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Abstract

The long term optimization of a district energy system is a computation-
ally demanding task due to the large number of data points representing the
energy demand profiles.

In order to reduce the number of data points and therefore the compu-
tational load of the optimization model, this paper presents a systematic
procedure to reduce a complete data set of the energy demand profiles into
a limited number of typical periods, which adequately preserve significant
characteristics of the yearly profiles. The proposed method is based on the
use of a k-means clustering algorithm assisted by an ✏-constraints optimiza-
tion technique. The proposed typical periods allow us to achieve the accurate
representation of the yearly consumption profiles, while significantly reducing
the number of data points.

The work goes one step further by breaking up each representative pe-
riod into a smaller number of segments. This has the advantage of further
reducing the complexity of the problem while respecting peak demands in
order to properly size the system.
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Two case studies are discussed to demonstrate the proposed method.
The results illustrate that a limited number of typical periods is su�cient to
accurately represent an entire equipments’ lifetime.

Keywords: Typical periods, District energy systems, Mixed Integer Linear
Programming, Evolutionary algorithm, Multi-objective optimization,
Cluster analysis, k �means algorithm

1. Introduction

Multi period mixed integer linear programming (MILP) is an e↵ective
method for designing distributed energy systems [1, 2]. It provides guidance
for choosing optimal system configurations for minimizing costs and environ-
mental impacts. The evaluation of the district energy system performance
requires the estimation of the investment and of the corresponding operat-
ing costs. The calculation of the operating costs should consider the hourly,
daily and seasonal variations of energy demand and the contribution of each
production unit. It is therefore necessary to extend the optimization to the
multi-period model. Due to the high number of variables, such a detailed de-
scription of the system requires excessive computational resources for solving
the MILP optimization model.

Using the typical periods provides an e�cient alternative for reducing the
number of variables. The notion of the limited typical periods relies upon
the assumption that a year can be accurately represented by a limited set of
periods. The term period describes a portion of time of a certain duration. It
can be a set of days, weeks, working days or weekends, defined by a sequence
of time steps, over the life time of the equipment.

The problem of selecting typical operating periods based on the energy
demand variations has been approached in di↵erent ways. Maréchal et al. [3]
proposed an evolutionary algorithm optimization approach to select typical
production scenarios for an industrial cluster. Ortiga et al. [4] developed a
graphical method to select a reduced number of periods that reproduce the
heating and cooling load duration curves. Lozano et al. [5] reduced the yearly
demand profiles to 24 days by defining two typical periods for each month,
one using averaged data for a working day and the other using averaged data
of weekends. Casini et al. [6] used 3 typical periods for the thermal demands,
one per season (winter, summer and intermediary) and 24 typical periods for
electricity sold to the grid. Mavrotas et al. [7] used 12 typical periods, using
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monthly averages. Balachandra and Chandru [8] proposed 9 representative
daily load curves for electricity demand. Initially they grouped 365 days ac-
cording to the 12 months of the year and then used discriminant analyses to
regroup the data into 9 typical periods. Dominguez et al. [9] used a partition-
ing k-medoids method and MILP model for selecting N

k

representative days.
The number of typical periods N

k

is selected by the user and therefore not
optimized in their method. They defined n⇥ (n+ 1) binary variables in the
MILP model, with n the total number of data points of the demand profile.
Due to the large number of integer variables, solving the optimization model
for the lifetime of the equipment becomes a computationally demanding task
with a high resolution time. Marton et al. [11] also proposed an order-specific
clustering algorithm for selecting the typical periods for electricity demand.

In this paper, a new method is developed to select the typical periods from
the multiple time-dependent demand profiles. The method selects these pe-
riods by applying the partitioning k-means clustering method [10] and the
✏-constraints known as a parametric optimization [12]. The goal is to min-
imize the number of typical periods and maximize their quality simultane-
ously. The yearly profiles are grouped into N

k

clusters. The closest period
to the center of each cluster is considered to be the typical period for repre-
senting the cluster. Extreme demand days are afterwards superimposed as
insulated clusters. They are used to size the system properly. We go further
by breaking up each representative period into a smaller number of segments.

The proposed method ensures that the selected typical periods accurately
represent the important characteristics of the original data, namely the profile
trends and peak demands. However, the k-means clustering method does
not guarantee finding the global optimal point. To overcome this issue, five
performance indicators, representing five ✏-constraints, are proposed in order
to guarantee reaching a local optimal with an acceptable quality.

The novelty of this work lies in the selection of the typical periods based
on the clustering method and the ✏-constraints optimization technique. The
developed method converges very quickly, a major advantage compared to
other techniques.

2. Typical operating periods

A mixed integer linear model (MILP) is developed by [1] for optimiz-
ing the design and the operating strategy of a district energy system. Due
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to the stochastic variation of the hourly demand profile, a multi-period ap-
proach is needed. However, the hourly profile with 8760 time steps makes
the optimization model di�cult to solve.

One way to reduce the size of the energy system optimization model is to
represent the yearly profile using a limited set of typical periods. It provides
an e�cient alternative to reduce the number of variables and the size of the
optimization model. The centroid clustering algorithm is used in the present
work for selecting the typical periods.

2.1. Centroid clustering algorithm: k-means

Clustering is an unsupervised classification of patterns (observations, data
items, or feature vectors) into groups (clusters) [14]. Reflecting the high
interest of clustering in data analysis, many algorithms can be found in the
literature [15]. All these algorithms basically derive from two approaches;
hierarchical and partitional approaches [16]. Hierarchical methods produce
a nested series of partitions while partitional methods produce only one [14].

In this work the k-means partitioning algorithm is used to define the
typical periods. The first researcher who proposed explicitly the k-means

algorithm in the multidimensional case was Steinhaus in 1956 [17]. Alterna-
tively, other authors (i.e. [18] and [19]) working in di↵erent fields also pro-
posed their own versions of the algorithm. Even though k-means was first
proposed over 50 years ago, it is still one of the most widely used algorithms
for clustering [20].

k-means is a greedy optimization algorithm, which minimizes the squared
error over all N

k

clusters (Eq.1):

min

"
N

kX

k=1

N

iX

i=1

d(µ̂
k

, x̂
i

)⇥ z
i,k

#
(1)

N

kX

k=1

z
i,k

= 1, 8i (2)

d(µ̂
k

, x̂
i

) =
N

aX

a=1

N

gX

g=1

(µ̂
k,a,g

� x̂
i,a,g

)2 8k, i (3)

x̂
i,a,g

=
x
i,a,g

max{x
i,a,g

8i 2 {1, ..., N
i

}, 8g 2 {1, ..., N
g

}} 8i, a, g (4)
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X = {x
i,a,g

} (i 2 {1, ..., N
i

}, a 2 {1, ..., N
a

}, g 2 {1, ..., N
g

}) is a set
of N

i

independent observations, such as 365 days of a year, to be grouped
into a set of N

k

clusters (groups of similar days). N
a

presents the type
of attributes such as heating, cooling and electricity loads. N

g

refers to
the number of values (measurements) for each type of attribute (i.e. N

g

=
24 for hourly measurements in a day). The number of measurements, N

g

,
should be the same for all types of attributes. For instance, if the solar
irradiation is measured every 15 minutes, while only hourly values of ambient
temperatures are available, then the solar irradiation should be summarized
into the equivalent hourly data. In Eq.1, the normalized value of the original
observation is denoted by x̂ (Eq.4), µ̂

k

refers to the center of each cluster for
the normalized data, while µ

k

denotes the center, which is transformed to the
original scale of observations. A binary variable z

i,k

is equal to 1 if and only
if observation x̂

i

is assigned to the cluster k. Each observation is assigned to
only one cluster (Eq.2). d(µ̂

k

, x̂
i

) is a distance between observation x̂
i

and
the center of cluster µ̂

k

. The most common choice is to consider the squared
euclidean distance (Eq.3).
The k-means algorithm takes the following steps:

1. Choose (randomly or not) N
k

cluster centres;
2. Assign each observation to the closest cluster centre;
3. Recompute the cluster centres using the current cluster memberships

(by simply calculating the mean).
4. If a convergence criterion is not met, go to step 2. Convergence criteria

can be:

• Relative: no (or minimal) reassignment of patterns to new cluster
centers,

• Absolute: minimal decrease in squared error,

• Practical: maximal number of evaluations.

2.1.1. Determining the optimal number of cluster

The k-means algorithm requires two user-specified parameters: firstly the
cluster initialization or starting point (v), and secondly the number of clusters
(N

k

).
The result of the k-means clustering depends on the starting point (v),

which relates to the non-deterministic character of the algorithm. One way
to overcome this issue is to run the algorithm several times with di↵erent
random starting points (i.e. v 2 {1, ..., V

max

}).
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Various authors have proposed heuristics or statistical measures to set the
optimal value of N

k

(i.e. [21–23]). The general approach is to run k-means

for a wide range of values of N
k

2 {1, ..., N
max

} and to decide, based on some
statistical measures and on domain expertise, which number of cluster works
best.

In this study, the optimal number of clusters is assessed using three mea-
sures (Eq.5):

N⇤
k

: [min{C(v⇤
N

k

), 8N
k

}, max{D(v⇤
N

k

), 8N
k

}, min{ESE(v⇤
N

k

), 8N
k

}] (5)

Subject to:

k-means : min[

N

kX

k=1

N

iX

i=1

(

N

aX

a=1

N

gX

g=1

(µ̂v

k,a,g

� x̂
i,a,g

)2)⇥ zv
i,k

], (6)

8v 2 {1, ..., V
max

}, 8N
k

2 {1, ..., N
max

}
where;

C(v⇤
N

k

) = min{C(v
N

k

), 8v} 8N
k

2 {1, ..., N
max

} (7)

D(v⇤
N

k

) = max{D(v
N

k

), 8v} 8N
k

2 {1, ..., N
max

} (8)

ESE(v⇤
N

k

) = min{ESE(v
N

k

), 8v} 8N
k

2 {1, ..., N
max

} (9)

C(v
N

k

) denotes the average squared error, which evaluates the compact char-
acter of the clusters (the average intra-cluster distance);

C(v
N

k

) =
1

N
k

N

kX

k=1

N

iX

i=1

z
v,i,k

⇥ d
v

(µ̂
k

, x̂
i

), 8v,N
k

(10)

D(v
N

k

) is the average inter-cluster distance, which evaluates the separation
between the clusters;

D(v
N

k

) =
1

N2
k

N

kX

k=1

N

kX

j=1

d
v

(µ̂
k

, µ̂
j

), 8v,N
k

(11)

ESE(v
N

k

) is the statistical measure (Eq.12) proposed by [24], which eval-
uates the ratio of observed to the expected squared errors for N

k

clusters.
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The expected squared error is calculated by considering the squared error
obtained with N

k

� 1 clusters, under the assumption that the patterns have
a uniform distribution. Obtaining a low value for the ratio means that the
clustering obtained with N

k

clusters is better defined than that obtained
with N

k

� 1 clusters. The measure is normalized, so that the values of k
that yield small ESE(v

N

k

) can be regarded as giving well-defined clusters,
independently from the value of N

k

[24].

ESE(v
N

k

)=

8
>><

>>:

1 if N
k

= 1, 8v
N

k

⇥C(v
N

k

)

↵

N

k

⇥(N
k

�1)⇥C(v
N

k

�1)
if C(v

N

k

�1) 6= 0, 8N
k

> 1, 8v

1 if C(v
N

k

�1) = 0, 8N
k

> 1, 8v
(12)

↵
N

k

=

8
<

:
1� 3

4⇥N

a

⇥N

g

if N
k

= 2 & N
a

⇥N
g

> 1

↵
N

k

�1 +
1�↵

N

k

�1

6 if N
k

> 2 & N
a

⇥N
g

> 1
(13)

N
a

⇥N
g

is the number of data set attributes and ↵
N

k

is the weight factor.
According to Eq.5, the best value for the number of clusters (N⇤

k

) should
yield; a low value for the average intra-clusters distance (C(v⇤

N

k

)), a high
value for the average inter-clusters distance (D(v⇤

N

k

)), and a low value for
the ESE(v⇤

N

k

) measure. It can be expressed by Eq.14 and Eq.15;

N⇤
k

: R(N⇤
k

) = min{R(N
k

), 8N
k

} (14)

R(N
k

) = max{R
C

(v⇤
N

k

), R
D

(v⇤
N

k

), R
ESE

(v⇤
N

k

)} 8N
k

(15)

In Eq.15, R
C

(v⇤
N

k

) is the rank of N
k

clusters in the ascending order set of
C(v⇤

N

k

), R
D

(v⇤
N

k

) is the rank of N
k

clusters in the descending order set of
D(v⇤

N

k

), R
ESE

(v⇤
N

k

) denotes the rank of N
k

clusters in the ascending order
set of ESE(v⇤

N

k

), and R(N
k

) refers to the rank of N
k

clusters. The N
k

with
the minimum rank (Eq.14) is chosen as the best option (N⇤

k

).

2.2. Typical periods’ selection algorithm

The aim of the developed model is to minimize the number of typical
periods and maximize their quality, which can be defined as a multi-objective
optimization model (Eq.16).
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min
µ

k

,z

i,k

{Nk} max
µ

k

,z

i,k

{Quality} (16)

Subject to:

k-means : min
hP

N

k

k=1

P
N

i

i=1 d(µ̂k

, x̂
i

)⇥ z
i,k

i

Where Nk is the number of the typical periods, and the Quality is mea-
sured by using the following five performance indicators;

Profile deviation �a

profile,N

k

: studies the accuracy of the original and
typical period profiles compared to their averages (Eq.17). It is defined for
each type of attribute such as hourly heating, cooling and electricity loads.

�a

profile,N

k

= [
1

N
i

⇥N
g

N

kX

k=1

N

iX

i=1

N

gX

g=1

z
i,k

⇥[
(x

i,a,g

� x̄
i,a

)� (µ
k,a,g

� µ̄
k,a

)

x̄
a

]2]
1
2 , 8a

(17)
µ̄
k,a

(Eq.18) is the average value of the typical periods, x̄
i,a

(Eq.19) is the
average value of the ith original observation, and x̄

a

(Eq.20) is the average
value for the entire original observations.

µ̄
k,a

=
1

N
g

N

gX

g=1

µ
k,a,g

8a, k (18)

x̄
i,a

=
1

N
g

N

gX

g=1

x
i,a,g

8a, i (19)

x̄
a

=
1

N
i

⇥N
g

N

iX

i=1

N

gX

g=1

x
i,a,g

8a (20)

Deviation from the load duration curve of the average values of

each period �a

cdc,N

k

: compares the average values of the original observation
and the typical periods for each type of attributes (Eq.21).

�a

cdc,N

k

=

"
1

N
i

N

kX

k=1

N

iX

i=1

z
i,k

⇥ (
x̄
i,a

� µ̄
k,a

x̄
i,a

)2
# 1

2

, 8a (21)

Error in load duration curve deviation ELDCa

N

k

of attribute a [9]:
refers to the absolute deviation between the original and equivalent load
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duration curve for all data points (Eq.22), where LDCa

o

is created by sorting
the original load profiles in a descending order. LDCa

e,N

k

is the load duration
curve built with N

k

typical periods for attribute a, and p = 1, ..., N
g

⇥N
i

is
the number of data points with attribute a.

ELDCa

N

k

=

P
N

i

⇥N

g

p=1 |LDCa

o

(p)� LDCa

e,N

k

(p)|
P

N

i

⇥N

g

p=1 LDCa

o

(p)
8a (22)

Maximum load duration curve di↵erence �a

LDC,N

k

: The extreme
values of the LDCa are very important for sizing the urban system. This
indicator describes the relative di↵erence in maximum loads between the
original and the typical periods (Eq.23):

�a

LDC,N

k

=
max(LDCa

o

(p))�max(LDCa

e,N

k

(p))

max(LDCa

o

(p))
8a (23)

Number of periods whose relative error is higher than � (�a

prod,�,N

k

):
corresponds to the number of periods where the total equivalent load during
a period is higher or lower than the original value, by a margin of � (defined
by users as an assumption) (Eq.25).

�a

prod,�,N

k

=
N

iX

i=1

N

kX

k=1

y
i

k

,a

8a (24)

where:

y
i

k

,a

=

8
<

:
1 if

P
N

g

g=1
z

i,k

⇥|x
i,a,g

�µ

k,a,g

|
x

i,a,g

> � 8a, i, k

0 otherwise

(25)

The multi-objective optimization problem (Eq.16) is solved by applying the
✏-constraints concept [12]. The application of the ✏-constraints algorithm for
multi-objective optimization of urban energy systems has been reviewed in
[13]. The second objective, max {Quality}, is therefore defined as a set of
constraints with an upper limit of ✏a

j

. The auxiliary model of Eq.16 is ex-
pressed as Eq. 26:
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min
µ

k

,z

i,k

{Nk} (26)

Subject to:

k-means : min
hP

N

k

k=1

P
N

i

i=1 d(µ̂k

, x̂
i

)⇥ z
i,k

i

�a

profile,N

k

6 ✏a1 8a
�a

cdc,N

k

6 ✏a2 8a
ELDCa

N

k

6 ✏a3 8a
�a

LDC,N

k

6 ✏a4 8a
�a

prod,�,N

k

6 ✏a5 8a

The proposed algorithm proceeds as follows:

• Step 1: Break down the energy profile into N
i

observations made up of
N

a

attributes with N
g

values.

x̂
i,a,g

1  i  N
i

1  a  N
a

1  g  N
g

(27)

• Step 2: Set constraints on the maximum allowable values of the per-
formance indicators (✏a

j

) and apply the k-means algorithm for selecting
N⇤

k

periods. This step should be repeated with several random starting
points as long as the constraints are not met. If this step does not con-
verge into a feasible solution after V

max

evaluations (i.e. V
max

= 1000),
it implies that the constraints set on the performance indicators are
too constraining and they should either be relaxed by the user or the
number of typical periods should be increased. Finally the result will
be µ⇤

k

typical periods.

• Step 3: If the optimal number of periods, N⇤
k

, and the indicators’
threshold, ✏a

j

, are not known, run k-means for values ofN
k

2 {1, ..., N
max

},
with v 2 {1, ..., V

max

} random starting points (i.e. V
max

= 1000, N
max

=
20). The k-means clustering is very quick and running it with 1000 ran-
dom initial points takes a matter of minutes.

• Step 4: Calculate the values of performance indicators, ESE(v
N

k

) mea-
sure, the average intra-clusters distance (C(v

N

k

)) and the average inter-
clusters distance (D(v

N

k

)) for N
k

2 {1, ..., N
max

} and v 2 {1, ..., V
max}

evaluations.
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• Step 5: Draw the Pareto frontier of each performance indicator (the
smallest value of the indicators over the V

max

evaluations) and select
the minimum accepted number of clusters N 0

k

, for which the indicators’
improvement on the Pareto frontier from N 0

k

to N 0
k

+ 1 is less than ⇠
(e.g. ⇠ = 20%) (Eq.28). This implies that by increasing the number
of clusters from N 0

k

to N 0
k

+ 1 the improvement of the quality of the
typical periods is not significant. N 0

k

is the minimum accepted number
of clusters and not necessarily the best one.

minN 0
k

(28)

Where:

|
�

a

profile,N

0
k

��

a

profile,N

0
k

+1

�

a

profile,N

0
k

| 6 0.2 8a

|
�

a

cdc,N

0
k

��

a

cdc,N

0
k

+1

�

a

cdc,N

0
k

| 6 0.2 8a

|
ELDC

a

N

0
k

�ELDC

a

N

0
k

+1

ELDC

a

N

0
k

| 6 0.2 8a

|
�a

LDC,N

0
k

��a

LDC,N

0
k

+1

�a

LDC,N

0
k

| 6 0.2 8a

|
�a

prod,�,N

0
k

��a

prod,�,N

0
k

+1

�a

prod,�,N

0
k

| 6 0.2 8a

• Step 6: Select the best typical periods taking into account N 0
k

selected
in step 5 (µ⇤

k

for k 2 {1, ..., N⇤
k

} in which N⇤
k

> N 0
k

) and the EES, intra
and inter clusters distances (Section 2.1.1) as illustrated in Eq.5.

• Step 7: Once µ⇤
k

typical periods have been selected, add extreme typical
period corresponding to the period of the year where the attribute ”a”
was highest (�a

prod,�,N

⇤
k

= 0). This extreme value ensures that the
system can be properly sized. The existing typical periods index is
modified so as to not take the extreme period into consideration twice.

• Step 8: Break up each representative period into a smaller number of
segments, allowing for a further minimization of the data to be handled
(Section 2.3).

Figure 1 illustrates the developed algorithm for selecting the typical periods.

11



Chapter 5. Selection of typical operating periods

constraints with an upper limit of �a
j . The auxiliary model of Eq.5.12 is expressed as Eq. 5.22:

min
µk ,zi ,k

{Nk} (5.22)

Subject to:

k-means : min
��Nk

k=1

�Ni
i=1 d(µ̂k , x̂i )� zi ,k

�

�a
pr o f i l e,Nk

� �a
1 �a

�a
cdc,Nk

� �a
2 �a

ELDC a
Nk

� �a
3 �a

�a
LDC ,Nk

� �a
4 �a

�a
pr od ,�,Nk

� �a
5 �a

Figure 5.2 shows the developed algorithm for selecting typical periods. The algorithm proceeds
as follows:

• Step 1: Break down the energy profile into Ni observations made up of Na attributes
with Ng (a) values.

x̂i ,a,g 1 � i � Ni 1 � a � Na 1 � g � Ng (a) (5.23)

• Step 2: Set constraints on the maximum allowable values of the performance indicators
(�a

j ) and apply k-means algorithm for selecting N�
k periods. This step should be repeated

with several random starting points as long as the constraints are not met. If this step
does not converge into a feasible solution after Vmax iterations (i.e. Vmax = 1000), it
implies that the constraints set on the performance indicators are too constraining and
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starting points (i.e. Vmax = 1000, Nmax = 20). The k-means clustering is very quick and
running it with 1000 random initial points is a matter of minutes.

• Step 4: Calculate values of performance indicators, expected squared error (ESE v
Nk

),
average intra-clusters distance (C v (Nk )) and average inter-clusters distance (Dv (Nk ))
for Nk � {1, ..., Nmax } and v � {1, ...,Vmax} iterations.

• Step 5: Draw the Pareto frontier of each performance indicator and select the minimum
accepted number of clusters N �

k , for which the indicators’ improvement on the Pareto
frontier from N �

k to N �
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Figure 1: Illustration of the typical periods selection strategy

2.3. Segmented typical periods

Similarly to the typical periods algorithm, segmented periods are created
with the help of the k-means clustering algorithm, with a performance indica-
tor set as an additional constraint. Extreme values for each typical periods
are always considered as a segment. Figure 2 presents an example of the
segmented typical periods with 24 time steps.

The performance indicator (�a

sum,k,N

s

k

) is defined as the maximum tol-

erated di↵erence in total values of each type of attributes (i.e. total heat
demands, total electricity consumptions, total solar irradiations) during each
typical period, and is set as an additional constraint. The best number of
segments, N

s

⇤
k

, is not necessarily the same for all typical periods.
The k-means method is called to identify N

s

⇤
k

segments for each typical
period k. As long as each segmented typical period does not respect the
constraint, the clustering algorithm is called upon again with a new random
starting point.
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Figure 2: Segmented typical periods

Extreme values are then forced into the segments. Therefore, the end
result is the segmented typical periods (h

k,a,N

s

⇤
k

+1), made up of N⇤
k

typical

periods with N
s

⇤
k

+ 1 segments.
The performance indicator, which is here the maximum tolerated di↵er-

ence in the total demand during each period (�a

sum,k,N

s

k

), is expressed as

follows (Eq.29):

�a

sum,k,N

s

k

=
|
P

N

g

g=1 µ
⇤
k,a,g

�
P

N

s

k

s

k

=1 dk,s
k

⇥ h
k,a,s

k

|
P

N

g

g=1 µ
⇤
k,a,g

8a, k 2 {1, ..., N⇤
k

} (29)

d
k,s

k

represents the duration (number of time step) of each segment, and
h
k,a,s

k

refers to the value of segment s
k

in typical day k for attribute a (seg-
mented typical periods).

If the best number of segments (N
s

⇤
k

) and the indicator’s threshold (�a

sum,k,N

s

k

)
are not known, the following steps are proposed to optimize the segmented
typical periods;

• Step 1: Run k-means for values ofN
s

k

2 {1, ..., N
g

}, with v0 2 {1, ..., V 0
max

}
random starting points and calculate �a

sum,k,N

s

k

for each starting point.
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• Step 2: Draw the Pareto frontier of �a

sum,k,N

s

k

and select the minimum
accepted number of segmentsN

s

0
k

, for which the indicator’ improvement
on the Pareto frontier from N

s

0
k

to N
s

0
k

+ 1 is less than 20% (Eq.30).

minN
s

0
k

, 8k (30)

Where:

|
�a

sum,k,N

s

0
k

��a

sum,k,N

s

0
k

+1

�a

sum,k,N

s

0
k

| 6 0.2 8a, k

• Step 3: Select the best segmented typical period taking into account
N

s

0
k

(N
s

⇤
k

> N
s

0
k

) selected in step 2, the ESE, inter and intra clusters
distances (Section 2.1.1).

• Step 4: Once segmented typical periods have been selected, extreme
values are then forced into the segments, thereby adding one more
segment to the segmented typical periods

• Step 5: Repeat steps 1 to 4 for 8k 2 {2, ..., N⇤
k

} to calculate the seg-
ments of each typical period k.

The results of the algorithm may not always converge to the desired sequen-
tial segments. In order to reach sequential time steps, the proposed algorithm
can be modified by considering the method developed by Balachandra and
Chandru [8].

3. Illustrative examples

Two test cases are discussed to demonstrate the proposed method. The
first case is a full-scale problem with a 23 years time horizon for supplying
the heating demand of a district. The second case study aims to illustrate
the proposed method by considering four type of attributes; the hourly solar
irradiation, the electricity price, the heating and electricity demand profiles
of a small district.

3.1. Test case 1

The multi-period MINLP optimization model is investigated in [1] in
order to optimize the design and the operating strategy of district energy
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systems. The developed model is decomposed into a master and a slave op-
timizations. The master nonlinear model optimizes the system configuration
and the size of conversion technologies. Meanwhile, the slave multi-period
mixed integer linear model calculates the best operating schedule of selected
conversion technologies.

The test case presented in [1] is used to illustrate the application of the
typical periods selection method. The goal is to optimize the operating strat-
egy of the fixed system configuration, in such a way as to supply the heating
requirement of the urban area with optimal operating costs. The average
annual heat demand is equal to 2100 GWh. In order to do so the slave
multi-period MILP optimization model is applied [1]. The available conver-
sion technologies are an incinerator with 160 MW

th

, a 100 MW
th

biomass
boiler and a 130 MW

th

coal boiler. In addition a natural gas boiler has to be
sized to supply the peak loads. All units are assumed to be able to operate
at any time with no limit on the availability of resources (Table 1).

Table 1: CO2 intensity and price of available resources

Resources 4CO2: Price: [25]
[kg/MJ ] [e/MJ ]:

Electricity 0.3071 [26] 0.0198
Natural Gas 0.0641 0.0105
Coal 0.0852 0.0030
Biomass 0 0.0036

The operating schedule of the system will be optimized by considering
the di↵erent type of typical periods. In order to validate and demonstrate
the proposed typical period selection method, the optimization results will
be compared with a reference case (Section 3.1.4).

In the present work the hourly heating demand profile is estimated using
meteorological data and the heating signature [27]. The heating signature
is a linear model of the thermal power requirements as a function of the
ambient temperature [27].

The ambient temperatures of the last 23 years from 1990 to 2012 are
considered to estimate the hourly heating demand profile of the district (Fig-
ure 3) [27]. The first 20 years with 175200 (20 ⇥ 8760) time steps are used
to select the typical periods, and the last 3 years data, from 2010 to 2012,
are used for validation.
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Form these data, a mean typical year with 8760 time steps is defined by
considering the average values over 20 years (Figure 3).
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Figure 3: The ambient temperatures and estimated heat demands: 20 years and
the mean typical year.

In order to reduce the optimization size, the heating demand data (series
of 175200 values) is compressed to a limited number of typical periods by
applying the following methods;

1. Empirical method: 13 typical periods, one per month as the average
values and one extreme day [7].

2. Proposed k-means clustering method using the mean typical year data.

3. Proposed k-means clustering method using the original 20 years data
equivalent to the lifetime of equipment.

3.1.1. Empirical periods

Figure 4 refers to the mean typical year with N
i

= 365 observations,
heating demand as an attribute (N

a

= 1), 24 values for each observation
(N

g

= 24), and selected empirical periods with 312 (13⇥24) total time steps.

The five performance indicators proposed in Section 2.2 are used to cal-
culate the qualities of the empirical periods for representing the original 20
years data as well as the mean typical year (Table 2). The e↵ects of the
empirical periods accuracy on the optimization results will be studied in
Section 3.1.4.
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Figure 4: The empirical typical periods and the mean typical year heating
demand.

Table 2: The qualities of the empirical periods compare to the original 20 years
data, as well as the mean typical year data.

Quality The empirical periods and The empirical periods and

indicators the mean typical year data the original 20 years data

�
cdc

0.071 0.173
�
profile

0.059 0.117
ELDC 0.056 0.153
�

LDC

0 0
�

prod,0.07 113 4983

3.1.2. Proposed k-means clustering approach using the mean typical year data

In order to select the best representative typical periods from the mean
typical year data, the proposed method in Section 2.2 is applied by consid-
ering N

k

2 {1, ..., 15} and V
max

= 1000 random starting points.
According to Eq.5 and Eq.26, the best number of typical periods is chosen

by considering the values of the intra and inter clusters distances, ESE and
the Pareto frontiers of the five performance indicators (Figures 5 and 6).

Figure 5 indicates that forN
k

> 5 the values of the performance indicators
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become constant and the relative di↵erences between N
k

and N
k

+1 are less
than 0.2. The relative di↵erences become close to zero by increasing the
number of periods to N

k

= 15. However, this leads to an increased size of
the optimization model. A compromise between the optimization size and the
quality of the typical periods is necessary. Therefore, the minimum accepted
number of clusters is equal to 5 (N 0

k

= 5). The highest values of the average
inter-clusters distance are obtained by N

k

= 6 and 15 periods (Figure 6). The
lowest ESE values are obtained for N

k

= 2, N
k

= 6 and N
k

= 14 periods,
and for more than 6 clusters the average intra-clusters distance tends towards
zero (Figure 6). As a result, 6 periods plus one extreme period, are chosen
as the best and qualified number of the typical periods (N⇤

k

= 7).
We go further by breaking up the 24 time steps of each representative pe-

riod into smaller segments. The algorithm proposed in Section 2.3 is applied.
The results indicate the optimal number of segments for the selected typical
periods is equal to N

s

⇤
k

= 5 for 8k 2 {2, ..., 7} and N
s

⇤
k

= 4 segments for the
summer period (k = 1). Figure 7 illustrates how the mean typical year can
be split up into its respective 7 typical periods with total 34 (6⇥ 5+ 4) time
steps. The 5-44% improvements of the quality of the 7 typical periods (see
supplementary Table S1 and Table S2), with respect to the load deviation
and variances, illustrates the advantages of the proposed k-means clustering
method.
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Figure 5: Pareto frontiers of typical periods’ normalized performance indicators
using the mean typical year data: Case study 1.

18



0 2 4 6 8 10 12 14 16

0

1

2

3

4

5

6

7

8

9

10x 106

Number of clusters (Nk)

A
ve

ra
ge

 in
tr

a−
cl

us
te

rs
 d

is
ta

nc
e 

(C
* (N

k))

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 105

Number of clusters (Nk)

A
ve

ra
ge

 in
te

r−
cl

us
te

rs
 d

is
ta

nc
e 

(D
* (N

k)

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of clusters (Nk)

ES
E* (N

k)
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Figure 7: The mean typical year heat demand profile with 7 typical periods and
corresponding 34 total time steps.
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3.1.3. Proposed k-means clustering method using the 20 years data

Here, instead of the mean typical year, the heating requirements over 20
years (Figure 3) are used to select typical periods. Table 3 presents the values
of the performance indicators for di↵erent number of typical periods from 5
to 13. The quality of the typical periods are improved by increasing N

k

.
However, the relative improvement for N 0 > 5 is less than 20%. Following
the proposed method, the optimal number of typical periods, N⇤

k

= 7, was
assessed using; Pareto frontiers of performance indicators, inter and intra
cluster distances and ESE.

In Table 4 the column ”Deviation” compares the quality of N⇤
k

=7 typical
periods with corresponding 34 time steps (supplementary Figure S1) and
the empirical periods with 312 (13 ⇥ 24) time steps (Figure 4). The five
indicators present 8-63% higher qualities for N⇤

k

= 7, indicating that the
proposed k-means clustering method provides the better approximation of
the original data.

The qualities of the mean typical year for representing the original 20
years data are summarized in Table 3. Even though the classic mean typical
year contains 8760 time steps, the qualities of the 7 typical periods are 35-
60% higher (supplementary Table S3).

Table 3: The quality indicators of the typical periods using the original 20 years data

No. periods N
k

=5 N⇤
k

=7 N
k

=9 N
k

=11 N
k

=13 The mean typical year
No.time steps 24 34 44 54 64 365 ⇥24

�
cdc

0.096 0.063 0.062 0.058 0.050 0.157
�
profile

0.115 0.108 0.100 0.098 0.096 0.102
ELDC 0.109 0.092 0.087 0.085 0.082 0.141
�

LDC

0 0 0 0 0 0.282
�

prod,0.07 4191 2128 2044 1666 1200 4582

3.1.4. Validation and verification

The illustrative example is studied in order to identify the ability of the
typical periods methodology for identifing an optimal operating strategy of
the energy system. The typical periods selected using 1990 to 2009 data is
applied on a period from 2010 to 2012 (a validation period) and compared
to an accurate reference case. The total fuel consumption and the size of the
peak boiler are considered as indicators to compare the results.
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Table 4: The comparison between the quality of the 13 empirical periods and N⇤
k=7 typical

periods using the original 20 years data.

Indicators N⇤
k=7 13 empirical periods Deviation*

No. time steps 34 312 (13 ⇥24)
�
cdc

0.063 0.173 63%
�
profile

0.108 0.117 8%
ELDC 0.092 0.153 40%
�

LDC

0 0 -
�

prod,0.07 2128 4983 57%
* The relative di↵erences between the 13 empirical periods and 7 typical periods.

The reference case is calculated by applying a single period optimization
model on each time step (3 ⇥ 8760 time steps). The goal is to optimize the
operating schedule of the conversion technologies for supplying the heat de-
mand of the 2010 to 2012 period, using a fixed size of conversion technologies.
The available conversion technologies are an incinerator with 160 MW

th

, a
100 MW

th

biomass boiler and a 130 MW
th

coal boiler.
The results of the reference case indicate 7515 GWh of municipal solid

waste, 663 GWh of biomass, 1992 GWh of coal and 112 GWh of natural
gas consumption. The peak natural gas boiler is set at 175 MW

th

installed
capacity. It is due to the systems’ highest heating demand (565 MW

th

in
2011).

The multi-period operation optimization [1] is applied using the selected
typical periods. Three types of typical periods are considered:

1. 7 typical periods using the 20 years data corresponding to 34 total time
steps

2. 7 segmented typical periods using the mean typical year with 34 total
time steps

3. 13 empirical periods with 13⇥ 24 time steps

The objectives are to optimize the yearly operating strategy of the system
and the size of the peak boiler. The results with regards to the yearly fuel
consumptions and operating costs are multiplied by 3 to compare them to
the 2010 to 2012 reference case (Table 5).

Figure 9 is a visual representation of the deviation between the typical
periods and the original data in 2010. The closeness of the plots to the
original data plot is an indicator of the accuracy of the method under study.
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Table 5: The comparison between the reference case and the optimization results from
2010 to 2012 with regards to the size of the peak boiler, the fuel consumption and the
operating costs.

Ref. 13 Empirical 7 typical periods using

case periods the typical year the 20 years

Municipal waste [GWh] 7415 7570(-2.1%)* 7593(-2.4%) 7489(-1.0%)

Biomass [GWh] 663 638(+3.8%) 654(+1.4%) 659(+0.6%)

Coal [GWh] 1992 2032(-2.0%) 2006(-0.7%) 1989(+0.15%)

Natural gas [GWh] 112 8.9(+92%) 6.72(+94%) 85(+24.0%)

Peak gas boiler [MWth] 175 34(+80%) 34(+80%) 200(-14%)
Under estimated periods** 0 4 4 0

Operating costs [Me] 119.7 117.5(1.8%) 117(2.3%) 119.4(0.2%)

Resolution time [s] 2700 85 23 23

No. constraint 183⇥104 65320 7427 7427

No. variables 152⇥104 54423 6225 6225

No. integer variables 11⇥104 3756 432 432

*The relative di↵erences between the reference case and the typical periods optimization.
**Number of time steps from 2010 to 2012 when the maximum original heat demands
are higher than the maximum typical values.

3.1.5. Discussions

In this case study, the operation optimization of the system was studied
to make precise conclusions on the quality of the typical periods.

Table 6: Performance indicators of the original 3 years data and the typical
periods

13 empirical 7 typical periods using
periods the typical year data the 20 years data

�
cdc

0.103 0.083 0.056
�
profile

0.094 0.090 0.086
ELDC 0.113 0.104 0.092
�

prod,0.07 766 415 285

Table 6 refers to the qualities of the 13 empirical periods, 7 typical periods
selected from the typical year as well as 7 typical periods selected from the
20 years data, for representing the original heating demand profiles of the
2010 to 2012 period.

Even though the 13 empirical periods contain more time steps (13⇥24 =
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Figure 8: The sorted values of the original heat demand profile in 2010 versus the
sorted heat demand profiles of 7 typical periods with 7⇥24 time steps and 7 typical
periods with 34 (6 ⇥ 5 + 4) total time steps resulting from the mean typical year
data. This figure illustrates the deviation between the original heat loads and the
typical periods

312), the qualities of the results, with respect to the heat load deviation and
variances, are higher with 7 typical periods. The 7 typical periods selected
from the original 20 years data presented the most accurate results (Table 6).

With respect to the size of the peak boiler, it was underestimated by both
the empirical periods and the 7 periods selected from the mean typical year.
The obtained size was 80% less than that found by the reference case. This
is explained by the extreme period of 2011, with -10 oC ambient temperature
and 565 MW

th

heat load demand not being represented in the mean typical
year. The frequency of such a high demand is only 4 periods over 3 years
(Table 5), which is not significant. In the optimization with the 7 typical
periods selected using the original 20 years data, the peak boiler capacity is
14% higher compared to the reference case. This is because the heat load of
the extreme periods during the first 20 years is 590 MW

th

, which is not the
case from 2010 to 2012.

With respect to the total fuel consumption and operating costs, the rel-
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ative di↵erences between the reference case and 7 typical periods selected
from 20 years’ heat loads present the least error, especially for biomass and
natural gas consumption (Table 5).

We can sum up that 7 typical periods selected using the 20 years data
give an accurate picture of the system’s operations.

The optimization and reference case resolution times are summarized in
Table 5. The results pointed out that the resolution time increases signifi-
cantly with respect to the time steps of the demand profiles. The optimiza-
tion may reach more accurate results by extending the number of time steps.
With increased accuracy comes increased computational costs, with associ-
ated memory problems and prohibitive resolution time. This is especially
true for solving multi-objective optimizations with a MINLP model. A com-
promise should always be made between the resolution time and the number
of time steps.

3.2. Test case 2

The second test case is proposed to illustrate the application of the typical
periods to the heating demand, electricity demand, electricity price (eex.com)
and solar irradiation data of a district with 30,000 inhabitants. The aim is
to optimize the operating strategy of the fixed system configuration, in such
a way as to supply the energy requirement of the urban area with optimal
operating costs. The data of the last 4 years from 2009 to 2012 are available.
The first 3 years are used to select the typical periods and the last year, 2012,
is used to validate the selected typical periods. The period is defined as a
day with 24 time steps.

The case comprises 5 conversion technologies (Figure 9); a 4 MW
el

gas
turbine, a 6 MW

el

gas engine, a 30 MW
th

biomass boiler, a 35 MW
th

gas
boiler and 50,000 m2 of solar thermal, using economic data from [28]. A
41 MW

th

peak natural gas boiler is sized for the systems highest demand,
present on the extreme day (120 MW heating demand). The possibility also
exists to import electricity from the main grid. The solar thermal plant re-
quires accurate meteorological data to determine the capacity of this technol-
ogy for each given period, reason for which the solar irradiation and ambient
temperatures profiles are also included into the study.

Following the proposed algorithm in section 2.2, for N
k

> 6 the values of
performance indicators become constant and the relative di↵erences between
N

k

and N
k

+1 are close to zero (see supplementary Figure S2). This indicates
that by increasing the number of clusters from N

k

to N
k

+1 the improvement
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Figure 9: Test case 2 - an urban area with 30,000 inhabitants

of the typical periods quality is not significant. As a result, the minimum
accepted number of clusters is equal to 6 (N 0

k

= 6). Based on the values of the
three statistical measures for N

k

ranging from 1 to 15 (supplementary Figure
S3) and according to Eq.14, N

k

= 7 has the lowest value for the average intra-
clusters distance, the highest value for the average inter-clusters distance and
the lowest value for ESE measure.

While electricity can be imported from the main grid, the central plant
must supply all heating requirements, especially in the extreme period with
the maximum heat demand. Therefore, the extreme period with the highest
heat demand is added. To resume, 7 periods plus one extreme period are
chosen as an optimal number of typical periods (N⇤

k

= 8).
We go further by breaking up the time steps of each representative period

into 5 smaller segments (Section 2.3). Figure 10 presents the original data
in 2012 and respective 8 typical periods with total 40 (8 ⇥ 5) time steps.

In order to make a precise conclusion on the quality of the typical periods,
the reference case of 2012 were compared with the typical periods operation
optimization results in terms of the operating cost, fuel consumption and the
heat production of each equipment (Table 7). We investigate the 8 typical
periods with 40 time steps, as well as 8 typical periods with total 192 (8⇥24)
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time steps.
With respect to the heat share and operating costs, the 8 typical periods

with 192 (8⇥ 24) time steps led to the most accurate results, as the relative
error with the reference case shows. A period with the maximum heat de-
mand is presented by all three type of typical periods. However, the total
number of operating hours of the 41 MW

th

peak boiler in 2012 is 36-59%
under estimated by the typical periods (59% by the empirical periods, 36%
by 8 typical periods with 192 time steps, and 52% by 8 typical periods with
35 time steps). Therefore, 28-53% errors in the peak boiler’s heat production
are pointed out in Table 7.

Apart from the peak boiler, the maximum relative di↵erences between the
optimization results of 8 typical periods with 40 time steps and the results of
8 typical periods with 8⇥24 time steps is only 2.2%. However, its resolution
time is 60% less. The optimization may reach more accurate results by
extending the number of time steps but this will increase the computational
costs.

Table 7: Test case 2 - Comparison between the reference case and the typical periods
optimization results in terms of the operating costs and the heat production

Reference Empirical periods 8 periods 8 periods

No. time steps 365⇥24 13⇥24 8⇥24 8⇥5

Solar thermal [GWh] 22.7 25.9 (-14.1%)* 23 (-1.3%)* 23.4 (-3.1%)

Biomass boiler [GWh] 134.8 141.0 (-4.6%) 136.5 (-1.3%) 136.5 (-1.3%)

Gas boiler [GWh] 48.3 36.7 (+24.1%) 46.6 (+3.5%) 46.3 (+4.1%)

Peak boiler [GWh] 3.2 1.5 (+53%) 2.3 (+28%) 1.7 (+46.7%)

Gas engine [GWh] 43.5 48.6 (-11.7%) 44.1 (-1.4%) 45.1 (-3.7%)

Gas turbine [GWh] 37.2 39.6 (-6.4%) 37.8 (-1.6%) 37.8 (-1.6%)

Electricity import [GWh] 57.9 52.0 (+10.2%) 57.1 (+1.4%) 56.2 (+2.9%)

Natural gas fuel [GWh] 232.1 232.8 (-0.3 %) 231.4 (+0.3 %) 232.8 (-0.3 %)

Biomass fuel [GWh] 170 178.5 (-5%) 173 (-1.8%) 173 (-1.8%)

Resolution time [s] 760 64 48 19

Operating costs [Me] 13.9 13.7 (+1.4%) 13.8 (+0.7%) 13.8 (+0.7%)

*The relative di↵erences between the reference case and the typical periods optimization
results
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irradiation with 8 typical periods and 40 time steps in 2012
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4. Conclusions

In the present work, a new method has been developed to select the typ-
ical periods from the multiple time-varying demand profiles. The proposed
method is based on the k-means clustering algorithm. It is developed by
considering five performance indicators as additional constraints to guaran-
tee reaching a qualified local optimal. In addition, three statistical measures
are used for selecting the optimal number of typical periods.

We go further by breaking up the time steps of each representative period
into smaller number of segments, further reducing the problem complexity,
while respecting significant characteristics such as the peak demands and
profile trends. The proposed method can easily be modified to work with
typical weeks and also to accommodate other considerations such as a com-
plex electric tari↵ structure or maintenance periods.

Two test cases are discussed to demonstrate the proposed method. The
results of the first test case illustrate that the whole lifetime of conversion
technologies can be considered for selecting the typical periods, and the pro-
posed method can reduce a complete demand data with 20⇥8760 time steps
into 7 segmented typical periods with total 34 time steps. The second test
case illustrates the advantages of the proposed method for selecting the typ-
ical periods with respect to several attributes such as the hourly heating
profile, the solar irradiation, the electricity demand and the ambient temper-
ature.
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Nomenclature

MILP mixed integer linear programming

C(v
N

k

) the average intra-clusters distance

D(v
N

k

) the average inter-clusters distance

x
i,a,g

observation i with attribute a and measurement g

z
i,k

a binary variable equal to 1 if observation i placed in the typical
period k

x̄
i,a

the average value of observation i with attribute a

µ
k,a,g

the centre of the cluster k

µ̄
k,a

the average value of the typical period k

N
k

the number of the typical periods

N⇤
k

the optimal number of the typical periods

N
s

⇤
k

the best number of segment for the typical period k

d(x
i

, µ
k

) the distance between observation i and the center of the cluster

N
i

the number of the observation

N
a

the number of attributes

v the index for the random starting points

V
max

the maximum number of random starting points

N
g

the number of measurements

LDCa

o

the load duration curve of the original data of attribute a

LDCa

e

the load duration curve of typical periods of attribute a

�a

profile

the profile deviation of attribute a

�a

cdc

the deviation from the load duration curve of the average values of
each period and attribute a

ELDCa the error in load duration curve deviation of attribute a

�a

LDC

the maximum load duration curve deviation of attribute a

�a

prod,�,N

k

Number of periods whose relative error is higher than �

⇠ threshold for performance indicators’ improvement
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�a

sum,k,N

s

k

the maximum tolerated di↵erence in total values of attribute a in
typical period k for N

s

k

number of segment

h
k,a,s

k

the value of segment s
k

in typical period k corresponding to attribute
a

d
k,s

k

the duration (number of time step) in segment s
k
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[3] F. Maréchal, B. Kalitventze↵, Targeting the integration of multi-period
utility systems for site scale process integration, Applied Thermal En-
gineering 23 (2003) 1763 - 1784.

[4] J. Ortiga, J. Bruno, A. Coronas, Selection of typical days for the char-
acterisation of energy demand in cogeneration and trigeneration opti-
misation models for buildings, Energy Conversion and Management 52
(2011) 1934 - 1942.

[5] M. A. Lozano, J. C. Ramos, M. Carvalho, L. M. Serra, Structure opti-
mization of energy supply systems in tertiary sector buildings, Energy
and Buildings 41 (2009) 1063 - 1075.

[6] M. Casisi, P. Pinamonti, M. Reini, Optimal lay-out and operation of
combined heat & power (CHP) distributed generation systems, Energy
34 (2009) 2175 - 2183.

[7] G. Mavrotas, D. Diakoulaki, K. Florios, P. Georgiou, A mathematical
programming framework for energy planning in services’ sector buildings
under uncertainty in load demand: The case of a hospital in Athens,
Energy Policy 36 (2008) 2415 - 2429.

31



[8] P. Balachandra, V. Chandru, Modelling electricity demand with repre-
sentative load curves, Energy 24 (1999) 219 - 230.

[9] F. Domnguez-Muoz, J. M. Cejudo-Lpez, A. Carrillo-Andrs, M. Gallardo-
Salazar, Selection of typical demand days for CHP optimization, Energy
and Buildings 43 (2011) 3036 - 3043.

[10] G.A.F Seber, Multivariate observations, New York: John Wiley & Sons,
(1984).

[11] C.H. Marton, A. Elkamel, T.A. Duever, An order-specific clustering
algorithm for the determination of representative demand curves, Com-
puter and Chemical Engineering 32 (1999) 1373 - 1380.

[12] R.E. Steuer, Multiple criteria optimization: theory computation and
application, Robert E. Krieger Publishing Malabar (Florida) (1989) .

[13] S. Fazlollahi, P. Mandel, G. Becker, F. Maréchal, Methods for multi-
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