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APPENDIX

In this section we discuss in detail how the Tensor Decompo-
sition problem presented in Eq. (9) is solved by the CP-OPT
algorithm of [1].

In Section 4, we have seen that an N -D tensor can be
represented as the sum of the outer products of 1-D filters:

F ≈
K∑

k=1

ak,1 ◦ ak,2 ◦ · · ·ak,N .

The sum of the outer products of 1-D filters can be written
using a shorthand Kruskal Operator notation:

[[A(1) . . .A(N)]] =

K∑
k=1

ak,1 ◦ ak,2 ◦ · · · ◦ ak,N ,

where A(n) is the matrix having vectors ak,n as columns, for
n = 1, . . . , N and k = 1, . . . ,K.

Using this notation, Tensor Decomposition problem can be
formulated as,

min
{A(n)}n

f(A(1), . . . ,A(N)) = (1)

min
{A(n)}n

1

2

∣∣∣∣∣∣F − [[A(1), . . . ,A(N)]]
∣∣∣∣∣∣2 .

In this equation, f is expressed as a function of matrices.
It can also be written as a scalar-valued function, where the
parameters are vectorized and stacked:

x =



a1,1

...
aK,1

...
a1,N

...
aK,N


.

Using this approach and knowing the derivatives of the
objective function with respect to x, a first-order optimization
method can be applied. In the CP-OPT algorithm [1], a
nonlinear conjugate gradient method is employed in the opti-
mization and the partial derivatives of the objective function
are computed using the following theorem:

Theorem A.1. The partial derivatives of the objective function
f are given by

∂f

∂ar,n
= −

F N×
m=1
m6=n

ar,m

+

K∑
`=1

γ
(n)
r` a`,n, (2)

where r = 1, . . . ,K and n = 1, . . . , N with γ(n)r` defined as

γ
(n)
r` =

N∏
m=1
m 6=n

(ar,m)Ta`,m

and× is used to denote the following multiplication:

F
N×

m=1

ar,m =

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

fi1i2...iNa
i1,1ai2,2 . . . aiN ,N

=

F N×
m=1
m6=n

ar,m


T

ar,n.

Proof: Rewriting the objective function given in Eq. (1)
as three summands, the following is obtained:

f(x) =
1

2
||F||2−〈F , [[A(1), . . . ,A(N)]]〉

+
1

2

∣∣∣∣∣∣[[A(1), . . . ,A(N)]]
∣∣∣∣∣∣2 ,

where the first summand is f1(x), the second summand is
f2(x) and the third summand is f3(x).

There is no variable in the first summand, thus it does not
contribute to the derivative, i.e., ∂f1

∂ar,n = 0.

f2(x) =〈F , [[A(1), . . . ,A(N)]]〉

=〈F ,
K∑
r=1

ar,1 ◦ · · · ◦ ar,N 〉

=

K∑
r=1

I1∑
i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

zi1i2...iNa
r,1
i1
ar,2i2

. . . ar,NiN

=

K∑
r=1

(
F

N×
m=1

ar,m

)

=

K∑
r=1

(
F

N×
m=1

ar,m

)T

ar,n.

As a result the partial derivative of f2 is found as

∂f2

∂a
(n)
r

=

F×
m=1
m 6=n

ar,m

 . (3)

The third summand is

f3(x) =
∣∣∣∣∣∣[[A(1), . . . ,A(N)]]

∣∣∣∣∣∣2
=〈

K∑
r=1

ar,1 ◦ · · · ◦ ar,N ,
R∑

r=1

ar,1 ◦ . . .ar,N 〉

=

R∑
k=1

R∑
`=1

N∏
m=1

(ak,m)Ta`,m

=

N∏
m=1

(ar,m)Tar,m + 2

R∑
`=1
6̀=r

N∏
m=1

(ar,m)Ta`,m

+

R∑
k=1
k 6=r

N∑
`=1
` 6=r

(ak,m)Ta`,m.
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Thus,

∂f3
∂ar,n

= 2

 N∏
m=1
m 6=n

(ar,m)Tar,m

ar,n

+ 2

R∑
`=1
` 6=r

 N∏
m=1
m 6=n

(ar,m)Ta`,m

a`,n

= 2

R∑
`=1

 N∏
m=1
m 6=n

(ar,m)Ta`,m

a`,n. (4)

Using the partial derivatives of f2 and f3, we obtain the results
given in Eq. (2).
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