

Process System Engineering and the energy transition

Smart engineers for smart systems

- Prof. François Marechal
- http://ipese.epfl.ch

Industrial Process and Energy Systems Engineering

Institute of Mechanical Engineering Sciences et Techniques de l'Ingénieur Ecole Polytechnique fédérale de Lausanne

©Francois Marechal -IPESE-IGM-STI-EPFL 201

Industrial Process and Energy Systems Engineering

Computer Aided methods for Energy Systems Engineering

Prof. Francois Marechal, Chem Eng.

Ecole Polytechnique Fédérale de Lausanne EPFL-STI-IGM-IPESE

- Speciality Chief Editor :
 - Frontiers in Energy: Process and energy systems engineering section.
 - http://www.frontiersin.org/Process and Energy Systems Engineering
- Scientific committee of IFP Energie Nouvelle
- Board of ECOINVENT

My scientific challenge:

Develop systemic approaches for the Rational Use and Conversion of Energy and Resources in Industrial Energy Systems

- 15 Researchers developing research in Computer aided energy systems engineering
 - Thermo-economic-environomic modeling
 - Process and Energy Systems Integration
 - Modeling the system's interactions
 - Energy-Water-Waste
 - Renewable Energy Integration
 - -Multi-objective optimisation for decision support
 - Thermo-Economic and Environomic Pareto
 - Life Cycle Environmental Impact Assessment
 - Understanding the energetics of complex systems
 - •Thermodynamic methods and metrics for system analysis and design

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) 3 Domains of application

Energy and resource efficiency in industrial processes *Process integration *Pinch analysis* *Pinch analysis*

Raw materials Processes Products By-products Sy-products Sy-produc

Energy Products

By-products

Energy analysis

Energy conversion

•Site Scale Integration

Water & Waste

Process system design

- •Fuel cells systems
- Power plants, Biomass & Biofuels,...
- •Water prod., Waste water
- •CO2 capture
- •Electricity Storage

Urban systems

- •District networks : CO2 swiss knife
- •Smart grid :Virtual power plants
- Industrial ecology/symbiosis
- Integration of renewable energy resources

"System Engineering:

Treatment of Engineering Design as a decision making process"

Hazelrigg, 2012

What is the Role of Process System Engineering for the energy transition?

- Problem Statement
- Open Questions

Smart Engineers for Smart Systems?

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) The Energy Transition

Figure ES.1 \(\) Key technologies for reducing CO₂ emissions under the BLUE Map scenario

- Efficient energy and resources use and reuse
- Efficient energy conversion
- Integration of renewable energy resources
- Large Scale and Complex System integration
- Sustainable processes & Environmental impact

The Swiss Energy system today

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(PAL

And One future One : 2000 W Society

W means Wyear/year/cap

(Sustainable Energy System design

Francois Marechal -IPESE-IGM-STI-EPFL 2014

(MI Energy Transition

Actions

- Sobriety => ask less for the same services
- Efficiency => do more from the resources
- Integrate => Look for synergies, define the right system boundaries
- Renewables => Integrate the endogenous resources
- Invest => Capital for equipments

The Vision: energy transition by system integration

Process system engineering

Selection, Integration, Sizing and optimal Operation in industrial system

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Example in a brewing process

(IIII Analysing the process requirement

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Maximum heat recovery by process integration

- Heat recovery but magic heat input/output
 - -2700 kW out of 4000 kW can be recovered by heat exchange

Utility	MER	Current
	[kW]	[kW]
Hot utility	1386	2220
Cold utility	-	16
Refrigeration utility	837	1200

Heat recovery leads to 37 % energy savings

Pinch analysis based on ΔTmin assumption

(The process system integration

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(IIII Energy conversion system integration

• 2 heat pumps + 1 cogeneration engine

Fuel	1677 kW
СНР	-374 kWe
« Heat Pumps »	295 kWe
Cooling Water	3.0 kg/s

Fuel	1140 kW
СНР	-166 kWe
« Heat Pumps »	379 kWe
Cooling Water	0.2 kg/s

(Energy conversion with Maximum Heat Recovery

Waste heat

	Unit	1.	2.	3.	4.
Natural Gas	kW	2088	3279	1677	1140
Electricity	kW	184	-863	-80	212
Cooling Water	kg/s	17.1	17.1	3.2	0.2
Run. Costs FR	k€/yr	332	210	205	212
Run. Costs GER	k€/yr	520	283	312	336
TOTAL Costs FR	k€/yr	332	308	274	274
TOTAL Costs GER	k€/yr	520	(380)	381	398
TOTAL CO	ton/yr	2459	3544	1912	1372
TOTAL CO	ton/yr	2987	(1094)	1686	1976

1. Gas Boiler 2. Gas CHP 3. Gas CHP+MVR+HP (T_{cond} =66.5°C) 4. Gas CHP+MVR+HP (T_{cond} =77.5°C)

Energy /Resource	Unit Cost 2007 (Without	CO_2 Emissions
	Taxes)	
France		
Electricity	$0.0541 ext{@kWh}_e$	$55g_{CO2}/\mathrm{kWh}_e$
Natural Gas	$0.0271 { m @kWh}_{LHV}$	$231 \mathrm{g}_{CO2}/\mathrm{kWh}_{LHV}$
Water	$0.00657 $ $ M/m^3 $	-
Germany		
Electricity	$0.0927 \center{e}/kWh_e$	$624g_{CO2}/kWh_e$
Natural Gas	$0.0417 { \textcircled{c}}/\text{kWh}_{LHV}$	$231 {\rm g}_{CO2}/{\rm kWh}_{LHV}$

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Waste management integration

- Organic waste (husk) bio-methanation
 - -75 Nm³ CH₄/t husk
- However...
 - -Extra investment (digester), increased electric consumptions (blender, pumps)
 - -Heating requirement (Cold stream @ 35 °C)
- Available: 1660 kW as LHV of CH4

(M) Evaluation: Bio-Methane integration: Results

	Unit	1.	2.	3.	4.
Biogas	kW	1660	1660	1660	1660
Natural Gas	kW	664 (2088)	711 (3279)	480 (1677)	200 (1140)
Electricity	kW	264 (184)	-924 (-863)	-298 (-80)	-219 (212)
Water	kg/s	17.1	17.1	3.2	0.2
Run. Costs FR	k€/yr	161 (332)	-31 (210)	-16 (205)	-32 (212)
Run. Costs GER	k€/yr	260 (520)	-280 (283)	-38 (312)	-60 (336)
TOTAL Costs FR	k€/yr	238 (332)	145 (308)	124 (274)	115 (274)
TOTAL Costs GER	k€/yr	338 (520)	(-105) 380)	101 (381)	88 (398)
TOTAL CO	ton/yr	839 (2459)	566 (3544)	471 (1912)	170 (1372)
TOTAL CO	ton/yr	1588 (2987)	-2060 (1094)	-377 (1686)	-452 (1976)

Natural gas = -95 % Import: 200 kW_{NG} Export: 220 kWe Electricity = -147 %

Becker H., Spinato G. and Marechal F., 2011b, A multi objective optimization method to integrate heat pumps in industrial processes, Computer Aided Chemical Engineering 29, 1673–1677.

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Conclusions: Before the analysis

IPESE Systems

Conclusion: if you use the hidden fuel

(M) Open questions: Process energy efficiency

- -Holistic system approach
 - •Think globally act locally
- Heat exchanger network design
 - Start-up & Shutdown
 - Flexibility
- Combined heat/mass integration
- -Systematically extend the system boundaries
 - Urban / Industrial symbiosis
- -Decision support
 - Energy price uncertainty
 - Utility Process interface
 - -Utility => Energy bill
 - -Process => Product quality
- Energy service companies
 - Define a business from the integration ?

Heat recovery

Heat pump not useful for P3

Heat pump saving potential for total site: 2957 kW (30%)

- Representation with all the hot and cold streams
 - System sub-divisions
 - No abstraction of pockets potentials

FM_08/2002

Steam network integration

Combined heat and power production

ENI Systems

(PFL

Application: the engineer creativity

Maximum energy recovery

	Energy	Exergy
Heating (kW)	+6854	+567
Cooling (kW)	-6948	- 1269
Refrigeration (kW)	+1709	+ 157

Hot utility

Boiler house: NG (44495 kJ/kg)

Air Preheating

Gas turbine : NG (el. eff = 32%)

Steam cycle

-/	_		
Header	P	T	Comment
	(bar)	(K)	
HP2	92	793	superheated
HP1	39	707	superheated
HPU	32	510	condensation
MPU	7.66	442	condensation
LPU	4.28	419	condensation
LPU2	2.59	402	condensation
LPU3	1.29	380	condensation
DEA	1.15	377	deaeration

Heat pumps Fluid R123

	P_{low}	T_{low}	Phigh	Thigh	COP	kWe
	(bar)	(°K)	(bar)	(K)	-	
Cycle 3	5	354	7.5	371	15	130
Cycle 2	6	361	10	384	12	323
Cycle 0	6	361	7.5	371	28	34

Refrigeration

Refri	gerant		R717	Amn	nonia
Reference flowrate		0.1	kmol	/s	
Mech	nanical j	power	394	kW	
	P	Tin	Tout	Q	$\Delta T min/2$
	(bar)	(°K)	(°K)	kW	(°K)
Hot str.	12	340	304	2274	2
Cold str.	3	264	264	1880	2

LENI Systems

Results

$$Total1 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 55\% (NGCC))$$
$$Total2 = \dot{m}_{fuel} * LHV_{fuel} + \frac{(E^{+} - E^{-})}{\eta_{el}} (= 38\% (EUmix))$$

Table 9

Energy consumption and exergy efficiency of the different options

Option	Fuel	\dot{E}_{grid}^{+}	Total 1	Total 2		η_{ex}	Losses
	$[kW_{LHV}]$	[kWe]	$[kW_{LHV}]$	$[kW_{LHV}]$		%	[kW]
Comb. + frg	7071.0	371.0	7745.5	8029.7		34.9	8868.0
Comb. + stm + frg	10086.0	-2481.0	5575.1	3675.1		44.5	8830.0
GT + stm + frg	16961.0	-7195.0	3879.2	-1630.7		51.3	11197.2
hpmp + frg	0.0	832.0	1512.7	2149.9		72.4	2408.1
hpmp + stm + frg	666.0	125.0	893.3	989.0		72.6	1831.6
					4.4		

11% wrt combustion 5 % of reference

(Total site integration : Open questions

• How to organise heat transfer between processes

- -Third Party: ESCO?
 - Process interfaces
 - -contract + confidentiality
- Restricted matches & HEN design

• How to realise a holistic system design?

- Energy conversion
 - Combined Heat Cold and power production
 - Waste management integration
 - Combined Water/Solvent/Hydrogen integration
- -Multiperiod
 - Processes operating scenarios
- Robustness & flexibility
 - Operation
 - Robust design / backup equipment

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Process system design

The energy system engineering methodology

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Modeling tools integration

(Process synthesis of a fuel cell hybrid system

$$\eta_d = \frac{E^-}{CH4^+_{LHV}} = 80\%$$

Flowsheet

6 kWe

Facchinetti, M, Daniel Favrat, and Francois Marechal. "Sub-atmospheric Hybrid Cycle SOFC-Gas Turbine with CO2 Separation." *PCT/IB2010/052558*, 2011.

Heat integration

2 kWth/kWel

Fig. 7 HCox composite curves of optimal solution with $\pi = 3$ and max

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

 $\begin{array}{l} IIT = 1.573 \text{ K} \\ \text{Facchinetti, Emanuele, Daniel Favrat, and François Marechal. } \textit{Fuel Cells}, no.\,0\,(2011):\,1\text{-}8. \end{array}$

A paradigme for the energy system?

- Replace centralised power plants
 - -1 unit of 750 MWe / 61% elec

- by ...
 - -75000 units of 10 kWe / 80% elec
 - -Distributed
 - -13% cogeneration

(IIII Process system design Challenge

- 3D design + Lego ?
 - -3D Design
 - -3D Models
 - -Sensors
 - -4D Control
 - -Grids Connected
 - -or Mobile => Range extender in cars

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) Smart system design?

• 3D designs for 3D printing?

3D Design

(Motivation: for a typical Swiss household

Savings : 65 %

W means Wyear/year/cap

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

• Smart engineers: Renewable energy integration

Producing Natural gas from Wood

Renewable natural gas: Synthetic natural gas from biomass

WOOD Natural Gas (SNG) CO2 (pure)
$$\mathsf{CH}_{1.35}\mathsf{O}_{0.63} \,+\, 0.3475\mathsf{H}_2\mathsf{O} \stackrel{\Delta H^0 = -10.5}{\longrightarrow} {}^{kJ/mol_{wood}} \,\, 0.51125\mathsf{CH}_4 \,+\, 0.48875\mathsf{CO}_2$$

Gassner, M., and F. Maréchal. "Thermo-economic optimisation of the integration of electrolysis in synthetic arechal hattural gas production from wood." Energy 33, no. 2 (February 2008): 189-198.

(M) Closing the energy balance

Integrating heat recovery technologies in the superstructure

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(Comparing options

• Each point of the Pareto is a process design

Thermo-economic Pareto front (cost vs efficiency):

Note: 1.5 years of calculation time!

Environmental Process performance indicators

Identification of Life Cycle Inventory elements

• Process superstructure, extended with LCI

- **⇒** use of ecoinvent emission database (1) for each LCI element, to take into account off-site emissions
- (1) http://www.ecoinvent.org

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Gerber, L. et al., 2010 Comp & Chem Eng., 1405-1410

(IVII LCA based design

Optimal configurations

Land & supply chain are constraints

• Selecting the process in the Pareto set

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Decision-making

• Uncertainty of the economical conditions

- Economic assumptions probability distribution functions
 - Normal, uniform, beta distribution

Scenario [IEA, EU, ZEP,]	Base	Low	High
Resource price $[\$/GJ_{res}]$	9.7	14.2	5.5
Carbon tax $[\$/t_{CO2}]$	35	20	55
Yearly operation [h/y]	7500	4500	8200
Expected lifetime [y]	25	15	30
Interest rate [%]	6	4	8
Investment cost [%]	-30%	-	+30%
$f(x; \mu, \sigma^2) =$	$\frac{1}{\sigma \sqrt{2!}}$	$=e^{-\frac{1}{2}(}$	$\left(\frac{x-\mu}{\sigma}\right)^2$
	$\sigma \sqrt{2}$	П	
	4		

(Decision-making

• Relative competitiveness of Pareto solutions

-Ranking with regard to most economically competitive solution

-CO₂ capture is economically competitive for capture rates between 70 and 85%!

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Laurence Tock, Thesis, 2013

(M) Open questions

- How to deal with engineers creativity?
 - Combinatorial
- Models sharing
 - Documentation
 - Consistency
 - Transferability
- Model interoperability
 - Different softwares
- Data base of models
 - Interface ontology
 - Meta-models : e.g. from Pareto sets
 - Systematic superstructure definition
 - e.g. biorefineries
- Integration of supply chains
- Integration of Life cycle Impact assessment metrics
- Robustness & uncertainty

(M) Extending the system boundaries

- Biorefinery concept
 - Integrated biofuel system

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Site integration: process couplings EtOH & SNG

Ethanol production from lignocellulosic biomass:

input: 58 MW_{th,wood}

Site integration: process couplings **EtOH & SNG**

Ethanol production from lignocellulosic biomass:

Energy balance for different process integration options (without seed train, non-optimised).

49.4 %

990

77 / 87

Site integration: process couplings EtOH & SNG

Ethanol production from lignocellulosic biomass:

Site integration: process couplings **EtOH & SNG**

Ethanol production from lignocellulosic biomass:

		steam cycle	IGCC	SNG	
Input	wood	100 %	100 %	100 %	
	ethanol	32.3 %	32.3 %	32.3 %	
Output	SNG	-	-	40.3 %	
	electricity	17.1 %	21.5 %	-3.0 %	
chem. efficiency ($\Delta \eta_{NGCC} = 55\%$)		62.3 %	70.0 %	67.3 %	
total efficiency		49.4 %	53.8 %	70.5 %	
			/ ! !		

Energy balance for different process integration options (without seed train, non-optimised).

990 79 / 87

Site integration: process couplings EtOH & SNG

Ethanol production from lignocellulosic biomass:

		steam cycle	IGCC	SNG	+ steam
Input	wood	100 %	100 %	100 %	100 %
Output	ethanol	32.3 %	32.3 %	32.3 %	32.2 %
	SNG	-	-	40.3 %	30.5 %
	electricity	17.1 %	21.5 %	-3.0 %	1.5 %
chem. efficiency ($\Delta \eta_{NGCC} = 55\%$)		62.3 %	70.0 %	67.3 %	65.3 %
total efficiency		49.4 %	53.8 %	70.5 %	64.2 %
Formulation of Conference on the continuous formulation of the conference of the conference on the conference of the con					

Energy balance for different process integration options (without seed train, non-optimised).

Site integration: process couplings EtOH & SNG

Ethanol production from lignocellulosic biomass:

		steam cycle	IGCC	SNG	+ steam	+ HP
Input	wood	100 %	100 %	100 %	100 %	100 %
	ethanol	32.3 %	32.3 %	32.3 %	32.2 %	32.2 %
Output	SNG	-	-	40.3 %	30.5 %	41.9 %
	electricity	17.1 %	21.5 %	-3.0 %	1.5 %	-1.0 %
chem. eff	chem. efficiency ($\Delta \eta_{NGCC} = 55\%$)		70.0 %	67.3 %	65.3 %	72.3 %
total efficiency		49.4 %	53.8 %	70.5 %	64.2 %	73.1 %
			/ ! !			

Energy balance for different process integration options (without seed train, non-optimised).

√) Q (→)
82 / 87

Gassner, M. and Maréchal F. ECOS2010 proceedings, Suping Zang et al. Energy and fuels 23, no. 3 (2009): 1759-1765

(M) Large scale integration: multi-grids

- Resource productivity
- SNG = 75 %
- Elec = 2%

Electricity

• District heating integration

300 MWe	NoCCS	CCS	CCS + DHC
Natural gas (MJ/MJe)	1.698	2.016	2.016
District heating (MW)	47 MW (50000 hab)		
NG for district (MJ/MJth)	0.174	0.174	0
Total	1.872	2.191	2.016
CO2 (kgCO2/GJe)	115.8	25.8	14.9

©Francois Marechal -IPESE-IGM-STI-EPFL 2013

(IIII Process integration in buildings

Definition of the energy needs

- -Heating
- -Air renewal
- -Hot water
- -Waste Water
- Air renewal

Do not forget Carnot (Exergy demand):

- * Heat with the lower temperature possible
- * Cool with the highest possible temperature

(M) Local heat recovery

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) Local Heat pumping on waste water

COP = 5 to 6

Characterizing the services

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(IVII) The urban system integration

- Multi Energy services
 - Electricity
 - Heating
 - Cooling
 - Hot water
 - Refrigeration
 - Industrial processes
- Agglomeration of demands
 - Composite curves?
 - Heat-temperature diagrams
 - thermal distribution
- →Seasonal profiles
 - stochastic!
- **→**Evolution scenarios
 - ⇒buildings stock
 - → refurbishment

Composite curve of the Geneva canton

(M) Energy system design: problem definition

Given a set of energy conversion technologies:

Where to locate the energy conversion technologies?

How to connect the buildings?

How to operate the energy conversion technologies?

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

[5] Francois Marechal, Celine Weber, and Daniel Favrat. Multi-Objective Design and Optimisation of Urban Energy Systems, pages 39-81. Number ISBN: 978-3-527-31694-6. Wiley, 2008.

Access to local resources

(Carbon valorisation of renewable energy source

(M) CO2 District heating network for multiple sources

Advanced district heating systems for complex urban systems

Complex system with heating and cooling: (ERA) 687'800 m²

•Commercial: 23% inc. HVAC and refrigeration

•Offices: 60 % inc. data center

•Residential: 17%

Heating 53.2 GWh

Cooling 49.4 GWh

- The CO2 network integration: reduction of 84% of the primary energy consumption if specific technologies are used
 - Profitability analysis: break-even in 5 years
- Combined with SOFC cogeneration: savings reach 88 %
- Combined with renovation : savings reach 92 %!

39.6%

25%

20%

11.3%

4.1%

Share of the various costs:
 Cost of electricity:

• Initial Investment:

Replacement of the equipments:

Maintenance:Operation:

Cost of services:

56 % related to equipment Investment!

HENCHOZ S, FAVRAT D., WEBER C Performance and profitability perspectives of a CO2 based district energy network in Geneva's city center. DHC13, 13rd Int Symposium on District Heating and cooling, Copenhagen Sept 2012

(M) Open question

• Can we solve a problem ?

- –100000 buildings
- -100000 + nodes => routing algorithm
- -Centralised and decentralised energy conversion technologies ?
- -How to estimate the profit
 - •infrastructure investment: 60 years
 - daily and seasonal variation of the operation
 - decentralised and centralised units

District heat distribution cost : cts CHF/annual kWh

Girardin, Luc, François Marechal, Matthias Dubuis, Nicole Calame-Darbellay, and Daniel Favrat. "EnerGis: A Geographical Information Based System for the Evaluation of Integrated Energy Conversion Systems in Urban Areas." Energy 35, no. 2 (February 2010): 830-840.

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) Evaluation of the operational cost

- 40 time steps: 7 days*5 sequence + 1 Extreme * 5 => instead of 8760 hours
- Probability of appearance (number of days)
- Using clustering techniques

(Open Questions

- Problem Size : Agglomeration methods ?
 - -Decomposition / meta models ?
 - -Use Pareto-sets as models
 - -mass and heat integration => services definition
- Time scale problem
 - -When to invest?
 - •building stock evolution
 - •Infrastructure development
 - $-life\ time = 60\ years$
 - -underground
 - -Operation
 - Daily Seasonal storage
- Stochasticity
 - -people
 - Behaviours
 - Customers
 - -renewable
 - markets (Services/Energy)
- Robust design methods
- Uncertainty management
 - -multi-stakeholders

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

W Virtual power plant concept

What is the role of the district as a micro grid for the electricity supply?

(Virtual power plant Operation

©Francois Marechal -IPESE-IGM-STI-EPFL 201

| Process integration : do not use batteries

IPESE 74

CHP: 2000 kWe Heat pump: 2000 kWe Storage 200 m3 Demand mean heating power = 3000 kW

(PA) Electro Thermal Storage (ETES - ABB)

Morandin, Matteo, François Maréchal, Mehmet Mercangöz, and Florian Buchter. "Conceptual Design of a Thermo-Electrical Energy Storage System Based on Heat Integration of Thermodynamic Cycles – Part B: Alternative System Configurations." Energy 45, no. 1 (September 2012): 386–396..

@Francois Marechal - IPESEIGM-STILEPEL 2014

(M) ETES & district heating/cooling

Heat to the environment

(PAU

Long term electricity storage by converting electricity to fuel

Power to gas concept

WOOD
$$\begin{array}{c} \text{Natural Gas} \quad \text{CO2 (pure)} \\ \text{CH}_{1.35}\text{O}_{0.63} + 0.3475\text{H}_2\text{O} \xrightarrow{\Delta H^0 = -10.5 \ kJ/mol_{wood}} \\ 0.51125\text{CH}_4 + 0.48875\text{CO}_2 \\ \text{+ 4 H}_2 & \qquad \qquad + \text{CH}_4 & -\text{CO}_2 & + 2 \text{H}_2\text{O} \\ \Delta E^+ + 4H_2O & \qquad \qquad + 2 \text{O}_2 \\ \text{Storage as transportation fuel} & \eta_c = \frac{\Delta CH4_{LHV}^-}{\Delta E^+} = 85\% \end{array}$$

Gassner, M., and F. Maréchal. Energy 33, no. 2 (2008) 189-198.

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

() Round trip efficiency of electrcity storage

- H2 electrolysis integrated in SNG process
 - CO2 emissions are negative (wood carbon neutral, CO2 is captured)

$$\eta_c = \frac{\Delta C H 4_{LHV}^-}{\Delta E^+} = 85\%$$

• CH4 conversion NGCC (CO2 = 0 because C biogenic)

$$\eta_d = \frac{E^-}{CH4_{LHV}^+} = 60\%$$

• Roundtrip efficiency

$$\eta = \frac{E^-}{E^+} = 50\%$$

• Long term storage on the gas grid!

(M) If Electricity production efficiency increases

Hybrid gas turbine SOFC combined cycle

$$\eta=rac{E^-}{E^+}=68\%$$
 A battery is 80%

• Round trip with long term storage on gas grid and decentralised production

IPESE (M) Seasonal storage! Charging: Summer SUN to Fuel Solid Oxide co-electrolysis Land m2 constrains Roundtrip = 80 % Grids & process intensification (a) Storage mode SOFC-GT Liquid CO2 Liquid CH4 CO2:48 b Discharging: Winter Hvap = 180 kJ/kg Space Heating T = 15°C -13 °C Liq:0.8 kg/l Pressure regulation Central plant L: 48.3 b - V: 47.3 b (b) Delivery mode Liquid CH4 Liquid CO2 Using waste heat for heating/cooling purposes

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

(M) Open questions : Energy storage

Simultaneous design

- -Equipment & control
- –How to evaluate the profit ?
 - The system becomes a market player

• System operation

- Predictive operation & control
 - Meteorological information
 - Presence
 - Functionalities (e.g. light, refrigeration, comfort)
 - •Interconnection infrastructure
 - Flexibility/Robustness
 - Multi scale: 100 ms -> hours -> days -> Week -> Seasons
- Identification of buffers
- Networks of networks
 - Multi-levels grids (e.g. Voltage)
 - Internet of things
- -Big data integration
 - Machine learning for better predictions
- Market integration

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

Energy transition for a household

Today's consumption: 100 kJ of Natural Gaz

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

The energy system for a household

Tomorrow: Using wood and Renewable energy resources

Wood => Synthetic Natural Gas : 75% Natural gas => Electricity (SOFC-GT): 80% Electrical cars:

2 ha of sustainable forest/family

The energy system for the household

- 31 kJ of renewable energy replaces 100 kJ of fossil fuel
 - Decentralised & Centralised equipment
 - Cogeneration
 - Optimal management
 - Waste heat integration by district heating
- Understand the process system integration
 - Technologies
 - Services

©Francois Marechal -IPESE-IGM-STI-EPFL 2014

H Energy transition needs smart process systems engineers

• Integrate technologies

- Model the interactions by mass and heat integration
- Use of Multi-objective optimisation to generate the list of solutions

• Integrate services

- Multi-services
 - fuel/heat/electricity/storage/waste treatment
- Optimal management

• Integrate knowledge

- Reveals the inter-disciplinarity

• Integrate the system

- Waste heat valorisation
- System boundaries extension

• Integrate the renewable energy resources

- Use of Biogenic carbon as an energy carrier/storage

Smart Energy transition needs Smart Process system engineers!

Smart Process system engineers needs

Methods to solve complex problems

So that they are not complex anymore ...

©Francois Marechal -IPESE-IGM-STI-EPFL 2014