A kinetic neutral atom model for tokamak scrape-off layer tubulence simulations

Christoph Wersal, Paolo Ricci, Federico Halpern, Fabio Riva

CRPP - EPFL

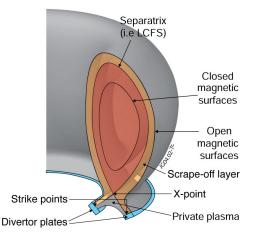
SPS Annual Meeting 2014

02.07.2014

・ロト ・部ト ・ヨト ・ヨト

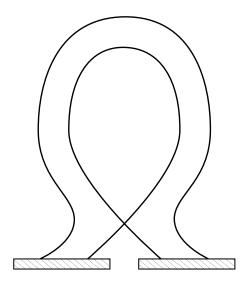
The tokamak scrape-off layer (SOL)

- Open field lines
- Heat exhaust
- Confinement
- Impurities
- Fusion ashes removal
- Fueling the plasma (recycling)
- Three regimes
 - Convection limited
 - Conduction limited
 - Detached



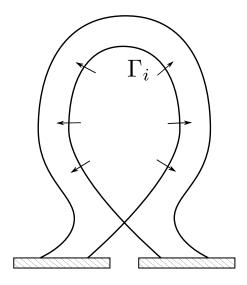
イロト イポト イヨト イヨト

ъ



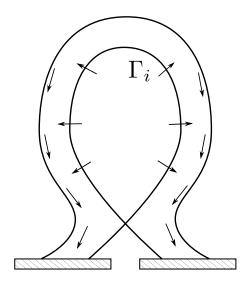
・ロト ・回ト ・ヨト ・ヨト

æ



・ロト ・回ト ・ヨト ・ヨト

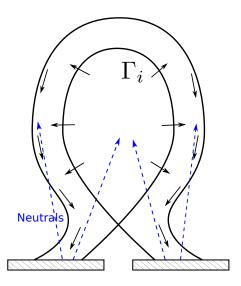
æ



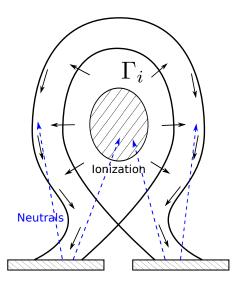
・ロト ・回ト ・ヨト ・ヨト

æ

- Low plasma density
- Long λ_{mfp} for neutrals



- Low plasma density
- Long λ_{mfp} for neutrals
- Ionization in the core

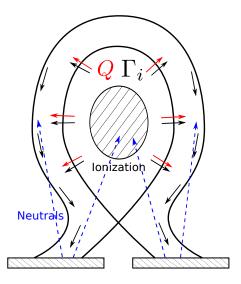


< 🗇 ▶

★ Ξ → ★ Ξ →

ъ

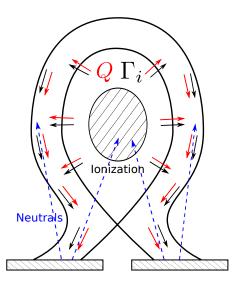
- Low plasma density
- Long λ_{mfp} for neutrals
- Ionization in the core
- Heat \approx particle source



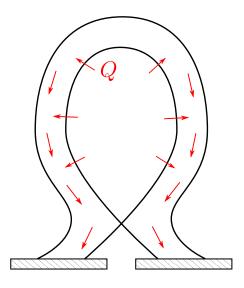
< ∃→

э

- Low plasma density
- Long λ_{mfp} for neutrals
- Ionization in the core
- Heat \approx particle source
- Q is mainly convective

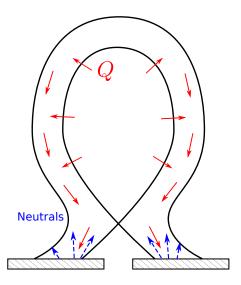


High plasma density



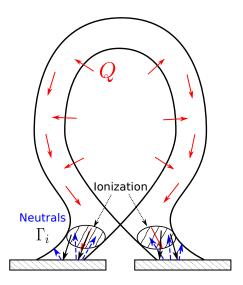
► < E >

- High plasma density
- Short λ_{mfp}



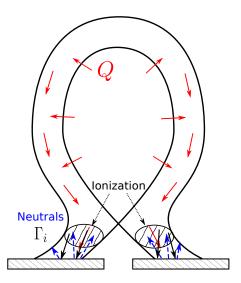
⇒ < ⇒ >

- High plasma density
- Short λ_{mfp}
- Ionization close to targets



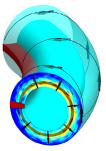
.≣⇒

- High plasma density
- Short λ_{mfp}
- Ionization close to targets
- Temperature gradients form
- Q is mainly conductive



The GBS code, a tool to simulate SOL turbulence

- ► Drift-reduced Braginskii equations $d/dt \ll \omega_{ci}, k_{\perp}^2 \gg k_{\parallel}^2$
- Evolves scalar fields in 3D geometry *n*, Ω, ν_{||e}, ν_{||,i}, T_e, T_i
- Flux-driven, no separation between equilibrium and fluctuations
- Power balance between plasma outflow from the core, turbulent transport, and sheath losses [Ricci et al., PPCF, 2012]
- No divertor geometry
- No neutral physics



Kinetic model for the neutral atoms with Krook operators

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{ion} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i \qquad (1)$$

$$\begin{aligned} \mathbf{v}_{ion} &= n_e \langle \mathbf{v}_e \sigma_{ion}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} &= n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i &= f_i / n_i \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \ v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0$$

$$f_n(\vec{x}_w, \vec{v}) \propto \cos(\theta) e^{mv^2/2T_w} \quad \text{for } v_{\perp} > 0$$
(2)

3

Kinetic model for the neutral atoms with Krook operators

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = - v_{ion} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i \qquad (1)$$

$$\begin{aligned} \mathbf{v}_{ion} &= \mathbf{n}_{e} \langle \mathbf{v}_{e} \sigma_{ion}(\mathbf{v}_{e}) \rangle, \quad \mathbf{v}_{cx} = \mathbf{n}_{i} \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= \mathbf{n}_{e} \langle \mathbf{v}_{e} \sigma_{rec}(\mathbf{v}_{e}) \rangle, \quad \Phi_{i} = f_{i} / n_{i} \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \ v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0$$

$$f_n(\vec{x}_w, \vec{v}) \propto \cos(\theta) e^{mv^2/2T_w} \quad \text{for } v_{\perp} > 0$$
(2)

3

Kinetic model for the neutral atoms with Krook operators

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{ion}f_n - v_{cx}(f_n - n_n\Phi_i) + v_{rec}n_i\Phi_i \qquad (1)$$

$$\begin{aligned} \mathbf{v}_{ion} &= n_e \langle \mathbf{v}_e \sigma_{ion}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} &= n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i &= f_i / n_i \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \ v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0$$

$$f_n(\vec{x}_w, \vec{v}) \propto \cos(\theta) e^{mv^2/2T_w} \quad \text{for } v_{\perp} > 0$$
(2)

3

Kinetic model for the neutral atoms with Krook operators

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{ion} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i \qquad (1)$$

$$\begin{aligned} \mathbf{v}_{ion} &= n_e \langle \mathbf{v}_e \sigma_{ion}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} &= n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i &= f_i / n_i \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \ v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0$$

$$f_n(\vec{x}_w, \vec{v}) \propto \cos(\theta) e^{mv^2/2T_w} \quad \text{for } v_{\perp} > 0$$
(2)

3

Kinetic model for the neutral atoms with Krook operators

$$\frac{\partial f_n}{\partial t} + \vec{v} \cdot \frac{\partial f_n}{\partial \vec{x}} = -v_{ion} f_n - v_{cx} (f_n - n_n \Phi_i) + v_{rec} n_i \Phi_i \qquad (1)$$

$$\begin{aligned} \mathbf{v}_{ion} &= n_e \langle \mathbf{v}_e \sigma_{ion}(\mathbf{v}_e) \rangle, \quad \mathbf{v}_{cx} &= n_i \langle \mathbf{v}_{rel} \sigma_{cx}(\mathbf{v}_{rel}) \rangle \\ \mathbf{v}_{rec} &= n_e \langle \mathbf{v}_e \sigma_{rec}(\mathbf{v}_e) \rangle, \quad \Phi_i &= f_i / n_i \end{aligned}$$

Boundary conditions

(v_{\perp} in respect to the surface; θ between \vec{v} and normal vector to the surface)

$$\int \vec{dv} \ v_{\perp} f_n(\vec{x}_w, \vec{v}) + u_{i\perp} n_i = 0$$

$$f_n(\vec{x}_w, \vec{v}) \propto \cos(\theta) e^{mv^2/2T_w} \quad \text{for } v_{\perp} > 0$$
(2)

3

The model in steady state

Steady state, $\frac{\partial f_n}{\partial t} = 0$, first approach

• Valid if $\tau_{neutral \ losses} < \tau_{turbulence}$

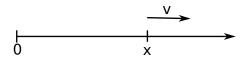
• e.g.
$$T_e = 20 \text{eV}, n_0 = 5 \cdot 10^{19} \text{m}^{-3}$$

$$au_{\textit{loss}} pprox
u_{\textit{eff}}^{-1} pprox 5 \cdot 10^{-7} s$$
 $au_{\textit{turbulence}} pprox \sqrt{R_0 L_p} / c_{s0} pprox 2 \cdot 10^{-6} s$

Otherwise: time dependent model

ヘロト ヘアト ヘビト ヘビト

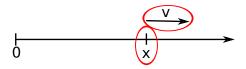
Example in 1D, no recombination, v > 0 and a wall at x = 0



< 🗇 🕨

2

Example in 1D, no recombination, v > 0 and a wall at x = 0



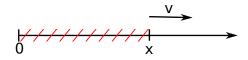
 $f_n(x, v)$

(3)

2

8/14

Example in 1D, no recombination, v > 0 and a wall at x = 0



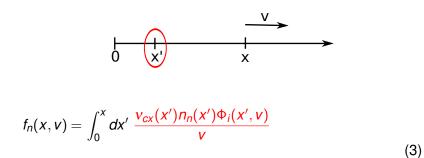
$$f_n(x,v) = \int_0^x dx'$$

(3)

2

・ 同 ト ・ ヨ ト ・ ヨ ト …

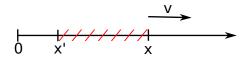
Example in 1D, no recombination, v > 0 and a wall at x = 0



・ロト ・ 理 ト ・ ヨ ト ・

= 990

Example in 1D, no recombination, v > 0 and a wall at x = 0

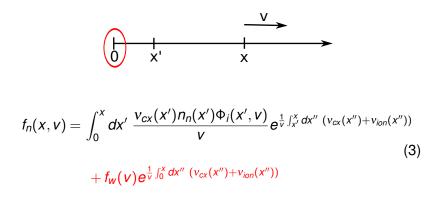


$$f_{n}(x,v) = \int_{0}^{x} dx' \, \frac{v_{cx}(x')n_{n}(x')\Phi_{i}(x',v)}{v} e^{\frac{1}{v}\int_{x'}^{x} dx'' \, (v_{cx}(x'')+v_{ion}(x''))}$$
(3)

< 🗇 🕨

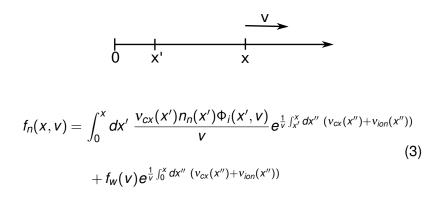
2

Example in 1D, no recombination, v > 0 and a wall at x = 0



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Example in 1D, no recombination, v > 0 and a wall at x = 0



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

An equation for the density distribution

By imposing $\int dv f_n = n_n$

$$n_n(x) = \int_0^x dx' \ n_n(x') \int_0^\infty dv \ \frac{v_{cx}(x')\Phi_i(x',v)}{v} e^{\frac{v_{eff}(x-x')}{v}} \quad (4)$$

+ contribution by $v < 0$
+ $n_w(x)$

we get an integral equation for $n_n(x)$.

ヘロン 人間 とくほ とくほ とう

Discretized equations

Discretize the spatial direction in $x \to x_i$ and $n_n(x_i) \to n_n^i$

$$n_{n}^{i} = \sum_{j \leq i} n_{n}^{j} \int_{0}^{\infty} dv \, \frac{v_{cx}(x_{j}) \Phi_{i}(x_{j}, v)}{v} e^{\frac{v_{eff}(x_{i} - x_{j})}{v}}$$

$$+ contribution \ by \ v < 0$$

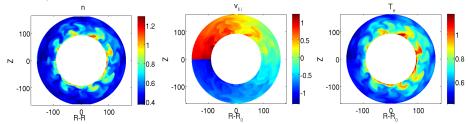
$$+ n_{w}(x_{i})$$
(5)

System of linear equations, solved with standard methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

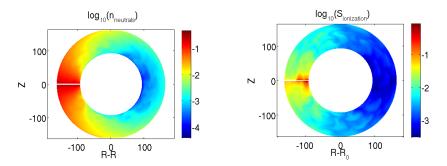
Self-consistent simulation with GBS and neutrals model

Plasma: snapshot of density, parallel ion velocity and electron temperature from GBS



Self-consistent simulation with GBS and neutrals model

Neutral density distribution and ionization rate $(n_n n_e \langle v_e \sigma_{ion} \rangle)$ from the simple neutral model, $n_0 = 5 \cdot 10^{19} \text{m}^{-3}$, $T_0 = 10 \text{eV}$



< ∃→

< 🗇 🕨

ъ

Conclusions

- Development of a neutral model for GBS
- Kinetic equation with Krook operators for ion, rec and cx
- 2D evaluation of the neutral density shows its proximity to the limiter

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ъ

Outlook

- Find the transition from convection to conduction limited regime
- Relax the steady state assumption
- Adding density source, drag force, and temperature source/sink to the equations in GBS
- Move towards detachment
 - Divertor geometry
 - Radiative detachment in limited geometry
 - Mimic the geometry of one divertor leg

・ 同 ト ・ ヨ ト ・ ヨ ト