000200022 001__ 200022
000200022 005__ 20190416220316.0
000200022 022__ $$a0898-1221
000200022 02470 $$2ISI$$a000373542600001
000200022 0247_ $$a10.1016/j.camwa.2016.01.005$$2doi
000200022 037__ $$aARTICLE
000200022 245__ $$aAnalytic regularity and collocation approximation for elliptic PDEs with Random domain deformations
000200022 269__ $$a2016
000200022 260__ $$c2016
000200022 300__ $$a25
000200022 336__ $$aJournal Articles
000200022 520__ $$aIn this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped onto a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined region in C^N with respect to the random variables. A sparse grid stochastic collocation method is then used to compute the mean and variance of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and compared to those obtained in numerical experiments.
000200022 6531_ $$aUncertainty Quantification
000200022 6531_ $$aStochastic Collocation
000200022 6531_ $$aStochastic PDEs
000200022 6531_ $$aFinite Elements
000200022 6531_ $$aComplex Analysis
000200022 6531_ $$aSmolyak Sparse Grids
000200022 700__ $$aCastrillón-Candás, Julio Enrique
000200022 700__ $$g118353$$aNobile, Fabio$$0241873
000200022 700__ $$aTempone, Raúl
000200022 773__ $$q1173-1197$$k6$$j71$$tComputers and Mathematics with Applications
000200022 787__ $$whttps://infoscience.epfl.ch/record/263217$$eIs New Version Of
000200022 8560_ $$fjulien.junod@epfl.ch
000200022 8564_ $$uhttps://infoscience.epfl.ch/record/200022/files/2016_Castrillon_Nobile_Tempone_CAMWA_RandomDom.pdf$$zPublisher's version$$s915166$$yPublisher's version
000200022 909C0 $$xU12495$$0252411$$pCSQI
000200022 909CO $$ooai:infoscience.tind.io:200022$$qGLOBAL_SET$$pSB$$particle
000200022 917Z8 $$x178574
000200022 917Z8 $$x118353
000200022 917Z8 $$x148230
000200022 937__ $$aEPFL-ARTICLE-200022
000200022 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000200022 980__ $$aARTICLE