guarantees.

• Our approach is simple and readily applicable in the sense that the approxi-
mations are the result of a single SDP with no additional data required apart
from the problem description.

The contribution with respect to our previous work [19] can be summarized as follows:

• In [19] we compute the ROA, which is a related although different object:
it is the set of all of initial conditions that can be steered to a given target
set while satisfying state and control constraints. In particular, the MCI set
differs from the ROA in the sense that we do not try to hit any target set
at a given time but rather try to keep the state within a given set forever.
Therefore, we had to adapt our technique to deal explicitly with invariance;

• In [19] we dealt with continuous-time systems only, whereas here we address
(with minor modifications) discrete-time systems as well; we choose to de-
scribe both the continuous-time and discrete-time setups in parallel precisely

1In [44], J. E. Rubio used Young measures [50] rather than occupation measures, but the basic
idea of “linearizing” a nonlinear problem by going into an infinite-dimensional space of measures is
the same.
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to underline these common features.
• In [19] we considered ROA on a finite time-horizon, whereas here we char-
acterize the MCI set, which is an inherently infinite-time object. This brought
about additional technical difficulties not encountered on a finite time-horizon.

What can be considered a drawback of our approach is the fact that the approx-
imations to the MCI set we obtain are from the outside and therefore not invariant.
However, accurate outer approximations provide important information as to the
performance limitations of the control system and are of practical interest, e.g., in
collision avoidance. Therefore, we believe that our work bears both theoretical and
practical value and naturally complements existing inner-approximation techniques.

The paper is organized as follows. The problem to be solved is described in sec-
tion 2. Occupation measures are introduced in section 3. The infinite-dimensional
primal and dual LPs are described in sections 4 and 5, respectively. The finite-
dimensional relaxations with convergence results are presented in section 6. Numerical
examples are in section 7. A reader interested only in the semialgebraic outer approx-
imations of the MCI set can directly consult the infinite-dimensional dual LPs (8)
and (9) and their finite-dimensional approximations (11) and (13) in discrete and
continuous time, respectively.

1.1. Notation. Measures are understood as signed Borel measures on a Eu-
clidean space, i.e., as countably additive maps from the Borel sets to the real num-
bers. From now on all subsets of a Euclidean space we refer to are automatically
understood as Borel. The vector space of all signed Borel measures with its support
contained in a set X is denoted by M(X). The support (i.e., the smallest closed set
whose complement has a zero measure) of a measure μ is denoted by sptμ. The space
of continuous functions on X is denoted by C(X), and likewise the space of once con-
tinuously differentiable functions is C1(X). The indicator function of a set X (i.e., a
function equal to one on X and zero otherwise) is denoted by IX(·). The symbol λ de-
notes the n-dimensional Lebesgue measure (i.e., the standard n-dimensional volume).
The integral of a function v with respect to a measure μ over a set X is denoted by∫
X
v(x) dμ(x). Sometimes for conciseness we use the shorter notation

∫
v dμ, omitting

the integration variable and also the set over which we integrate if they are obvious
from the context. The ring of polynomials in (possibly vector) variables x1,. . . ,xn is
denoted by R[x1, . . . , xn].

2. Problem statement. The approach is developed in parallel for discrete and
continuous time.

2.1. Discrete time. Consider the discrete-time control system

(1) xt+1 = f(xt, ut), xt ∈ X, ut ∈ U, t ∈ {0, 1, . . .},

with a given polynomial vector field f with entries fi ∈ R[x, u], i = 1, . . . , n, and
given compact2 basic semialgebraic state and input constraints

xt ∈ X := {x ∈ R
n : gXi(x) ≥ 0, i = 1, 2, . . . , nX},

ut ∈ U := {u ∈ Rm : gUi(u) ≥ 0, i = 1, 2, . . . , nU}

2The assumption of compactness is crucial for the theoretical developments in the paper. The
assumptions that the constraint sets are basic semialgebraic and the mapping f(·, ·) polynomial plays
no role in the infinite-dimensional considerations and only facilitates the convergence results of the
finite-dimensional relaxations. The above is valid for both discrete and continuous time.
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with gXi ∈ R[x], gUi ∈ R[u].

The maximum controlled invariant (MCI) set is defined as

XI :=
{
x0 ∈ X : ∃ ({xt}∞t=1, {ut}∞t=1

)
s.t. xt+1 = f(xt, ut),

ut ∈ U, xt ∈ X ∀t ∈ {0, 1, . . .}
}
.

A control sequence {ut}∞t=0 is called admissible if ut ∈ U for all t ∈ {0, 1, . . .}.
In words, the MCI set is the set of all initial states which can be kept inside the

constraint set X ad infinitum using admissible control inputs.

2.2. Continuous time. Consider the relaxed continuous-time control system

(2) ẋ(t) ∈ conv f(x(t), U), x(t) ∈ X, t ∈ [0,∞),

where conv denotes the convex hull, f is a polynomial vector field with entries fi ∈
R[x, u], i = 1, . . . , n, and compact basic semialgebraic state and input constraint sets
are defined by

X := {x ∈ Rn : gXi(x) ≥ 0, i = 1, 2, . . . , nX},
U := {u ∈ Rm : gUi(u) ≥ 0, i = 1, 2, . . . , nU}

with gXi ∈ R[x], gUi ∈ R[u]. The meaning of the convex differential inclusion (2) is
as follows: for all time t, the state velocity ẋ(t) is constrained to the convex hull of
the set f(x(t), U) := {f(x(t), u) : u ∈ U} ⊂ Rn. The connection of this convexi-
fied (or relaxed) control problem (2) and the classical control problem ẋ = f(x, u) is
the Filippov–Ważewski theorem [5], which shows that the trajectories of ẋ = f(x, u)
are dense (in the supremum norm) in the set of trajectories of the convexified in-
clusion3 (2). Therefore, from a practical point of view, there is little difference be-
tween the two formulations for the purposes of MCI set computation; see section 3.2
and Appendices B and C of [19] for a detailed discussion on this subtle issue. The
simplest assumption under which the MCI sets for both systems coincide is f(x, U)
being convex for all x, which is particularly true for input-affine systems of the form
ẋ = f(x) + g(x)u with U convex.

The MCI set is defined as

XI :=
{
x0 ∈ X : ∃ x(·) s.t. ẋ(t) ∈ conv f(x(t), U) a.e., x(t) ∈ X ∀ t ∈ [0,∞)

}
,

where x(·) is required to be absolutely continuous and a.e. stands for “almost every-
where” with respect to the Lebesgue measure on [0,∞).

In words, the MCI set is the set of all initial states for which there exists a
trajectory of the convexified inclusion (2) which remains in X ad infinitum.

3. Occupation measures. In this section we introduce the concept of occupa-
tion measures, which is the centerpiece of our approach.

3Note that the set conv f(x(t), U) is closed for every t since f is continuous and U is compact;
therefore, there is no need to take closure of the convex hull in order to apply the Filippov–Ważewski
theorem.
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3.1. Discrete time. Given a discount factor α ∈ (0, 1), an initial condition x0,
and an admissible control sequence {ut|x0

}∞t=0 such that the associated state sequence
{xt|x0

}∞t=0 remains in X for all time, we define the discounted occupation measure
μ(· | x0) ∈ M(X × U) as

(3) μ(A×B | x0) :=

∞∑
t=0

αtIA×B(xt|x0
, ut|x0

)

for all sets A ⊂ X and B ⊂ U .
In words, the discounted occupation measure measures the (discounted) number

of visits of the state-control pair trajectory (x(· |x0), ν(· |x0)) to subsets of X×U . The
discounting in the definition of the occupation measure ensures that μ(A×B | x0) is
always finite; in fact, we have μ(X × U | x0) = (1− α)−1.

Now suppose that the initial condition is not a single point but an initial measure4

μ0 ∈ M(X) and an admissible control sequence is associated to each initial condition
from the support of μ0 in such a way that the corresponding state sequence remains
in X . Then we define the average discounted occupation measure μ ∈ M(X × U) as

μ(A×B) :=

∫
X

μ(A ×B |x0) dμ0(x0).

The average discounted occupation measure measures the discounted average
number of visits in subsets of X × U of trajectories starting from the initial dis-
tribution μ0.

Now we derive an equation linking the measures μ0 and μ. This equation will
play a key role in subsequent development and in a sense replaces the dynamics
equation (1). To derive this equation, fix an initial condition x0 ∈ X and a control
sequence {ut|x0

}∞t=0 such that the associated state sequence {xt|x0
}∞t=0 stays in X .

Then for any v ∈ C(X) we have

∫
X×U

v(x) dμ(x, u |x0) =

∞∑
t=0

αtv(xt|x0
) = v(x0|x0

) + α

∞∑
t=0

αtv(xt+1|x0
)

= v(x0|x0
) + α

∞∑
t=0

αtv(f(xt|x0
, ut|x0

))

= v(x0|x0
) + α

∫
X×U

v(f(x, u)) dμ(x, u |x0).

Integrating with respect to μ0, we arrive at the sought equation

(4)

∫
X×U

v(x) dμ(x, u) =

∫
X

v(x) dμ0(x) + α

∫
X×U

v(f(x, u)) dμ(x, u) ∀v ∈ C(X).

Note that this is an infinite-dimensional linear equation in variables (μ0, μ).
The following crucial lemma establishes the connection between the support of

any initial measure μ0 solving (4) and the MCI set XI .
Lemma 1. For any pair of measures (μ0, μ) satisfying (4) with sptμ0 ⊂ X and

sptμ ⊂ U ×X we have sptμ0 ⊂ XI .
Proof. A detailed proof is in Appendix A.

4The initial measure µ0 can be thought of as the probability distribution of the initial state,
although we do not require the mass of µ0 to be normalized to one.
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3.2. Continuous time. Given an initial condition x0 and a trajectory x(· |x0)
of the inclusion (2) that remains in X for all t ≥ 0, there exists an admissible time-
varying measure-valued relaxed control νt(· |x0) ∈ M(U), νt(U |x0) = 1, such that

ẋ(t) =

∫
U

f(x(t), u) dνt(u |x0)

a.e. with respect to the Lebesgue measure on [0,∞). This follows from the definition
of the convex hull (in fact, for each t, νt(· |x0) can be taken to be a convex combination
of finitely many Dirac measures).

Then, given a discount factor β > 0, we define the discounted occupation measure
μ(· | x0) ∈ M(X × U) as

μ(A×B | x0) :=

∫ ∞

0

∫
U

e−βtIA×B(x(t |x0), u) dνt(u |x0) dt

for all sets A ⊂ X and B ⊂ U .
In words, the discounted occupation measure measures the (discounted) time

spent by the state-control pair trajectory (x(· |x0), ν(· |x0)) in subsets of X ×U . The
discounting in the definition of the occupation measure ensures that μ(A×B | x0) is
always finite; in fact, we have μ(X × U | x0) = β−1.

Now suppose that the initial condition is not a single point but an initial measure5

μ0 ∈ M(X) and a state trajectory that remains in X along with an admissible relaxed
control is associated to each initial condition from the support of μ0. Then we define
the average discounted occupation measure μ ∈ M(X × U) as

μ(A×B) :=

∫
X

μ(A×B | x0) dμ0(x0).

Now we derive an equation linking the measures μ0 and μ. This equation will
play a key role in subsequent development and in a sense replaces the dynamics
equation (2). To derive the equation, fix an initial condition x0 ∈ X and a trajectory
x(· | x0) that remains in X with an associated admissible relaxed control νt(· | x0).
Then for any v ∈ C1(X) integration by parts yields∫

X×U

gradv · f(x, u) dμ(x, u |x0) =

∫ ∞

0

∫
U

e−βtgradv ·f(x(t | x0), u) dνt(u |x0) dt

=

∫ ∞

0

e−βt d

dt
v(x(t |x0)) dt

= β

∫ ∞

0

e−βtv(x(t |x0)) dt− v(x(0 |x0))

= β

∫
X×U

v(x) dμ(x, u |x0)− v(x(0 |x0)),

where the boundary term at infinity vanishes due to discounting and the fact that X
is bounded. Integrating with respect to μ0 then gives the sought equation
(5)

β

∫
X×U

v(x) dμ(x, u) =

∫
X

v(x) dμ0(x) +

∫
X×U

gradv · f(x, u) dμ(x, u) ∀v ∈ C1(X).

5The initial measure µ0 can be thought of as the probability distribution of the initial state,
although we do not require the mass of µ0 to be normalized to one.
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Note that this is an infinite-dimensional linear equation in variables (μ0, μ).

The following crucial lemma establishes the connection between the support of
any initial measure satisfying (5) and the MCI set XI .

Lemma 2. For any pair of measures (μ0, μ) satisfying (5) with sptμ0 ⊂ X and
sptμ ⊂ U ×X we have λ(sptμ0) ≤ λ(XI).

Proof. A detailed proof is in Appendix B.

4. Primal LP. In this section we show how the MCI set computation problem
can be cast as an infinite-dimensional linear programming problem in the cone of
nonnegative measures. As in [19], the basic idea is to maximize the mass of the
initial measure μ0 subject to the constraint that it be dominated by the Lebesgue
measure, that is, μ0 ≤ λ. System dynamics is captured by (4) and (5) for discrete
and continuous times, respectively; state and input constraints are expressed through
constraints on the supports of the initial and occupation measures. The constraint
that μ0 ≤ λ can be equivalently rewritten as μ0 + μ̂0 = λ for some nonnegative
slack measure μ̂0 ∈ M(X). This constraint is in turn equivalent to

∫
X w(x) dμ0(x) +∫

X
w(x) dμ̂0(x) =

∫
X
w(x) dλ(x) for all w ∈ C(X). These considerations lead to the

following primal LPs.

4.1. Discrete time. The primal LP in discrete time reads
(6)
p∗ = sup μ0(X)

s.t.
∫
v(x) dμ(x, u) =

∫
v(x) dμ0(x) + α

∫
v(f(x, u)) dμ(x, u) ∀ v ∈ C(X),∫

w(x) dμ0(x) +
∫
w(x) dμ̂0(x) =

∫
w(x) dλ(x) ∀w ∈ C(X),

μ ≥ 0, μ0 ≥ 0, μ̂0 ≥ 0,
spt μ ⊂ X × U, spt μ0 ⊂ X, spt μ̂0 ⊂ X,

where the supremum is over the vector of measures (μ, μ0, μ̂0) ∈ M(X×U)×M(X)×
M(X).

This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The
following theorem, which is our main theoretical result, relates an optimal solution of
this LP to the MCI set XI .

Theorem 1. The optimal value of linear programming problem (6) is equal to the
volume of the MCI set XI , that is, p

∗ = λ(XI). Moreover, the supremum is attained
by the restriction of the Lebesgue measure to the MCI set XI .

Proof. The proof follows from Lemma 1 by the same arguments as Theorem 1 in
[19]. By definition of the MCI set XI , for any initial condition x0 ∈ XI there exists
an admissible control sequence such that the associated state sequence remains in X .
Therefore, for any initial measure μ0 ≤ λ with sptμ0 ⊂ XI there exist a discounted
occupation measure μ with sptμ ⊂ X × U and a slack measure μ̂0 with spt μ̂0 ⊂ X
such that the constraints of (6) are satisfied. One such measure μ0 is the restriction of
the Lebesgue measure to XI , and therefore p∗ ≥ λ(XI). The fact p∗ ≤ λ(XI) follows
from Lemma 1.

4.2. Continuous time. The primal LP in continuous time reads
(7)
p∗ = sup μ0(X)

s.t. β
∫
v(x) dμ(x, u) =

∫
v(x) dμ0(x) +

∫
grad v · f(x, u) dμ(x, u) ∀v ∈ C1(X),∫

w(x) dμ0(x) +
∫
w(x) dμ̂0(x) =

∫
w(x) dλ(x) ∀w ∈ C(X),

μ ≥ 0, μ0 ≥ 0, μ̂0 ≥ 0,
spt μ ⊂ X × U, spt μ0 ⊂ X, spt μ̂0 ⊂ X,
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where the infimum is over the vector of measures (μ, μ0, μ̂0) ∈ M(X ×U)×M(X)×
M(X).

This is an infinite-dimensional LP in the cone of nonnegative Borel measures. The
following theorem, which is our main theoretical result, relates an optimal solution of
this LP to the MCI set XI .

Theorem 2. The optimal value of LP problem (7) is equal to the volume of
the MCI set XI , that is, p∗ = λ(XI). Moreover, the supremum is attained by the
restriction of the Lebesgue measure to the MCI set XI .

Proof. The fact that μ0 is equal to the restriction of the Lebesgue measure to
XI is feasible in (7) (and therefore p∗ ≥ λ(XI)) follows by the same arguments as in
discrete time. The fact that p∗ ≤ λ(XI) follows from Lemma 2.

5. Dual LP. In this section we derive LPs dual to the primal LPs (6) and (7).
Since the primal LPs are in the space of measures, the dual LPs will be on the space
of continuous functions. Superlevel sets of feasible solutions to these LPs then provide
outer approximations to the MCI sets, both in discrete and in continuous time. Both
duals can be derived by standard infinite-dimensional linear programming duality
theory; see [19] for a derivation in a similar setting or [3] for a general theory of
infinite-dimensional linear programming.

5.1. Discrete time. The dual LP in discrete time reads

(8)

d∗ = inf

∫
X

w(x) dλ(x)

s.t. αv(f(x, u)) ≤ v(x) ∀ (x, u) ∈ X × U,
w(x) ≥ v(x) + 1 ∀x ∈ X,
w(x) ≥ 0 ∀x ∈ X,

where the infimum is over the pair of functions (v, w) ∈ C(X)× C(X).
The following key observation shows that the unit superlevel set of any function

w feasible in (8) provides an outer approximation to XI .
Lemma 3. Any feasible solution to (8) satisfies v ≥ 0 and w ≥ 1 on XI .
Proof. Given any x0 ∈ XI , there exists a sequence {ut}∞t=0, ut ∈ U , such that

xt ∈ X for all t. The first constraint of problem (8) is equivalent to αv(xt+1) ≤ v(xt),
t ∈ {0, 1, . . .}. By iterating this inequality we get

v(x0) ≥ αtv(xt) → 0 as t → ∞
since xt ∈ X and X is bounded. Therefore, v(x0) ≥ 0 and w(x0) ≥ 1 for all x0 ∈
XI .

The following theorem is instrumental in proving the convergence results of sec-
tion 6.

Theorem 3. There is no duality gap between primal linear programming problem
(6) on measures and dual linear programming problem (8) on functions in the sense
that p∗ = d∗.

Proof. The proof follows by the same arguments as does Theorem 2 in [19] using
standard infinite-dimensional linear programming duality theory (see, e.g., [3]) and
the fact that the feasible set of the primal LP is nonempty and bounded in the metric
inducing the weak-* topology on M(X)×M(X ×U)×M(X). To see nonemptiness,
notice that the vector of measures (μ0, μ, μ̂0) = (0, 0, λ) is trivially feasible. To see the
boundedness, it suffices to evaluate the equality constraints of (6) for v(x) = w(x) = 1.
This gives μ0(X) + μ̂0(X) = λ(X) < ∞ and μ(X) = μ0(X)/(1 − α), which, since
α ∈ (0, 1) and all measures are nonnegative, proves the assertion.
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5.2. Continuous time. The dual LP in continuous time reads

(9)

d∗ = inf

∫
X

w(x) dλ(x)

s.t. gradv · f(x, u) ≤ βv(x) ∀ (x, u) ∈ X × U,
w(x) ≥ v(x) + 1 ∀x ∈ X,
w(x) ≥ 0 ∀x ∈ X,

where the infimum is over the pair of functions (v, w) ∈ C1(X)× C(X).
The following key observation shows that the unit superlevel set of any function

w feasible in (9) provides an outer approximation to XI .
Lemma 4. Any feasible solution to (9) satisfies v ≥ 0 and w ≥ 1 on XI .
Proof. Given any x0 ∈ XI , there exists an admissible relaxed control function

νt(·), νt(U) = 1, such that x(t) ∈ X for all t. For that x(t) we have d
dtv(x(t)) =∫

U
gradv · f(x(t), u) dνt(u) ≤ ∫

U
βv(x(t)) dνt(u) = νt(U)βv(x(t)) = βv(x(t)). Then

by Gronwall’s inequality v(x(t)) ≤ eβtv(x0), and consequently

v(x0) ≥ e−βtv(x(t)) → 0 as t → ∞

since x(t) ∈ X and X is bounded. Therefore, v(x0) ≥ 0 and w(x0) ≥ 1 for all
x0 ∈ XI .

The following theorem is instrumental in proving the convergence results of sec-
tion 6.

Theorem 4. There is no duality gap between primal linear programming problem
(7) on measures and dual linear programming problem (9) on functions in the sense
that p∗ = d∗.

Proof. The proof follows by the same arguments as does Theorem 2 in [19] using
standard infinite-dimensional linear programming duality theory (see, e.g., [3]) and
the fact that the feasible set of the primal LP is nonempty and bounded in the metric
inducing the weak-* topology on M(X)×M(X ×U)×M(X). To see nonemptiness,
notice that the vector of measures (μ0, μ, μ̂0) = (0, 0, λ) is trivially feasible. To see the
boundedness, it suffices to evaluate the equality constraints of (7) for v(x) = w(x) = 1.
This gives μ0(X) + μ̂0(X) = λ(X) < ∞ and μ(X) = μ0(X)/β, which, since β > 0
and all measures are nonnegative, proves the assertion.

6. SDP relaxations. In this section we present finite-dimensional relaxations/
approximations of the infinite-dimensional primal/dual LPs. Both in continuous and
discrete time, the relaxations of the primal LPs lead to a truncated moment problem
which translates to an SDP that can be solved by freely available software, e.g.,
SeDuMi [39] or SDPA [48]. Dual to the primal SDP relaxation is an SOS problem
that again translates to an SDP problem; this dual SDP problem can be interpreted
as an approximation of the dual infinite-dimensional LPs in the sense that the space
of functions searched over is restricted to polynomials of bounded degrees.

The following discussion, adapted from [27], highlights the main ideas behind
the derivation of the finite-dimensional relaxations/approximations. The reader is
referred to [19, section 5] or to the comprehensive reference [31] for details. First,
since the supports of all measures feasible in (6) and (7) are compact, these measures
are uniquely determined by their moments, i.e., by integrals of all monomials (which
is a sequence of real numbers when indexed in, e.g., the canonical monomial basis).
Therefore, it suffices to restrict the test functions w(x) and v(x) in (6) and (7) to all
monomials, reducing the linear equality constraints on measures μ0, μ, and μ̂0 of (6)



2954 MILAN KORDA, DIDIER HENRION, AND COLIN N. JONES

and (7) to linear equality constraints on their moments. Next, by the Putinar Posi-
tivstellensatz (see [31, 40]), the constraint that the support of a measure be included
in a given compact basic semialgebraic set is equivalent (modulo a nonrestrictive al-
gebraic condition; see Assumption 1) to the feasibility of an infinite sequence of linear
matrix inequalities (LMIs) involving the so-called moment and localizing matrices,
which are linear in the coefficients of the moment sequence. By truncating the mo-
ment sequence and taking only the moments corresponding to monomials of total
degree less than or equal to 2k, where k ∈ {1, 2, . . .} is the relaxation order, we obtain
a necessary condition for this truncated moment sequence to be the first part of a
moment sequence corresponding to a measure with the desired support.

Notation. In what follows, Rk[·] denotes the vector space of real multivariate poly-
nomials of total degree less than or equal to k. Further, we let dXi := 
deg(gXi)/2�
and dU i := 
deg(gU i)/2�, where deg(·) denotes the degree of a polynomial; we also
use � 0 to denote positive semidefiniteness of a matrix. In the primal SDP relaxations
we use the notion of moment and localizing matrices Mk(·) and Mk(·, ·), following the
notation of [31] or [19, section 6]. Finally, throughout the rest of this section we make
the following standard assumption.

Assumption 1. One of the polynomials modeling the sets X, respectively, U , is
equal to gXi(x) = R2

X − ‖x‖22, respectively, gUi(u) = R2
U − ‖u‖22, for some RX ≥ 0,

RU ≥ 0.
This assumption is made completely without loss of generality since redundant

ball constraints can always be added to the description of the compact sets X and U .

6.1. Discrete time. The primal relaxation of order k in discrete time reads
(10)

p∗k = max (y0)0
s.t. Ak(y, y0, ŷ0) = bk,

Mk(y) � 0, Mk−dXi
(gXi, y) � 0, i = 1, 2, . . . , nX ,

Mk−dUi
(gUi, y) � 0, i = 1, 2, . . . , nU ,

Mk(y0) � 0, Mk−dXi
(gXi, y0) � 0, i = 1, 2, . . . , nX ,

Mk(ŷ0) � 0, Mk−dXi
(gXi, ŷ0) � 0, i = 1, 2, . . . , nX ,

where the maximum is over moment sequences (y, y0, ŷ0) truncated to degree 2k cor-
responding to measures μ, μ0, and μ̂0 in (6). The linear equality constraint captures
the two linear equality constraints of (6) with v(x) ∈ R2k[x] and w(x) ∈ R2k[x] be-
ing monomials of total degree less than or equal to 2k. In (10), a linear objective is
minimized subject to linear equality constraints and LMI constraints; therefore, (10)
is an SDP.

The dual approximation of order k in discrete time reads
(11)
d∗k = inf w′l

s.t. v(x)− αv(f(x, u)) = q0(x, u) +
∑nX

i=1 qi(x, u)gXi(x) +
∑nU

i=1 ri(x, u)gUi(u),

w(x)− v(x)− 1 = p0(x) +
∑nX

i=1 pi(x)gXi(x),

w(x) = s0(x) +
∑nX

i=1 si(x)gXi(x),

where l is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients w is expressed. The infimum (which may not
be attained) is over polynomials v(x) ∈ R2k[x] and w ∈ R2k[x], and polynomial SOS
qi, pi, si, i = 1, . . . , nX , and ri, i = 1, . . . , nU , of appropriate degrees. In (11), a linear
objective function is minimized subject to SOS constraints; therefore, (11) is an SOS
problem which can be readily cast as an SDP (see, e.g., [31]).
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6.2. Continuous time. The primal relaxation of order k in continuous time
reads
(12)

p∗k = max (y0)0
s.t. Ak(y, y0, ŷ0) = bk,

Mk(y) � 0, Mk−dXi
(gXi, y) � 0, i = 1, 2, . . . , nX ,

Mk−dUi
(gUi, y) � 0, i = 1, 2, . . . , nU ,

Mk(y0) � 0, Mk−dXi
(gXi, y0) � 0, i = 1, 2, . . . , nX ,

Mk(ŷ0) � 0, Mk−dXi
(gXi, ŷ0) � 0, i = 1, 2, . . . , nX ,

where the maximum is over moment sequences (y, y0, ŷ0) truncated to degree 2k cor-
responding to measures μ, μ0, and μ̂0 in (7). The linear equality constraint captures
the two linear equality constraints of (7) with v(x) ∈ R2k[x] and w(x) ∈ R2k[x] be-
ing monomials of total degree less than or equal to 2k. In (12), a linear objective is
minimized subject to linear equality constraints and LMI constraints; therefore, (12)
is an SDP.

The dual approximation of order k in continuous time reads
(13)
d∗k = inf w′l

s.t. βv(x)− grad v ·f(x, u) = q0(x, u)+
∑nX

i=1 qi(x, u)gXi(x)+
∑nU

i=1 ri(x, u)gUi(u),

w(x)− v(x)− 1 = p0(x) +
∑nX

i=1 pi(x)gXi(x),

w(x) = s0(x) +
∑nX

i=1 si(x)gXi(x),

where l is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients w is expressed. The infimum (which may not
be attained) is over polynomials v(x) ∈ R2k[x] and w ∈ R2k[x], and polynomial SOS
qi, pi, si, i = 1, . . . , nX , and ri, i = 1, . . . , nU , of appropriate degrees. In (13), a linear
objective function is minimized subject to SOS constraints; therefore, (13) is an SOS
problem which can be readily cast as an SDP (see, e.g., [31]).

6.3. Convergence results. In this section we state several convergence results
for the finite-dimensional relaxations, respectively, approximations, (10), (12), re-
spectively, (11), (13). Let wk and vk denote an optimal solution to the kth dual SDP
approximation (11) or (13), and define

XIk := {x ∈ X : vk(x) ≥ 0}.

Then, in view of Lemmas 3 and 4, we know that wk overapproximates the indicator
function of the MCI set XI on X , i.e., wk ≥ IXI on X , and that the sets XIk

approximate from outside the MCI set XI , i.e., XIk ⊃ XI . In what follows we prove
the following:

• The optimal values of the finite-dimensional primal and dual problems p∗k
and d∗k coincide and converge to the optimal values of the infinite-dimensional
primal and dual LPs p∗ and d∗ which also coincide (in view of Theorems 3
and 4) and are equal to the volume of the MCI set.

• The sequence of functions wk converges on X from above to the indicator
function of the MCI set in the L1 norm. In addition, the running minimum
mini≤k wi converges on X from above to the indicator function of the MCI
set in the L1 norm and almost uniformly.

• The sequence of sets XIk converges to the MCI set XI in the sense that the
volume discrepancy tends to zero, i.e., limk→∞ λ(XIk \XI) = 0.
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The proofs of the results follow very similar reasoning to that of analogous results
on ROA approximations in [19, section 6].

Lemma 5. There is no duality gap between primal LMI problems (10) and (12)
and dual LMI problems (11) and (13); i.e., p∗k = d∗k.

Proof. The argument closely follows that in [19, Theorem 4], and therefore we
only outline the key points of the proof. To prove the absence of duality gap, it is
sufficient to show that the feasible sets of the primal SDPs (10) and (12) are nonempty
and compact. The result then follows by standard SDP duality theory (see [19,
Theorem 4] for a detailed argument). The nonemptiness follows trivially since the
vector of measures (μ0, μ, μ̂) = (0, 0, λ) is feasible in the primal infinite-dimensional
LPs (6) and (7), and therefore the truncated moment sequences corresponding to
these measures are feasible in the primal SDP relaxations (10) and (12). To see
the compactness observe that the first components (i.e., masses) of the truncated
moment vectors y0, y, and ŷ are bounded. This follows by evaluating the equality
constraints of (6) and (7) for w(x) = v(x) = 1. Indeed, in discrete time we get
(y)0 = (y0)0/(1 − α), and in continuous time we get (y)0 = (y0)0/β; in addition, in
both cases we have (y0)0+(ŷ0)0 = λ(X) < ∞, and therefore the first components are
indeed bounded (since they are trivially bounded from below and, in fact, nonnegative,
due to the constraints on moment matrices). Boundedness of the even components
of each truncated moment vector then follows from the structure of the localizing
matrices corresponding to the functions from Assumption 1. Boundedness of the
entire truncated moment vectors then follows since the even moments appear on the
diagonal of the positive semidefinite moment matrices.

The following result shows the convergence of the optimal values of the
finite-dimensional relaxations/approximations to the optimal values of the infinite-
dimensional LPs.

Theorem 5. The sequence of infima of LMI problems (11) and (13) converges
monotonically from above to the supremum of the linear programming problems (8)
and (9), i.e., d∗ ≤ d∗k+1 ≤ d∗k and limk→∞ d∗k = d∗ = p∗. Similarly, the sequence of
maxima of LMI problems (10) and (12) converges monotonically from above to the
maximum of the linear programming problems (6) and (7), i.e., p∗ ≤ p∗k+1 ≤ p∗k and
limk→∞ p∗k = p∗ = d∗.

Proof. The monotonicity of the optimal values of the relaxations p∗k, respectively,
approximations d∗k, is evident from the structure of the feasible sets of the corre-
sponding SDPs. The convergence of the primal relaxations pk to p∗ follows from the
compactness of the feasible sets of the primal SDPs (10) and (12) (shown in the proof
of Lemma 5) by standard arguments on the convergence of Lasserre’s LMI hierarchy
(see, e.g., [31]). The convergence of the optimal value of the dual approximations d∗k
to d∗ then follows from Lemma 5. The equality between p∗ and d∗ is the statement
of Theorems 3 and 4.

The next theorem shows functional convergence from above to the indicator func-
tion of the MCI set.

Theorem 6. Let wk ∈ R2k[x] denote the w-component of a solution to the dual
LMI problems (11) and (13), and let w̄k(x) = mini≤k wi(x). Then wk converges from
above to IXI in the L1 norm and w̄k converges from above to IXI in the L1 norm and
almost uniformly.

Proof. The convergence in the L1 norm follows immediately from Theorem 5
and from the fact that wk ≥ IXI by Lemmas 3 and 4. The convergence of the
running minima follows from the fact that there exists a subsequence of {wk}∞k=0
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which converges almost uniformly (by, e.g., [4, Theorems 2.5.2 and 2.5.3]).
Our last theorem shows a setwise convergence of the outer approximations to the

MCI set.
Theorem 7. Let (vk, wk) ∈ R2k[x]×R2k[x] denote an optimal solution to the dual

LMI problem (11) or (13), and let XIk := {x ∈ R
n : vk(x) ≥ 0}. Then XI ⊂ XIk,

lim
k→∞

λ(XIk \XI) = 0, and λ(∩∞
k=1XIk \XI) = 0.

Proof. From Lemmas 3 and 4 we have XIk ⊃ XI and wk ≥ IXI ; therefore, since
w ≥ v + 1 and w ≥ 0 on X , we have wk ≥ IXIk

≥ IXI and {x : wk(x) ≥ 1} ⊃ XIk ⊃
X0. From Theorem 6, we have wk → IXI in the L1 norm on X . Consequently,

λ(XI) =

∫
X

IXI dλ = lim
k→∞

∫
X

wk dλ ≥ lim
k→∞

∫
X

IXIk
dλ

= lim
k→∞

λ(XIk) ≥ lim
k→∞

λ(∩k
i=1XI i) = λ(∩∞

k=1XIk).

But since XI ⊂ XIk for all k, we must have

lim
k→∞

λ(XIk) = λ(XI) and λ(∩∞
k=1XIk) = λ(XI),

and the theorem follows.

7. Numerical examples. In this section we present numerical examples that
illustrate our results. The primal SDP relaxations were modeled using Gloptipoly
3 [20] and the dual SOS problems using Yalmip [33]. The resulting SDP problems
were solved using SeDuMi [39] (which, in the case of primal relaxations, also returns
the dual solution providing the outer approximations). For numerical computation
(especially for higher relaxation orders), the problem data should be scaled such that
the constraint sets are (within) unit boxes or unit balls; for ease of reproduction,
most of the numerical problems shown are already scaled. On our problem class we
observed only marginal sensitivity to the values of the discrete- and continuous-time
discount factors α and β and report results with α = 0.9 and β = 1 for all examples
presented.

For a discussion on the scalability of our approach and the performance of alter-
native SDP solvers see the conclusion and the acrobot-on-a-cart example below.

7.1. Discrete time.

7.1.1. Double integrator. Consider the discrete-time double integrator:

x+
1 = x1 + 0.1x2,

x+
2 = x2 + 0.05u

with the state constraint set X = [−1, 1]2 and input constraint set U = [−0.5, 0.5].
The resulting MCI set outer approximations of degrees 8 and 12 are shown in Figure 1;
the approximation is fairly tight for modest degrees. The true MCI set was computed
using the standard algorithm based on polyhedral projections [9].

7.1.2. Cathala system. Consider the Cathala system borrowed from [28]:

x+
1 = x1 + x2,

x+
2 = −0.5952+ x2 + x2

1.
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Fig. 1. Discrete time double integrator; polynomial outer approximations (light gray) to the
MCI set (dark gray) for degrees d ∈ {8, 12}.

The chaotic attractor of this system is contained in the set X = [−1.6, 1.6]2. MCI set
outer approximations are shown in Figure 2; again, the approximations are relatively
tight for small relaxation orders. The true MCI set was (approximately) computed
by gridding.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1
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0
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1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x x

d = 6 d = 10

Fig. 2. Cathala system; polynomial outer approximations (light gray) to the MCI set (dark
gray) for degrees d ∈ {6, 10}.

7.1.3. Julia sets. Consider over z ∈ C, or, equivalently, over x ∈ R2, with
z := x1 + ix2, the quadratic recurrence

z+ = z2 + c

with c ∈ C a given complex number and i the imaginary unit. The filled Julia set
is the set of all initial conditions of the above recurrence for which the trajectories
remain bounded. The shape of the Julia set depends strongly on the parameter c. If
c lies inside the Mandelbrot set, then the Julia set is connected; otherwise the set is
disconnected. In both cases the boundary of the set has a very complicated (in fact,
fractal) structure. Here we shall compute outer approximations of the filled Julia set
intersected with the unit ball. To this end we set X = {x ∈ R2 : ‖x‖ ≤ 1}. Figure 3
shows outer approximations of degree 12 for parameter values c = −0.7+ i0.2 (inside
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c = −0.7 + i0.2 c = −0.9 + i0.2

Fig. 3. Filled Julia set; polynomial outer approximation of degree 12 (light gray) and (an
approximation of) the “true” set (dark grey) represented as an ensemble of initial conditions ran-
domly sampled within the state-constraint set. The dashed line shows the boundary of the unit-ball
state-constraint set.

the Mandelbrot set) and c = −0.9 + i0.2 (outside the Mandelbrot set). The “true”
filled Julia set was (approximately) obtained by randomly sampling initial conditions
within the unit ball and iterating the recurrence for one hundred steps. Taking higher
degrees of the approximating polynomials does not result in significant improvement
due to our choice of the monomial basis to represent polynomials. An alternative basis
(e.g., Chebyshev polynomials; see the related discussions in [21] and [19]) would allow
us to further improve the outer estimates and better capture the intricate structure
of the filled Julia set’s boundary.

7.1.4. Hénon map. Consider the modified controlled Hénon map

x+
1 = 0.44− 0.1x3 − 4x2

2 + 0.25u,

x+
2 = x1 − 4x1x2,

x+
3 = x2,

adapted from [32] with X = [−1, 1]3 and U = [−umax, umax]. We investigate two
cases: uncontrolled (i.e., umax = 0) and controlled (with umax = 1). Figure 4 shows
outer approximations to the MCI set of degree eight for both settings and the “true”
MCI set in the uncontrolled setting (approximately) obtained by random sampling of
initial conditions inside the constraint set X . The outer approximations suggest that,
as expected, allowing for control leads to a larger MCI set.

7.2. Continuous time.

7.2.1. Double integrator. Consider the continuous-time double integrator

ẋ1 = x2,

ẋ2 = u,

with state constraint set X = [−1, 1]2 and input constraint set U = [−1, 1]. The
resulting MCI set outer approximations for degrees 8 and 12 are in Figure 5. The
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Fig. 4. Controlled Hénon map; polynomial outer approximation of degree eight in the uncon-
trolled setting (darker red, smaller) and in the controlled setting (lighter red, larger). The (approxi-
mation of) the “true” set (black) in the uncontrolled setting is represented as an ensemble of initial
conditions randomly sampled within the state-constraint set.

approximations are fairly tight even for relatively low relaxation orders. The true
MCI set was (approximately) computed as in section 7.1.1 by methods of [9] after
dense time discretization.
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Fig. 5. Continuous-time double integrator; polynomial outer approximations (light gray) to the
MCI set (dark gray) for degrees d ∈ {8, 14}.

7.2.2. Spider-web system. As our second example we take the spider-web
system from [1] given by equations

ẋ1 = −0.15x7
1 + 200x6

1x2 − 10.5x5
1x

2
2 − 807x4

1x
3
2 + 14x3

1x
4
2 + 600x2

1x
5
2 − 3.5x1x

6
2 + 9x7

2,

ẋ2 = −9x7
1 − 3.5x6

1x2 − 600x5
1x

2
2 + 14x4

1x
3
2 + 807x3

1x
4
2 − 10.5x2

1x
5
2 − 200x1x

6
2 − 0.15x7

2
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with the constraint set X = [−1, 1]2. Here we exploit the fact that the system dy-
namics are captured by constraints on v only, whereas w is merely overapproximating
v + 1, and the fact that outer approximations to the MCI set are given not only by
{x : v(x) ≥ 0} but also by {x : w(x) ≥ 1}. Therefore, if low-complexity outer approx-
imations are desired, it is reasonable to choose different degrees of v and w in (13)
(high for v and lower for w) and use the set {x : w(x) ≥ 1} as the outer approxima-
tion. That way, we expect to obtain relatively tight low-order approximations. This
is confirmed by numerical results shown in Figure 6. The degree of v is equal to 16
for both figures, whereas degw = 8 for the left figure and degw = 16 for the right
figure. We observe no significant loss in tightness by choosing a smaller degree of w.
The true MCI set was (approximately) computed by gridding.
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Fig. 6. Spider-web system; polynomial outer approximations (light gray) to the MCI set (dark
gray) for degrees deg v = 16 and degw = 8 on the left and degw = 16 on the right.

7.2.3. Acrobot on a cart. As our last example we consider the acrobot-on-
a-cart system adapted from [23], which is essentially a double pendulum on a cart
where the inputs are the force acting on the cart and the torque in the middle joint of
the double pendulum. The system is sketched in Figure 7. It is a sixth order system
with two control inputs; the dynamic equation is given by

ẋ =

⎡
⎢⎢⎣

x4

x5

x6

M(x)−1N(x, u)

⎤
⎥⎥⎦ ∈ R

6,

where

M(x) =

⎡
⎣ a1 a2 cosx2 a3 cosx3

a2 cosx2 a4 a5 cos(x2 − x3)
a3 cosx3 a5 cos(x2 − x3) a6

⎤
⎦

and

N(x, u) =

⎡
⎣ u1 + a2x

2
5 sinx2 + a3x

2
6 sinx3 − δ0x4

−a5x
2
6 sin(x2 − x3) + δ2x6 + a7 sinx2 − x5(δ1 + δ2)

u2 + a5 sin(x2 − x3)x
2
5 + δ2x5 − δ2x6 + a8 sinx3

⎤
⎦ .

The states x1, x2, x3 represent, respectively, the position of the cart (in meters), the
angle of the lower rod, and the angle of the upper rod of the double pendulum (both in
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radians); the states x4, x5, and x6 are then the corresponding velocities in meters per
second for the cart and radians per second for the pendulum rods. The constants are
given by a1 = 0.85, a2 = 0.2063, a3 = 0.0688, a4 = 0.0917, a5 = 0.0344, a6 = 0.0229,
a7 = 2.0233, a8 = 0.6744, δ0 = 0.3, δ1 = 0.1, and δ2 = 0.1. We are interested in
computing the maximum controlled invariant subset of the state constraint set

X = [−1, 1]× [−π/3, π/3]× [−π/3, π/3]× [−0.5, 0.5]× [−5, 5]× [−5, 5].

We investigate two cases. First, we consider the situation where only the middle joint
is actuated and there is no force on the cart; therefore, we impose the constraint
(u1, u2) ∈ U = {0} × [−1, 1]. Second, we consider the situation where we can also
exert a force on the cart; in this case we impose (u1, u2) ∈ U = [−1, 1] × [−1, 1].
Naturally, the MCI set for the second case is larger (or at least the same) as for the
first case. This is confirmed6 by outer approximations of degree four whose section for
x1 = 0, x4 = 0, x5 = 0 is shown in Figure 8. In order to compute the outer approxi-
mations, we took a third order Taylor expansion of the nonpolynomial dynamics even
though exact treatment would be possible via a coordinate transformation leading to
rational dynamics to which our methods can be readily extended; this extension is,
however, not treated in this paper, and therefore we opted for the simpler (and non-
exact) approach using Taylor expansion. Before solving the problem we made a linear
coordinate transform so that the state constraint set becomes the unit hypercube
[−1, 1]6.

This example, which is the largest of those considered in this paper, took 110
seconds to solve7 with SeDuMi for d = 4; the corresponding time with the MOSEK
SDP solver was 10 seconds. Using MOSEK, we could also solve this example for d = 6
(in 420 seconds), although there the solver converged to a solution with a rather poor
accuracy,8 and therefore we do not report the results.

x1

u1

u2x2

x3

Fig. 7. Acrobot on a cart; sketch.

8. Conclusion. We derived an infinite-dimensional convex characterization of
the maximum controlled invariant (MCI) set, finite-dimensional approximations of
(the dual of) which provide a converging sequence of semialgebraic outer approxima-
tions to this set. The outer approximations are the outcome of a single semidefinite

6There is no a priori guarantee on setwise ordering of the outer approximations; what is guaran-
teed is the ordering of optimal values of the optimization problem (12) or (13).

7All examples were run on an Apple iMac with 3.4 GHz Intel Core i7, 8 GB RAM, and Mac OS
X 10.8.2. The time reported is the pure solver time, not including the Yalmip preprocessing time.

8Note that the MOSEK SDP solver is still being developed, and its accuracy is likely to improve
in the future.
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x3
x2

x6 = ẋ3

−π/2 −π/4
0 π/4

π/2 −π/2
−π/4

0
π/4

π/2
−1

−0.5

0

0.5

1

Fig. 8. Acrobot on a cart; section of the polynomial outer approximations of degree four for
(x1, x4, x5) = (0, 0, 0). Only the middle joint actuated (darker, smaller); the middle joint and the
cart actuated (lighter, larger). The displayed states x2, x3, and x6 are, respectively, the lower
pendulum angle, the upper pendulum angle, and the upper pendulum angular velocity.

program (SDP) with no additional data required other than the problem description.
Therefore, the approach is readily applicable using freely available modeling tools
such Gloptipoly 3 [20] or YALMIP [33] with no hand-tuning involved.

The cost to pay for this comfort is the relatively unfavorable scalability of the
SDPs solved—the number of variables grows as O((n+m)d), where n and m are the
state and control dimensions and d is the degree of the approximating polynomial.
Therefore, in order for this approach to scale to medium dimensions (say, more than
m + n = 6), one has to either trade off accuracy by taking small d or go beyond
the standard freely available solvers such as SeDuMi or SDPA. One possibility is par-
allelization; for instance, the free parallel solver SDPARA [49] allows for scaling to
larger dimensions. Alternatively, one can utilize one of the (few) commercial SDP
solvers; in particular, the recently released MOSEK SDP solver seems to show far
superior performance on our problem class, and therefore this may allow scaling to
larger dimensions (see also the discussion following the acrobot-on-a-cart example in
section 7.2.3). In addition, first-order (e.g., DSA-BD [37]) or augmented Lagrangian
methods (e.g., SDPNAL [53]) should allow scaling much further provided that proper
conditioning of the problem data is ensured; positive results in this direction have
been reported in [38] and are currently investigated further by the authors. Finally,
customized structure-exploiting solutions can be developed; this is a promising direc-
tion of future research also investigated by the authors. At this point it should be
emphasized that, to the best of the authors’ knowledge, all of the existing approaches
providing approximations of similar quality experience similar or worse scalability
properties.

Other directions of future research include the extension of the presented ap-
proach to inner approximations of MCI sets, to stochastic systems, and to uncertain
systems. Partial results on the inner approximations for the related problem of ROA
computation already exist [27], albeit in an uncontrolled setting only.
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Appendix A. We start by embedding our problem in the setting of discrete-time
Markov control processes; terminology and notation is borrowed from the classical
reference [22]. Let us define a stochastic kernel on U given X as a map ν(· | ·) such
that ν(· |x) is a probability measure on U for all x ∈ X and ν(B | ·) is a measurable
function on X for all B ⊂ U . Any such stochastic kernel gives rise to a discrete-time
Markov process when applied to system (1) as a stationary randomized control policy
(a policy which, given x, chooses the control action randomly based on the probability
distribution ν(· | x), i.e., Prob(u ∈ B | x) = ν(B | x) for all B ⊂ U). The transition
kernel Qν(· | ·) of this stationary Markov process is then given by

Qν(A |x) =
∫
U

IA(f(x, u)) dν(u |x) = Prob(x+ ∈ A |x) ∀A ⊂ R
n,

where x is the current state and x+ is the successor state. The t-step transition kernel
is then defined by induction as

Qt
ν(A |x) :=

∫
Rn

Q(A |y) dQt−1
ν (y |x), t ∈ {2, 3, . . .},

with Q1
ν := Qν . Given an initial distribution μ0, the distribution of the Markov chain

at time t, μ̃t is given by

μ̃t(A) =

∫
X

Qt
ν(A |x) dμ0(x) = Prob(xt ∈ A).

The joint distribution of state and control is then

μt(A×B) =

∫
A

ν(B |x) dμ̃t(x).

The discounted occupation measure associated to the Markov process is defined by

μ(A×B) =
∞∑
t=0

αtμt(A×B).

Note that this relation reduces to (3) when μt = δ(xt,ut).
In order to prove Lemma 1 we need the following result, which can be found

in [22].
Lemma 6. For any pair of measures (μ0, μ) satisfying (4) there exists a stationary

randomized control policy ν(· | x) such that the Markov chain obtained by applying
this control policy to the difference (1) starting from initial distribution μ0 has the
discounted occupation measure equal to μ.

Proof. Disintegrate μ as dμ(x, u) = dν(u | x)dμ̃(x), where μ̃ denotes the x-
marginal of μ and ν is a stochastic kernel on U given X . According to the discussion
preceding Lemma 6, applying ν to (1) gives rise to a stationary discrete-time Markov
process with the transition kernel Qν starting form the initial distribution μ0.

With this notation, (4) can be equivalently rewritten as

(14)

∫
X

v(x) dμ̃(x) =

∫
X

v(x) dμ0(x) + α

∫
X

∫
Rn

v(y) dQν(y |x) dμ̃(x)

for any measurable v(x) (derivation of (4) did not depend on the continuity of v).
Taking v(x) := IA(x), we obtain

(15) μ̃(A) = μ0(A) + α

∫
X

Qν(A |x) dμ̃(x) ∀A ⊂ X.
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Using relation (14) with v(x) := Qν(A | x) to evaluate the integral with respect
to μ̃ on the right-hand side of (15), we get

μ̃(A) = μ0(A) + α

∫
X

Qν(A |x) dμ0(x) + α2

∫
X

Q2
ν(A |x) dμ̃(x).

By iterating this procedure we obtain

(16) μ̃(A) = μ0(A) +

t∑
i=1

αi

∫
X

Qi
ν(A |x) dμ0(x)︸ ︷︷ ︸
μi(A)

+ αt+1

∫
X

Qt+1
ν (A |x) dμ̃(x)

︸ ︷︷ ︸
→ 0

,

and taking the limit as t → ∞ gives

μ̃(A) =

∞∑
t=0

αtμ̃t(A),

where the third term in (16) converges to zero because α ∈ (0, 1), Qt+1
ν (A | x) ≤ 1,

and μ̃ is a finite measure. Hence the x-marginal of the discounted occupation measure
of the Markov chain coincides with the x-marginal of μ.

Finally, to establish equality of the whole measures, observe that
∞∑
t=0

αtμt(A×B) =
∞∑
t=0

αt

∫
A

ν(B |x) dμ̃t(x) =

∫
A

ν(B |x) dμ̃(x) = μ(A×B).

Proof of Lemma 1. Disintegrate μ to dμ(x, u) = dν(u |x)dμ̃(x) as in the proof of
Lemma 6. Then for any x ∈ S := spt μ̃ we have∫

U

IS(f(x, u)) ν(u |x) = 1.

This relation says that the support of μ̃ is invariant under ν and follows from Lemma 6,
from the definition of the occupation measure μ, from the definition of the support,
and from the fact that ν(· |x) is a probability measure for all x.

Define an admissible stationary deterministic control policy by taking any mea-
surable selection u(x) ∈ spt ν(· | x) ⊂ U . Define further the sequence of probability
measures

νn(A |x) = ν(B1/n(u(x)) ∩ A |x)
ν(B1/n(u(x)) ∩ U |x) ∀n ∈ {1, 2, . . .}, A ⊂ U,

where B1/n(u(x)) is a closed ball of radius 1/n centered at u(x). Then νn(· | x)
converges weakly-* (or weakly or narrowly) to δu(x) and∫

U

IS(f(x, u)) νn(u |x) = 1 ∀n ∈ {1, 2, . . .}.

Therefore,

1 = lim sup
n→∞

∫
U

IS(f(x, u)) νn(u |x) ≤
∫
U

IS(f(x, u)) δu(x)(u) = IS(f(x, u(x))),

where the inequality follows by the Portmanteau lemma since the set {u |f(x, u) ∈ S∩
B1/n(u(x))} is closed for all x by continuity of f . Therefore, in fact IS(f(x, u(x))) = 1,
and so f(x, u(x)) ∈ spt μ̃ for all x ∈ spt μ̃. Therefore, spt μ̃ ⊂ X is invariant for the
closed loop system xt+1 = f(xt, u(xt)), where u(x) is an admissible deterministic
control policy. Therefore, necessarily spt μ̃ ⊂ XI . Finally, from (4) clearly sptμ0 ⊂
spt μ̃, and so sptμ0 ⊂ XI .
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Appendix B.
Lemma 7. For any pair of measures (μ0, μ) solving (5), there exists a family of

trajectories of the convexified inclusion (2) starting from μ0 such that the x-marginal
of its discounted occupation measure is equal to the x-marginal of μ.

Proof. The proof is based on fundamental results of [2] and [8] and on the com-
pactification procedure discussed in [29].

We begin by embedding the problem in a stochastic setting. To this end, define
the extended state spaceE as the one-point compactification of Rn, i.e., E = Rn∪{Δ},
where Δ is the point compactifying Rn. Define also the linear operator A : D(A) →
C(E × U) by

w �→ Aw := gradw · f,

where the domain of A, D(A) is defined as

D(A) := {w : E → R | w ∈ C1(Rn), w(Δ) = 0, lim
x→Δ

w(x) = 0,

lim
x→Δ

gradw · f(x, u) = 0 ∀ u ∈ U}.

In words, D(A) is the space all continuously differentiable functions vanishing at
infinity such that gradw · f also vanishes at infinity for all u ∈ U . Now consider the
relaxed martingale problem [8]: find a stochastic process Y : [0,∞]× Ω → E defined
on some filtered probability space (Ω,F , (Ft)t≥0, P ) and a stochastic kernel ν(· | ·)
(stationary relaxed Markov control) on U given E such that

• P (Y (0) ∈ A) = μ0(A) for all A ⊂ E; and
• for all w ∈ D(A) the stochastic process

(17) w(Y (t))−
∫ t

0

∫
U

Aw(Y (τ), u) ν(du |Y (τ)) dτ

is an Ft-martingale (see, e.g., [24] for a definition).
Observe that there exists a countable subset of D(A) (e.g., all polynomials with

rational coefficients attenuated near infinity) dense in D(A) in the supremum norm.
Next, D(A) is clearly an algebra that separates points of E and A1 = 0. Finally, since
f(x, u) is polynomial and hence locally Lipschitz, the ODE ẋ = f(x, u) has a solution
on [0,∞) for any x0 ∈ E and any fixed u ∈ U in the sense that if there is a finite
escape time te, then we define x(t) = Δ for all t ≥ te. Each such solution satisfies
the martingale relation (17) (with a trivial probability space). Therefore, A satisfies
Conditions 1–3 of [8], and it follows from Theorem 2.2 and Corollary 2.2 therein that
for any pair of measures satisfying the discounted Liouville equation (5), there exists
a solution to the above martingale problem whose discounted occupation measure is
equal to μ, that is,

μ(A×B) = E
{∫ ∞

0

e−βtIA×B(Y (t), u) ν(du |Y (t)) dt
}
, P (Y (0) ∈ A) = μ0(A),

where E denotes the expectation with respect to the probability measure P . From
the martingale property of (17) and the definition of A we get

E{w(Y (t))} −E
{∫ t

0

∫
U

gradw · f(Y (τ), u) ν(du |Y (τ)) dτ
}
= E{Y (0)}.
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Now let μt denote the marginal distribution of Y (t) at time t; that is,

μt(A) := P (Y (t) ∈ A) = E{IA(Y (t))} ∀A ⊂ X.

Then the above relation becomes

∫
X

w(x) dμt(x) −
∫ t

0

∫
X

∫
U

gradw(x) · f(x, u) ν(du |x) dμτ (x) dτ =

∫
w(x) dμ0(x),

where we have used Fubini’s thorem to interchange the expectation operator and
integration with respect to time. Defining the relaxed vector field

f̄(x) =

∫
U

f(x, u) ν(du |x) ∈ conv f(x, U)

and rearranging, we obtain

(18)

∫
X

w(x) dμt(x) =

∫
w(x) dμ0(x) +

∫ t

0

∫
X

gradw(x) · f̄(x) dμτ (x) dτ,

where the equation holds for all w ∈ C1(X) a.e. with respect to the Lebesgue mea-
sure on [0,∞). The lemma then follows from Ambrosio’s superposition principle [2,
Theorem 3.2] using the same arguments as in the proof of Lemma 4 in [19].

Proof of Lemma 2. Suppose that a pair of measures (μ0, μ) satisfies (5) and that
λ(sptμ0 \ XI) > 0. From Lemma 7 there is a family of trajectories of (2) starting
from μ0 with discounted occupation measure whose x-marginal coincides with the
x-marginal of μ. However, this is a contradiction since no trajectory starting from
sptμ0 \XI remains in X for all times and sptμ ⊂ X . Thus, λ(sptμ0 \XI) = 0 and
so λ(sptμ0) ≤ λ(XI).

Acknowledgments. The authors are grateful to Slávka Jadlovská for providing
the acrobot-on-a-cart system and Andrea Alessandretti for providing the spider-web
system.
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