Integrating Defect Data, Code Review Data, and Version Control Data for Defect Analysis and Prediction

Tao C. Lee

DS Lab, EPFL MS thesis defence, Lausanne, Switzerland $\{ \texttt{tao.lee} \} \texttt{@epf1.ch}$

September 11, 2013

• Diversified projects: PLs (C, Java), applications (server, control)

- Diversified projects: PLs (C, Java), applications (server, control)
- Code reviews are rare

- Diversified projects: PLs (C, Java), applications (server, control)
- Code reviews are rare
- Defect types are often unknown

- Diversified projects: PLs (C, Java), applications (server, control)
- Code reviews are rare
- Defect types are often unknown
- Prediction of hot files of defects is of interest

- Diversified projects: PLs (C, Java), applications (server, control)
- Code reviews are rare
- Defect types are often unknown
- Prediction of hot files of defects is of interest
- Methodology must apply to large defect data of diversified projects

Prior work

4 / 18

- Prior work
- Research contributions

T. C. Lee (EPFL)

- Prior work
- Research contributions
- Methodology of indexing defects by keywords

- Prior work
- Research contributions
- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords

- Prior work
- Research contributions
- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords
- Evaluation

- Prior work
- Research contributions
- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords
- Evaluation
- Conclusions & future work

Prior work

Research with different emphases on defect data

Research	Method ^a	Defect type ^b	R ^c	C d
Chillarege92	М	function, interface, etc.	Υ	N
Chou01	А	null, range, float, lock, etc.	N	Υ
Nagappan05	М	N	N	Υ
Tan07	А	copy-and-paste	N	Υ
Mantyla09	М	functional, evolvable	Υ	N
Yin11	Α	fixes	N	Υ

^aMethods of defect finding: manual reviews or using automatic tools

 $^{{}^{\}it b}{\sf Defects}$ are classified by types in research

^cCode reviews are used in research

^dCode commits are used in research

Prior work

Research with different emphases on defect data

Research	Method ^a	Defect type ^b	R c	C d
Chillarege92	М	function, interface, etc.	Υ	N
Chou01	Α	null, range, float, lock, etc.	N	Υ
Nagappan05	М	N	N	Υ
Tan07	А	copy-and-paste	N	Υ
Mantyla09	М	functional, evolvable	Υ	N
Yin11	Α	fixes	N	Υ

^aMethods of defect finding: manual reviews or using automatic tools

But these methods cannot solve our problem!

^bDefects are classified by types in research

^cCode reviews are used in research

^dCode commits are used in research

Methodology of indexing defects by keywords

- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords
 - What are the defect types?

- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords
 - What are the defect types?
 - Do defects cluster in files?

- Methodology of indexing defects by keywords
- Applications of indexing defects by keywords
 - What are the defect types?
 - Do defects cluster in files?
 - How to predict the hot files of defects?

Keywords are found in defect reports ...

```
<item>
<title> [AJE-105] Exception in Defect Scorecard </title>
<summary> Exception in Defect Scorecard </summary>
<description> ... Currently left = class java.lang.Long, right = class java.lang.String. ... </description>
<key id=" 215630 "> AJE-105 </key>
<status id="6"> Closed </status>
<resolution id="1"> Fixed </resolution>
<assignee username="eXX">XXXX</assignee>
<reporter username="eYY"> YYYY </reporter>
<comment> XXXXX</comment>
<comment> XXXXX</comment>
</comment> YYYY </comment>
</comment>>
```

</item>

Defect reports can be indexed by keywords ...

Kea, a Keyphrase Extraction Algorithm [Medelyan09]

Integration of Kea into the framework ...

7 / 18

An example of defects indexed by the keyword memory

	Defects indexed by keywords			
Keyword	yword Defect summary			
	Bad responce to HVAC Counter			
	Rheem Furnace Model and Serial Number are cleared			
	ECM Blower problem after User menu update			
	no D4 alarm when memory card is invalid and data			
memory	d1 alarm active even if memory card with correct			
memory	Overflow of array index			
	ESD Failure of Memory Card Connector			
	RAM usage			
	Bad SSD display when is fault clearing			

Applications of indexing defects by keywords

After defect indexing ...

What are the defect types?

Defect types are represented by (multiple) keywords ...

What are the defect types?

```
Algorithm 5 Inferring defect types by keywords
Input: a list of defect reports and a list of defect patterns
Output: a map of defect types with the associated list of defect reports
Require: x is a list of filtered defect reports, p is a list of defect patterns
 1: function InferringDefectTypesByKeywords(x, p)
        z ← new Map for storing indexed defects
       for x_i : x \text{ do}
            maxFrea \leftarrow 0
            leastFirstPos \leftarrow -1
            defectType \leftarrow null
            for p_i : p \text{ do}
               if ContainAllKeywords(x_i, p_i) then
 8:
 9:
                   fs \leftarrow \text{ComputeGeneralizedFrequencyScore}(p_i, x_i)
                   fps \leftarrow ComputeGeneralizedFirstPositionScore(p_i, x_i)
10:
                   if maxFrea < fs then
                                                        > determine the dominant pattern
11:
                       maxFreq \leftarrow fps
12:
13:
                       defectType \leftarrow p_i
                       leastFirstPos \leftarrow fps
14:
15:
                   else if fs = maxFreq then
                       if fps < leastFirstPos then
16:
                           defectType \leftarrow p_i
17:
18:
                           leastFirstPos \leftarrow fps
            if defectType \neq null then
19:
20:
               z \leftarrow z.put(defectTupe, x_i)
        return z \triangleright z is a map of defect types with the associated list of defect reports
21:
```

Defect clustering

$$\textit{Fraction} 80 \textit{Metric} = \frac{\text{number of files containing 80\% of defects}}{\text{total number of files}}$$

number of files are counted from the files with the most defects.

How to predict the hot files of defects?

$$BugPredMetric = \sum_{i=1}^{N} \frac{1}{1 + e^{slope \cdot t_i}}$$
 [Google11]

where

slope is a configuable parameter with default value 12.

N is the number of commits of a file.

 t_i is the normalized timestamp of the ith commit, with the oldest timestamp = 1 and now = 0.

$$defect hit rate = hit/(hit + miss)$$

hit/miss is the number of times a committed file is (/not) in the file cache

T. C. Lee (EPFL) Defects A & P September 11, 2013 11 / 18

How to predict the hot files of defects?

File cache simulation

How to predict the hot files of defects?

Algorithm 10 Defect hot spots prediction in files

Input: a list of file commits, a file cache size, a slope parameter

Output: computed defect hit rate of the file cache replacement policy using a known bug prediction metric, a list of hot files in the file cache

```
Require: x is a list of file commits, c is the size of file cache, s is the slope parameter

    function DefectHotSpotsPredictionInSourceFiles(x, c, s)

        hit \leftarrow 0
        miss \leftarrow 0
 3.
       defectHitRate \leftarrow 0.0
        cache ← New Set for storing files
        x \leftarrow \text{SortCommitsInChronologicalOrder}(x)
        for x_i : x \text{ do}
            f \leftarrow \text{ListOfCommitedFiles}(x_i)
 8:
            for f_i : f \text{ do}
9:
                 if cache contains f_i then
10:
                     hit \leftarrow hit + 1
11:
                 else
12:
13:
                     miss \leftarrow miss + 1
14:
                 h \leftarrow UpdateCommittedFiles(f_i)
                 r \leftarrow \text{RankFilesByBugPredScore}(h, s) \triangleright \text{Compute BugPredMetric for}
15:
    each file, and sort the files in descending order
                 cache \leftarrow UpdateFileCacheBvScore(r, c) \triangleright Keep the top c files in cache
16:
        defectHitRate \leftarrow \frac{hit}{hit+miss}
17:
        Output(cache)
                                                              output the files in the file cache
18:
        return hitRate
19:
```

September 11, 2013

Evaluation

Project	Description	PL	Defects	Commits
Project X	a JIRA server extension	Java	423	3235
Project Y	Gas ignition controls	С	300	2977

Project X

	Project	Description	PL	Defects	Commits
ſ	Project X	a JIRA server extension	Java	423	3235
Ī	Project Y	Gas ignition controls	С	300	2977

Table: Fraction of defects by defect types for project X (total 423 defects)

Defect type (keyword)	Fraction of defects
layout	1.42%
string	1.89%
javascript	1.89%
reproduce	4.49%
message	5.91%
configuration	6.15%
display	9.93%
panel	11.58%
dialog	13.71%
report	15.13%
Unindexed defects	27.19%

13 / 18

Table: Fraction80Metric by defect types for project X

Defect type (keyword)	Number of files	Fraction80Metric
All defects	1375	42.76%
layout	17	35.29%
string	9	55.56%
javascript	15	20.00%
reproduce	17	29.41%
message	35	28.57%
configuration	16	31.25%
display	65	24.62%
panel	42	30.95%
dialog	51	41.18%
report	56	48.21%

Table: Top-10 hot files for project X

atlassian-plugin.xml
Contour Project Manager Impl. java
component-wise-issue-chart.js
changeHistory.js
ComponentWiselssueReportResource.java
defect-resolution-time-chart.js
DefectResolutionTimeReportResource.java
chart.js
ComponentWiselssueReport.java
ChangeHistoryTableImpl.java

Table: Defect hit rate by defect types for project X

file cache size $= 20$, and slope $= 12$		
Defect type (keyword)	Files	Defect hit rate
All defects	1375	30.66%
layout	17	100.00%
string	9	100.00%
javascript	15	100.00%
reproduce	17	100.00%
message	35	95.61%
configuration	16	100.00%
display	65	90.60%
panel	42	90.08%
dialog	51	86.23%
report	56	91.10%

Figure: Defect hit rate with different file cache size and slope =12 for project X_{\odot}

T. C. Lee (EPFL) Defects A & P September 11, 2013 13 / 18

Project	Description	PL	Defects	Commits
Project X	a JIRA server extension	Java	423	3235
Project Y	Gas ignition controls	С	300	2977

Table: Fraction of defects by defect types for project Y (total 300 defects)

Defect type (keyword)	Fraction of defects
print	0.33%
string	1.00%
memory	1.67%
fan	2.67%
cool	3.00%
power	5.67%
lock	6.33%
circulator	7.00%
alarm	11.67%
heat	22.33%
Unindexed defects	38.33%

Table: Fraction80Metric by defect types for project Y

Defect type (keyword)	Number of files	Fraction80Metric
All defects	2736	7.27%
string	25	56.00%
fan	30	73.33%
cool	50	64.00%
power	18	33.33%
lock	53	52.83%
circulator	76	44.74%
alarm	64	34.38%
heat	104	55.77%

Table: Top-10 hot files for project Y

application.c
ign_interface.c
osdata.h
IgnSupport.c
RN_ObjectProc.c
LED_UserInterface.c
error.c
appscheduler.c
ModelDataCheck.c
RN_FaultsSetup.h

Table: Defect hit rate by defect types for project Y

file cache size $= 20$, and slope $= 12$			
Defect type (keyword)	Files	Defect hit rate	
All defects	1375	22.37%	
string	25	88.25%	
memory	3	100.00%	
fan	30	86.59%	
cool	50	90.04%	
power	18	100.00%	
lock	53	85.79%	
circulator	76	81.32%	
alarm	64	87.78%	
heat	104	69.71%	

Figure: Defect hit rate with different file cache size and slope =12 for project Y_{\sim}

T. C. Lee (EPFL) Defects A & P September 11, 2013 14 / 18

Discussion

What are the defect types? Infer them by keywords.

Project	Defect types (keywords)
Project X	layout, string, javascript, reproduce, message, configuration, display, panel, dialog, report, <10% non-functional defects indexed, 27% defects unindexed.
Project Y	print, string, memory, fan, cool, power, lock, circulator, alarm, heat, <10% non-functional defects indexed, 38% defects unindexed.

Discussion

Do defects cluster in files? YES!

Project	Defect clustering
Project X	For all defect types 20%-50% of files contained more than 80% of defects.
	contained more than 80% of defects.
Project Y	For most defect types 20%-50% of
	For most defect types 20%-50% of files contained more than 80% of de-
	fects.

Discussion

What are the top files to review?

Table: Top files to review for projects X and Y

Project	Hot files of defects
	atlassian-plugin.xml
	ContourProjectManagerImpl.java
Project X	component-wise-issue-chart.js
	changeHistory.js
	ComponentWiselssueReportResource.java
	application.c
	ign_interface.c
Project Y	osdata.h
	IgnSupport.c
	RN_ObjectProc.c

Methodology of indexing defects by keywords

New approach to defect classification

Methodology of indexing defects by keywords

- New approach to defect classification
- Scales to large dataset

Methodology of indexing defects by keywords

- New approach to defect classification
- Scales to large dataset
- Applies to diversified projects (PLs, applications)

Methodology of indexing defects by keywords

- New approach to defect classification
- Scales to large dataset
- Applies to diversified projects (PLs, applications)

Applications of indexing defects by keywords

Effective inference of a wide range of defect types

Methodology of indexing defects by keywords

- New approach to defect classification
- Scales to large dataset
- Applies to diversified projects (PLs, applications)

Applications of indexing defects by keywords

- Effective inference of a wide range of defect types
- Type-based clustering analysis of defects

Methodology of indexing defects by keywords

- New approach to defect classification
- Scales to large dataset
- Applies to diversified projects (PLs, applications)

Applications of indexing defects by keywords

- Effective inference of a wide range of defect types
- Type-based clustering analysis of defects
- Type-based prediction of the hot files of defects

Advanced indexing techniques

• Dictionary-based, semantics-aware indexing?

T. C. Lee (EPFL)

Advanced indexing techniques

- Dictionary-based, semantics-aware indexing?
- How to integrate user tagging?

Advanced indexing techniques

- Dictionary-based, semantics-aware indexing?
- How to integrate user tagging?

Towards dynamic defect analysis

• Would the dominant defect type vary through time?

Advanced indexing techniques

- Dictionary-based, semantics-aware indexing?
- How to integrate user tagging?

Towards dynamic defect analysis

- Would the dominant defect type vary through time?
- What would be the implications of defect evolution to testing?

Advanced indexing techniques

- Dictionary-based, semantics-aware indexing?
- How to integrate user tagging?

Towards dynamic defect analysis

- Would the dominant defect type vary through time?
- What would be the implications of defect evolution to testing?

Integrating defect data online: JIRA plugin

• How to optimize the performance of the tool?

Advanced indexing techniques

- Dictionary-based, semantics-aware indexing?
- How to integrate user tagging?

Towards dynamic defect analysis

- Would the dominant defect type vary through time?
- What would be the implications of defect evolution to testing?

Integrating defect data online: JIRA plugin

- How to optimize the performance of the tool?
- How to collect more complete defect dataset?

Thank you, questions please.

 $\{tao.lee\}@epfl.ch$

