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Abstract

We propose a multiscale method based on a finite element heterogeneous multiscale method (in space)
and the implicit Euler integrator (in time) to solve nonlinear monotone parabolic problems with
multiple scales due to spatial heterogeneities varying rapidly at a microscopic scale. The multiscale
method approximates the solution at the scale of interest at computational cost independent of the
small scale by performing numerical upscaling (coupling of macro and micro finite element methods).
Optimal a priori error estimates in the L2(H1) and C0(L2) norm are derived taking into account
the error due to time discretization as well as macro and micro spatial discretizations. Further, we
present numerical simulations to illustrate the theoretical error estimates and the applicability of the
multiscale method to practical problems.
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1 Introduction
In this article, we propose a numerical method to solve a class of nonlinear monotone parabolic multiscale
problems of the type

∂tu
ε − div(Aε(x,∇uε)) = f, in Ω× (0, T ), (1)

where Ω ⊂ Rd, d ≤ 3, is a bounded domain, (0, T ) a finite time interval and initial data as well as zero
Dirichlet boundary conditions are prescribed. We consider maps Aε(x, ξ) that highly oscillate at a small
scale ε with respect to the space variable x and are nonlinear and monotone in the second variable ξ. Many
physical processes can be modeled by parabolic partial differential equations (PDEs) of the form (1), e.g.,
non-Newtonian fluids, ferromagnetic materials or composites with nonlinear material laws, see [10, 33].

Using standard numerical methods, like the finite element method (FEM), to discretize the problem (1)
in space leads to high computational cost as the small scale ε of the spatial heterogeneities of Aε has
to be resolved. Thus, to efficiently approximate the solution of (1) at the scale of interest, effective
models for (1) are needed. Homogenization theory, see [11, 30], is the usual framework used to study the
solutions uε to (1) in the limit ε→ 0 and aims at characterizing a limiting function u0 as the solution of
a homogenized (or effective) equation. The upscaling of (1) has been studied by Pankov and Svanstedt
in [34] and [36], respectively, using the notion of parabolic G-convergence (extending the work by Tartar,
see [38] and [39, Chapter 11], to parabolic problems). In particular, the homogenized equation (with
solution u0) is again of the same type as (1) with Aε replaced by the homogenized map A0 for which the
small scales are averaged out.

For linear homogenization PDEs, a broad literature about multiscale methods exists nowadays, see [2,
4] (elliptic problems), [8, 31] (parabolic problems) and the references therein. Numerical homogenization
methods for nonlinear problems are however less numerous, e.g., see [9] for an overview of numerical
methods for multiscale PDEs with a nonmonotone nonlinearity (with respect to the solution uε). For
parabolic multiscale PDEs with monotone nonlinearities (with respect to the gradient ∇uε) given by (1),
Svanstedt et al. proposed in [37] a numerical method for periodically oscillating (in space and time)
maps Aε based on an augmented Lagrangian method. In [23], Efendiev et al. applied a generalized
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multiscale finite element method (MsFEM) – developed in [22] for elliptic monotone problems – to
PDE (1) with stochastic heterogeneities. We note that in both [37] and [23] convergence of the numerical
solution to the homogenized solution is shown without deriving explicit convergence rates. Further, we
note that for elliptic monotone multiscale PDEs a sparse tensor FEM and a finite element heterogeneous
multiscale method (FE-HMM) has been studied in [28], [27] and [24], respectively, while those concepts for
multiscale methods have not yet been applied to the parabolic problem (1). In particular, Gloria studied
in [24] numerical homogenization methods (FE-HMM and MsFEM) for a class of elliptic monotone PDEs
(associated to minimization problems), proved convergence of their modeling error and derived a priori
estimates in the W 1,p norm for FE-HMM applied to periodic problems with p-structure with p ≥ 2. In
contrast, our results are valid for monotone maps without assuming that Aε has an associated scalar
potential. For example, maps Aε(x, ξ) = aε(x)ξ with a non-symmetric tensor aε positive definite and
bounded (linear problem) or Aε(x, ξ) = aε(x)(1 + (1 +

∑d
i=1 ξ

4
i )−1/4)ξ (nonlinear problems) with aε

positive definite and bounded are allowed.
In this article, we introduce a multiscale method to solve nonlinear monotone parabolic multiscale

problems of type (1) following the design principles of the heterogeneous multiscale method (HMM),
see [20, 4]. Based on a homogenization result ensuring the existence of an effective model associated
to (1), we solve the effective problem using a macroscopic finite element method and the implicit Euler
scheme for time integration. While the effective problem is (in general) not available in closed form,
we approximate the effective properties of the map Aε by upscaling the available micro informations.
This is achieved by solving nonlinear monotone elliptic PDEs (constrained by the macro state) using a
microscopic finite element method within micro domains which are of the size of the finest scale ε. The
computational complexity of the multiscale method is thus independent of the smallest scale ε. We note,
that piecewise affine functions are used for both macro and micro finite element methods (P1-FEM).
For further developments, we refer to [6] where we study a linearized variant of the proposed multiscale
method for problems (1) with maps Aε decomposed as Aε(x, ξ) = aε(x, ξ)ξ, where aε(x, ξ) ∈ Rd×d.

Our main contribution in this article is the fully discrete a priori error analysis of the proposed
multiscale method. Without any structural assumptions on the spatial heterogeneities of the maps Aε,
we derive sharp error estimates in both L2(H1) and C0(L2) norms with respect to the timestep size and
the spatial mesh size for macro as well as micro discretizations. Such estimates are crucial to balance
temporal, macro and micro spatial discretizations to obtain a given precision at minimal computational
cost and are not available for the methods proposed in [37, 23]. Further, we note that while our method
is formulated for general spatial variations (contrary to [37] where periodicity is assumed), we do not
consider maps Aε with rapid oscillations in time (unlike [37, 23]). Finally, in contrast to [24] (for elliptic
problems), explicit estimates of the modeling error are proved for nonlinear monotone maps Aε without
assuming that Aε has an associated scalar potential (the results in [24] are however valid for elliptic
problems in W 1,p spaces for general p ≥ 1, while we assume p = 2). Our modeling error results also
generalise results obtained in [21] for linear elliptic problems.

To derive the a priori error estimates the total error is decomposed into time discretization error,
spatial macro error, modeling error (due to numerical upscaling) and spatial micro error. First, while
sharp estimates of the spatial micro error have been derived in literature for linear micro problems (e.g.,
see [3, 9]), our analysis involves nonlinear micro problems. Second, we note that the estimates of temporal
and spatial macro error cannot be shown using standard techniques from FEM analysis for parabolic
single scale problems, see [18, 40]. It is known that an elliptic projection is required to obtain sharp
estimates of the spatial error in the C0(L2) norm, see [41, 40]. An appropriate projection for parabolic
problems ∂tu+ div(A(∇u)) = f with a monotone nonlinearity in ∇u seems however not to be available
in literature. In [16], using an elliptic projection solving a stationary nonlinear monotone PDE, Dendy
derived C0(L2) estimates for a space-discrete method which are non-optimal for P1-FEM (convergence
rate 2 − d/2, see [16, Thms 2.2, 2.5]). Optimal convergence of the spatial L2-error for a space-discrete
method with P1-FEM is however deduced from maximum norm error estimates in [17]. Our proof follows
a different strategy which is based on a new linear elliptic projection (see (27)) andW 1,∞ error estimates
for P1-FEM (for linear elliptic PDEs). Compared to [17], we do not derive estimates in the spatial L∞
norm, but we consider additionally the time discretization error and the influence of variational crimes
(due to numerical quadrature and upscaling).

The outline of this article is as follows. In Section 2, we introduce a model problem of type (1) and
its associated effective problem. Then, we define in Section 3 a multiscale method based on a numerical
upscaling procedure. While the main results of this article, the fully-discrete a priori error estimates
for the multiscale algorithm, are presented in Section 4, their proofs are given in Section 5. Further, in
Section 6, we discuss an implementation of the proposed method and several numerical tests. In Section 7,
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we conclude the article with some remarks about possible generalizations and future research.

Notation 1.1. In what follows, C denotes a generic positive constant, whose value can change at any
occurrence. For D ∈ Rm, we use Ck(D,Rn) for the set of k-times continuously differentiable functions
g : D → Rn. We consider the usual Sobolev spaces W k,p(Ω). For p = 2, we use the notation Hk(Ω),
H1

0 (Ω) for p = 2 and k = 1 with a vanishing trace on the boundary ∂Ω, H−1(Ω) for the dual space
of H1

0 (Ω) and W 1
per(Y ) = {v ∈ H1

per(Y ) |
∫
Y
v(y)dy = 0} where Hk

per(Y ) is defined as the closure of
C∞per(Y ) (the subset of C∞(Rd) of periodic functions in Y = (0, 1)d) for the Hk norm. For g : [0, T ]→ X
with Banach space (X, ‖ · ‖X) the time derivative of g is denoted by ∂tg(t). The space of Lp functions
g and continuous functions g with values in X is denoted by Lp(0, T ;X) and C0([0, T ], X), respectively.
Both spaces form a Banach space when endowed with the norm ‖g‖Lp(0,T ;X) = (

∫ T
0
‖g(t)‖pXdt)1/p and

‖g‖C0([0,T ],X) = supt∈[0,T ] ‖g(t)‖X , respectively. The Euclidean norm for b ∈ Rd and the Frobenius norm
for a ∈ Rd×d are denoted by |b| and ‖a‖F , respectively, and the canonical basis of Rd is given by e1, . . . , ed.

2 Model problem and homogenization
Let Ω ⊂ Rd, d ≤ 3, be a convex polygonal domain and T > 0. We consider the class of monotone
parabolic multiscale problems

∂tu
ε(x, t)− div(Aε(x,∇uε(x, t))) = f(x) in Ω× (0, T ),

uε(x, t) = 0 on ∂Ω× (0, T ), uε(x, 0) = g(x) in Ω,
(2)

with given source f ∈ L2(Ω), initial condition g ∈ L2(Ω) and maps Aε : Ω× Rd → Rd (indexed by ε) with
the property that Aε(·, ξ) : Ω→ Rd is Lebesgue measurable for every ξ ∈ Rd. We note that the variable
ε > 0 represents a small scale in the problem, at which the maps Aε(·, ξ) rapidly vary. We consider
homogeneous Dirichlet boundary conditions for simplicity but the results remain valid for other type of
boundary conditions. We assume that the maps Aε satisfy the following conditions uniformly in ε > 0

(A0) there is some C0 > 0 such that |Aε(x, 0)| ≤ C0 for almost every (a.e.) x ∈ Ω;

(A1) the map Aε(x, ·) : Rd → Rd is Lipschitz continuous, i.e., there exists L > 0 such that

|Aε(x, ξ1)−Aε(x, ξ2)| ≤ L |ξ1 − ξ2|, ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω;

(A2) the map Aε(x, ·) : Rd → Rd is strongly monotone, i.e., there exists λ > 0 such that

(Aε(x, ξ1)−Aε(x, ξ2)) · (ξ1 − ξ2) ≥ λ|ξ1 − ξ2|2, ∀ ξ1, ξ2 ∈ Rd, a.e. x ∈ Ω.

We note that, hypotheses (A0−1) imply linear growth of Aε with respect to ξ

|Aε(x, ξ)| ≤ L(L0 + |ξ|), where L0 = C0/L, ∀ ξ ∈ Rd, ε > 0, a.e. x ∈ Ω. (3)

Let us give two examples of maps Aε satisfying (A0−2).

Example 1. For linear maps Aε(x, ξ) given by

Aε(x, ξ) = aε(x)ξ, with aε(x) ∈ (L∞(Ω))d×d, ε > 0,

with a uniformly elliptic and bounded family of tensors aε the maps Aε satisfy (A0−2) with constants
C0 = 0 and λ given by the ellipticity constant. For such linear data we recover the linear parabolic
multiscale problems studied in [8].

Example 2. Next one might consider maps Aε(x, ξ) = aε(x, ξ)ξ where aε(·, ξ) ∈ (L∞(Ω))d×d (for ξ ∈ Rd)
is depending on ξ, introducing thus a nonlinearity. We note that adequate conditions have to be imposed
on aε such that Aε satisfies (A1−2).

As a particular example, let µε : Ω× R→ R≥0 be a continuous function and the maps Aε be given by

Aε(x, ξ) = µε(x, |ξ|)ξ, x ∈ Ω, ξ ∈ Rd,

which is an extension of the problems studied in [29] to a multiscale context. If µε(x, t) is uniformly (in ε
and x) Lipschitz continuous and strongly monotone then the assumption (A0−2) are valid for Aε, see [29].
We mention for instance Carreau laws, used to model non-Newtonian fluids, with µε(x, ·) ∼ 1+(1+t2)θ−1

where 1/2 < θ ≤ 1.
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Existence and uniqueness of a solution to problem (2) is studied in the Banach space

E = {v ∈ L2(0, T ;H1
0 (Ω)) | ∂tv ∈ L2(0, T ;H−1(Ω))},

endowed with the norm ‖v‖E = ‖v‖L2(0,T ;H1
0 (Ω)) + ‖∂tv‖L2(0,T ;H−1(Ω)) and satisfies the continuous em-

bedding E ↪→ C0([0, T ], L2(Ω)). Under the assumptions (A0−2) the problem (2) has a unique solution
uε ∈ E for ε > 0, e.g., see [43, Theorem 30.A], which are uniformly bounded

‖uε‖E ≤ C(C0 + ‖f‖L2(Ω) + ‖g‖L2(Ω)), ∀ ε > 0.

Thus, {uε} is a bounded sequence in E and by compactness there exists a subsequence, still denoted by
{uε}, and some u0 ∈ E, such that

uε ⇀ u0 in L2(0, T ;H1
0 (Ω)) and ∂tu

ε ⇀ ∂tu
0 in L2(0, T ;H−1(Ω)), for ε→ 0. (4)

The idea of homogenization is to find a limiting equation for u0. For the problem (2) with (A0−2),
this question is studied in terms of G-convergence of parabolic operators, sometimes referred to as PG-
convergence or strong G-convergence, see [36, 34]. It can be shown that there exists a subsequence of
{uε}, still denoted by {uε}, and a map A0 : Ω× Rd → Rd, such that uε weakly converges to u0 in the
sense of (4) and Aε(x,∇uε) ⇀ A0(x,∇u0) weakly in L2(0, T ; (L2(Ω))d), where u0 ∈ E is the solution of
the homogenized or effective problem

∂tu
0(x, t)− div(A0(x,∇u0(x, t))) = f(x) in Ω× (0, T ),

u0(x, t) = 0 on ∂Ω× (0, T ), u0(x, 0) = g(x) in Ω,
(5)

where A0 satisfies (A0−2) with possibly different constants C0 and L. For maps Aε with additional
structure, e.g., Aε(x, ξ) = A(x/ε, ξ) with A(y, ξ) a Y -periodic function in y, an explicit representation of
A0 can be derived and thus the whole sequence {uε} converges to u0 in the sense of (4).

3 Multiscale method
In this section, we propose a multiscale method to solve nonlinear monotone parabolic multiscale prob-
lems with general spatial heterogeneities. We introduce then a reformulation of that method which is
convenient for the analysis and show the existence, uniqueness and boundedness of the numerical solution.

3.1 FE-HMM for nonlinear monotone parabolic problems
The definition of multiscale method studied in this article requires a macroscopic spatial discretization
of the domain Ω.
Macro discretization. Let TH be a family of macro partitions of Ω consisting of conforming, shape-
regular meshes with simplicial elements K ∈ TH . We assume that the elements K ∈ TH are open
and satisfy ∪K∈TH K̄ = Ω (recall that Ω is polygonal). The macro mesh size H is defined by H =
maxK∈TH diamK, where diamK denotes the diameter of K ∈ TH . Then, we consider the macro finite
element space

S1
0(Ω, TH) = {vH ∈ H1

0 (Ω) | vH |K ∈ P1(K),∀K ∈ TH}, (6)

where P1(K) is the space of linear polynomials on K ∈ TH . Further, the multiscale method is based on
barycentric quadrature ∫

Ω

ϕ(x)dx ≈
∑
K∈TH

|K|ϕ(xK), ϕ ∈ C0(Ω,R), (7)

where xK and |K| denote the barycenter and the measure of K ∈ TH , respectively,. We note that the
quadrature formula (7) is exact for affine functions ϕ. Further, for any macro element K ∈ TH we define
the sampling domain Kδ located at the quadrature point xK

Kδ = xK + δ I, where I = (−1/2, 1/2)d and δ ≥ ε.

Within the sampling domains, micro simulations are performed to recover the upscaled data.
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Multiscale method. Let the time interval (0, T ) be uniformly divided into N subintervals of length
∆t = T/N and define tn = n∆t for 0 ≤ n ≤ N and N ∈ N>0. Let uH0 ∈ S1

0(Ω, TH) be a given
approximation of the initial condition g(x). To compute an approximation of the effective solution
of problem (2) we propose the multiscale method given by the recursion: for 0 ≤ n ≤ N − 1, find
uHn+1 ∈ S1

0(Ω, TH) such that∫
Ω

uHn+1 − uHn
∆t

wHdx+BH(uHn+1;wH) =

∫
Ω

f wHdx, ∀wH ∈ S1
0(Ω, TH), (8)

with the nonlinear macro map BH given by

BH(vH ;wH) =
∑
K∈TH

|K|
|Kδ|

∫
Kδ

Aε(x,∇vhK)dx · ∇wH(xK), vH , wH ∈ S1
0(Ω, TH), (9)

where vhK solve the constrained micro problems (11) on the sampling domains Kδ.
Micro solver. Each sampling domain Kδ, associated to a macro element K ∈ TH , is discretized
by micro meshes Th consisting of simplicial elements T ∈ Th. The micro mesh size h is defined by
h = maxT∈Th diamT and we consider the micro finite element space

S1(Kδ, Th) = {vh ∈W (Kδ) | vh|T ∈ P1(T ),∀T ∈ Th}, (10)

where P1(T ) is the space of linear polynomials on T ∈ Th and W (Kδ) ⊂ H1(Kδ) is some Sobolev space.
We note that the choice of the space W (Kδ) determines the coupling condition between the macro and
micro finite element methods. We consider

• periodic coupling: W (Kδ) = W 1
per(Kδ) = {v ∈ H1

per(Kδ) |
∫
Kδ
v dx = 0};

• Dirichlet coupling: W (Kδ) = H1
0 (Kδ).

Let vH ∈ S1
0(Ω, TH) and Kδ be a sampling domain, we define the micro function vhK by micro problem:

find vhK − vH ∈ S1(Kδ, Th) such that∫
Kδ

Aε(x,∇vhK) · ∇zhdx = 0, ∀ zh ∈ S1(Kδ, Th). (11)

We note that vhK is the finite element solution to an elliptic nonlinear monotone PDE.

3.2 A useful reformulation of the FE-HMM
First, in what follows, we write the difference quotient with respect to time, like in (8), as ∂̄tvn =
∆t−1(vn+1 − vn), for a sequence {vn}n≥0 ⊂ L2(Ω) and n ≥ 0.

For the analysis of the FE-HMM it is convenient to reformulate the nonlinear map BH as a standard
finite element method applied to a modified macro problem. Let ξ ∈ Rd and K ∈ TH , we introduce the
function χξ,hK as the solution to the variational problem: find χξ,hK ∈ S1(Kδ, Th) such that∫

Kδ

Aε(x, ξ +∇χξ,hK ) · ∇zh dx = 0, ∀ zh ∈ S1(Kδ, Th). (12)

Similarly, we define χ̄ξK by the variational problem: find χ̄ξK ∈W (Kδ) such that∫
Kδ

Aε(x, ξ +∇χ̄ξK) · ∇z dx = 0, ∀ z ∈W (Kδ). (13)

Then, based on the functions χξ,hK and χ̄ξK we define the maps

A0,h
K (ξ) =

1

|Kδ|

∫
Kδ

Aε(x, ξ +∇χξ,hK )dx, Ā0
K(ξ) =

1

|Kδ|

∫
Kδ

Aε(x, ξ +∇χ̄ξK)dx, (14)

and the nonlinear map BH given in (9) can be reformulated using A0,h
K (ξ)

BH(vH ;wH) =
∑
K∈TH

|K| A0,h
K (∇vH(xK)) · ∇wH(xK), vH , wH ∈ S1

0(Ω, TH).

5



Thus, the modified macro form BH is obtained by replacing elementwisely the exact effective mapA0(x, ξ)

from the homogenized equation (5) by the approximation A0,h
K (ξ).

Further, using the effective map A0 we introduce the map B0 : H1
0 (Ω)×H1

0 (Ω)→ R by

B0(v;w) =

∫
Ω

A0(x,∇v(x)) · ∇w(x)dx, v, w ∈ H1
0 (Ω), (15)

and, if A0(·, ξ) ∈ H2(Ω) for every ξ ∈ Rd, we define the nonlinear map B̂0 as its discrete counterpart

B̂0(vH ;wH) =
∑
K∈TH

|K|A0(xK ,∇vH(xK)) · ∇wH(xK), vH , wH ∈ S1
0(Ω, TH). (16)

3.3 Existence and uniqueness of the numerical solution
First, we analyze the existence and uniqueness of a solution to the micro problem (11).

Lemma 3.1. Assume that Aε satisfies (A0−2). Let K ∈ TH , vH ∈ S1
0(Ω, TH) and ξ ∈ Rd. For both

coupling conditions, i.e., either W (Kδ) = H1
0 (Kδ) or W (Kδ) = W 1

per(Kδ), there exists a unique solution
vhK − vH ∈ S1(Kδ, Th), χξ,hK ∈ S1(Kδ, Th) and χ̄ξK ∈ W (Kδ) to the micro problems (11), (12) and (13),
respectively.

Proof. We prove the result for the micro problem (11). Consider the map aξK given by

aξK(zh;wh) =

∫
Kδ

Aε(x, ξ +∇zh) · ∇wh dx, zh, wh ∈ S1(Kδ, Th), (17)

which is nonlinear in zh and linear wh. As Aεξ(x, η) = Aε(x, ξ + η) satisfies again (A0−2) the map
aξK(zh;wh) is continuous in wh as well as Lipschitz continuous and strongly monotone in zh. Further,
taking ξ = ∇vH(xK), the micro problem (11) can be written as

find vhK − vH ∈ S1(Kδ, Th) such that aξK(vhK − vH ;wh) = 0, ∀wh ∈ S1(Kδ, Th).

Thus, the existence and uniqueness of vhK − vH ∈ S1(Kδ, Th) follow from [43, Theorem 25.B]. The results
for the micro problems (12) and (13) are proved analogously.

For the analysis of the macro-micro coupling, the following energy equivalence is essential.

Lemma 3.2. Assume that Aε satisfies (A0−2). Let Kδ be the sampling domain associated to a macro
element K ∈ TH and vhK be the solution of the micro problem (11) constrained by vH ∈ S1

0(Ω, TH). Then,

∥∥∇vH∥∥
L2(Kδ)

≤
∥∥∇vhK∥∥L2(Kδ)

≤ L

λ
(
√
|Kδ|L0 +

∥∥∇vH∥∥
L2(Kδ)

),

where L0 is defined in Lemma A.1.

Proof. The proof of the first inequality follows the proof of [2, Lemma 3] in the linear case. For the
second inequality, we recall that

∫
Kδ
Aε(x,∇vhK) · ∇qhdx = 0 for all qh ∈ S1(Kδ, Th). Combining that

with the monotonicity (A2) yields

λ
∥∥∇vhK −∇vH∥∥2

L2(Kδ)
≤
∫
Kδ

[
Aε(x,∇vhK)−Aε(x,∇vH(xK))

]
·
(
∇vhK −∇vH(xK)

)
dx

= −
∫
Kδ

Aε(x,∇vH(xK)) ·
(
∇vhK −∇vH

)
dx

≤ L
(√
|Kδ|L0 +

∥∥∇vH∥∥
L2(Kδ)

)∥∥∇vhK −∇vH∥∥L2(Kδ)
,

where the growth estimate (3) is used.

Using Lemma 3.2 we prove several properties of the map BH from (9).
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Lemma 3.3. Assume that Aε satisfies (A0−2). Let the nonlinear map BH on S1
0(Ω, TH)× S1

0(Ω, TH) be
given by (9), then BH satisfies the bound∣∣BH(vH ;wH)

∣∣ ≤ Cb(L0 +
∥∥∇vH∥∥

L2(Ω)
)
∥∥∇wH∥∥

L2(Ω)
,

where Cb depends on C0, λ, L and the measure of Ω. Further, BH is Lipschitz continuous in its first
argument and strongly monotone

∣∣BH(vH ;wH)−BH(zH ;wH)
∣∣ ≤ L2

λ

∥∥∇vH −∇zH∥∥
L2(Ω)

∥∥∇wH∥∥
L2(Ω)

,

BH(vH ; vH − wH)−BH(wH ; vH − wH) ≥ λ
∥∥∇vH −∇wH∥∥2

L2(Ω)
,

for all vH , wH , zH ∈ S1
0(Ω, TH) and where L and λ are given in (A1) and (A2), respectively.

Proof. Let vH , wH , zH ∈ S1
0(Ω, TH). The first estimate is obtained by combining the estimate (3) and the

second inequality of Lemma 3.2. For the Lipschitz continuity we observe that using (A2), the definition
of the micro problems (11) and (A1) yields

λ
∥∥∇vhK −∇zhK∥∥2

L2(Kδ)
≤
∫
Kδ

[
Aε(x,∇vhK)−Aε(x,∇zhK)

]
·
(
∇vhK −∇zhK

)
dx

=

∫
Kδ

[
Aε(x,∇vhK)−Aε(x,∇zhK)

]
·
(
∇vH(xK)−∇zH(xK)

)
dx

≤ L
√
|Kδ|

∥∥∇vhK −∇zhK∥∥L2(Kδ)

∣∣∇vH(xK)−∇zH(xK)
∣∣.

This estimate at hand, the Lipschitz continuity of BH follows directly. Finally, the strong monotonicity
of BH is a consequence of the definition of the micro problems (11), the monotonicity (A2) and the first
inequality of Lemma 3.2.

Then, the existence and uniqueness of the numerical solution obtained by the multiscale method (8)
follows from the nonlinear Lax-Milgram theorem.

Lemma 3.4. Assume that Aε satisfies (A0−2). Let zH ∈ S1
0(Ω, TH), ∆t > 0 and f ∈ L2(Ω) be given.

Then, there exists a unique uH ∈ S1
0(Ω, TH) such that∫

Ω

uH − zH

∆t
wHdx+BH(uH ;wH) =

∫
Ω

f wHdx ∀wH ∈ S1
0(Ω, TH), (18)

where BH is given by (9).

Proof. For fixed zH ∈ S1
0(Ω, TH), consider the maps aH,∆t and l∆tzH given by

aH,∆t(vH ;wH) =
1

∆t

∫
Ω

vHwHdx+BH(vH ;wH), l∆tzH (wH) =

∫
Ω

(
f +

1

∆t
zH
)
wHdx,

for vH , wH ∈ S1
0(Ω, TH). Then, the problem (18) can be written as

find uH ∈ S1
0(Ω, TH) such that aH,∆t(uH ;wH) = lzH (wH), ∀wH ∈ S1

0(Ω, TH).

The Lipschitz continuity and strong monotonicity of aH,∆t(vH ;wH) in vH is obtained using Lemma 3.3

∣∣aH,∆t(vH1 ;wH)− aH,∆t(vH2 ;wH)
∣∣ ≤ C( 1

∆t
+ 1

)∥∥∇vH1 −∇vH2 ∥∥L2(Ω)

∥∥∇wH∥∥
L2(Ω)

,

aH,∆t(vH ; vH − wH)− aH,∆t(wH ; vH − wH) ≥ λ
∥∥∇vH −∇wH∥∥2

L2(Ω)
,

where vH1 , vH2 , vH , wH ∈ S1
0(Ω, TH). Further, aH,∆t(vH ;wH) is linear and continuous in its second argu-

ment wH due to the first result of Lemma 3.3. Combining that with the linearity and continuity of lzH (·)
and [43, Theorem 25.B] concludes the proof.

Finally, the boundedness of the numerical approximations obtained by (9) is proved.
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Theorem 3.5. Assume that (A0−2) hold and that f ∈ L2(Ω), uH0 ∈ S1
0(Ω, TH) are given. Then, for

periodic and Dirichlet coupling and any parameter ∆t,H, h, δ > 0, there exists a unique numerical solution
defined by the multiscale method (8). Further, the numerical solution {uHn }Nn=1 satisfies the bound

max
1≤n≤N

∥∥uHn ∥∥L2(Ω)
+ λ

(
N∑
n=1

∆t
∥∥∇uHn ∥∥2

L2(Ω)

)1/2

≤ C
(
L0 + ‖f‖L2(Ω) +

∥∥uH0 ∥∥L2(Ω)

)
,

where C depends on C0, λ, L, T , the measure of Ω and the Poincaré constant Cp on Ω.

Proof. The existence and uniqueness of the numerical solution defined by the method (8) is a consequence
of Lemma 3.4. To derive the a priori bound we set wH = uHn+1 in (8) and use the monotonicity bound of
BH from Lemma 3.3 to obtain∫

Ω

∂̄tu
H
n u

H
n+1dx+ λ

∥∥∇uHn+1

∥∥2

L2(Ω)
≤
∫

Ω

f uHn+1dx−BH(0;uHn+1)

≤ 1

2λ
(Cp‖f‖L2(Ω) + CbL0)2 +

λ

2

∥∥∇uHn+1

∥∥2

L2(Ω)
,

where Cp is the Poincaré constant on Ω and Cb is the constant from Lemma 3.3. Next, we observe that
1/2 ∂̄t‖uHn ‖2L2(Ω) ≤

∫
Ω
∂̄tu

H
n u

H
n+1dx yielding∥∥uHn+1

∥∥2

L2(Ω)
−
∥∥uHn ∥∥2

L2(Ω)
+ λ∆t

∥∥∇uHn+1

∥∥2

L2(Ω)
≤ 2

λ
∆t(C2

p‖f‖
2
L2(Ω) + C2

bL
2
0),

for any 0 ≤ n ≤ N − 1. Summing the last inequality from n = 0 to n = N − 1 concludes the proof.

4 Main results
In this section we present fully discrete a priori error estimates for the difference between the numerical
solution uHn defined by the multiscale strategy (8) and the exact homogenized solution u0(x, t) solv-
ing the homogenized problem (5). In particular, we provide error bounds in the L2(0, T ;H1

0 (Ω)) and
the C0([0, T ], L2(Ω)) norm. In Theorem 4.1, we provide sharp estimates for the temporal and spatial
macro error. Then, in Theorem 4.2 and Theorem 4.3, we provide explicit bounds for the upscaling error
consisting of the micro and modeling error. We emphasize that the estimates of temporal and spatial
(macro and micro) errors are valid without any structural assumptions about the heterogeneities of Aε.
In contrast, explicit bounds of the modeling error are derived for locally periodic data Aε. The multiscale
method (8), being defined for general maps Aε, is however reasonable if Aε exhibits scale-separation and
its good performance is known for stationary data.

4.1 Estimates for temporal and spatial macro error
Focusing first on the error due to time discretization and the macro finite element method, we quantify
the upscaling error committed in the multiscale method (8) using the error functional rHMM given by

rHMM (∇vH) =

(∑
K∈TH |K|

∣∣∣A0(xK ,∇vH(xK))−A0,h
K (∇vH(xK))

∣∣∣2)1/2

, (19)

for vH ∈ S1
0(Ω, TH). Then, we obtain the following result.

Theorem 4.1. Assume that Aε satisfies (A0−2). Let u0 be the solution to the homogenized problem (5)
and uHn the approximations obtained by the multiscale method (8). Provided that for µ = 1

u0, ∂tu
0 ∈ C0([0, T ], H2(Ω)), ∂2

t u
0 ∈ C0([0, T ], L2(Ω)), (20a)

A0(·, ξ) ∈Wµ,∞(Ω;Rd) with
∥∥A0(·, ξ)

∥∥
Wµ,∞(Ω;Rd)

≤ C(L0 + |ξ|), ∀ ξ ∈ Rd, (20b)

the following discrete C0(L2) and L2(H1) error estimates hold

max
1≤n≤N

∥∥u0(·, tn) −uHn
∥∥
L2(Ω)

+

(
∆t

N∑
n=1

∥∥∇u0(·, tn)−∇uHn
∥∥2

L2(Ω)

)1/2

≤ C
[
∆t+H + max

1≤n≤N
rHMM (∇IHu0(·, tn)) +

∥∥g − uH0 ∥∥L2(Ω)

]
,
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where IHu0 denotes the nodal interpolant of u0 and C is independent of ∆t,H and rHMM .
If additionally we assume that (20b) is satisfied for µ = 2 and

u0 ∈ C0([0, T ],W 2,∞(Ω)), A0(x, ·) ∈W 2,∞(Rd;Rd), a.e. x ∈ Ω, (21a)

A 0
ij , ∂tA

0
ij ∈ C0([0, T ],W 1,∞(Ω)), 1 ≤ i, j,≤ d, (21b)

quasi-uniformity of macro meshes TH and the elliptic regularity (36), (21c)

where A 0(x, t) = DξA0(x,∇u0(x, t)), then, there exists an H0 > 0 such that for all H < H0, we get the
improved error estimate in the discrete C0(L2) norm

max
1≤n≤N

∥∥u0(·, tn)− uHn
∥∥
L2(Ω)

≤ C
[
∆t+H2 + max

1≤n≤N
rHMM (∇ũH,0(·, tn)) +

∥∥g − uH0 ∥∥L2(Ω)

]
,

where C is independent of ∆t,H and rHMM .

Let us comment on the hypotheses of Theorem 4.1 in view of results for linear parabolic problems, see [35]
and [8] for single scale and multiscale problems, respectively. We recall that the homogenized map A0

would be given by A0(x, ξ) = a0(x)ξ with a0(x) ∈ Rd×d if problem (2) is linear.
The temporal regularity in (20a) is required to obtain first order global convergence of the implicit

Euler scheme. Assumption (20b) allows to estimate the error due to the quadrature formula (7) and
reduces to a0

ij ∈ Wµ,∞(Ω) for linear problems, which is likewisely assumed in [35, Theorem 2]. Further,
the hypotheses (21) are solely used to show the optimal convergence of the spatial macro error. Condi-
tion (21a) is used in combination with (21c) to obtain error estimates in the W 1,∞ norm for the elliptic
projection (27) and to estimate the Taylor remainder term for the map A0(x, ξ) (with respect to ξ).
Finally, assumptions (21b) are needed to obtain optimal estimates of u0 − ũH,0 and ∂t(u0 − ũH,0) in the
L2 norm, where ũH,0 is the elliptic projection (27). For linear parabolic problems (with time-dependent
data) where A 0(x, t) = a0(x, t), assumptions (21b) are comparable to the conditions used in [35, 8].

4.2 Fully discrete space-time a priori error estimates
To derive fully discrete error estimates we decompose the HMM upscaling error rHMM introduced in (19)
into micro and modeling error rmic and rmod, respectively, e.g., as in [3], given by

rmic(∇vH) =

(∑
K∈TH |K|

∣∣∣Ā0
K(∇vH(xK))−A0,h

K (∇vH(xK))
∣∣∣2)1/2

, (22)

rmod(∇vH) =
(∑

K∈TH |K|
∣∣A0(xK ,∇vH(xK))− Ā0

K(∇vH(xK))
∣∣2)1/2

, (23)

where vH ∈ S1
0(Ω, TH), A0 is the exact homogenized map and Ā0

K and A0,h
K are given in (14). Then, we

have that rHMM (∇vH) ≤ rmic(∇vH) + rmod(∇vH) for any vH ∈ S1
0(Ω, TH). In particular, rmic accounts

for the finite element error committed during micro simulations and rmod quantifies the quality of the
micro sampling, i.e.,the influence of the size of the sampling domains Kδ or the boundary conditions in
micro problems (11). We recall that estimates for the micro error rmic are derived for general micro
structures, while the modeling error rmod is only analyzed for locally periodic maps Aε.

First, let us assume that χ̄ξK , the exact solutions to the micro problems (13), satisfy

(H1) χ̄ξK ∈ H2(Kδ) and
∣∣∣χ̄ξK∣∣∣

H2(Kδ)
≤ Cε−1(L0 + |ξ|)

√
|Kδ|,

for K ∈ TH , ξ ∈ Rd. Similar assumptions are used for linear multiscale problems, see [3, Remark 4].
As seen in [19, 9] for non-symmetric linear problems, adjoint micro problems are necessary to de-

rive sharp bounds for the micro error. We introduce a similar adjoint micro problem (41), denote its
corresponding solutions by X̄ξ,j

K and assume that

(H1∗)


(i) X̄ξ,j

K ∈ H2(Kδ) and
∣∣∣X̄ξ,j

K

∣∣∣
H2(Kδ)

≤ Cε−1
√
|Kδ|,

(ii) X̄ξ,j
K ∈W 1,∞(Kδ) and

∣∣∣X̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

≤ C,

for ξ ∈ Rd, 1 ≤ j ≤ d and K ∈ TH . We note that the adjoint cell problem (41) is a linear elliptic problem.
Thus, the first hypothesis in (H1∗) follows from classical H2 regularity results if the data is sufficiently
smooth, e.g., see [3, Remark 4].
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Theorem 4.2. Assume that Aε satisfies (A0−2). Let u0 be the solution to the homogenized problem (5)
and uHn the approximations obtained by the multiscale method (8). Assume hypotheses (20) and (H1)
and in addition for µ = 2 that (21) holds. Further, let the multiscale method (8) be initialized with uH0
such that ‖g − uH0 ‖L2(Ω) ≤ CHµ. Then we have

max
1≤n≤N

∥∥u0(·, tn)− uHn
∥∥
L2(Ω)

≤ C
[
∆t+Hµ +

(
h

ε

)ν
+ max

1≤n≤N
rmod(∇UHn )

]
,(

∆t

N∑
n=1

∥∥∇u0(·, tn)−∇uHn
∥∥
L2(Ω)

)1/2

≤ C
[
∆t+H +

(
h

ε

)ν
+ max

1≤n≤N
rmod(∇UHn )

]
,

for ν = 1, where UHn = IHu0(·, tn) if µ = 1 or UHn = ũH,0(·, tn) and H < H0 (with H0 from Theorem 4.1)
if µ = 2. The constant C is independent of ∆t,H, h, ε, δ and the modeling error rmod.

If in addition (H1∗) holds and Aε(x, ·) ∈W 2,∞(Rd;Rd) for a.e. x ∈ Ω, then the above estimates hold
for ν = 2.

As the quadratic micro convergence (h/ε)2 is optimal for linear homogenization problems, e.g., see [1],
Theorem 4.2 provides sharp micro error estimates for sufficiently smooth multiscale problems (2).

Finally, we present explicit estimates for the modeling error rmod supposing that the spatial hetero-
geneities of the maps Aε are locally periodic and Lipschitz continuous with respect to the macroscopic
variable, i.e.,

(H2) the maps Aε are locally periodic, i.e., Aε(x, ξ) = Aε(x, x/ε, ξ) = A(x, y, ξ) with A(x, y, ξ) being
Y -periodic in y and satisfying (for ξ ∈ Rd, a.e. y ∈ Y )

|A(x1, y, ξ)−A(x2, y, ξ)| ≤ C|x1 − x2|(L0 + |ξ|), ∀x1, x2 ∈ Ω.

We note, that the collocation Aε(xK , x/ε, ξ) at the quadrature nodes xK is advantageous if the decom-
position Aε(x, ξ) = Aε(x, x/ε, ξ) is explicitely known.

Theorem 4.3. Assume that the map Aε satisfies (A0−2) and (H2). Then, for any vH ∈ S1
0(Ω, TH), the

modeling error rmod(∇vH) defined in (23) is bounded by

rmod(∇vH) ≤


0,

if W (Kδ) = W 1
per(Kδ), δ/ε ∈ N and

Aε = A(xK , x/ε, ξ) collocated at xK ,
C1
mod δ, if W (Kδ) = W 1

per(Kδ), δ/ε ∈ N,
C2
mod(δ +

√
ε/δ), if W (Kδ) = H1

0 (Kδ), δ > ε,

with C1
mod and C2

mod given by

C1
mod = C(L0 + ‖∇vH‖L2(Ω)), C2

mod = C(C1
mod + max

K∈TH
‖χ∇v

H(xK)(xK , ·)‖W 1,∞(Y )),

where χξ(xK , ·), for ξ ∈ Rd, K ∈ TH , denote the exact solutions to the homogenization cell problems (44)
and C is independent of ∆t,H, h, ε, δ and vH .

We note, that combining periodic coupling and collocation is optimal for locally periodic maps Aε.
Further, the regularity hypothesis χξ(xK , ·) ∈W 1,∞(Y ) is a common assumption to bound the resonance
error (when using Dirichlet coupling) for linear homogenization problems, see [21, Theorem 1.2].
Refinement strategies. The fully discrete a priori error estimates from Theorem 4.2 reveal that
simultaneous refinement of macro and micro meshes is needed for convergence of the spatial errors. For
instance, consider a sufficiently smooth problem (2) with locally periodic maps Aε. If using periodic
coupling and collocation of Aε for the multiscale method (8), then we have, under the conditions from
Theorem 4.2 and 4.3,

max1≤n≤N
∥∥u0(·, tn)− uHn

∥∥
L2(Ω)

≤ C
[
∆t+H2 +

(
h
ε

)2]
,(

∆t
∑N
n=1

∥∥∇u0(·, tn)−∇uHn
∥∥2

L2(Ω)

)1/2

≤ C
[
∆t+H +

(
h
ε

)2]
,

(24)

i.e., robust convergence of uHn towards the homogenized solution u0. Further, an efficient decrease of
the spatial errors in the C0(L2) norm is obtained when refining the spatial grids TH and Th according to
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h/ε ∼ H. Similarly, balancing macro and micro spatial errors in the L2(H1) norm leads to h/ε ∼
√
H.

Those refinement strategies allow to obtain convergence at optimal computational cost.
Complexity. We note that the numerical upscaling used in (8) leads to computational cost that are
independent of the size of the small oscillations ε. For instance, let Nmac and Nmic denote the number
of elements in each dimension for the macro and micro spatial discretization, respectively, using quasi-
uniform meshes. Then, the macro and micro mesh sizes H and h scale as H ∼ 1/Nmac and h ∼ δ/Nmic,
respectively. As the size δ of the sampling domains Kδ is of order O(ε), we find that h/ε ∼ 1/Nmic.
Thus, the convergence rates summarized in (24) can be expressed in terms of Nmac and Nmic, i.e., they
are robust with respect to ε, and can be obtained with O(Nd

macN
d
mic) spatial degrees of freedom.

5 Proof of the main results
In this section, we prove Theorem 4.1, 4.2 and 4.3. We split the total error according to ‖u0 − uHn ‖ ≤
‖u0 − UHn ‖ + ‖UHn − uHn ‖ where UHn is an approximation of the exact solution u0 in S1

0(Ω, TH). While
choosing UHn as the nodal interpolant of u0 is sufficient to obtain optimal L2(H1) estimates, an elliptic
projection of u0 is needed for the optimal C0(L2) estimates. This is well-known for linear problems [41].
As mentioned in the introduction, we will introduce a new elliptic projection for nonlinear monotone
problems for our analysis.

5.1 Preliminaries
We next introduce the nodal interpolant and the elliptic projection of the homogenized solution u0 and
derive their approximation properties.
Nodal interpolant. Let IH : C0(Ω)→ S1(Ω, TH) be the usual nodal interpolant where S1(Ω, TH) is the
FE-space defined as S1

0(Ω, TH) in (6), but without zero boundary conditions. Then, for k ∈ {1, 2}, we
have the bounds, see [13, Theorem 3.1.6],

‖IHz‖H1(Ω) ≤ C‖z‖H2(Ω), ‖IHz − z‖H2−k(Ω) ≤ CH
k‖z‖H2(Ω), ∀ z ∈ H2(Ω), (25)

‖IHz‖W 1,∞(Ω) ≤ C‖z‖W 1,∞(Ω), ∀ z ∈W 1,∞(Ω). (26)

We note that for z ∈ C0(Ω) ∩H1
0 (Ω) it holds that IHz ∈ S1

0(Ω, TH).

Remark 5.1. If u0, ∂tu
0 ∈ C0([0, T ], H2(Ω)), then the interpolation operator IH and the differentiation

∂t with respect to the time variable can be interchanged, i.e., IH(∂tu
0(x, t)) = ∂t(IHu0(x, t)) on Ω×[0, T ].

Thus the L2 error estimate ‖∂tu0(·, t)− ∂t(IHu0(·, t))‖L2(Ω) ≤ CH2‖∂tu0(·, t)‖H2(Ω) holds.

Elliptic projection. Let u0(x, t) ∈ E be the exact solution of the homogenized problem (5). The elliptic
projection ũH,0(·, t) of u0(·, t) is given by the variational problem: find ũH,0(·, t) ∈ S1

0(Ω, TH) such that

Bπ(t; ũH,0(·, t), wH) = Bπ(t;u0(·, t), wH), ∀wH ∈ S1
0(Ω, TH), (27)

where, for a.e. t ∈ (0, T ), the bilinear form Bπ is defined as, for v, w ∈ H1
0 (Ω),

Bπ(t; v, w) =

∫
Ω

A 0(x, t)∇v · ∇w dx, with A 0(x, t) = DξA0(x,∇u0(x, t)), (28)

for a.e. (x, t) ∈ Ω×(0, T ). The existence and uniqueness of the elliptic projection ũH,0(·, t) defined in (27)
is studied in Lemma 5.2. Note that for a linear problem we recover the tensor A 0(x, t) = a0(x, t) and
∂tA 0(x, t) = ∂ta

0(x, t) as considered in [41, 35, 8].

Lemma 5.2. Let A0 satisfy (A1−2) and A0(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. If the homogenized
solution u0 satisfies u0 ∈ L2(0, T ;H1

0 (Ω)), then, for a.e. t ∈ (0, T ), the bilinear form Bπ given by (28) is
uniformly elliptic and bounded and there exists a unique solution ũH,0(·, t) to (27). Further, we have∥∥∇ũH,0(·, t)

∥∥
L2(Ω)

≤ L

λ

∥∥∇u0(·, t)
∥∥
L2(Ω)

, a.e. t ∈ (0, T ). (29)

Proof. First, due to Lemma A.1 and the regularity of u0 the tensor A 0 satisfies A 0
ij ∈ L∞(0, T ;L∞(Ω)),

for 1 ≤ i, j ≤ d. Then, using again Lemma A.1 we have that |Bπ(t; v, w)| ≤ L‖∇v‖L2(Ω)‖∇w‖L2(Ω) and
λ‖∇v‖2L2(Ω) ≤ Bπ(t; v, v) for v, w ∈ H1

0 (Ω) and a.e. t ∈ (0, T ). Thus, applying the Lax-Milgram theorem
concludes the proof.
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Lemma 5.3. Assume that A0 satisfies (A1−2) and A0(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Let the
homogenized solution u0 and A 0 defined in (28) satisfy

u0, ∂tu
0 ∈ C0([0, T ], H1

0 (Ω)), A 0
ij , ∂tA

0
ij ∈ C0([0, T ], L∞(Ω)), for 1 ≤ i, j ≤ d. (30)

Then, the map t 7→ ũH,0(·, t) ∈ S1
0(Ω, TH), where ũH,0 is the elliptic projection (27), is of class C1.

Proof. For t ∈ [0, T ], we first introduce the auxiliary function ûH,0(·, t) ∈ S1
0(Ω, TH) satisfying

Bπ(t; ûH,0(·, t), wH) = Fπ(t;wH), ∀wH ∈ S1
0(Ω, TH), (31)

where B′π(t; v, w) =
∫

Ω
∂t
(
A 0(x, t)

)
∇v · ∇w dx (for v, w ∈ H1

0 (Ω)) and the linear map Fπ is given by

Fπ(t;w) = Bπ(t; ∂tu
0(·, t), w) +B′π(t;u0(·, t)− ũH,0(·, t), w).

Due to (30) the bilinear form B′π is bounded and problem (31) has a unique solution ûH,0(·, t) for t ∈ [0, T ].
In what follows, we omit the space variable x for u0, ũH,0 and ûH,0. Let t, t + τ ∈ [0, T ]. Then, due

to the regularity of u0(t) and A 0(x, t) in the time variable t, a simple calculation shows that ‖ũH,0(t)−
ũH,0(t+ τ)‖L2(Ω) → 0 for τ → 0, i.e., the map t 7→ ũH,0(·, t) is continuous.

Consider the term Bπ(t; ũH,0(t + τ) − ũH,0(t), wH) for wH ∈ S1
0(Ω, TH). Using the definition of the

elliptic projection (27) it holds that

Bπ(t; ũH,0(t+ τ)− ũH,0(t), wH) = Bπ(t; ũH,0(t+ τ), wH)−Bπ(t;u0(t), wH) (32)

+Bπ(t+ τ ;u0(t+ τ), wH)−Bπ(t+ τ ; ũH,0(t+ τ), wH)︸ ︷︷ ︸
=0

.

Then, we divide (32) by τ and substract (31) to obtain

Bπ(t;τ−1
[
ũH,0(t+ τ)− ũH,0(t)

]
− ûH,0(t), wH) (33)

= τ−1
[
Bπ(t+ τ ;u0(t+ τ), wH)−Bπ(t+ τ ;u0(t), wH)

]
−Bπ(t; ∂tu

0(t), wH)

+ τ−1
[
Bπ(t+ τ ;u0(t), wH)−Bπ(t;u0(t), wH)

]
−B′π(t;u0(t), wH)

−
(
τ−1

[
Bπ(t+ τ ; ũH,0(t+ τ), wH)−Bπ(t; ũH,0(t+ τ), wH)

]
−B′π(t; ũH,0(t), wH)

)
.

We next choose wH = τ−1[ũH,0(t+ τ)− ũH,0(t)]− ûH,0(t) in (33), use the ellipticity and boundedness of
Bπ and combine that with the regularity assumptions (30) and the boundedness of (29) of ũH,0 to obtain∥∥τ−1

[
ũH,0(t+ τ)− ũH,0(t)

]
− ûH,0(t)

∥∥
H1(Ω)

→ 0, for τ → 0.

Hence, ∂tũH,0(t) exists and we have ∂tũH,0 = ûH,0 and ∂t∇ũH,0 = ∇ûH,0.

Lemma 5.4. Assume that A0 satisfies (A1−2) and A0(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Let u0 be the
solution of the homogenized problem (5), ũH,0 its elliptic projection (27) and A 0 the tensor given by (28).
Let k ∈ {1, 2} and assume

u0, ∂tu
0 ∈ C0([0, T ], H2(Ω)), A 0

ij , ∂tA
0
ij ∈ C0([0, T ],W k−1,∞(Ω)), for 1 ≤ i, j ≤ d.

Then, for any t ∈ [0, T ], we have the error estimates

(i)
∥∥ũH,0(·, t)− u0(·, t)

∥∥
H1(Ω)

≤ CH, (iii)
∥∥∂t(ũH,0 − u0)(·, t)

∥∥
H1(Ω)

≤ CH,

(ii)
∥∥ũH,0(·, t)− u0(·, t)

∥∥
L2(Ω)

≤ CHk, (iv)
∥∥∂t(ũH,0 − u0)(·, t)

∥∥
L2(Ω)

≤ CHk,

where C is independent H.

Proof. We omit again the space variable x for u0 as well as ũH,0 and let t ∈ [0, T ]. First, we note that
the estimates (i) and (ii) follow from standard finite element estimates.
(iii) Using the nodal interpolant IH∂tu0(t), we split the error into two terms∥∥∂t(ũH,0(t)− u0(t))

∥∥
H1(Ω)

≤
∥∥IH∂tu0(t)− ∂tu0(t)

∥∥
H1(Ω)

+
∥∥∂tũH,0(t)− IH∂tu0(t)

∥∥
H1(Ω)

,
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where the first term can be estimated by (25). For the second term, we use (31) to find

λ
∥∥∇(∂tũ

H,0(t)− ∂tIHu0(t))
∥∥2

L2(Ω)
≤ Bπ(t; ∂t(ũ

H,0(t)− IHu0(t)), ∂t(ũ
H,0(t)− IHu0(t)))

= B′π(t;u0(t)− ũH,0(t), ∂tũ
H,0(t)− ∂tu0(t))

+Bπ(t; ∂tu
0(t)− IH∂tu0(t), ∂tũ

H,0(t)− IH∂tu0(t)),

from where estimate (iii) is derived using the boundedness of Bπ, B′π, estimate (i) and bound (25).

(iv) For v = ∂t(ũ
H,0(t)− u0(t)), we consider the dual problem

find ϕv ∈ H1
0 (Ω) such that Bπ(t;w,ϕv) = 〈v, w〉L2(Ω), ∀w ∈ H1

0 (Ω),

where 〈·, ·〉L2(Ω) denotes the L2(Ω) inner product. Using the nodal interpolant IHϕv, the H2 regularity
of ϕv (due to the regularity of A 0 and the convexity of Ω) and equation (31) yields∥∥∂t(ũH,0(t)− u0(t))

∥∥2

L2(Ω)
=
〈
∂t(ũ

H,0(t)− u0(t)), v
〉
L2(Ω)

= Bπ(t; ∂t(ũ
H,0(t)− u0(t)), ϕv)

= Bπ(t; ∂t(ũ
H,0(t)− u0(t)), ϕv − IHϕv)−B′π(t; ũH,0(t)− u0(t), IHϕv − ϕv)

−B′π(t; ũH,0(t)− u0(t), ϕv). (34)

Integrating by parts the last term of (34) and using ∂tA 0(·, t) ∈W 1,∞(Ω) leads to

B′π(t; ũH,0(t)− u0(t), ϕv) ≤ C
∥∥ũH,0(t)− u0(t)

∥∥
L2(Ω)

‖ϕv‖H2(Ω). (35)

Finally, combining identity (34) and inequality (35) with the estimates (i), (ii), (iii) and the error (25)
bound concludes the proof.

For the proof of the optimal convergence in the discrete C0(L2) norm we need an estimate of ũH,0(·, t)−
u0(·, t) in the W 1,∞(Ω) norm. Such maximum norm estimates are provided in [12, Chapter 8].

Lemma 5.5. Assume that A0 satisfies (A1−2) and A0(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Let u0 be the
solution of the homogenized problem (5), ũH,0 its elliptic projection (27), A 0(x, t) be given by (28) and
u0,∗(·, t) be solving the dual problem Bπ(t;w, u0,∗(·, t)) = Bπ(t;u0(·, t), w) for all w ∈ H1

0 (Ω). Assume

u0 ∈ C0([0, T ],W 2,∞(Ω)), A 0
ij ∈ C0([0, T ],W 1,∞(Ω)), 1 ≤ i, j ≤ d,

and the ”elliptic regularity”, for t ∈ [0, T ] and 1 < p < σ with some σ > d,∥∥u0(·, t)
∥∥
W 2,p(Ω)

+
∥∥u0,∗(·, t)

∥∥
W 2,p(Ω)

≤ C
∥∥div(A 0(·, t)∇u0(·, t))

∥∥
Lp(Ω)

. (36)

If {TH}H>0 is a family of quasi-uniform meshes, e.g., see [13, Condition (3.2.28)], then there exists an
H0 > 0 such that for every t ∈ [0, T ] and H < H0∥∥ũH,0(·, t)

∥∥
W 1,∞(Ω)

≤ C
∥∥u0(·, t)

∥∥
W 1,∞(Ω)

,
∥∥u0(·, t)− ũH,0(·, t)

∥∥
W 1,∞(Ω)

≤ CH
∥∥u0(·, t)

∥∥
W 2,∞(Ω)

,

where C is independent of H.

Proof. We recall that the elliptic projection ũH,0 is the finite element solution to a linear elliptic problem,
see (27). We can thus apply the maximum norm error estimates provided by [12, Theorem 8.1.11 and
Corollary 8.1.12].

5.2 Error propagation formula
Let UH(·, t) ∈ S1

0(Ω, TH) be defined for any t ∈ [0, T ] and UHn = UH(·, tn) for 0 ≤ n ≤ N . Further,
assume that u0, ∂tu

0 ∈ C0([0, T ], L2(Ω)). The fundamental tool to derive a priori error estimates using
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the energy method is the error propagation formula for the error θHn = uHn − UHn , 0 ≤ n ≤ N , given by∫
Ω

∂̄tθ
H
n wH dx+BH(uHn+1;wH)−BH(UHn+1;wH)

=

∫
Ω

f wHdx−
∫

Ω

∂̄tUHn wHdx−BH(UHn+1;wH)

=

∫
Ω

[
∂tu

0(x, tn+1)− ∂̄tUHn
]
wHdx+B0(u0(·, tn+1);wH)−BH(UHn+1;wH)

=

∫
Ω

[
∂tu

0(x, tn+1)− ∂̄tu0(x, tn)
]
wHdx (37a)

+

∫
Ω

[
∂̄tu

0(x, tn)− ∂̄tUHn
]
wHdx (37b)

+B0(u0(·, tn+1);wH)−B0(UHn+1;wH) (37c)

+B0(UHn+1;wH)− B̂0(UHn+1;wH) (37d)

+ B̂0(UHn+1;wH)−BH(UHn+1;wH), (37e)

where wH ∈ S1
0(Ω, TH) is arbitrary, u0 is the exact solution to the homogenized problem (5) and the

forms B0, B̂0 and BH are given by (15), (16) and (9), respectively.
In the error propagation formula (37) we already performed the error decomposition into different

components. While the term (37a) accounts for the error due to the time discretization scheme, the
terms (37b) and (37c) consists of the finite element error at the discrete time levels tn. Further, the
influence of quadrature formula (7) is captured by (37d). While the components (37a) – (37d) are
independent of the multiscale nature of the method (8), i.e., temporal and macro spatial error, the last
term (37e) is solely due to the upscaling strategy consisting of micro simulations and averaging techniques.
Thus we call term (37e) the HMM error.

In our subsequent analysis, we first estimate in Section 5.3 the different components of the temporal
and macro spatial error, for either UH(·, t) = IHu0(·, t) or UH(·, t) = ũH,0(·, t), and secondly we derive
explicit estimates for the HMM error consisting of modeling and micro error in Section 5.4.

5.3 Temporal and macro spatial error
In this section, we provide explicit error bounds for the terms (37a) – (37d).
Time discretization error. We start by estimating the error due to the discretization in time by the
backward Euler method, i.e., by estimating term (37a).

Lemma 5.6. Let u0 the solution of the homogenized problem (5) satisfy u0, ∂tu
0, ∂2

t u
0 ∈ C0([0, T ], L2(Ω)).

Then, for wH ∈ S1
0(Ω, TH) and 0 ≤ n ≤ N − 1, we obtain for term (37a)∣∣∣∣∫

Ω

[
∂tu

0(x, tn+1)− ∂̄tu0(x, tn)
]
wHdx

∣∣∣∣ ≤ C∆t
∥∥∂2

t u
0
∥∥
C0([0,T ],L2(Ω))

∥∥wH∥∥
L2(Ω)

,

where C is independent of ∆t and H.

Proof. Let wH ∈ S1
0(Ω, TH). As u0, ∂tu

0 ∈ C0([0, T ], L2(Ω)) we have∫
Ω

∂̄tu
0(x, tn)wHdx =

1

∆t

∫ tn+1

tn

∫
Ω

∂tu
0(x, s)wHdx ds. (38)

Further, due to the regularity ∂tu
0, ∂2

t u
0 ∈ C0([0, T ], L2(Ω)), similar results hold if ∂tu0 and ∂2

t u
0 is

substitute to u0 and ∂tu0, respectively. Hence, combining that with (38) yields∫
Ω

[
∂tu

0(x, tn+1)− ∂̄tu0(x, tn)
]
wHdx =

1

∆t

∫ tn+1

tn

∫ tn+1

s

∫
Ω

∂2
t u

0(x, τ)wHdx dτ ds,

from where the result of Lemma 5.6 follows.

Macro finite element error. Next, we estimate the spatial macro error terms (37b) and (37c) in
Lemma 5.7 and Lemma 5.8.
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Lemma 5.7. Let u0 be the solution of the homogenized problem (2) and let either UHn = IHu0(·, tn)
be its nodal interpolant or UHn = ũH,0n its elliptic projection (27), for 0 ≤ n ≤ N − 1. Assume that
u0, ∂tu

0 ∈ C0([0, T ], H2(Ω)) and additionally, if UHn = ũH,0n , that A 0 given by (28) satisfies (21b). Then,∣∣∣∣∫
Ω

[
∂̄tu

0(x, tn)− ∂̄tUHn
]
wHdx

∣∣∣∣ ≤ CH2
∥∥u0
∥∥
C0([0,T ],H2(Ω))

∥∥wH∥∥
L2(Ω)

,

for every wH ∈ S1
0(Ω, TH) with a constant C independent of ∆t and H.

Proof. As IHu0, ∂tIHu0 ∈ C0([0, T ], S1
0(Ω, TH)) and ũH,0, ∂tũH,0 ∈ C0([0, T ], S1

0(Ω, TH)), see Remark 5.1
and Lemma 5.3, respectively, equation (38) holds analogously for u0 substitued by UH . Thus, for wH ∈
S1

0(Ω, TH), we obtain∣∣∣∣∫
Ω

[
∂̄tu

0(x, tn)− ∂̄tUHn
]
wHdx

∣∣∣∣ ≤ 1

∆t

∫ tn+1

tn

∥∥∂tu0(x, s)− ∂tUH(x, s)
∥∥
L2(Ω)

∥∥wH∥∥
L2(Ω)

ds,

and the estimate from Remark 5.1 and Lemma 5.4 conclude the proof.

While in Lemma 5.7 optimal quadratic convergence H2 is obtained for both UHn = IHu0(x, tn) and
UHn = ũH,0n , in Lemma 5.8 the optimal convergence rate is only obtained for UHn = ũH,0n (due to its
particular definition (27)).

Lemma 5.8. Let u0 be the solution of the homogenized problem (5), IHu0 its nodal interpolant, ũH,0 its
elliptic projection (27) and B0 be given by (15). Assume that A0 satisfies (A1) and u0 ∈ C0([0, T ], H2(Ω)).
Further, let wH ∈ S1

0(Ω, TH) and 0 ≤ n ≤ N − 1.

(i) If UHn+1 = IHu0(·, tn+1), then∣∣B0(u0(·, tn+1);wH)−B0(UHn+1;wH)
∣∣ ≤ CH∥∥u0

∥∥
C0([0,T ],H2(Ω))

∥∥∇wH∥∥
L2(Ω)

,

where C is independent of ∆t and H.

(ii) If UHn+1 = ũH,0n+1, we additionally assume (A2), hypotheses (21a) for u0 and A0, quasi-uniformity
and elliptic regularity (21c) as well as regularity A 0

ij ∈ C0([0, T ],W 1,∞(Ω)) (for 1 ≤ i, j ≤ d) with
A 0 given in (28). Then, there exists an H0 > 0 such that for all H < H0 we have∣∣B0(u0(·, tn+1);wH)−B0(UHn+1;wH)

∣∣ ≤ CLA0H2
∥∥u0
∥∥2

C0([0,T ],W 2,∞(Ω))

∥∥∇wH∥∥
L2(Ω)

,

where LA0 = ess supx∈Ω ‖A0(x, ·)‖W 2,∞(Rd;Rd) and C is independent of ∆t and H.

Proof. In the case that UHn+1 = IHu0(x, tn+1), the Lipschitz continuity (A1) of A0 yields∣∣B0(u0(·, tn+1);wH)−B0(IHu0(·, tn+1))
∣∣ ≤ L∥∥∇u0(x, tn+1)−∇IHu0(x, tn+1)

∥∥
L2(Ω)

∥∥∇wH∥∥
L2(Ω)

.

Then, the interpolation estimate (25) leads to the estimate (i).
We turn now to the case UHn+1 = ũH,0n+1. Using the Taylor formula (64) and the definition of the elliptic

projection (27) we derive

B0(u0(·, tn+1);wH)−B0(ũH,0n+1;wH) =

∫
Ω

[
A0(x,∇u0(x, tn+1))−A0(x,∇ũH,0n+1)

]
· ∇wHdx

=

∫
Ω

DξA0(x,∇u0(x, tn+1))(∇ũH,0n+1 −∇u0(x, tn+1)) · ∇wHdx︸ ︷︷ ︸
Bπ(tn+1;ũH,0n+1−u0(·,tn+1),wH)=0

+

∫
Ω

∫ 1

0

{
DξA0

(
x,∇u0(x, tn+1) + τ

[
∇ũH,0n+1 −∇u0(x, tn+1)

])
−DξA0

(
x,∇u0(x, tn+1)

)}
dτ
[
∇ũH,0n+1 −∇u0(x, tn+1)

]
· ∇wHdx

≤ LA0

∥∥∥u0(·, tn+1)− ũH,0n+1

∥∥∥2

W 1,4(Ω)

∥∥∇wH∥∥
L2(Ω)

,

where we used the estimate (65). Then, the maximum norm bounds of Lemma 5.5 conclude the proof.
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Quadrature error. Estimating the effect of the barycentric quadrature (7) used in the method (8)
is achieved by comparing the maps B0 and B̂0 given by (15) and (16), respectively. To estimate the
term (37d) we first derive the following result.

Lemma 5.9. Assume that A0 satisfies the hypothesis (20b) for µ = 1 or µ = 2. Let B0 and B̂0 be given
by (15) and (16), respectively. Then, the error due to the quadrature (7) is bounded by∣∣∣B0(vH ;wH)− B̂0(vH ;wH)

∣∣∣ ≤ CHµ(L0 +
∥∥∇vH∥∥

L2(Ω)
)
∥∥∇wH∥∥

L2(Ω)
,

for any vH , wH ∈ S1
0(Ω, TH) and where C is independent of H.

Proof. Let vH , wH ∈ S1
0(Ω, TH) and consider first µ = 1. As the gradients ∇vH and ∇wH are piecewise

constant, we have from (15) and (16) that

B0(vH ;wH)− B̂0(vH ;wH) =
∑
K∈TH

∫
K

[
A0(x,∇vH(xK))−A0(xK ,∇vH(xK))

]
· ∇wH(xK)dx.

The uniform Lipschitz continuity (20b) of A0 in the space variable x then yields the desired result.
For µ = 2, an application of [14, Theorem 6] immediately yields∣∣∣B0(vH ;wH)− B̂0(vH ;wH)

∣∣∣ ≤ CH2
∥∥A0(x,∇vH)

∥∥
H̄2(Ω)

∥∥∇wH∥∥
L2(Ω)

,

where ‖ · ‖2
H̄2(Ω)

=
∑
K∈TH ‖ · ‖

2
H2(K) denotes a broken Sobolev norm. Let the k-th coordinate function

of A0 be denoted by A0
k, for 1 ≤ k ≤ d. Then, for 1 ≤ i, j, k ≤ d and a.e. x ∈ Ω, the (weak) derivatives

of A0(x,∇vH) are given by

∂xi
[
A0
k(x,∇vH(x))

]
= ∂xiA0

k(x,∇vH(x)), ∂xjxi
[
A0(x,∇vH(x))

]
= ∂xjxiA0

k(x,∇vH(x)),

as ∇vH is piecewise constant. We conclude the proof by observing that for any K ∈ TH we have
‖A0(x,∇vH(xK))‖H2(K) ≤ C(L0 + |∇vH(xK)|) due to (20b).

Remark. For a linear problem A0(x, ξ) = a0(x)ξ, with a0 ∈ (L∞(Ω))d×d, the regularity assumption
of (20b) becomes a0 ∈ W 2,∞(Ω), which is used for FEM based on numerical integration for linear
problems, see [35]. Then, the bounds of (20b) are valid for L0 = 0.

With the Lemma (5.9) at hand, the term (37d) can be estimated immediately.

Corollary 5.10. Let u0 be the solution of the homogenized problem (5), IHu0 its nodal interpolant, ũH,0
its elliptic projection (27) and consider the maps B0 and B̂0 given by (15) and (16). Let 0 ≤ n ≤ N − 1.
If UHn+1 = IHu0(·, tn+1), let µ = 1. If UHn+1 = ũH,0n+1, let µ = 2 and assume that A0 satisfies (A0−2) as
well as A0(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Then, if A0 satisfies the hypothesis (20b) (depends on µ)
and u0 ∈ C0([0, T ], H3−µ(Ω)), we have for every wH ∈ S1

0(Ω, TH) that∣∣∣B0(UHn+1;wH)− B̂0(UHn+1;wH)
∣∣∣ ≤ CHµ(L0 +

∥∥u0
∥∥
C0([0,T ],H3−µ(Ω))

)
∥∥∇wH∥∥

L2(Ω)
,

where C is independent of ∆t and H.

HMM upscaling error rHMM . The last term (37e) in the error propagation formula (37) quantifies the
HMM error, which is only due to the upscaling procedure intrinsically built into the multiscale method (8)
and can be bounded using rHMM introduced in (19). Let wH ∈ S1

0(Ω, TH) and 0 ≤ n ≤ N −1. Let either
UHn+1 = IHu0(·, tn+1) or UHn+1 = ũH,0N+1, we obtain∣∣∣B̂0(UHn+1;wH)−BH(UHn+1;wH)

∣∣∣ ≤ rHMM (∇UHn+1)
∥∥∇wH∥∥

L2(Ω)
. (39)

Explicit error estimates for rHMM are derived in Section 5.4.

Proof of Theorem 4.1. Recall that θHn = uHn − UHn for 0 ≤ n ≤ N . First, we provide the proof
of Theorem 4.1 for µ = 2 and UHn = ũH,0n , for all 0 ≤ n ≤ N . Let 0 ≤ n ≤ N − 1 and use
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the error propagation formula (37) with the test function θHn+1. Combining that with the inequality
1/2 ∂̄t‖θHn ‖2L2(Ω) ≤

∫
Ω
∂̄tθ

H
n θHn+1 and the monotonicity of BH , see Lemma 3.3, leads to

1

2
∂̄t
∥∥θHn ∥∥2

L2(Ω)
+ λ
∥∥∇θHn+1

∥∥2

L2(Ω)
≤
∫

Ω

∂̄tθ
H
n θHn+1dx+BH(uHn+1; θHn+1)−BH(ũH,0n+1; θHn+1)

≤ C(∆t+H2 + rHMM (∇ũH,0n+1))
∥∥∇θHn+1

∥∥
L2(Ω)

≤ C(∆t2 +H4 + rHMM (∇ũH,0n+1)2) +
λ

2

∥∥∇θHn+1

∥∥2

L2(Ω)
,

where the terms (37a), (37b), (37c), (37d) and (37e) are estimated using the results of Lemmas 5.6, 5.7,
5.8, Corollary 5.10, and inequality (39), respectively, and rHMM is defined in (19). Then, substracting
λ/2‖∇θHn+1‖2L2(Ω) on both sides and multiplying by 2∆t yields∥∥θHn+1

∥∥2

L2(Ω)
−
∥∥θHn ∥∥2

L2(Ω)
+ λ∆t

∥∥∇θHn+1

∥∥2

L2(Ω)
≤ C∆t(∆t2 +H4 + rHMM (∇ũH,0n+1)2). (40)

Summing the inequality (40) from n = 0 to n = N − 1 and combining that with Lemma 5.4 concludes
the proof for UHn = ũH,0n . For µ = 1 and UHn = IHu0(·, tn), the result follows analogously using (25).

5.4 Explicit estimates for the HMM upscaling error rHMM

We recall, that the nonlinear error functional rHMM given in (19) can be decomposed using the micro error
functional rmic and the modeling error functional rmod defined in (22) and (23). First, the micro error
rmic, due to the finite element approximation of the micro problems (11), is estimated in Section 5.4.1.
Secondly, the modeling error rmod is studied in Section 5.4.2 for (spatially) locally periodic maps Aε(x, ξ).
We emphasize that the estimates for the modeling error in Section 5.4.2 are the only results that rely on
specific assumptions about the spatial heterogeneities of Aε(x, ξ).

5.4.1 Micro error

Under classical regularity assumptions on χ̄ξK , which is the exact solution to the micro problem (13),
and (H1), we derive robust linear convergence, i.e., a convergence rate independent of the small scale
ε, see Lemma 5.12. Introducing an auxiliary adjoint problem (42) and assuming regularity (H1∗) of its
solution, a robust quadratic convergence can be shown in Lemma 5.13.

First, we derive a preparatory result used later on to estimate the micro error rmic in Lemma 5.12
and Lemma 5.13.

Lemma 5.11. Assume that Aε satisfies (A0−2). Let ξ ∈ Rd, K ∈ TH and χ̄ξK ∈ W (Kδ) and χξ,hK ∈
S1(Kδ, Th) be the solution of (13) and (12), respectively, with the same coupling condition (either
W (Kδ) = H1

0 (Kδ) or W (Kδ) = W 1
per(Kδ)). If χ̄ξK satisfies (H1), then we have the priori estimate∥∥∥∇χ̄ξK −∇χξ,hK ∥∥∥

L2(Kδ)
≤ Ch

ε
(L0 + |ξ|)

√
|Kδ|,

where C is independent of H,h, δ and ε.

Proof. We recall, that the micro problems (13) and (12) can be reformulated using the map aξK introduced
in (17), which is strongly monotone and Lipschitz continuous in the first variable as well as linear and
continuous in the second variable. Thus, the analysis of FEM for monotone elliptic problems applies,
e.g., see [13, Theorem 5.3.5].

Without any additional tools we can derive a first estimate for the micro error rmic.

Lemma 5.12. Assume that Aε satisfies (A0−2) and (H1) holds. For any vH ∈ S1
0(Ω, TH) and either pe-

riodic coupling W (Kδ) = W 1
per(Kδ) or Dirichlet coupling W (Kδ) = H1

0 (Kδ) for the micro problems (11),
the micro error rmic(∇vH), see (22), can be estimated by

rmic(∇vH) ≤ Ch
ε

(
L0 +

∥∥∇vH∥∥
L2(Ω)

)
,

where C is independent of H,h, δ and ε.

17



Proof. Due to the definition (22) of rmic, we estimate the difference A0.h
K (ξ) − Ā0

K(ξ) given by (14) for
ξ ∈ Rd and K ∈ TH . Let χξ,hK and χ̄ξK be the solutions to the micro problems (12) and (13), respectively,
with the same coupling condition (either periodic or Dirichlet coupling) on the sampling domain Kδ

(associated to K).
Then, the definition (14), the Lipschitz continuity (A1) of Aε and Lemma 5.11 yield∣∣∣Ā0

K(ξ)−A0,h
K (ξ)

∣∣∣ ≤ 1

|Kδ|

∫
Kδ

∣∣∣Aε(x, ξ +∇χ̄ξK)−Aε(x, ξ +∇χξ,hK )
∣∣∣dx

≤ L 1√
|Kδ|

∥∥∥∇χ̄ξK −∇χξ,hK ∥∥∥
L2(Kδ)

≤ Ch
ε

(L0 + |ξ|),

from where the result follows by using the definition (22) of rmic.

In [1, 2, 9] a convergence of the order (h/ε)2 has been shown for linear micro problems (11), i.e., for
data Aε(x, ξ) = aε(x)ξ. Thus, the estimate of Lemma 5.12 is non-optimal. We note that an adjoint micro
problem was used to prove the quadratic convergence for non-symmetric tensors aε(x), see [9, Lemma 4.6]
for a short proof. In this view, we introduce the following linear auxiliary micro problems: for ξ ∈ Rd,
1 ≤ j ≤ d and K ∈ TH , find X̄ξ,j

K ∈W (Kδ) such that∫
Kδ

(
DξAε(x, ξ +∇χ̄ξK)

)T
(ej +∇X̄ξ,j

K ) · ∇z dx = 0, ∀ z ∈W (Kδ), (41)

where Kδ is the sampling domain associated to K and χ̄ξK solves the cell problem (13). We note that
problem (41) admits a unique solution if Aε satisfies (A0−2) and Aε(x, ·) ∈ C1(Rd;Rd), as then the
Jacobian DξAε is uniformly bounded and elliptic, see Lemma A.1.
Remark. We note, that for a linear map Aε(x, ξ) = aε(x)ξ the derivative DξAε is simply given by
DξAε(x, ξ) = aε(x). Thus, the auxiliary micro problem (41) reduces to∫

Kδ

aε(x)T (ej +∇X̄j
K) · ∇z dx = 0, ∀ z ∈W (Kδ), (42)

which is independent of the corrector χ̄jK . Indeed, we recover the adjoint micro problem used to analyze
linear homogenization problems, e.g., see [9].

Lemma 5.13. Assume that Aε satisfies (A0−2), Aε(x, ·) ∈W 2,∞(Rd;Rd) and (H1), (H1∗) hold. For any
vH ∈ S1

0(Ω, TH) and either periodic coupling W (Kδ) = W 1
per(Kδ) or Dirichlet coupling W (Kδ) = H1

0 (Kδ)

for the micro problems (11), the micro error rmic(∇vH), see (22), can be estimated by

rmic(∇vH) ≤ C
(
h

ε

)2(
L0 + L2

0 +
∥∥∇vH∥∥

L2(Ω)
+
∥∥∇vH∥∥2

L4(Ω)

)
,

where C is independent of H,h, δ and ε.

Proof. Again, like in Lemma 5.12, we estimate the difference A0,h
K (ξ) − Ā0

K(ξ) for ξ ∈ Rd and K ∈ TH
(with associated sampling domain Kδ), where Ā0

K(ξ) and A0,h
K (ξ) are given by (14). They are based

on the solutions χ̄ξK and χξ,hK to the micro problems (13) and (12), respectively, solved with the same
coupling condition. Let 1 ≤ j ≤ d, then

Ā0
K(ξ) · ej −A0,h

K (ξ) · ej =
1

|Kδ|

∫
Kδ

[
Aε(x, ξ +∇χ̄ξK)−Aε(x, ξ +∇χξ,hK )

]
· ej dx

=
1

|Kδ|

∫
Kδ

[
Aε(x, ξ +∇χ̄ξK)−Aε(x, ξ +∇χξ,hK )

]
·
(
ej +∇IhX̄ξ,j

K

)
dx,

where the Galerkin orthogonality for monotone FEM is used and IhX̄
ξ,j
K ∈ S1(Kδ, Th) is the nodal

18



interpolant of X̄ξ,j
K on Kδ. Further, we apply the Taylor formula (64) and use that X̄ξ,j

K solves (41)

[A0,h
K (ξ)− Ā0

K(ξ)] · ej =
1

|Kδ|

∫
Kδ

DξAε(x, ξ +∇χ̄ξK)(∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx

+
1

|Kδ|

∫
Kδ

∫ 1

0

DξAε(x, ξ +∇χ̄ξK + τ(∇χξ,hK −∇χ̄
ξ
K))−DξAε(x, ξ +∇χ̄ξK)dτ

× (∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx

=
1

|Kδ|

∫
Kδ

DξAε(x, ξ +∇χ̄ξK)(∇χξ,hK −∇χ̄
ξ
K) · (∇IhX̄ξ,j

K −∇X̄
ξ,j
K )dx

+
1

|Kδ|

∫
Kδ

∫ 1

0

DξAε(x, ξ +∇χ̄ξK + τ(∇χξ,hK −∇χ̄
ξ
K))−DξAε(x, ξ +∇χ̄ξK)dτ

× (∇χξ,hK −∇χ̄
ξ
K) · (ej +∇IhX̄ξ,j

K )dx.

Then, the uniform boundedness and the Lipschitz continuity of DξAε(x, ·) yield∣∣∣Ā0
K(ξ) · ej −A0,h

K (ξ) · ej
∣∣∣ ≤ L

|Kδ|

∥∥∥∇χξ,hK −∇χ̄ξK∥∥∥
L2(Kδ)

∥∥∥∇IhX̄ξ,j
K −∇X̄

ξ,j
K

∥∥∥
L2(Kδ)

+
C

|Kδ|

∥∥∥∇χξ,hK −∇χ̄ξK∥∥∥2

L2(Kδ)

(
1 +

∣∣∣IhX̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

)
≤ C

(
h

ε

)2

(L0 + L2
0 + |ξ|+ |ξ|2)

(
1 +

∣∣∣IhX̄ξ,j
K

∣∣∣
W 1,∞(Kδ)

)
,

where we appplied Lemma 5.11 (using assumption (H1) and the standard H1 interpolation error esti-
mate (25) for the nodal interpolation operator Ih on Kδ (using assumption (i) from (H1∗)). Further, the
bound (26) for Ih and hypothesis (ii) from (H1∗) yield |IhX̄ξ,j

K |W 1,∞(Kδ) ≤ C. Then, the result follows
from the definition (22) of rmic.

Proof of Theorem 4.2. We combine the results of Theorem 4.1 with the estimates of Lemma 5.12 and
Lemma 5.13, with vH = UHn for 1 ≤ n ≤ N , for linear and quadratic micro convergence, respectively. We
note that ‖∇UHn ‖L2(Ω) and ‖∇UHn ‖L4(Ω) are bounded for both UHn = IHu0(·, tn) the nodal interpolant
of the homogenized solution u0 and UHn = ũH,0n the elliptic projection (27). In particular, we have
‖∇IHu0(·, tn)‖L4(Ω) ≤ C‖u0(·, tn)‖H2(Ω), from classical interpolation results, see [13, Theorem 3.1.6],
and Lemma 5.5 yields ‖∇ũH,0n ‖L4(Ω) ≤ C‖u0(·, tn)‖W 1,∞(Ω).

5.4.2 Modeling error

In this section, we assume that Aε has locally periodic spatial heterogeneities. With this structural
assumption, an explicit representation of A0 can be derived. This representation allows to estimate the
modeling error rmod explicitely including the influence of the boundary conditions chosen for W (Kδ)
in (10), the sampling domain size δ and the absence of collocation of A(x, x/ε, ξ) in the slow variable x.
Periodic homogenization. As we are considering locally periodic maps Aε independent of the time
variable t, we can use the representation of A0 derived in the case of monotone elliptic problems
−div(Aε(x,∇uε)) = f in Ω, see [36, Theorem 8.1]. In particualr, let Aε satisfy conditions (A0−2)
uniformly for ε > 0 and assume that Aε(x, ξ) = A(x, x/ε, ξ) where A(x, y, ξ) is Y -periodic in y, i.e., Aε
is locally periodic. Then, see [28, Section 3], the homogenized map A0 is explicitely given by

A0(x, ξ) =

∫
Y

A(x, y, ξ +∇χξ(x, y))dy, (43)

where x ∈ Ω, ξ ∈ Rd and χξ(x, ·) ∈W 1
per(Y ) solves the cell problem: find χξ(x, ·) ∈W 1

per(Y ) such that∫
Y

A(x, y, ξ +∇χξ(x, y)) · ∇z dy = 0, ∀ z ∈W 1
per(Y ). (44)

Collocation in the slow variable. If the explicit decomposition between macro and micro scale is
known for a locally periodic map Aε, we can collocate the map A(x, x/ε, ξ) in the slow variable x at
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the quadrature nodes xK . Then, for K ∈ TH and ξ ∈ Rd, the collocated micro problem reads as: find
χ̃ξK ∈W (Kδ) such that ∫

Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK) · ∇z dx = 0, ∀ z ∈W (Kδ), (45)

and, analogously to (14), the homogenized map Ã0
K can be defined

Ã0
K(ξ) =

1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK)dx. (46)

First, we show the boundedness of the solutions to micro problems (13) and (45).

Lemma 5.14. Assume that Aε satisfies (A0−2). Let χ̄
ξ
K be the solution to the micro problem (13), then,∥∥∥∇χ̄ξK∥∥∥

L2(Kδ)
≤ L

λ
(L0 + |ξ|)

√
|Kδ|, for any ξ ∈ Rd,K ∈ TH ,

where C is independent of ξ, δ and ε. If additionally Aε is locally periodic, i.e., Aε(x, ξ) = A(x, x/ε, ξ),
the same bound holds for χ̃ξK solving the collocated micro problem (45).

Proof. This result is obtained by combining the monotonicity of Aε, the definition of the micro prob-
lem (13) and the growth estimate (3) for Aε derived in Lemma A.1.

If a locally periodic map Aε is not collocated in the slow variable to solve the micro problems (11),
an error of order O(δ) is introduced.

Lemma 5.15. Assume that Aε satisfies (A0−2), and (H2). Let ξ ∈ Rd, K ∈ TH and the homogenized
maps Ā0

K and Ã0
K be given in (14) and (46), respectively. Then, for every δ ≥ ε and independently of

the coupling conditions imposed by the choice of W (Kδ) (either periodic or Dirichlet coupling) we have∣∣∣Ã0
K(ξ)− Ā0

K(ξ)
∣∣∣ ≤ Cδ(L0 + |ξ|),

where C is independent of ξ, δ and ε.

Proof. Let ξ ∈ Rd, K ∈ TH and the functions χ̄Kξ and χ̃Kξ be the solutions of the micro problems (13)
and (45), respectively. We use the monotonicity of A(x, y, ·) and the formulas (13) and (45) to obtain

λ
∥∥∥∇χ̃ξK −∇χ̄ξK∥∥∥2

L2(Kδ)
≤
∫
Kδ

[
A(x, xε , ξ +∇χ̃ξK)−A(x, xε , ξ +∇χ̄ξK)

]
· (∇χ̃ξK −∇χ̄

ξ
K)dx

=

∫
Kδ

[
A(x, xε , ξ +∇χ̃ξK)−A(xK ,

x
ε , ξ +∇χ̃ξK)

]
· (∇χ̃ξK −∇χ̄

ξ
K)dx

≤ Cδ(L0 + |ξ|)
√
|Kδ|

∥∥∥∇χ̃ξK −∇χ̄ξK∥∥∥
L2(Kδ)

, (47)

where we used the Lipschitz continuity from (H2) and Lemma 5.14. Then, the result is obtained by
combining the definitions of Ā0

K and Ã0
K with the Lipschitz continuity from (H2), Lemma 5.14 and

estimate (47).

Periodic boundary conditions. We next show that periodic coupling with a sampling domain size δ
as an integer multiple of ε is optimal for locally periodic data.

Lemma 5.16. Assume that Aε satisfies (A0−2) and (H2). Let K ∈ TH and the maps Ã0
K and A0(xK , ·)

be given by (46) and (43), respectively. Then, for periodic coupling W (Kδ) = W 1
per(Kδ) and a sampling

domain size δ such that δ/ε ∈ N>0 it holds that A0(xK , ξ) = Ã0
K(ξ) for all ξ ∈ Rd.

Proof. First, we assume that δ = ε. Using the periodicity of χξ(xk, ·) and A(x, ·, ξ) we observe that

A0(xK , ξ)− Ã0
K(ξ) =

∫
Y

A(xK , y, ξ +∇χξ(xK , y))dy − 1

|Kε|

∫
Kε

A(xK ,
x
ε , ξ +∇χ̃ξK(x))dx

=
1

|Kε|

∫
Kε

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))−A(xK ,

x
ε , ξ +∇χ̃ξK(x))dx.
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Thus, it is sufficient to show that ∇χξ(xK , x/ε) = ∇χ̃ξK(x). Indeed, we observe that the function
ηξxK (x) = εχξ(xK , x/ε) ∈ W 1

per(Kε) is a solution of (45) and the claim follows by uniqueness of such
solutions. In the case of δ/ε ∈ N>1, the proof is totally analogous by using periodic extensions of
χξ(xK , ·) to Knε, for some n ∈ N.

Dirichlet boundary conditions. In contrast to the optimal coupling from Lemma 5.16, using Dirichlet
coupling leads to resonance errors due to the artificial boundary conditions.

Lemma 5.17. Assume that Aε satisfies (A0−2) and (H2). Let ξ ∈ Rd, K ∈ TH and the maps Ã0
K

and A0(xK , ·) be given by (46) and (43), respectively. Further, assume that the exact corrector χξ(xK , ·)
solving the cell problem (44) satisfies χξ(xK , ·) ∈ W 1,∞(Y ). Then, for Dirichlet coupling W (Kδ) =
H1

0 (Kδ) and a sampling domain size δ > ε it holds∣∣∣A0(xK , ξ)− Ã0
K(ξ)

∣∣∣ ≤ C(ε
δ

)1/2(
L0 + |ξ|+

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

)
,

where C is independent of ξ, δ and ε.

Proof. We use the techniques used to analyze the resonance error for linear homogenization problems,
see [21, Theorem 1.2]. Let n ∈ N be given by n = bδ/εc (if δ/ε /∈ N), or n = δ/ε − 1 (if δ/ε ∈ N>0).
Further, we define KΓ = Kδ \Knε and we observe that |KΓ| ≤ Cεδd−1. Then we decompose the difference
Ã0
K −A0(xK , ξ) into two terms according to

Ã0
K(ξ)−A0(xK , ξ) =

1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK)−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))dx

+
1

|Kδ|

∫
Kδ

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx− 1

|Knε|

∫
Knε

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx

where χξ(xK , y) is extended periodically to Rd and the first and second line is denoted by I1 and I2,
respectively. First, we estimate I2 similarly as for the linear case

I2 =
1

|Kδ|

∫
KΓ

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx+

(
1

|Kδ|
− 1

|Knε|

)∫
Knε

A(xK ,
x
ε , ξ +∇χξ(xK , xε ))dx

≤ C
(
|KΓ|
|Kδ|

+
|KΓ|

|Kδ||Knε|
|Knε|

)
(L0 + |ξ|+ |χξ(xK , y)|W 1,∞(Y ))

≤ C ε
δ

(L0 + |ξ|+ |χξ(xK , y)|W 1,∞(Y )), (48)

using the estimate (3) for A(x, ξ) and the assumption χξ(xK , ·) ∈W 1,∞(Y ). To estimate the term I1 we
define the function θξ(x) = χ̃ξK(x)− εχξ(xK , x/ε) on Kδ (using the periodic extension of χξ(xK , ·)). As
χ̃ξK |∂Kδ = 0 (in the sense of traces), we decompose θξ into

θξ(x) = θξ0(x)− εχξ(xK , xε )(1− ρε(x)), x ∈ Kδ, (49)

where θξ0 ∈ H1
0 (Kδ) and ρε : Kδ → R is a smooth cut-off function satisfying ρε ≡ 1 in Knε, ρε|∂Kδ ≡ 0

and |∇ρε| ≤ Cε−1 in KΓ (where C is independent of δ and ε). Using the monotonicity (A2) of A and
the decomposition (49) of θξ we obtain

λ
∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥2

L2(Kδ)

≤
∫
Kδ

[
A(xK ,

x
ε , ξ +∇χ̃ξK(x))−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))

]
·
(
∇χ̃ξK(x)−∇χξ(xK , xε )

)
dx

=

∫
Kδ

A(xK ,
x
ε , ξ +∇χ̃ξK(x)) · ∇θξ0dx−

∫
Kδ

A(xK ,
x
ε , ξ +∇χξ(xK , xε )) · ∇θξ0dx

+

∫
Kδ

[
A(xK ,

x
ε , ξ +∇χ̃ξK(x))−A(xK ,

x
ε , ξ +∇χξ(xK , xε ))

]
· ∇[εχξ(xK ,

x
ε )(1− ρε(x))]dx

=: J1 + J2 + J3. (50)
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First, as χ̃ξK solves the cell problem (45) in the space W (Kδ) = H1
0 (Kδ) we have J1 = 0. To show that

the second term J2 vanishes as well we define θξper ∈W 1
per(K(n+1)ε) by

θξper(x) = θξ0(x)−
∫
Kδ

θξ0(x)dx, (if x ∈ Kδ), θξper(x) = 0, (if x ∈ K(n+1)ε \Kδ).

Thus, we observe that ∇θξper = ∇θξ on Kδ and ∇θξper = 0 on K(n+1)ε \Kδ. Hence,

J2 =

∫
K(n+1)ε

A(xK ,
x
ε , ξ +∇χξ(xK , xε )) · ∇θξper(x)dx = 0,

is obtained by following the proof of Lemma 5.16. Further, using the Lipschitz continuity (A1) of A, we
estimate the term J3 as

|J3| ≤ L
∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥
L2(Kδ)

∥∥∇χξ(xK , xε )(1− ρε(x)) + ε∇ρε(x)χξ(xK ,
x
ε )
∥∥
L2(KΓ)

≤ C
√
|KΓ|

∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )
∥∥∥
L2(Kδ)

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

, (51)

where we used the properties of ρε, in particular, 1 − ρε(x) ≡ 0 on Knε and ∇ρε ≤ Cε−1. Combining
that J1 = J2 = 0 and the estimate (51) of J3 with the inequality (50) leads to∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )

∥∥∥
L2(Kδ)

≤ C
√
|KΓ|

∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

.

Thus, I1 can be estimated by the previous estimate and the Lipschitz continuity (A1)

|I1| ≤
L√
|Kδ|

∥∥∥∇χ̃ξK(x)−∇χξ(xK , xε )
∥∥∥
L2(Kδ)

≤ C
(ε
δ

)1/2∥∥χξ(xK , y)
∥∥
W 1,∞(Y )

. (52)

Combining the estimates (52) and (48) for I1 and I2, respectively, concludes the proof.

Proof of Theorem 4.3. The Theorem 4.3 is proved by combining Theorem 4.2 with the estimates from
Lemma 5.15 (collocation error), Lemma 5.16 (periodic coupling) and Lemma 5.17 (Dirichlet coupling).

6 Implementation and numerical results
In this section, we comment on the implementation of the multiscale method (8) and present numerical
results for different test problems. In particular, numerical studies of the convergence rates as well as the
modeling error are given and the applicability to a test problem from material sciences is shown.

6.1 Implementation
In this section, we briefly discuss an implementation of the multiscale method (8). As the macroscopic
equation (8) and the micro problems (11) are both nonlinear and coupled together, some care is needed.
We thus describe how uHn+1 ∈ S1

0(Ω, TH) solving (8) is obtained for given uHn ∈ S1
0(Ω, TH) and n ∈ N.

At the macro level, the unknown uHn+1 is approximated by a sequence {uH,(j)n+1 }j∈N obtained by a
Newton iteration for the macro equation (8) with the initial guess uH,(0)

n+1 = uHn . As the macro equation
involves the nonlinear map BH given in (9), a set of constrained micro problems (11) has to be solved (at
each macro iteration) and the Fréchet derivative of BH(vH ;wH) with respect to vH has to be computed.
We follow the ideas from [26].
Newton’s method for micro problems. Let vH ∈ S1

0(Ω, TH) be a macro function and K ∈ TH
with associated sampling domain Kδ. The solution vhK to the micro problem (11) is then computed by
a Newton’s method at microscopic level. In particular, for a given initial guess vh,(0)

K , the micro solution
vhK is approximated by the sequence {vh,(j)K }j∈N with vh,(j)K − vH ∈ S1(Kδ, Th) solving

N h
K(v

h,(j)
K ; v

h,(j+1)
K − vh,(j)K , wh) = −BhK(v

h,(j)
K ;wh), ∀wh ∈ S1(Kδ, Th), j ∈ N, (53)
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where the linear map BhK(zH + qh; ·) and the bilinear map N h
K(zH + qh; ·, ·) are given by

BhK(zH + qh;wh) =

∫
Kδ

Aε(x,∇zH +∇qh) · ∇whdx, (54)

N h
K(zH + qh; vh, wh) =

∫
Kδ

DξAε(x,∇zH +∇qh)∇vh · ∇whdx, (55)

for zH ∈ S1
0(Ω, TH) and qh, vh, wh ∈ S1(Kδ, Th).

Further, the local contribution to the Fréchet derivative of BH is computed via an auxiliary micro
problem, see [26]. For zH ∈ S1

0(Ω, TH) and zhK its associated micro solution to (11), the auxiliary micro
function vh,z

H

K solves: find vh,z
H

K − vH ∈ S1(Kδ, Th) such that

N h
K(zhK ; vh,z

H

K , wh) = 0, ∀wh ∈ S1(Kδ, Th), (56)

where N h
K is defined in (55). As the auxiliary micro problem (56) is linear it only leads to additional

computational cost comparable to one iteration of the micro Newton’s method (53). Finally, both prob-
lems (53) and (56) admit a unique solution, as DξAε is uniformly bounded and elliptic, see Lemma A.1.
Newton’s method for macro scheme. For j ∈ N, the (j+1)-th iterate uH,(j+1)

n+1 of the macro Newton’s
method to approximate uHn+1 solves∫

Ω

u
H,(j+1)
n+1 − uHn

∆t
wHdx+NH(u

H,(j)
n+1 ;u

H,(j+1)
n+1 − uH,(j)n+1 , w

H)

=

∫
Ω

f wHdx−BH(u
H,(j)
n+1 ;wH), ∀wH ∈ S1

0(Ω, TH),

where BH is given by (9) and NH is defined for vH , wH , zH ∈ S1
0(Ω, TH)

NH(zH ; vH , wH) =
∑
K∈TH

|K|
|Kδ|

∫
Kδ

DξAε(x,∇zhK)∇vh,z
H

K dx · ∇wH(xK), (57)

where zhK is the micro solution to (11) associated to zH and vh,z
H

K is the solution to the auxiliary micro
problem (56) constrained by vH . Again, a unique solution uH,(j+1)

n+1 to (57) exists as DξAε is uniformly
bounded and elliptic.

6.2 Convergence rates
The aim of this section is to validate the theoretical convergence rates given in Section 4.
Setting. We construct a test problem similar to Hoang [28]. The model problem (2) is considered on the
time interval [0, 2] with homogeneous Dirichlet boundary conditions on the spatial domain Ω = (0, 1)2.
The data Aε and source term f are chosen such that

u0(x, t) = Φ(t)(x2
1 − x1)(x2

2 − x2), Φ(t) = 21 · (10 cos(π2 t) + 11)−1, (58)

is the exact solution to the homogenized problem (5). In particular, we consider locally periodic data
Aε(t;x, ξ) = A(t;x, x/ε, ξ) = A(t;x, y, ξ) with Y -periodic (with respect to y) map A decomposed as
A(t;x, y, ξ) = Ap(x, y, ξ) + c(t;x, y). We then take Ap as

Ap(x, y, ξ) =
[
1 + sin(2π(y1 + y2)) + ( 9

8 + sin(2πy1 + π
3 ))( 9

8 + cos(2πy2))(1 + |ξ|2)−1/2
]
ξ, (59)

which indeed satisfies assumptions (A0−2). Further, we derive (using Maple) that

f(x, t) = Φ′(t)(x2
1 − x1)(x2

2 − x2), c(t;x, y) = −Ap(x, y, [e1(t;x, y), e2(t;x, y)]T ), (60)

where Φ′(t) is the derivative of Φ(t) from (58) and ei(t;x, y), for i = 1, 2, is given by

ei(t;x, y) = Φ(t)[(2xi − 1)(x2
3−i − x3−i) + (x1 + x2) cos(2πyi) sin(2πy3−i)].

We note that the map Aε(t;x, ξ) and the source term f depend on the time t, while the results of Section 4
assumes time-independent Aε and f . As Aε and f are smooth with respect to t, the analysis can however
be extended to time-dependent data.
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For the numerical method (8), we choose periodic coupling for the micro problems (11), take δ =
ε = 10−4 as size of the sampling domains Kδ and collocate A(t;x, x/ε, ξ) in the slow variable x at the
barycenters xK . Thus, the modeling error is identical to zero and we expect the convergence rates (24).
Further, we discretize the macro domain Ω = (0, 1)2 and the sampling domains Kδ by uniform triangular
meshes with Nmac and Nmic macro and micro elements in each spatial dimension, respectively.
Error measure. To measure the error between the exact homogenized solution u0 and the numerical
solution uHn obtained by (8), we use the relative error measures

eC0(L2) = max
0≤n≤N

(∑
K∈TH

∥∥u0(·, tn)− uHn
∥∥2

L2(K)

)1/2∥∥u0
∥∥−1

C0(0,T,L2(Ω))
, (61a)

eL2(H1) =
(

∆t
∑′N
n=0

∑
K∈TH

∥∥∇u0(·, tn)−∇uHn
∥∥2

L2(K)

)1/2∥∥u0
∥∥−1

L2(0,T ;H1
0 (Ω))

, (61b)

where the L2(K) norms are evaluated using a higher order quadrature formula and
∑′ indicates that the

first and the last term of the sum are divided by two (trapezoidal rule).
Numerical results. In Figure 1.(a) we study the space discretization errors from macro and micro
FEM. Thus, we take a small time step ∆t = 10−3 and we plot the error measures eC0(L2) and eL2(H1)

versus Nmac behaving like H ∼ 1/Nmac, where H is the macro mesh size. For a fixed micro mesh,
with Nmic = 4, 8, 16 or 32 micro elements in each spatial dimension, we observe quadratic and linear
convergence of eC0(L2) and eL2(H1) for small Nmac and an error saturation for Nmac large enough. The
saturation levels depend on the micro meshes Th and, in particular, those level decrease by a factor
around 4 when Nmic is doubled, i.e., a quadratic convergence in h/ε ∼ 1/Nmic of the micro error. Thus
the spatial convergence rates of Theorem 4.2 are confirmed.

In Figure 1.(b) we plot the error measures eC0(L2) and eL2(H1) versus the number of time steps N
while using fine spatial macro and micro discretizations with Nmac = Nmic = 128. We observe that the
error eC0(L2) clearly converges linearly in ∆t, while for the eL2(H1) already for N > 16 a saturation of
the error can be found. Further numerical tests show that the spatial macro error is responsible for the
saturation of eL2(H1) observed in Figure 1.(b). The observations are however still in good agreement with
the linear convergence in ∆t derived in Theorem 4.2.
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(a) Space discretization errors. The different lines cor-
respond to a constant micro mesh Nmic = 4, 8, 16, 32.
Number of time steps N = 2000. Macro meshes with
Nmac = 4, 6, 8, 11, 16, 23, 32, 45, 64, 91, 128.
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(b) Time discretization error. Macro and micro
space discretization with constant meshes Nmac =
Nmic = 128. Number of time steps N =
4, 6, 8, 11, 16, 23, 32, 45, 64.

Figure 1: Test problem of Section 6.2. Relative error measures eC0(L2) (solid line) and eL2(H1) (dashed
line), see (61), as a function of Nmac (in part (a)) and N (in part (b)), respectively.

6.3 Influence of the sampling domain size δ
In this section, we study the influence of the sampling domain size δ for a nonlinear monotone parabolic
test problem of type (2) for Dirichlet and periodic coupling.

For many practical applications, even for periodic data Aε, the exact value of the micro period ε is
not known exactly. A common strategy is to use Dirichlet coupling W (Kδ) = H1

0 (Kδ) and a sampling
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domain size δ > ε which is larger than some available upper bound of ε. We recall that in this case
the modeling error can be estimated (with respect to δ) for locally periodic maps Aε, see Theorem 4.3.
Further, oversampling techniques can be used to reduce the influence of the wrong boundary conditions,
see [25] for an overview. Even for unknown value of ε, one might however still opt to use periodic coupling.
While it has not been rigorously proved yet, experimental studies show that periodic coupling yields good
results for general δ > ε (usually better than Dirichlet coupling), see [42, 7, 5].
Setting. We modify the test problem of Section 6.2 to get a more significant modeling error in the
numerical results by replacing Φ(t) and Ap in (58) and (59), respectively, by

Φ(x, t) = cos(π2 tx2), Ap(x, y, ξ) =
[
1 + (2 + sin(2π(y1 + y2)))(1 + |ξ|2)−1/2

]
ξ.

The expressions for c(t;x, y) and f(x, t) in (60) are then derived analogously to Section 6.2.
We take N = 40 number of time steps and Nmac = 32 macro elements in each spatial dimension to

discretize Ω. We collocate A(x, x/ε, ξ) in the slow variable and choose ε = 10−4. To keep the micro error
constant for different sampling domain sizes δ we adapt the micro discretization in space such that the
micro mesh size h ∼ δ/Nmic is constant. For instance we take Nmac = Nmic for δ = ε.
Numerical results. In Figure 2.(a), we plot the error measures eC0(L2) and eL2(H1) from (61) versus the
normalized size δ/ε of the sampling domain Kδ for Dirichlet coupling W (Kδ) = H1

0 (Kδ) and sampling
domain sizes δi = (10 + i)/10 · ε for i = 1, . . . , 40. Globally, both error measures decrease for increasing
δ, but locally, an oscillatory behavior with peaks at the resonance values δ/ε ∈ N can be discovered.
Further, the envelopes of order O(δ−1) for eC0(L2) suggest that the modeling error decays as O(ε/δ)

(which is known to be optimal for linear homogenization problems, see [21]) rather than O(
√
ε/δ) as

predicted in Theorem 4.3. The result from Theorem 4.3 might thus be non-optimal.
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(a) Dirichlet coupling W (Kδ) = H1
0 (Kδ) and 1.1 ≤

δ/ε ≤ 5.
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(b) Periodic coupling W (Kδ) = W 1
per(Kδ) and 1 ≤

δ/ε ≤ 5.

Figure 2: Test problem of Section 6.3. Relative error measures eC0(L2) (solid line) and eL2(H1) (dotted
line), see (61), as a function of the sampling domain size δ. Constant number of timesteps N = 40 and
Nmac = 32 macro elements per spatial dimension. Microscopic mesh size h chosen such that h/ε = H,
i.e., remains constant for different sampling domain sizes δ.

Next, in Figure 2.(b), we present the results for periodic coupling W (Kδ) = W 1
per(Kδ) and sampling

domain size δi = (10 + i)/10 · ε for i = 0, . . . , 40. Again, like for the Dirichlet coupling, we discover
an oscillating behavior coupled to a global decrease (which is again O(δ−1) for eC0(L2)). In contrast,
for periodic coupling, we get optimal accuracy for δ/ε ∈ N (which is consistent with Theorem 4.3) and
the peaks with a locally maximal modeling error at δ = (k + 1/2)ε for k ∈ N. Further, comparing the
accuracy of the solution obtained for a given δi using Dirichlet and periodic coupling reveals that the
periodic coupling produces better results for any δi, for 1 ≤ i ≤ 40. Thus, we observe similar results like
for linear elliptic homogenization problems as reported in [42].
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6.4 Simulation of a laminated iron core
In this section, we use the multiscale method (8) for a test problem inspired by laminated iron cores, i.e.,
a layered material. We refer to [32, 33] for more details about the application, where the magnetostatics
and magnetodynamics of such laminated cores are studied using a multiscale method based on HMM.
Setting. We consider a layered material in the spatial domain Ω = (0, 0.2)2 and on the time interval
[0, 2]. The layered material consists of 51 lamination and 50 insulation layers and is modeled by the
locally periodic map Aε(x, ξ) = µε(x, ξ)ξ = µ(x, x/ε, ξ)ξ, see Figure 3.(a), with

µ(x, y, ξ) =

{
5000µ0(1.03− cos( 5π

4 x1))(1 + |ξ|2)−0.485, y ∈ [0, 3
4 ],

µr, y ∈ ( 3
4 , 1),

(62)

where µ0 = 4π ·10−7 and µr = 0.05 represents the permeability of the vacuum and insulation, respectively,
and the period is given by ε = 1/5 · (50 + 3/4)−1. Thus, we have constant magnetic permeability µr in
the insulation layers and a nonlinear constitutive law in the lamination layers. Further, the map Aε is
discontinuous in space and degenerates for |ξ| → ∞. We then solve the model problem (2) with Dirichlet
conditions on ΓD = [0, 0.2]×{x2 = 0, 0.2} and homogeneous Neumann conditions on ΓN = ∂Ω\ΓD. The
(time-dependent) Dirichlet data uD(x1, x2, t) and the initial conditions g(x1, x2) are given by

uD(x1, 0.2, t) = 1
100 (cos(π4 t)−

1
2 ), uD(x1, 0, t) = −uD(x1, 0.2, t), g(x1, x2) = 1

100 (5x2 − 1
2 ).

Reference solution. We compare the results obtained by the multiscale method (8) for the test problem
of Section 6.4 to a reference solution uref calculated by standard FEM combined with the implict Euler
integrator. We note that the spatial mesh to compute the reference solution has to resolve the finescale
details of the map Aε, i.e., the mesh size has to be smaller than the period ε, while the multiscale
method (8) solves the problem at cost independent of ε. We use a spatial mesh with 106 degrees of
freedom and 160 equidistant timesteps, see Figure 3.(b) for uref at final time T = 2.
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(b) Finescale solution at T = 2. 106 spatial degrees
of freedom, 160 timesteps.

Figure 3: Test problem with layered material of Section 6.4. Finescale solution obtained by standard
FEM combined with implicit Euler method.

We calculate the error in the spatial L2 norm (known to be of order O(ε) for linear homogenization
problems) and compare the energy norms, for t ∈ [0, T ], 1 ≤ n ≤ N ,∥∥uref (·, t)

∥∥2

E
= 1

2

∥∥uref (·, t)
∥∥2

L2(Ω)
+
∫ t

0

∫
Ω
Aε(x,∇uref (x, τ)) · ∇uref (x, τ)dxdτ,∥∥uHn ∥∥2

E
= 1

2

∥∥uHn ∥∥2

L2(Ω)
+ ∆t

∑′ n
k=0

∑
K∈TH |K|A

0,h
K (∇uHk (xK)) · ∇uHk (xK),

where
∑′ indicates again the trapezoidal rule in time. In particular, we use the error measure eenergy

eenergy =
(
max0≤n≤N

∣∣∥∥uref (·, tn)
∥∥
E
−
∥∥uHn ∥∥E∣∣)(max0≤n≤N

∥∥uref (·, tn)
∥∥
E

)−1
. (63)

26



We note, that for linear parabolic homogenization problems, the energy of the finescale solution uε

converges uniformly on [0, T ] to the energy of the homogenized solution, see [15, Section 11.3], while the
error in the spatial H1 norm is at least of order O(1) due to the small oscillations in uε.
Numerical results. We use the multiscale method (8) on a macro mesh with Nmac = 32 number
of macro elements in each spatial dimension and N = 160 equidistant timesteps. As Aε(x, ξ) used in
Section 6.4 is locally periodic, we collocate the data (62) in the slow variable x at the quadrature points.
We employ Dirichlet coupling W (Kδ) = H1

0 (Kδ) for the micro problems (11) for different sampling
domain sizes δ ≥ ε. We note that the micro mesh sizes h are chosen such that h ∼ δ/Nmic (where Nmic
is the number of micro elements per spatial dimension) is constant for the different values δ.

In Table 1 we compare the FE-HMM solutions (obtained with Dirichlet coupling and δ = 2kε, 0 ≤ k ≤
5) to the reference solution uref using eC0(L2) and eenergy, introduced in (61a) and (63), respectively. Both
error measures decrease monotonically when the sampling domain size δ is increased (the error eenergy
converges at rate O(δ−1)). Thus, a sufficiently large sampling domain size δ is required for reliable results.

δ = ε δ = 2ε δ = 4ε δ = 8ε δ = 16ε δ = 32ε

eC0(L2) 0.4832 0.3224 0.1971 0.1150 0.0682 0.0435
eenergy 0.2411 0.1274 0.0657 0.0334 0.0169 0.0083

Table 1: Comparison of the FE-HMM solutions to the standard FEM finescale solution uref for the test
problem of Section 6.4. Study of the influence of the size δ of the sampling domains Kδ for Dirichlet
coupling. Error measured by eC0(L2) and eenergy, see (61a) and (63), respectively.

For comparison, we then use periodic coupling W (Kδ) = W 1
per(Kδ) and optimally chosen sampling

domain size δ = ε. In Figure 4, we plot the numerical solutions at final time T = 2 for Dirichlet coupling
with sampling domain size δ = 32ε and for periodic coupling with δ = ε. Both solutions in Figure 4
capture the effective behavior of the reference solution uref , see Figure 3.(b). The calculation with periodic
coupling however already provides qualitatively good approximations with much less microscopic degrees
of freedom.
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(a) FE-HMM with Dirichlet coupling, δ = 32ε and
Nmic = 1024.
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(b) FE-HMM with periodic coupling, δ = ε and
Nmic = 32.

Figure 4: Test problem with layered material of Section 6.4. FE-HMM solutions at final time T = 2
computed with multiscale method (8) using Dirichlet or periodic coupling. Simulations with N = 160
time steps, Nmac = 32 macro elements per spatial dimension and constant micro error.

7 Conclusion
We have developed and analyzed a multiscale method to solve nonlinear monotone parabolic homoge-
nization problems by combining the implicit Euler integrator (in time) with a numerical homogenization
procedure (based on the heterogeneous multiscale method) coupling macro and micro finite element
simulations (in space).
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Without any structural assumptions on the microscopic heterogeneities, we derived optimal a priori
error estimates quantifying the influence of time and space discretization on both macro and micro scale.
Further, if we assume local periodicity of the micro structure of the data Aε, the modeling error has been
explicitely estimated as well. We note that the error analysis can be generalized without any difficulties
to different boundary conditions of (2) as well as maps Aε and source terms f smoothly varying in time.

Further, we have shown that the computational cost of the multiscale method is independent of the
small characteristic size of the microstructure. Thus, the method is well-suited for practical engineering
problems. However, the implementation of the proposed multiscale method still involves systems of
nonlinear equations, see Section 6.1. We refer to [6] for an efficient linearized multiscale method in case
that the maps Aε can be decomposed as Aε(x, ξ) = aε(x, ξ)ξ, with some tensor aε.

Acknowledgements. This work was supported in part by the Swiss National Science Foundation under
Grant 200021_134716/1.

A Appendix
Lemma A.1. Let A : Ω× Rd → Rd satisfy A(x, ·) ∈ C1(Rd;Rd) for a.e. x ∈ Ω. Then, the map A satisfies
hypotheses (A1−2) if and only if DξA(x, ξ) is uniformly elliptic and bounded, i.e.,

DξA(x, ξ) η · η ≥ λ |η|2, |DξA(x, ξ) η| ≤ L |η|, ∀ ξ, η ∈ Rd, a.e. x ∈ Ω.

Proof. Let ξ, η ∈ Rd. For a.e. x ∈ Ω, the monotonicity (A2) and the regularity of A(x, ·) yield

DξA(x, ξ) η · η = lim
t→0

[(A(x, ξ + tη)−A(x, ξ)) · η] t−1 ≥ λ lim
t→0

[tη · η] t−1 = λ|η|2.

Similarly, the Lipschitz continuity (A1) leads to |DξA(x, ξ)η| ≤ L|η|. The converse is proved using

A(x, ξ)−A(x, η) =

∫ 1

0

DξA(x, η + τ(ξ − η))(ξ − η)dτ, a.e. x ∈ Ω.

Remark. We note that if A(x, ·) ∈ C1(Rd;Rd) the identity

A(x, ξ + η) = A(x, ξ) +DξA(x, ξ)η +

∫ 1

0

DξA(x, ξ + τη)−DξA(x, ξ)dτ η, (64)

holds for ξ, η ∈ Rd and a.e. x ∈ Ω. If additionally DξA(x, ·) is Lipschitz continuous (with Lipschitz
constant Lx), e.g., A(x, ·) ∈W 2,∞(Ω), we obtain∣∣∣∣∫

Ω

[
A(x,∇v +∇w)−A(x,∇v)−DξA(x,∇v) · ∇w

]
· ∇z dx

∣∣∣∣ ≤ LA‖w‖2W 1,4(Ω)‖z‖H1(Ω), (65)

for v, w ∈W 1,4(Ω), z ∈ H1(Ω) and where LA = ess supx∈Ω Lx.

References
[1] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, Multiscale

Model. Simul., 4 (2005), pp. 447–459.

[2] , The finite element heterogeneous multiscale method: a computational strategy for multiscale
PDEs, in Multiple scales problems in biomathematics, mechanics, physics and numerics, vol. 31 of
GAKUTO Internat. Ser. Math. Sci. Appl., Gakkōtosho, Tokyo, 2009, pp. 133–181.
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