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Abstract 
In this paper, a high output voltage power converter working 
at variable input DC-link voltage is presented. The variable 
DC link voltage opens to very interesting solution at system 
level. However, those solutions will be the subject of futures 
papers. Only the main power converter structure is presented 
here. After an evaluation of the most promising converter 
topologies for the required high voltage and power, 
eventually an LCC resonant converter with phase shift control 
has been chosen. The resonant converter is followed by a 
double secondary high frequency transformer with a two 
diode voltage doublers. The system has been fully analysed 
from the theoretical point of view, designed, built and tested. 
The control system has been fully digital implemented 
making use of a TI DSP microcontroller, TMS320X28335. 

1 Introduction 
During the topology choice phase of the DC/DC high voltage 
converter presented in this paper, several solutions to obtain 
the required high voltage capability have been evaluated. 
Starting from the key hypothesis of using a resonant inverter, 
in order to obtain a high switching frequency at a reasonable 
loss level, various solutions for the transformer and rectifier 
stage have been considered. Among the others, a number of 
multi-stage Cockcroft-Walton solutions have been evaluated 
[1]-[11]. However, mainly due to the increased system 
complexity and the relatively low dynamics of this kind of 
topologies, the decision of adopting a simple high frequency 
transformer and diode voltage doublers configuration has 
been taken. The chosen solution is based on the LCC resonant 
inverter structure, followed by a two stage transformer-
rectifier, as shown in figure 1.  

This topology has several advantages: 

• It can incorporate the parasitic elements of the 
transformer in the circuit operation. 

• It has a small-size blocking capacitor connected in 
series with the high-voltage transformer. 

• It can guarantee the soft-switching on a wide operation 
range. 

• It allow for a voltage gain factor up to (theoretically) 
2pu (base: DC link voltage) of the transformer input 
voltage at the resonant frequency. 

• Operation with no reactive energy returned to the input 
voltage source can be achieved with Phase-Shifted 
PWM control, even with considerable variations in the 
output voltage and load. High efficiency can thus be 
obtained in such conditions. 

• The resonant elements voltages and currents can be 
designed at reasonable values for the required power, 
input and output voltages (see section 2).  

• It allows a dynamic response faster than Cockcroft-
Walton based solutions. 

figure 1: High voltage power supply schematic. 

2 Steady state theoretical analysis 
For the design of the power converter, a theoretical model is 
required. For this job, the steady-state sinusoidal model 
proposed in [12] has been used. This model gives a relatively 
simple analytical method for the analysis of parallel and 
series-parallel converters with capacitive output filter, to be 
used in the design procedure for this class of converters.  

The basic idea proposed in [12]  is to make a theoretical 
steady-state analysis at the fundamental resonant frequency. 
This allows obtaining the steady-state equations linking the 
fundamental harmonic of the various quantities (currents and 
voltages) of the converter. Those equations have been used in 
[13], where an optimization strategy, based on a genetic 
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measures the period and the PWM1 module is then initialized 
with the period, half-period and phase lead values. If well 
suited, the phase lead value will compensate the dead-time at 
each rising edge and eventually allows zero current switching. 
The PWM2 is synchronized on each period of the PWM1 and 
so initialized except that the phase lead will be the control 
variable for the inverter output. 

figure 6:  Time behavior of the adopted digital phase shifting 
technique. 

6 Preliminary test results 
In order to verify the expected behavior of the resonant 
converter, a prototype has been built.  

This prototype consist of a variable DC-link generator able to 
supply input voltage in the range of 150 – 260 V, a full IGBT 
bridge of Mitsubishi CM600DU-12NFH, a resonant tank with 
inductors and capacitors as specified  in section 2,  two high 
voltage transformers each with 1:110  turn ratio,  rectifiers 
diodes, capacitors and a resistive dummy load.  Each of the 
four output capacitor has been set to 2nF. Photo of prototype 
is shown in figure 7.  

Experimental tests were done at several operating points. The 
result of tests shows that the system works as expected. In 
order to compare experimental results with the simulations 
done above, an example of output voltage and current shape 
for the operating point Vin = 215 V, Rload = 680 k , is shown 
infigure 8. The output voltage show very low ripple and fast 
dynamics response (rising time lower than 400μs). The 
measure output voltage in this case is 122.2 kV with a power 
of 20 kW. 

The shape of the resonant current obtained on the prototype is 
the same as that obtained in simulations (compare with figure 
5 results). The zero crossing detection of resonant current is 
shown in figure 9. The non-ideal behavior of the voltage 
clearly shown by the measurements is due to effect of the 
dead time that has to be imposed to the power component.  

figure 7: Lay-out of the high voltage generator prototype 

figure 8: Output DC voltage (orange) and resonant current iL 
(green):  Vout = 122.2 kV 

figure 9: Resonant current (yellow) and voltage at the output 
of the H bridge (pink) 

7 Conclusions 
In this paper, a high output voltage power converter working 
at variable input DC-link voltage has been presented. After a 
careful review of the different topologies presented in 
literature, an LCC resonant converter topology with phase 
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DC Power 
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shift control has been chosen. The resonant converter is 
followed by a double secondary high frequency transformer 
with a two diodes voltage doublers. The system has been fully 
analyzed from the theoretical point of view, designed, built 
and tested. A full digital control has been implemented into a 
TI DSP microcontroller. The experimental results confirm the 
theoretical and simulation studies. 
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