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APPENDIX

In this section we discuss in detail how the Tensor Decompo-
sition problem presented in Eq. (9) is solved by the CP-OPT
algorithm of [1].

In Section 4, we have seen that an N-D tensor can be
represented as the sum of the outer products of 1-D filters:
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The sum of the outer products of 1-D filters can be written
using a shorthand Kruskal Operator notation:
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where A (™) is the matrix having vectors a*"

n=1,...,Nand k=1,... K.
Using this notation, Tensor Decomposition problem can be
formulated as,
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In this equation, f is expressed as a function of matrices.
It can also be written as a scalar-valued function, where the
parameters are vectorized and stacked:
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Using this approach and knowing the derivatives of the
objective function with respect to x, a first-order optimization
method can be applied. In the CP-OPT algorithm [1], a
nonlinear conjugate gradient method is employed in the opti-
mization and the partial derivatives of the objective function
are computed using the following theorem:

Theorem A.1. The partial derivatives of the objective function
f are given by
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and X is used to denote the following multiplication:
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Proof: Rewriting the objective function given in Eq. (1)
as three summands, the following is obtained:
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where the first summand is f;(x), the second summand is
fa(x) and the third summand is f3(x).
There is no variable in the first summand, thus it does not

contribute to the derivative, i.e., azf}n =0.
fo(x) =(F, [[AD, ., AM]))
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As a result the partial derivative of fs is found as
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The third summand is
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Thus,
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Using the partial derivatives of fs and f3, we obtain the results
given in Eq. (2). a
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