Appendix

In this section we discuss in detail how the Tensor Decomposition problem presented in Eq. (9) is solved by the CP-OPT algorithm of [1].

In Section 4, we have seen that an N-D tensor can be represented as the sum of the outer products of 1-D filters:

$$
\mathcal{F} \approx \sum_{k=1}^{K} \mathbf{a}^{k, 1} \circ \mathbf{a}^{k, 2} \circ \cdots \mathbf{a}^{k, N}
$$

The sum of the outer products of 1-D filters can be written using a shorthand Kruskal Operator notation:

$$
\left[\left[\mathbf{A}^{(1)} \ldots \mathbf{A}^{(N)}\right]\right]=\sum_{k=1}^{K} \mathbf{a}^{k, 1} \circ \mathbf{a}^{k, 2} \circ \cdots \circ \mathbf{a}^{k, N}
$$

where $\mathbf{A}^{(n)}$ is the matrix having vectors $\mathbf{a}^{k, n}$ as columns, for $n=1, \ldots, N$ and $k=1, \ldots, K$.

Using this notation, Tensor Decomposition problem can be formulated as,

$$
\begin{array}{rl}
\min _{\left\{\mathbf{A}^{(n)}\right\}_{n}} & f\left(\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right)= \tag{1}\\
& \min _{\left\{\mathbf{A}^{(n)}\right\}_{n}} \frac{1}{2}\left\|\mathcal{F}-\left[\left[\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right]\right]\right\|^{2}
\end{array}
$$

In this equation, f is expressed as a function of matrices. It can also be written as a scalar-valued function, where the parameters are vectorized and stacked:

$$
\mathbf{x}=\left[\begin{array}{c}
\mathbf{a}^{1,1} \\
\vdots \\
\mathbf{a}^{K, 1} \\
\vdots \\
\mathbf{a}^{1, N} \\
\vdots \\
\mathbf{a}^{K, N}
\end{array}\right] .
$$

Using this approach and knowing the derivatives of the objective function with respect to \mathbf{x}, a first-order optimization method can be applied. In the CP-OPT algorithm [1], a nonlinear conjugate gradient method is employed in the optimization and the partial derivatives of the objective function are computed using the following theorem:

Theorem A.1. The partial derivatives of the objective function f are given by

$$
\begin{equation*}
\frac{\partial f}{\partial \mathbf{a}^{r, n}}=-\left(\mathcal{F} \underset{\substack{m=1 \\ m \neq n}}{X} \mathbf{a}^{r, m}\right)+\sum_{\ell=1}^{K} \gamma_{r \ell}^{(n)} \mathbf{a}^{\ell, n} \tag{2}
\end{equation*}
$$

where $r=1, \ldots, K$ and $n=1, \ldots, N$ with $\gamma_{r \ell}^{(n)}$ defined as

$$
\gamma_{r \ell}^{(n)}=\prod_{\substack{m=1 \\ m \neq n}}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{\ell, m}
$$

and X is used to denote the following multiplication:

$$
\begin{aligned}
& \mathcal{F}{\underset{m=1}{N} \mathbf{a}^{r, m}}^{=}=\sum_{i_{1}=1}^{I_{1}} \sum_{i_{2}=1}^{I_{2}} \cdots \sum_{i_{N}=1}^{I_{N}} f_{i_{1} i_{2} \ldots i_{N}} a^{i_{1}, 1} a^{i_{2}, 2} \ldots a^{i_{N}, N} \\
&=\left(\mathcal{F} \underset{\substack{m=1 \\
m \neq n}}{X} \mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{r, n} .
\end{aligned}
$$

Proof: Rewriting the objective function given in Eq. (1) as three summands, the following is obtained:

$$
\begin{aligned}
f(\mathbf{x})=\frac{1}{2}\|\mathcal{F}\|^{2} & -\left\langle\mathcal{F},\left[\left[\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right]\right]\right\rangle \\
& +\frac{1}{2} \|\left[\left[\left[\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right]\right] \|^{2}\right.
\end{aligned}
$$

where the first summand is $f_{1}(\mathbf{x})$, the second summand is $f_{2}(\mathbf{x})$ and the third summand is $f_{3}(\mathbf{x})$.
There is no variable in the first summand, thus it does not contribute to the derivative, i.e., $\frac{\partial f_{1}}{\partial \mathbf{a}^{r, n}}=\mathbf{0}$.

$$
\begin{aligned}
f_{2}(\mathbf{x}) & =\left\langle\mathcal{F},\left[\left[\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right]\right]\right\rangle \\
& =\left\langle\mathcal{F}, \sum_{r=1}^{K} \mathbf{a}^{r, 1} \circ \cdots \circ \mathbf{a}^{r, N}\right\rangle \\
& =\sum_{r=1}^{K} \sum_{i_{1}=1}^{I_{1}} \sum_{i_{2}=1}^{I_{2}} \cdots \sum_{i_{N}=1}^{I_{N}} z_{i_{1} i_{2} \ldots i_{N}} a_{i_{1}}^{r, 1} a_{i_{2}}^{r, 2} \ldots a_{i_{N}}^{r, N} \\
& =\sum_{r=1}^{K}\left(\mathcal{F} \underset{m=1}{\mathcal{X}} \mathbf{a}^{r, m}\right)^{(1)} \\
& =\sum_{r=1}^{K}\left(\mathcal{F} \underset{m=1}{\mathcal{X}} \mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{r, n} .
\end{aligned}
$$

As a result the partial derivative of f_{2} is found as

$$
\begin{equation*}
\frac{\partial f_{2}}{\partial \mathbf{a}_{r}^{(n)}}=\left(\mathcal{F} \underset{\substack{m=1 \\ m \neq n}}{X} \mathbf{a}^{r, m}\right) \tag{3}
\end{equation*}
$$

The third summand is

$$
\begin{aligned}
f_{3}(\mathbf{x})= & \left\|\left[\left[\mathbf{A}^{(1)}, \ldots, \mathbf{A}^{(N)}\right]\right]\right\|^{2} \\
= & \left\langle\sum_{r=1}^{K} \mathbf{a}^{r, 1} \circ \ldots \circ \mathbf{a}^{r, N}, \sum_{r=1}^{R} \mathbf{a}^{r, 1} \circ \ldots \mathbf{a}^{r, N}\right\rangle \\
= & \sum_{k=1}^{R} \sum_{\ell=1}^{R} \prod_{m=1}^{N}\left(\mathbf{a}^{k, m}\right)^{T} \mathbf{a}^{\ell, m} \\
= & \prod_{m=1}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{r, m}+2 \sum_{\substack{\ell=1 \\
\ell \neq r}}^{R} \prod_{m=1}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{\ell, m} \\
& +\sum_{\substack{k=1 \\
k \neq r}}^{R} \sum_{\substack{\ell=1 \\
\ell \neq r}}^{N}\left(\mathbf{a}^{k, m}\right)^{T} \mathbf{a}^{\ell, m} .
\end{aligned}
$$

Thus,

$$
\begin{align*}
\frac{\partial f_{3}}{\partial \mathbf{a}^{r, n}} & =2\left(\prod_{\substack{m=1 \\
m \neq n}}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{r, m}\right) \mathbf{a}^{r, n} \\
& +2 \sum_{\substack{\ell=1 \\
\ell \neq r}}^{R}\left(\prod_{\substack{m=1 \\
m \neq n}}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{\ell, m}\right) \mathbf{a}^{\ell, n} \\
& =2 \sum_{\ell=1}^{R}\left(\prod_{\substack{m=1 \\
m \neq n}}^{N}\left(\mathbf{a}^{r, m}\right)^{T} \mathbf{a}^{\ell, m}\right) \mathbf{a}^{\ell, n} . \tag{4}
\end{align*}
$$

Using the partial derivatives of f_{2} and f_{3}, we obtain the results given in Eq. (2).

References

[1] E. Acar, D. M. Dunlavy, and T. G. Kolda. A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions. Journal of Chemometrics, 2011.

