Approximate Compressed Sensing: Ultra-Low Power
Biosignal Processing via Aggressive Voltage Scaling on a
Hybrid Memory Multi-core Processor

Daniele Bortolotti’, Hossein Mamaghanian*, Andrea Bartolinif, Maryam Ashouei*
Jan Stuijt*, David Atienzat, Pierre Vandergheynst! and Luca Beninif

TDEI - University of Bologna
Bologna, Italy
{daniele.bortolotti, a.bartolini,

luca.benini}@unibo.it;

ABSTRACT

Technology scaling enables the design of low cost biosig-
nal processing chips suited for emerging wireless body-area
sensing applications. Energy consumption severely limits
such applications and memories are becoming the energy
bottleneck to achieve ultra-low-power operation. When ag-
gressive voltage scaling is used, memory operation becomes
unreliable due to the lack of sufficient Static Noise Margin.
This paper introduces an approximate biosignal Compressed
Sensing approach. We propose a digital architecture featur-
ing a hybrid memory (6T-SRAM/SCMEM cells) designed
to control perturbations on specific data structures. Com-
bined with a statistically robust reconstruction algorithm,
the system tolerates memory errors and achieves significant
energy savings with low area overhead.

Categories and Subject Descriptors
C.1.4 [Mobile processors]
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1. INTRODUCTION

Emerging and future healthcare policies are fueling up an
application driven shift toward long term monitoring of bio-
signals by means of embedded ultra-low power (ULP) de-
vices. Modern human behavior-related diseases, such as car-
diovascular pathologies, require accurate and non-stop med-
ical supervision, which is unsustainable for the traditional
healthcare system due to increasing costs and medical man-
agement needs [1]. Personal health monitoring systems are
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able to offer large-scale and cost-effective solutions to this
problem.

Wearable health monitoring systems, enabled by Wire-
less Body Sensor Networks (WBSNSs), face opposite require-
ments such as a continuously tighter power budget and an in-
creasing demand of computation capabilities to pre-process
locally the sensors information to reduce the amount of data
to be transmitted as well as response time. To ensure min-
imal energy operation several aspects must be considered,
combining optimizations of the signal processing aspects and
of the technological layers of the ULP architecture. Recently
the Compressed Sensing (CS) paradigm for signal acquisi-
tion and compression has proved to be effective in reducing
energy consumption in embedded ECG monitors. Enabling
a sub-Nyquist sampling rate for sparse signals, authors in
[7] show ~ 37% improved lifetime compared to state-of-
the-art compression techniques. Motivated by the inherent
parallel nature of medical grade ECG monitoring, where
multi-channel signal analysis is often embarrassingly par-
allel, multi-core architectures demonstrated their efficiency
compared to single-core solutions [10, 8]. In [10] is pre-
sented a multi-core architecture where individual leads are
processed on different cores in parallel. Parallel process-
ing enables more aggressive voltage-frequency scaling than
single-core solutions, though at low workload requirements
the single-core solution proved to be more efficient. Leakage
power, mainly due to data and instruction memories, has a
big impact and aggressive voltage scaling cannot be applied
due to reliability issues of the memories.

Indeed, the failure probability of the conventional 6 Tran-
sistors (6T) SRAM cell increases considerably as the sup-
ply voltage is scaled down [11]. The usage of more reliable
SRAM bit-cells, such as 8 Transistors (8T) or 10 Transistors
(10T) cells, as well as standard cells memories (SCMEM) al-
lows scaling to lower supply voltage, however, such solutions
incur in large area penalties.

Approximate computing is an emerging paradigm that ex-
ploits intrinsic properties of multimedia and visual applica-
tions to tolerate errors to save energy allowing some final
QoS degradation. [14] proposes an approximate full adder
that reduces design complexity and power (up to 60%) while
inducing a negligible QoS loss in JPEG and MPEG com-



pression blocks. [12] uses a custom SRAM design with 6T
memory for storing the LSB of each word and an 8T memory
to store the MSB, applying such architecture to video de-
coder applications operating at low voltages. Both solutions
are tailored to multimedia accelerators and are built based
on the assumption that an error can be tolerated when oc-
curring in the LSBs. As a matter of fact none of the state-
of-the-art solution fully exploits the randomly distributed
bit-flips errors that are typical in over-scaled SRAMs.

These considerations motivate the idea of the present work:

by using a hybrid memory architecture, combining classic
6T-SRAM with SCMEM cells, we are able to offer an ar-
chitecture that can operate at low voltages with a heteroge-
neous memory map composed of an error-free portion and
an error-prone one. With an accurate data allocation of the
CS internal structures between the two different portions,
we are able to reduce the size of the SCMEM portion lead-
ing to a significantly lower area-overhead and, on the other
hand, tolerates error induced by bit-flips in the SRAM by
an innovative CS reconstruction algorithm.
The main contributions of this work are the following:

e a novel hybrid memory architecture for ULP multi-
core biosignal processors is proposed. The combination
of 6T and SCMEM banks enables operating at low-
voltage while preserving data-correctness for the most
critical data structures.

e the novel Approximate Compress Sensing paradigm is
presented. Based on a reconstruction algorithm the
proposed Compressed Sensing framework is capable of
tolerating random bit-flips errors in the 6T memory.

e the proposed architecture allows to trade-off signal re-
construction quality with voltage supply and this leads
to a significant improvement in energy saving. When
operating at 0.6V, the hybrid memory architecture
proves to be 5x more energy efficient than a purely
6T architecture (@ 0.8V) counterpart with a reduced
area overhead (=~ 13%). At 0.7V our architecture saves
60% of power with same reconstruction performance of
standard CS for single lead ECG. When compared to
SCMEM-only design our architecture has comparable
power savings but with almost 10% less area overhead.

The rest of the paper is organized as follows. In Section 2
the hybrid memory multi-core architecture is introduced.
Section 3 discusses the CS algorithm, the memory errors
in low-voltage operation and the reconstruction algorithm.
Next, in Section 4 we describe the experimental setup and
the results of the proposed architecture in terms of energy
efficiency, reconstruction quality and area overhead. Finally,
the conclusions of this work are presented in Section 5.

2. HYBRID MEMORY ARCHITECTURE

We consider for the digital sensor node a baseline archi-
tecture similar to several current multi-core architectures
targeting biosignal processors [8, 10]. The considered ar-
chitecture, presented in Figure 1, features 8 Processing El-
ements (PEs) each one with a private Instruction Memory
(IM). The PEs do not have private data caches, therefore
avoiding memory coherency overhead, while they all share a
L1 multi-banked tightly coupled data memory (TCDM) act-
ing as a shared data scratchpad memory. The TCDM has a
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Figure 1: Multi-core architecture with hybrid
6T/SCMEM memory for Compressed Sensing

number of ports equal to the number of banks to have con-
current access to different memory locations. Intra-cluster
communication is based on a low-latency high-bandwidth
logarithmic interconnect (LIC) able to support single-cycle
communication between PEs and memory banks (MBs). In
case of multiple conflicting requests, for fair access to mem-
ory banks, a round-robin scheduler arbitrates the accesses.
To ease the negative impact of banking conflicts we consider
a banking factor of 2 (16 banks).

In the considered CS architecture, the input multi-channel
signal is sampled by the analog front-end (AFE), with a sam-
pling frequency according to the dynamics of the signal to
analyze and the accuracy needed. The AFE is interfaced as
a memory mapped buffer (SB in Figure 1) accessible through
the LIC and can send interrupts to the PEs when the sam-
ples are ready for on the fly compression. Considering the
limitations imposed by classic 6T-SRAM memory when op-
erating aggressive voltage scaling and the characteristics of
biomedical applications, we consider a hybrid memory archi-
tecture. By combining 6T and SCMEM-banks and a careful
data allocation in the different memory portions, the system
is capable of operating at ultra-low voltage and errors in the
6T portion are handled in the CS reconstruction algorithm.
The 6T/SCMEM hybrid architecture is schematized in Fig-
ure 1 and it features a single voltage domain for the whole
architecture, reducing area overheads and design complexity.
The SCMEM portion of the TCDM offers reliable operation
down to 400mV, while the 6T portion shows errors below
800mV as will be shown in Section 3.3.

3. ROBUST COMPRESSED SENSING

3.1 Compressed Sensing

Compressed sensing (CS), as an emerging tool has been
investigated in many applications from low-power sensing
and compression, radar and communication signal process-
ing, high dimensional data analysis. The main idea behind
CS is fairly simple and it assumes that given high dimen-
sional data has a sparse representation which could be ex-
ploited to highly reduce the dimensionality of data.

Let x be the real-valued N-dimensional signal vector (x €
RY ) that is sparse or has a sparse representation in some
known dictionary x = Wa. By sparse we mean that « has
only few non-zero elements. If we collect a vector of linear
measurement y € RM by y = ®x, it is possible to recover
the original signal x form measurements vector by solving
a convex optimization problem. In the CS context, ® €
RM>*N g called sensing matriz and preferably M < N, so
that the size of the measurement vector is much smaller than
the original vector x. To guarantee the recovery, the sensing



matrix ® must obey the key restricted isometry property
(RIP) [17]:

(1=6s) llally < |2, < (1+05) [, (1)

for all S-sparse vectors a and ||.||, denotes the 2-norm of
the vector. dg is the isometry constant of matrix ®, which
must be not too close to one.

If RIP holds, then an approximate sparse signal recon-
struction can be accomplished by solving the following con-
vex optimization problem:

min &, st [@Pa-yl,<o  (2)
&eRN

where o bounds the amount of noise corrupting the data.
Usually in CS context the ¢1 norm is used as a sparsity
inducing norm and it is proven to reach the sparse solution,
while f(a) = || ®@¥a — y||, is named data fidelity or data
fitting function which is the least square estimate of the
answer to the inverse problem (2).

3.2 Multi-lead ECG and joint Compression

ECG signals are known to be compressible in Discrete
Wavelet Domain (DWT). By compressible we mean that
even though they are not exactly sparse, it exists an S-sparse
approximation which contains most of the information of
the signal and the same principles can be applied to some
extent [7].

For multi-lead signals we can write the same problem in
matrix form. Let X € RV*L — [x1,X2,...,xz] be the real
valued matrix of ECG signals where L is the total number
of leads and each column corresponds to a single ECG lead.
This matrix could be represented on the DWT domain by
X = WA, where matrix A is the sparse coefficients matrix
and ¥ is the DWT matrix. Then the CS recovery problem
((2)) could be solved in multi-lead case too. But in the case
of multi-lead ECG compression, where there is a strong cor-
relation between the sparsity structure among the leads, the
sparse coefficients model should be refined to take it into
account. In such a situation, where non-zero coefficients are
naturally partitioned in subsets or groups, the best choice
could be using a group-sparsity inducing term [22]. In a re-
cent prior work [21], we proposed to replace the ¢; norm with
mixed ¢1 /02 norm. It behaves like an ¢;-norm on the vector
(lexi|l,)iec in RIF and therefore, induces group sparsity.

3.3 Low Voltage Memory Operation

The classic 6T SRAM is not able to reliably operate at
lower supply voltage. One way to address the problem is
to have different supply voltages for the memory and the
logic sub-blocks [2]. This solution results in the overhead
of generating multiple supply voltages and back-end com-
plexity of having separate voltage domains, and the level-
shifting overhead between the memory and logic voltage do-
mains. More importantly, the solution does not allow for
minimum energy operation due to higher operating voltage
of the memory, and therefore not addressing the memory
power wall. Another solution is the use of 8T (or even 9T,
10T) cells that were shown operating at lower voltages [3,
4, 5]. While foundries provide 8T SRAM bit cell, the cell
is not characterized for low voltage operation. Furthermore,
the commercial SRAM generators do not provide character-
ization points (e.g. timing and power information) for low
voltage operation. This prevents proper timing closure at
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Figure 2: Schematic of SCMEM cell based on
AOI/OALI gates (left) and Minimum operating volt-
age of different chips (right)

low voltage using commercial SRAMs. Custom design of
such SRAMs presents a big design effort and can be limited
to a few instance sizes. In this work, we use a standard cell-
based memory (SCMEM) module. The approach has been
proposed in the past [6] and similar to 8T or 10T SRAM,
it suffers from an area overhead. We propose to use regu-
lar place & route (P&R) in the digital EDA flow for such
memory to achieve significant area reduction.

A standard cell-based memory was designed and fabri-

cated in a 40 nm CMOS technology. For comparison rea-
son, also a commercial 6T memory was fabricated on the
same chip. The SCMEM uses a cross-coupled pair of AND-
OR-INV (AOI) as the storage element (Figure 2, left). The
choice of the memory element, combined with the use of reg-
ular P&R using the CADENCE Encounter-SoC, results in
more than 3x area saving compared to [6] that uses a latch
as the storage element. Nine chips were measured and their
corresponding minimum operating voltage point is shown in
Figure 2 (right) for both the proposed SCMEM and the 6T
memory. The results show that for the majority of the chips,
the SCMEM operated correctly at voltages below 0.4V and
on average it has 400mV lower minimum operating voltage
point than the 6T memory. We also measured the minimum
retention voltage and both SCMEM and 6T memory have
similar retention voltage. The comparison of the memory
with state of the art is shown in Table 1.
Error in memory: for the commercial memory, which fails
at higher supply voltages, we also measured the errors in
memory across the voltage range for nine chips. The errors
was characterized by bit-flips randomly placed among all the
bits [9]. The measured data was fitted to get the error prob-
ability as follows: P. = A(Vp — Vdd)k where Vo = 0.85V,
k = 6.14. For the SCMEM, the same fitting equation is
accurate when Vo = 0.55V [9].

3.4 Robust Compressed Sensing

Compressed sensing is known as a robust compression
technique in case of noisy measurements vectors corrupted
by i.i.d. Gaussian noise. The optimization still works pretty
well as long as the amplitude of the noise is small. This is
not true if the noise has a very harsh and coarse nature like
the bit-flip errors which potentially could be very high in
amplitude and not bounded.

Gaussian random distribution are a popular candidate for
constructing the sensing matrix ®. Such matrix is known to
be measurement optimal. The lower bound for the number
of measurements is proven to be M = Q(Slog N). As far



Table 1: Comparison of different implementations of a 1k x 32b memory (TT corner, 1.1V, 25C)

Feature Unit | 6T commercial [ Custom SRAM [3] SCMEM [6] SCMEM This work
40nm LP 40nm LP 65nm LP 40nm LP
Dynamic power J 11.9 3.6 - 1.4
(rediiced voltage) p : : 0:95@0:4v+2 0.19°@" 0.4V
Leakage W 2.15 112 - 5.9
(reduced voltage) - - >'19.7@ 0.25V*2 -
Area mm? 0.011 0.024*3 > 0.186*3 0.058
Min Retention Voltage \ 0.29+1 - 0.25 0.32*!
Min R/W Voltage \ 0.7+1 - 0.35 0.33*1
Performance (nominal) Mz 816 454 @ 1.2V 9.5 @ 0.65V 961
(reduced voltage) - - 0.1-0.2 @ 0.45V 0.4 @ 0.45V*!

*Tmeasurements results

as a sparsity S considered, Gaussian matrices are not space
optimal and need a huge storage space and nor time opti-
mal since encoding and reconstruction complexity is in the
order of O (M N), which makes them not practical for lim-
ited resources real-time digital nodes. As an alternative, a
sparse binary matrix is used as our sensing matrix ®, where
each column contains only d non-zero elements equal to 1,
(d « M < N) with required space and time complexity
of O (dN) [7]. For such a sensing matrix, the RIP property
of (1) is not valid, however, it satisfies a different form of this
property, with slightly more required measurements to guar-
antee the reconstruction [18]. This sensing matrix choice
could be very efficient in terms of storage in TCDM, since
we only need to store the indexes of non-zero elements that
requires O (dN) space instead of O (M N), where d < M.
When storing this matrix in an error-prone memory (67T), it
means that the positions of the non-zero elements would
change. As a consequence the corrupted sensing matrix
®. multiplied with the original signal x are represented as
®. = (P + E), where E is the error matrix. E has only +1
entries, +1 where an entry is added and —1 where is missed.
As long as the number of errors is small and E is sufficiently
sparse, the reconstruction problem (2) can be rewritten with
an additional term for minimization and recover the original
signal by solving the following optimization problem:

A E

=0 (3)

8| st @+ Bwa-y
1,2 1 2
where [|.[|, , denotes the joint £1 /> norm of a matrix. Due to
presence of multiplicative noise, the problem (3) in general
is not convex and our main goal is to design the recovery
algorithm to reach at least the local minimum, and hopefully
the global one, if the amount of corrupting noise is limited.

3.5 Reconstruction Algorithm

The formulation of the problem in (2) shows that due to
presence of term EA in constraint, the problem is not con-
vex, but if one of each is given then the problem is very like
to the normal Lasso problem and could be treated as a con-
vex optimization problem. If E is given the problem is the
normal Joint CS problem while if A given then it is similar
to the Lasso problem. Similar to the S-TLS problem [24],
this suggest to have an iterative decent algorithm yielding
successive estimates of the E and x with x and E fixed re-
spectively. Then the recovery algorithm is two folded and
includes two convex optimization problems. First, when E
is considered to be fixed we solve:

-~ 2
A" = argmin H(@ FEODA - YH2 +A AL, ()

*Zgcaled: Pgyn o< word length

*3scaled: A o total bits ><(40nm//\wig)z

where k is the iteration number and in the next iteration
when the estimate of A is available, we fix A and try to
solve the problem for E:

-~ 2
B! = argmin HE\PM (Y - anfAk)H + X |El, 65)
2

To solve these set of equations we use the proximal gradient
methods which are computationally not hard for the type of
problems (4) and (5). More specifically, here we are using
an accelerated version of the proximal algorithms proposed
by [19, 16] which are proven to have faster convergence. Al-
gorithm 1 shows the pseudo code of the proposed algorithm.

Data: v,®, \1,)\2,L1,Lo

initialization;

while not converged do
GA:YA+L—21(\P(<1>+E‘)T(Y7(<I>+EA)\I/TYA));
A=PL12(G* A1 /L1);
i 1+\/1+24*W :
yA=A4teld=1 (A Acid);
GE:YEJr%(Y7(<1>+YE)(\I/TA))(\PTA)T(LFAAT)*l;
E=Pr, (G¥ x2/L2);
Y E=B UL (B Boia);
Eqa=E, Agla=A4, toa=t;
end

Algorithm 1: Reconstruction algorithm

The proof is based on the basic convergence of the prox-
imal gradient decent algorithms, the first term of problem
(4) and (5) are differentiable and the non differentiable term
(¢1 and ¢1,2) are separable in the entries of A and E. The
convergence to a local minimum is also guaranteed since it
always iterates towards a reduced cost for the problem (3).
Moreover, simulated tests also demonstrate the convergence
of the algorithms and in case of less corrupted data the local
optimum is very close to the global optimum.

4. EVALUATION
4.1 Hybrid Memory Partitioning

To implement a multi-lead Compressed Sensing (CS) we
have considered a window size of N = 512 samples for a fixed
Compression Ratio (CR) of 50% and a sampling frequency
of 512 Hz. The sensing matrix is constructed off-line and
stored at boot time in the error-prone 6T memory portion
of the TCDM and shared among all the channels. Since only
the indexes of non-zero elements (d) are stored, the required
space is equal to d- N (where d = 16) and the entries can be
represented with a single byte. Considering our multi-core
architecture, each processing element works on a separate



input data-sets associated to different leads performing on
the fly compression. An interrupt generated by the AFE
triggers execution on the new sample, thus not requiring to
store the input vectors in TCDM. The memory footprint of
the CS algorithm consists of 348B for instructions and 16KB
for data. The data section comprises the sensing matrix in
form of a LUT (8192B), i.e. a vector of random coefficients
for the CS projections, and the output buffers for the 16
leads (8KB).

Such CS algorithm analysis was used at design time to
choose the appropriate memory cuts and allocate the data.
The total TCDM size is assumed to be 18KB (for the data
section and 256B of stack per-core), while an instruction
memory of 512B (private, per-core) is chosen. The size of
the sensing matrix defines the 6T memory portion: 8192B
split in 16 banks leading to 512B per-bank. The remaining
portion of the TCDM (10KB) is split in 16 SCMEM banks
leading to 640B per-bank. Address interleaving performed
by the logarithmic interconnect (Section 2) allows a con-
tiguous logical memory map and static allocation in the two
portions is easily done by means of linker script sections and
compiler variable attributes.

4.2 Area Overhead (iso-size)

To evaluate the area overhead of our solution, in an iso-
size comparison, we quantified the overhead introduced by
the SCMEM memory portion in the hybrid architecture com-
pared to a system where all memory instances are 6T (67-
only) and another where all instances are SCMEM (SCMEM-
only). For the SCMEM memory cuts we considered the
numbers presented in Table 1, while for the 6T memory
numbers are taken from a low power 40nm technology li-
brary. Area figures for the processing elements (PEs) and
the logarithmic interconnect are scaled from a 28nm RTL
design. Results presented in Table 2 show the evaluation of
how of each element impacts on total area.

Table 2: Area comparison (6T/SCMEM, 6T-only,
SCMEM-only). Numbers presented in pm?.

ELEMENT 6T/SCMEM | 6T-ONLY | SCMEM-ONLY
PEs 323439 323439 323439
M 132819 97960 132819
SCM TCDM 332048 - 597686
6T TCDM 195920 431968 -
TOT TCDM 527968 431968 597686
LIC 8x16 88420 88420 88420
TOTAL 1072646 941787 1142364

The extra-circuitry required for the hybrid memory con-
sists of a basic decoder on the address line and a multiplexer
on the output line. Memory area is dominated by the mem-
ory matrix itself and not by the decoder/muxes making this
contribution negligible. The area overhead of the hybrid
memory with respect to a 6T-only architecture is ~ 13%.
On the other hand, the SCMEM-only architecture incur in
a higher area penalty, the overhead on the overall system
would be ~ 21%.

4.3 Energy Efficiency

The proposed architecture has been modeled and inte-
grated in a SystemC-based cycle-accurate virtual platform
[15] with back-annotated power numbers for the memory
subsystem (Table 1) and the rest of the logic (LIC, PEs)
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Figure 3: Average power at different operat-

ing points for architectures (6 T/SCMEM, 6T-only,
SCMEM-only) and Energy Efficiency (T=25°C)

extracted from a RTL-equivalent architecture with a cus-
tomized OpenRISC core for minimum energy. Considering
the CS application described in Section 4.1, the virtual plat-
form shows a maximum error in timing accuracy below 6%
with respect to RTL simulation. The architecture was con-
figured with 8 cores, an 8x16 logarithmic interconnect and
6T/SCMEM portions as determined in Section 4.1. The CS
algorithm, with 16 leads and 8 cores performing compres-
sion on 512 samples per window (1 sec), executes in ~ 104
Kcycles.

Figure 4 shows the average power consumption, and its
breakdown, during CS execution for the proposed architec-
ture and the 6T-only and SCMEM-only reference designs.
In addition the figure shows the energy efficiency (computed
in a 512 samples window) at the different design corners for
the different cases. The plot clearly shows that the PEs ac-
count for the majority of the power consumption and this is
mainly due to the small memory size, while the IM and LIC
power consumption is negligible. We can notice that the
proposed hybrid architecture has a significant power saving
(13%) w.r.t. 6T-only at the same voltage (0.8V) and by
scaling the voltage supply the proposed architecture gains
extra power saving. At 0.6V we save the 81% of power but
scaling further (< 0.5V) the system fails to compress the
512 samples within a window. Moreover, when compared
to SCMEM-only design our architecture has similar power
performance. It results that our hybrid architecture can ef-
fectively trade-off the 6T-only and SCMEM-only designs. At
0.6V our architecture has similar power saving and recon-
structed quality of the SCMEM-only but with significantly
less area overhead.

4.4 Reconstruction Quality

To characterize the error in the 6T memory, 10 trials
of separate read/write sequences were performed varying
the voltage. Measurements results are shown in Table 3
in the voltage range 400mV-750mV. The probability of er-

Table 3: Probability of bit-flip errors in the 6T mem-
ory at different voltages

Voltage [V] | P(bit-flip)  Voltage [V] | P(bit-flip)

0.40 0.0707 0.60 0.0022
0.45 0.0356 0.65 0.0007
0.50 0.0162 0.70 0.0001
0.55 0.0065 0.75 1.3e-5
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struction for different number of leads and voltages

rors in the whole sensing matrix then can be represented as
P =1—(1-P,)"", where P, is the probability of the error in
each bit (Table 3) and nb represents the number of bits. For
very low voltage values the number of errors can be signif-
icantly high, situation where the classic CS reconstruction
algorithm fails. Figure 4 shows the results of the Reconstruc-
tion Algorithm for a simulated data averaged over 100 tests.
It is clear that as the number of leads increases, the error re-
covery improves and more bit-flips in the sensing matrix can
be recovered. This feature has major potential benefits for
processing biosignals that require a larger number of leads
(i.e. EEG).

To validate the performance of the proposed robust com-
pression scheme, we use the PTB Diagnostic ECG Database,
available online [20]. The database contains 549 records of
15-lead ECG from 290 subjects. Signals are sampled at
1 KHz with 16-bit resolution. Here we have down-sampled
the signals to 512 Hz to be consistent with our system re-
quirements. To quantify the compression performance while
assessing the diagnostic quality of the compressed records,
we consider the Signal to Noise Ratio (SNR) defined as
SNR = 20log,, |[|x||,/||x — X||,. Figure 5 shows the average
SNR for the Robust CS over different memory voltages. The
results are all for 50% compression ration (i.e. M = N/2).

To clearly demonstrate the quality of the reconstructed
signal, two windows of 1 second for 0.6V and 0.7V are shown
in Figure 5 (right). The results show that even for low volt-
age (0.6V) the algorithm is still able to converge to the so-
lution while the normal CS would fail.

5.  CONCLUSIONS

In this work we present a 6T/SCMEM hybrid memory
multi-core architecture for biosignal processing. Classic 6T
memories face reliability issues when reducing supply volt-
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Figure 5: Average SNR for robust CS at different
voltages (left). Reconstructed signal quality at 0.6V
and 0.7V (right).

age to threshold. By partitioning the compressed sensing
data structures in the hybrid memory, combined with a
novel reconstruction algorithm, we can tolerate bit-flips in
6T memory trading-off reconstruction quality for energy sav-
ings. Our solution offers significant improvements in power
(~ 60%, -2.5dB @ 0.7V) with a low (= 13%) area overhead.
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