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Abstract

An efficient way to increase the aeroelastic stability of a blade-row of low-pressure turbines

is to connect the individual blades to clusters of two or more. As the clustered blade-row

oscillates during operation, complex vibration mode-shapes occur, whose influences on the

aerodynamic stability of the cluster still need detailed investigations and analysis in order to

be fully understood.

This work aims to improve the understanding of cluster configurations in low-pressure tur-

bines influencing the aerodynamic stability of the blade-row, and focuses on:

• The experimental validation of a specific procedure which predicts the aerodynamic

parameters of the individual cluster-blades by using measured aerodynamic single-

blade data as input. The procedure is based on the relationship between the traveling-

wave and the influence coefficient formulation. Single-blade data in the traveling-wave

formulation is used as input for the procedure, which is transformed to influence

coefficients prior to the application of the method. The procedure then applied those

single-blade influence coefficients and included the cluster kinematics when converting

them to the traveling-wave formulation. Thus, the resulting aerodynamic parameters in

the traveling-wave formulation represent those of the cluster-blade.

• The experimental investigation of how different cluster-configurations (grouped blades)

affect the aerodynamic stability compared to the corresponding single-blades (non-

grouped blades).

Measurements have been performed in the non-rotating annular test facility of the Group of

Thermal Turbomachinery (GTT) at the École Polytechnique Fédérale de Lausanne (EPFL). A

turbine cascade composed of 20 blades has been used for the aeroelastic measurements. The

blade excitation mechanism allowing controlled vibrations of each blade vibration system,

enabled the simulation of cluster configurations for traveling-wave mode measurements.

This study presents the measurement results of the aerodynamic response of a cascade oscil-

lating in different cluster configurations. The first cluster investigated was composed of two

blades simulating a welded-in-pair blade connection. This cluster was oscillated in a mode-

shape at which both cluster-blades were moving in-phase. Successively, three oscillation
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Abstract

directions were investigated: torsion, axial- and flap-bending. The second cluster configura-

tion was a four-blade cluster simulating a torsional mode-shape of a cast blade-package. For

comparison, single-blade cases were measured with blade vibration conditions correspond-

ing to the cluster cases. All test cases were performed under almost identical subsonic flow

conditions.

The measurement results revealed that the aforementioned procedure is valid. This could be

confirmed by comparing the predicted results of the procedure with the measured results of

the chord-wise aerodynamic work and the global aerodynamic damping.

The comparisons showed a good agreement for all cluster configurations within the limits

of the experimental measurement accuracy. Small differences between the measured and

predicted results were observed and attributed to small variations in the flow field during the

different measurement campaigns.

For some cluster configurations, the analysis of the experimental results showed that connect-

ing blades into clusters minimizes the aerodynamic work within the inner-cluster channels

and thus, causes an increase of the minimum aerodynamic damping of the cluster-blade

compared to the corresponding single-blade case (two-blade cluster with a torsion oscillation

and the four-blade cluster). For the two-blade cluster with bending oscillation the trend was

observed but could not be definitely validated with the used flow-conditions. Changing the

reference case flow-conditions might yield further conclusions on these cluster cases.

Keywords: aeroelasticity, annular turbine cascade, experimental cluster measurements, single-

blade, grouped-blades, cluster-blade, aerodynamic stability, traveling-wave mode, influence

coefficients, superposition principle, unsteady pressure, time-resolved measurements, aero-

dynamic damping
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Résumé

Une solution efficace pour accroître la stabilité aéroélastique des aubes dans une grille de

turbine basse-pression consiste à assembler les aubes individuelles en groupe d’aubes (clus-

ter). Lors d’éventuelles vibrations, les groupes d’aubes oscillent selon des modes de vibration

plus complexes qui peuvent à leur tour influencer la stabilité aérodynamique de l’aube. Cette

approche nécessite cependant davantage d’investigations et d’analyses pour permettre d’amé-

liorer la compréhension du phénomène.

En ce but, ce travail vise à étudier le comportement de différentes configurations de cluster en

vibration, et leur influence sur la stabilité aérodynamique de l’aube considérée individuelle-

ment. L’analyse porte sur deux aspects majeurs :

• La validation par expérimentation d’une procédure spécifique, qui prédit les paramètres

aérodynamiques de l’aube individuelle au sein du cluster, en utilisant les paramètres

mesurés pour une aube seule (hors cluster, en mode single-blade). La procédure ap-

pliquée pour prédire les paramètres de stabilité aérodynamique d’une aube dans un

cluster est basée sur la relation entre la formulation en onde progressive et la formu-

lation des coefficients d’influence. Comme données de départ, les mesures effectuées

dans la formulation en onde progressive, et pour le cas d’une aube individuelle, ont

été converties dans la formulation de coefficients d’influence. Lors de l’intégration de

ces coefficients dans la formulation d’onde progressive, les schémas cinématiques du

cluster sont ensuite pris en compte. Ceci garantit que les paramètres aérodynamiques

représentent effectivement les aubes individuelles considérées dans le groupe d’aubes.

• L’analyse expérimentale de différentes configurations de cluster, et de leur effet sur la

stabilité aérodynamique, en comparaison à une configuration correspondant à une

aube individuelle.

Les mesures ont été réalisées dans le stand annulaire du Groupe de Turbomachines Ther-

miques (GTT) à l’Ecole Polytechnique Fédérale de Lausanne (EPFL). Une grille de turbine

composée de 20 aubes a été utilisée pour les mesures aéroélastiques. Grâce à un système

d’excitation indépendant pour chaque aube, l’oscillation des aubes a pu être contrôlée séparé-

ment, permettant ainsi de mesurer des configurations de cluster différents, pour des mesures

en mode d’ondes progressives (traveling-wave mode).
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Résumé

Cette étude présente les résultats des mesures de la réponse aérodynamique de la grille

d’aubes oscillante, pour plusieurs configurations de cluster. Le premier groupe analysé se

compose de deux aubes simulant un couplage par soudure. Ce groupe oscille dans un mode

propre pour lequel les deux aubes sont en phase. Trois directions d’oscillations ont été étu-

diées successivement : torsion, flexion axiale, et flexion en plie (flap-bending). La seconde

configuration est un groupe de quatre aubes simulant un mode de torsion pour des aubes

coulées.

En guise de comparaison, des configurations avec aube individuelle ont été mesurées pour

des conditions de vibration identiques. Tous les cas analysés ont été réalisés dans les même

conditions d’écoulement subsoniques.

Les résultats ainsi obtenus permettent de valider la méthode. Les prédictions et l’analyse des

mesures permettent de déterminer puis de comparer le travail aérodynamique le long de la

corde de l’aube et l’amortissement aérodynamique global. Des différences minimes entre les

mesures et les prédictions ont été identifiées : elles sont attribuées aux faibles variations de

l’écoulement durant les différentes campagnes de mesures. D’une façon générale, les compa-

raisons entre les deux approches sont en conformité pour toutes les configurations de cluster

dans la limite de la précision des mesures.

L’analyse des données montre qu’un assemblage d’aubes judicieux peut s’avérer avantageux :

il minimise le travail aérodynamique dans les canaux intérieures au cluster et augmente

l’amortissement aérodynamique minimum comparé au cas de la même aube considérée de

manière individuelle. Cet effet a clairement été identifié pour le cluster de deux aubes et pour

le cluster de quatre aubes en mode de torsion. Concernant le cluster de deux aubes en mode

de flexion, une tendance similaire a été observée, mais dues aux conditions d’écoulement, elle

n’a pas pu être validée définitivement expérimentalement. En changeant les conditions du cas

de référence il serait alors possible de tirer davantage de conclusions pour ce type de cluster.

Mots-clés : aéroélasticité, étude expérimentale de cluster, grille annulaire de turbine, groupe

d’aubes, cluster, single-blade, stabilité aérodynamique, onde progressive, coefficients d’in-

fluence, principe de superposition, pression instationnaire, mesure instationnaire, amortisse-

ment aérodynamique
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Zusammenfassung

Eine effiziente Methode die aeroelastische Stabilität von Einzelschaufeln in einer Niederdruck-

turbinen-Schaufelreihe zu erhöhen, besteht darin sie zu Gruppen von zwei oder mehr Schau-

feln zusammen zu schliessen. Die oszillierenden Schaufelgruppierungen (cluster) erzeugen

komplexe Schwingungsformen, die wiederum die aerodynamische Stabilität der Schaufel-

gruppierungen beeinflussen. Dieses Phänomen ist heute noch nicht vollständig verstanden

und bedarf detaillierter Untersuchungen.

Diese Arbeit hat zum Ziel das Verständnis von Schaufelgruppierungen in Niederdruckturbi-

nen bezüglich ihrer aerodynamische Stabilität zu erweitern. Der Fokus liegt dabei auf zwei

wesentlichen Punkten:

• Die experimentelle Validierung einer Methode, welche die aerodynamischen Stabili-

tätsparameter der einzelnen Schaufeln in einer Schaufelgruppierung ermittelt, in dem

sie gemessene aerodynamische Werte von Einzelschaufeln als Vorgabe verwendet. Die

Methode basiert auf der Beziehung zwischen den Formulierungen der umlaufenden

Welle (traveling-wave) und den Einflusskoeffizienten (influence coefficient). Die Werte

der Einzelschaufeln sind zu Beginn in der Formulierung als umlaufende Welle gegeben.

Vor ihrer Verwendung werden diese in Einflusskoeffizienten umgewandelt. Nun werden

diese Werte wieder von Einflusskoeffizienten zu Werten in der Formulierung der um-

laufenden Welle umgerechnet, dies aber unter der Berücksichtigung der spezifischen

kinematischen Bedingungen der Schaufelgruppierungen. Dadurch beschreibt das End-

ergebnis letztendlich die aerodynamischen Stabilitätsparameter für die Schaufeln der

Schaufelgruppierung.

• Die experimentelle Untersuchung von unterschiedlichen Konfigurationen von Schaufel-

gruppierungen und deren Einfluss auf die aerodynamische Stabilität in Bezug auf die

entsprechende Einzelschaufel.

Die aeroelastischen Messungen wurden an dem nicht rotierenden Ringgitterprüfstand der

Group of Thermal Turbomachinery (GTT) an der École Polytechnique Fédérale de Lausanne

(EPFL) durchgeführt. Hierzu wurde ein Turbinengitter mit 20 Turbinenschaufeln verwendet.

Die Simulation der oszillierenden Schaufelgruppierungen als umlaufende Wellen wurde durch

ein spezielles Schaufelanregesystem erreicht, welches jede Schaufel individuell zu einer gere-

gelten Oszillation anregen kann.
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Zusammenfassung

Diese Studie präsentiert die aerodynamischen Messergebnisse eines Ringgitters, welches mit

unterschiedlichen Konfigurationen von Schaufelgruppierungen schwingt. Die erste untersuch-

te Schaufelgruppierung besteht aus zwei Schaufeln und simuliert eine als Paar verschweisste

Schaufelkonfiguration. Diese Schaufelgruppierung oszilliert so, dass beide Schaufeln sich

immer in Phase bewegen. Es wurden erfolgreich drei Schwingungsrichtungen untersucht:

Rotation, Axial- und Schlagbiegung. Die zweite Schaufelgruppierung bestand aus vier Schau-

feln, welche eine Rotation eines gegossenen Schaufelsatz simulierte. Um einen Vergleich zu

ermöglichen wurden Einzelschaufelmessungen durchgeführt, welche die gleichen Schwin-

gungsrichtungen hatten wie die Schaufelgruppierungsfälle. Alle Versuche wurden unter nahe-

zu identischen Strömungsbedingungen im Unterschall durchgeführt.

Die Messresultate beweisen die Gültigkeit der zuvor beschriebenen Methode. Dies konnte

nachgewiesen werden, indem die gemessenen Ergebnisse mit den berechneten Ergebnissen

der Methode verglichen wurden. In dem Vergleich wurden zum einen der aerodynamischen

Arbeitsaustausch entlang der Schaufelsehne, zum anderen auch die globale aerodynamische

Dämpfung verwendet.

Der Vergleich zeigte eine gute Übereinstimmung der Resultate innerhalb der experimentellen

Messgenauigkeitsgrenzen für alle eingestellten Schaufelgruppierungsvarianten und alle mög-

lichen umlaufenden Wellen. Minimale Unterschiede waren erkennbar zwischen Mess- und

Rechenergebnissen, und wurden auf kleine Strömungsvariationen zwischen den unterschied-

lichen Testkampagnen zurückgeführt.

Für einige Schaufelgruppierungsvarianten haben die experimentellen Ergebnisse gezeigt, dass

ein Verbinden von Schaufeln zu Schaufelgruppen die aerodynamische Arbeit in den inneren

Schaufelgruppenkanälen minimiert, und somit eine Erhöhung der minimalen aerodynami-

schen Dämpfung im Vergleich zu Einzelschaufeln zur Folge hat (Zweier-Schaufelgruppierung

mit Rotationsbewegung und Vierer-Schaufelgruppierung). Für die Zweier-Schaufelgruppier-

ung mit Biegebewegung war ein ähnlicher Trend erkennbar, der jedoch mit den untersuchten

Strömungsbedingungen nicht generell nachgewiesen werden konnte. Eine Änderung der Strö-

mungsbedingungen könnte zu weiteren Schlussfolgerungen für diese Schaufelgruppierungen

führen.

Stichwörter: Aeroelastizität, Turbinenringgitter, experimentelle Schaufelgruppenmessungen,

Einzelschaufel, gruppierte Schaufeln, Schaufel einer Schaufelgruppe, aerodynamische Sta-

bilität, umlaufende Welle, Einflusskoeffizienten, Superpositionsprinzip, instationärer Druck,

zeit-aufgelöst Messungen, aerodynamische Dämpfung
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1 Introduction

THIS chapter aims to give a brief introduction into the field of aeroelasticity in turbomachin-

ery and continues by detailing the importance of grouping blades to clusters. Thereafter

a literature overview related to the state of the art of the discussed subject is presented. The

chapter concludes by describing the scope of the work.

1.1 Introduction of Aeroelasticity in Turbomachines

Gas turbines as well as jet engines have been used for several decades for energy production

or to produce aircraft thrust. During each development step, the efficiency, reliability and

cost reduction as well as the environment impact have been improved in order to overcome

the increasing output demands. In the past years, different approaches have been tackled to

satisfy these requirements, which can be associated with higher aerodynamic loadings and

more lightweight blade designs which decrease the blade stiffness. The variation of these

factors can lead to flutter of the blade. This means an oscillation at the natural frequency

of the blade takes place, which is self-excited and self-sustained due to the interaction of

the fluid flow with the mechanical structure. If not properly damped, this effect can cause

the failure of the blade in a very short period of time due to excessive stress or high cycle

fatigue (HCF). To avoid such an incident, a reliable prediction of stress amplitudes is needed.

Considering the aforementioned factors, a simultaneous study of the interaction of vibrational

dynamics, the structural elasticity and the aerodynamics on the turbomachinery blading

are necessary. This topic is commonly known as aeroelasticity and can be depicted by the

so-called “Collar triangle”, shown in Figure 1.1. It was first introduced by Collar [1946] and

describes the relation between the involved disciplines. In each of the triangle vertices, the

forces influencing the aeroelasticity are noted. These are the inertial forces related to the

dynamics of the system, the aerodynamic forces introduced by the fluid mechanics and the

elastic forces due to the structural mechanics. The resulting main phenomena of aeroelasticity

observed in turbomachines can be identified in the center of the triangle and are the flow-

induced vibrations, either flutter or forced response. The latter describes a vibration of the

blade which is caused by an external unsteady flow disturbance. In the case of an unsteady

1



Introduction

Figure 1.1: The Collar triangle of aeroelastic forces (from Collar [1946]).

flow disturbance with a frequency corresponding to a natural frequency of the blade system,

resonance occurs which can lead to the failure of the blade. An example of such a disturbance

is the fluid-structure interaction of a blade-row subjected to stator wakes. Flutter is the self-

excited vibration of a blade and has its source in the presence of pressure fluctuations coming

from the blade vibration itself.

1.2 Vibration of Single-Blades and Clustered Blades

The prediction of flutter is one of the main problems investigated in recent times. Setting up

an experiment capable to simulate flutter as it appears in real turbomachinery is extremely

difficult. To overcome the associated problems it is necessary to identify the combination of

blade profile and flow condition under which flutter can occur. When this step is accomplished,

the next problem to address would be the design and execution of the experiments. One

problem encountered here, is how to control flutter in a rotating rig. The problem is related

to an effect which is self-excited and self-sustained, leading to the failure of the blade or the

supporting structure if not stopped in a short period of time. Hence, a mechanism must be

put in place to extract the vibration energy of the blades and limit the self-sustained vibration.

These are only a few of the challenges which are necessary to address. For this reason, a

different experimental approach has been chosen and applied for decades to circumvent

the above mentioned problems. In this method, blades are forced to oscillate in a uniform

flow and the generated unsteady loading of the blades is determined. If the results indicate a

loading which extracts energy from the flow, the blade vibrations are enhanced and flutter will

likely occur. On the contrary, if energy is transferred from the vibrating blade to the flow, the

mechanism of self excitation is avoided and flutter is thus prevented. Compared to the previous

technique, the latter is more conservative since failure of the blade and the blade structure is

less likely to occur and a conclusion of the flutter susceptibility can be made. Nevertheless,

the drawback is that the physics of flutter itself cannot be investigated with this method. This
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1.2. Vibration of Single-Blades and Clustered Blades

type of measurement technique is often referred to as “Controlled Vibration” since the blades

are forced into a controlled vibration. For the past few decades, this experimental procedure

has been used and compared to computational prediction models and thus has significantly

improved the design criteria and the prediction models of turbomachinery blading. An

overview of the most common aerodynamic and structural parameters investigated is listed in

Table 1.1. Some of the parameters were analyzed in more detail than others.

Structural parameters Aerodynamic parameters

cascade geometry: incidence angle
gap-to-chord, number of blades, blade-loading
blade geometry, blade twist, separation point
hub-to-tip ratio, aspect ratio, pressure distribution on blade surface
stagger angle, shock position and motion
shroud location and shroud angle, inlet and exit conditions
blade clustering, relative inlet Mach number
number of blades per cluster distortion pattern

inter-blade phase angle velocity and pressure defects
mode-shape reduced frequency
mechanical damping
extent of coupling among blades
mistuning

Table 1.1: Common structural and aerodynamic parameters influencing the aeroelasticity
(from Srinivasan [1997]).

The investigation of this thesis is focused on some of these parameters, which are blade

clustering, the number of blades per cluster and the mode-shape. These parameters were

chosen for several reasons, for example the mode-shape, which is one parameter that was

determined by several research studies as having a major influence on flutter stability. This is

shown by an analytical study performed by Bendiksen and Friedmann [1982]. They showed,

for a large range of flow regimes, that aerodynamic damping depends on the mode-shape

of the blades oscillating in a cascade and differs for torsion and bending. An illustration of

the three fundamental (first order) mode-shapes is given in Figure 1.2. They have certain

eigenfrequencies (natural frequency) at rest, which are a function of the centrifugal forces, or

rather the rotational speed of a turbomachine.

One way to increase the aerodynamic damping is to fix blades together. Compared to individ-

ual blades, this type of fixation restrains the movement of the blade to some extent. Besides

the aerodynamic impact, which is due to limiting the aerodynamic interactions between

neighboring blades, grouping blades also influences the structural aspects of the blades due

to an increase in the stiffness. Different types of such shrouded blades can be identified and

were first reported by Armstrong [1967]. To create a connection, rods between blades are used

to group them. In this case, the intended effect of increasing the stability was achieved but the

hole necessary to attach the rods to the blade introduced structural stresses which were not
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Figure 1.2: Fundamental single-blade vibration mode-shapes with displacement contours
shown for (a) first flap, (b) first torsion and (c) first edgewise modes (from Grieb [2009]).

satisfactory for service. In a next step, instead of the rods, integral platforms were positioned

part way along the span, so that they touched those of the adjacent blades. This connection

is called “snubber” due to the damping effect of the design. As Armstrong [1967] reported,

the second configuration of snubber blades complied with the specifications and was used in

service. Illustrations of these two types of shroud connections are shown in Figure 1.3.

Figure 1.3: Left: tied blades, right: snubber blades (from Armstrong [1967]).

In general, the shroud is seen as a connection between the individual blades in the circumfer-

ential direction. It can be placed at different radial positions depending on the intended use,

for example to decrease the number of pieces in a blade-row. A certain amount of blades are

therefore manufactured as one piece, thus being fixed together at the hub and tip. Further-

more, it can be used to change the mode-shape of single-blades (free-standing blade) by fixing

several blades together and thus creating a new mode-shape. In a blade-row the number of

blades per shroud piece can be arbitrary, since there is no necessity of a circumferential or
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cyclical symmetry. In the case of compressor vanes, an example is displayed in Figure 1.4

showing the assembly of five vanes connected by an integral shroud. Another example for

connected blades is presented in Figure 1.3, in which the snubber represents the shroud

connection. For low-pressure turbine blades, tip shrouds are commonly used. In addition to

the increase of stiffness, a reduction of the tip losses is achieved. A schematic example with

two blades is depicted in Figure 1.5, displaying two possible connection types. From left, the

first displays the base-line (cantilevered), the second a welded-in-pair combination and the

third an interlock connection. On the right a cluster of five turbine blades welded together is

shown. It should be stressed that the aforementioned interlock connection is not necessarily

fully locked and can allow some slipping of the blades in order to relax the coupling in certain

directions. For the sake of clarity, it should be stated that some literature utilizes the terms

“sector of blades”, “blade packet” or “cluster of blades” in order to refer to a connection of

blades at the tip shroud.

Figure 1.4: Example of shrouded (left) and cantilevered (right) compressor vanes (from Rolls
Royce plc. [2005]).

Figure 1.5: Left: schematic example of two blades, cantilevered (single-blade), welded-in-
pair and interlock shroud-connections (from Corral et al. [2007]). Right: example of five
turbine-blades which are welded together (from Rolls Royce plc. [1996]).

These possibilities of different shroud connections imply that it is essential to accurately

specify the boundary conditions at the shroud interfaces. This is of importance, since the

prediction of the resulting blade-group mode-shapes rely on this specification. The variety of

possible mode-shapes is illustrated using the approach of Ewins [1988c]. In this reference the
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shroud connections are simulated by using a simple one-dimensional mass-spring parametric

model (Figure 1.6 (a)). This, in order to identify the basic characteristic mode-shapes of groups

of blades (Figure 1.6 (b)). Starting with one blade, the number of blades increases up to six

per group. Next to the mode-shapes, the related natural frequencies are indicated. A general

trend can be identified showing that one fundamental mode with all blades vibrating in-phase

(left column) seems to be unaffected by the shroud stiffness. It is followed by a group of (N-1)

modes, which strongly depend on the shroud stiffness, with N being the number of blades

per group. Furthermore, it should be noted that the phase angle between neighboring blades

can be either 0° or 180°. As this model is one-dimensional, a two-dimensional model is of

interest taking the staggering of the blade into account. Ewins [1988c] modeled this as well

and concluded that, similar to the one-dimensional model, a single fundamental mode-shape

is followed by a group of shroud-controlled modes in a relatively narrow frequency band.

Figure 1.6: Vibration model for blade groups varying up to a combination of six blades (from
Ewins [1988c]).

The vibration modes he identified are coupled motions which are in- and out-of-phase with

the adjacent blades in the group and allow the blades a movement in both dimensions, which
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he called out-of- and in-plane directions. Depending on the type of connection, some group

modes may be more dominant than others. In Figure 1.7 an example of a six-bladed group is

given displaying three modes: left, in both directions (out-of- and in-plane); middle, dominant

in the out-of-plane direction and out-of-phase and, right, in the out-of-plane direction and

in-phase.

Figure 1.7: Mode shapes for a group of six staggered blades (from Ewins [1988c]).

Introducing shroud connections and thus grouping blades into clusters creates new types of

mode-shapes. These have a direct impact on the overall stability on the blade-row. From a

structural point of view the stiffness increases for most of the cases. From an aerodynamic

point of view, a change in the flutter stability appears due to the kinematics of the new mode-

shapes. Hence, it is evident that generating and validating knowledge in this discipline of

introducing shrouds to increase the aeroelastic stability of blades will help engine designers to

accomplish the present challenges on new turbomachines.

1.3 State of the Art

In Srinivasan [1997], a comprehensive overview of general vibration problems is provided. The

article introduces the different aspects to be considered for flutter and resonant vibrations.

Also the AGARD Manual, Verdon [1987] and Ewins [1988a,b,c], serves as an effective overview

and is even more detailed.

The following literature overview aims to give a brief summary of the investigations of single-

blade (free-standing blade) flutter analysis and then focuses on grouped (clustered) turbine-

blades. For both, the focus is directed towards experimental investigations while considering

the main computational developments.

A thorough overview of the work performed in the early 1980s can be found in Bölcs and

Fransson [1986]. The editors created a set of two-dimensional test cases by gathering the

experimental, numerical and theoretical data of researchers in this field. It should be stressed

that these so-called “standard configurations” are nowadays still used as validation test cases

for code developers in the field of aeroelasticity.
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The appearance of flutter in turbomachinery is usually found in an arrangement of blades and

therefore a blade-row rather than a single-blade is investigated. Each blade induces through

its motion a change in the flow field, which influences the pressure response on itself as well

as on the adjacent blades. This so-called aerodynamic coupling is largely influenced by the

motion of neighboring blades. Crawley [1988], for example, characterized the oscillatory

motion of a tuned blade-row during flutter as a so-called “traveling-wave” mode. It is defined

so that all blades oscillate with an identical frequency, mode-shape and amplitude but with

a specific phase-lag between neighboring blades. In this “traveling-wave” formulation, all

blades oscillate, while the response on one blade is measured. It is shown by Hanamura et

al. [1980] and Crawley [1988] that the response of the “traveling-wave” formulation can be

linearly expressed in the “influence coefficient” formulation. In the latter, each blade in the

blade-row is oscillated individually and the response on itself and on the neighboring blades

are determined. By superimposing each of the individual influences, the result is identical to

the response of one blade in “traveling-wave” formulation.

A comprehensive literature summary of experimental and numerical predictions performed

for both methods can be found in Bölcs et al. [1989]. Furthermore, they experimentally

validated the linear relationship between the “influence coefficient” and “traveling-wave” for-

mulation for two-dimensional single-blade bending mode-shapes in sub- and transonic flow

conditions. Later, Nowinski and Panovsky [2000] continued the work investigating the torsion

mode-shape in low-pressure turbines. Apart from validating the superposition principle, they

identified that the position of the torsion-axis has a significant influence on the aerodynamic

damping of the blade. The outcome of the prior investigations was used by Panovsky and Kielb

[2000] to develop a method to graphically represent the impact of the torsion-axis position on

the aerodynamical damping. This was achieved by using the superposition principle of the

three fundamental mode-shape directions and by taking into account the influences of the

blade itself and its direct neighbors in the “influence coefficient” formulation.

A combined analysis of forced response and flutter was performed by Rottmeier [2003]. The

intention of this investigation was to prove the validity of the linear superposition principle of

local unsteady pressures on the blade due to upstream generated gusts and the vibration of the

cascade in traveling-wave mode. The validation was successfully shown for sub- and transonic

flow-regimes excluding flows with shocks. In a follow-up project, Beretta [2006] investigated

the influence of frequency mistuning on the forced response of a blade-row vibrating in tor-

sion mode-shape. Additionally, a mistuning of the bending mode-shape was studied. The

frequency mistuning study led to a simplified frequency mistuning model which is capable

of qualitatively reproducing the effects of frequency mistuning and coupling. The bending

mode-shape mistuning study showed that the value of the forced response amplitudes was

almost identical for both mistuning patterns.

In the studies of Vogt [2005], the aeroelastic response phenomenon was investigated in the

influence coefficient domain. In a sector cascade, one blade was oscillated in various three-

dimensional rigid-body modes and the unsteady response on several blades was measured.

Additionally, a two- and three-dimensional linearized unsteady Euler analyses was performed.

Vogt [2005] identified that considerable three-dimensional effects are present, which harm
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the prediction accuracy for flutter stability when employing a two-dimensional plane model.

Although the overall behavior is captured fairly well when using two-dimensional simula-

tions, notable improvement has been demonstrated when modeling fully three-dimensionally

and including tip clearance. Vega and Corral [2013] used the traveling-wave and influence

coefficient formulation to study the physics of a low-pressure turbine vibrating in the three

fundamental mode-shapes with a linearized Navier-Stokes solver. They concluded that the

unsteadiness of the flow of the vibrating blade is due to vortex-shedding mechanisms and

that the effect of the Mach-number can be neglected on a first approximation for the unsteady

pressure phase. Additionally, it was concluded that the unsteady pressure fluctuation on

airfoils far away from the reference airfoil is mainly driven by acoustic perturbations.

To the knowledge of the author, Armstrong [1967] was the first who investigated the support-

ing effect of a cluster. As stated in the previous section, he introduced a shroud connection

between turbine-blades at about mid-span height. This connection is further known as a

snubber (see also Figure 1.3). It should be noted that this design is still used in current turbo-

machinery designs.

Listvinskaya [1975] developed a code to calculate the natural frequencies and mode-shapes of

large packets of twisted steam turbine-blades fixed at two distances from the root by wires and

on the tip by a belt. The prediction of the developed code was validated with analytical compu-

tations of a packet with 10 blades. Nagarajan and Alwar [1985] developed a three-dimensional

model with iso-parametric quadratic elements to analyze grouped steam turbine-blades. Two

blades per group were analyzed, one with bending mode-shape and one with torsion. They

validated qualitatively their model, which was able to represent the natural vibrations of the

blades due the presence of a shroud.

The linear numerical investigation of Whitehead and Evans [1992] focused on using the data of

single-blades (free-standing blades) to calculate the stability of grouped turbine-blades. The

analysis confirmed the stabilizing effect of grouping blades together. They analyzed packets

of five and six blades, all having the same frequency and amplitude, while the blades in a

group could have different mode-shapes. The numerical results agreed qualitatively with the

experimental results for two low-pressure steam turbine examples. Kahl [1995] pursued this

further and developed a different numerical procedure, called the “direct” method, which

requires as many passages as airfoils are present in one cluster. Different to that of Whitehead

and Evans [1992], his method overcomes the rigid-body limitation on the airfoil section, since

a proper mode for each airfoil in the cluster can be specified. The investigated case with

the time-linearized Euler method was a cluster of three airfoils vibrating in the first bending

mode-shape. For sub- and transonic flow conditions, the aerodynamic damping was well

predicted. Limitations were outlined in the case of strong three-dimensional effects and when

viscous unsteady effects become dominant, for example in the case of stall flutter.

Using the results from Whitehead and Evans [1992] and Kahl [1995], Chernysheva [2004]

continued the work and performed a parameter study investigating the influences of varying

amplitudes and phase angles on sectors of up to six blades covering the three fundamental

mode-shapes. The study was performed using a two-dimensional inviscid linearized flow
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model and the simulation of the sectors is based on the principle of Lane [1956]. Critical

(towards flutter) reduced frequency maps are provided for torsion- and bending-dominated

sectored vane mode-shapes. The conclusion of this investigation was that grouping blades

together improves the stability of the blades but does not exclude completely the possibility of

flutter.

In recent years, Corral et al. [2004, 2007, 2009] have published results related to this topic.

In Corral et al. [2004, 2007], the aerodynamic damping of low-pressure turbines was investi-

gated numerically with linear methods. The focus of these investigations were single-blades

(free-standing blades) with different shroud boundary conditions. The change in boundary

condition comprises three different configurations: cantilever (single-blade), interlock and

welded-in-pair. The main findings of these studies are that welded-in-pair blades have a

higher aeroelastic stability than single-blades (free-standing blades) for torsion and circum-

ferential bending modes. Additionally, they concluded that the increase in the aerodynamic

damping, due to the modification of the mode-shapes caused by welding the rotor blades in

pairs, is smaller than that due to the overall rise in the reduced frequencies of a bladed disk

with an interlock design. In Corral et al. [2009], an aeroelastic analysis of a packet of vanes

was performed using a linear simplified mass-spring model. The authors identified a set of

vane-packet mode-shapes in a close frequency proximity, these are the result of the much

higher stiffness of the lower vane-packet in relation to the airfoils. Taking the presence of

unsteady aerodynamic forces into account, they concluded that the structural modes may

be coupled and form new aeroelastic modes, which can be very different from the purely

structural modes. These new modes may change dramatically the flutter margin of the vane

packet. The authors highlight that these aeroelastic modes are not covered when using the

standard uncoupled methodology, in which the aerodynamic forces of each structural mode

are computed independently.

1.4 Objective of the Present Work

The literature review presents a variety of parametric studies which used linearized numerical

codes to investigate the aerodynamic stability of grouping blades together. Although some

of the prediction tools used are validated by experimental results of single-blades, a lack of

experimental data of clustered (grouped) airfoils is evident.

Clustering airfoils is identified as a possibility to lower the flutter susceptibility of the configu-

ration with respect to single-blades. Two factors which have an influence on the aerodynamic

stability of clustered airfoils are the mode-shape of the individual cluster-blades, as well as the

number of airfoils included per cluster. The objective of this work is to study experimentally

the influence of selected cluster configurations with respect to their aerodynamic stability.

Furthermore the objective is to validate the applicability of the linear superposition principle

using single-blades in order to predict cluster configurations on the basis of experiments. This

principle is based on the findings of Hanamura et al. [1980] and has been used by various

researchers to perform parametric studies related to clustered airfoils.
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The present work was part of the European project FUTURE (acronym for Flutter-Free Tur-

bomachinery Blades, Website of the project FUTURE [2008]) with the aim of improving

aero-mechanical analysis for aggressively lightweight blade designs by advancing the state-of-

the-art in flutter prediction capabilities and design rules.

1.5 Scope of the Work

The experimental investigation was performed in the non-rotating annular test facility on a

turbine cascade composed of 20 blades. The test facility offers the possibility to control the

oscillation for each blade individually with a constant frequency of all blades. This enables

to define the vibration amplitude as well as the phase-angle for each blade, so that selected

cluster configurations can be simulated, for example a cluster of two blades oscillating in-

phase. In addition to individually control the oscillation of each blade, the blade vibration

direction can be changed. This variety of blade oscillation combinations and blade vibration

directions is used to perform cluster measurements as well as single-blade measurements in

traveling-wave modes. Three first order rigid-body mode-shapes for the single-blade cases are

selected (torsion, flap- and axial-bending) to serve also as a basis for the cluster investigations.

For the study of clusters, two configurations are selected to represent the configurations

frequently used in turbomachinery designs:

• The first case is a cluster of two blades and is meant to represent a configuration of two

blades welded-in-pair. The mode-shape of this cluster is simulated by controlling the

oscillation of the individual blades in a blade-row according to the kinematics of the

cluster.

• The second test case reflects a cluster of four blades and represents a package of four

vanes cast as a piece performing a torsional movement. In order to simulate the torsional

movement, each of the individual blades vibrates in an axial-bending vibration direction

with a specific amplitude according to the kinematics of the cluster.

The experimental cluster test cases serve two objectives. One objective is to determine the

aerodynamic stability, the other is to validate the applicability of the linear superposition

principle, which uses the aerodynamic parameters of the single-blade test cases to predict

those of the individual cluster-blades in the cluster. A brief overview of the investigated test

cases is documented in Table 1.2.

The study is based on identical steady-state flow conditions for all test cases. To control the

equality of the steady-state flow conditions, they are measured at the inlet and outlet of the test

section. Additionally, the blade surface pressure is measured at three different span heights:

25% (close to the inner wall/hub), 50% (mid-span) and 90% (close to the outer wall/tip). The

unsteady measurements comprise nine pressure taps along the pressure-side and twelve
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pressure taps along the suction-side of the blade surface at mid-span height. The vibration

amplitudes are measured individually for each blade.

The present work is composed of the following consecutive structure:

• Chapter 2 introduces the applied theoretical concept and describes the aerodynamic

variables used to study the cluster types presented in Table 1.2.

• In Chapter 3 the experimental setup is described. It details the non-rotating annular

test-facility (Bölcs [1983]) and continues by describing the functionality of the used

turbine test model and its measuring capabilities.

• The investigated cluster and single-blade test cases are detailed in chapter 4.

• Chapter 5 is dedicated to the applied measurement techniques for the steady-state

and the unsteady aerodynamic parameters. It also includes a description of the data-

acquisition systems used and the data-reduction techniques applied.

• The steady-state flow conditions used for all unsteady test cases are detailed in Chapter 6,

including an overview of the leakage flows. It also documents the consistency of the

steady-state results by comparing all measurements with one another.

• In Chapter 7 the results of the single-blade and cluster unsteady measurements are

presented. First the single-blade test cases are presented, followed by the cluster test

cases as described in Table 1.2. It also shows the applicability of the linear superposition

principle using the aerodynamic parameters of single-blades in order to predict those

of cluster configurations on the basis of experiments.

Case
Oscillation

direction

Number of

blades per

cluster

Related to a

SB-A Axial

1 Single-bladeSB-F Flap

SB-T Torsion

C2-A Axial

2
Welded in-pair

sectionC2-F Flap

C2-T Torsion

C4-A-S-T
Axial simu-

lating torsion
4

Four-blade

section

Table 1.2: Investigated test cases.
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2 Theoretical Concept

THIS chapter introduces the theoretical concept applied in the present work and describes

the parameters used to study the aerodynamic stability of the single-blade and cluster

cases presented in Table 1.2. It is organized as follows:

• Introduction to the fundamental concept of flutter analysis in turbomachines.

• Description of the traveling-wave technique (inter-blade and inter-cluster phase angle).

• Description of the influence coefficient technique.

• Definition of the aerodynamic flutter stability parameters.
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2.1 Analysis of Aerodynamic Stability in Turbomachines

The following introduction of the analysis of flutter in turbomachines was developed between

1950 and 1980. A comprehensive summary of this work can be found alongside a detailed

derivation in the AGARD Manual, Verdon [1987]. As an effective starting point for an overview,

the work of May [2012] and Vogt [2005] are recommended.

Methods to identify the flutter stability of a given blade involve the analysis of the structural dy-

namics as well as the aerodynamics. The balance between the structural and the aerodynamic

forces can be described analytically as follows:

m~̈x(t )+d~̇x(t )+k~x(t ) = ~Fdamp(t )+~Fdisturb(t ) (2.1)

where on the left-hand side, m describes the mass matrix, d the damping matrix and k the

stiffness matrix. The coordinate~x(t) represents the coordinates to describe the torsion and

bending directions. The right-hand side ~Fdamp(t ) describes the aerodynamic damping forces

which result from the motion of the airfoil to the fluid. The second term ~Fdisturb(t ) on the right-

hand side describes the aerodynamic forces which are induced by disturbances originating

upstream and downstream of the airfoil. In the case of forced response investigations, the

second term ~Fdisturb(t) would be of importance. Since the present work focuses solely on

flutter, only the forces induced by the motion of the airfoil are of interest thus the second

term can be neglected. The first step to solve the aeroelastic Equation 2.1 is performed by

introducing a modal coordinate system

~x(t ) =~ems ā e iωt (2.2)

where the oscillation directions are described by ~ems, the modal displacement by ā and

the natural frequency by ω. Additionally, it is assumed that the structural damping d in

Equation 2.1 can be neglected, since it is generally very small. This assumption is based

on the derivation performed by Ewins [1988a]. He pointed out that the structural damping

has virtually no effect on the oscillatory component of the natural frequency. Furthermore,

he noted that in the case when the damping is relatively localized and when the natural

frequencies of the system are close together, it has to be accounted for. By taking into account

the previous assumption and introducing the modal coordinate system (see Equation 2.2) in

Equation 2.1, after some reformulation the aeroelastic equation can be stated in the modal

form as:(−ω2mmodal +kmodal
)

ā −~eT
ms Fdamp = 0 (2.3)

where mmodal is the modal mass matrix, kmodal is the modal stiffness matrix and~eT
ms Fdamp

represents the modal aerodynamic damping forces. The previous equation represents a

complex eigenvalue problem. When solved, the stability of the system is described by the

eigenvalues of the solution.

Since the structural forces are usually greater than the aerodynamic ones, and therefore do
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not impact on the natural frequencies and mode-shapes of the system, the structural and the

aerodynamic terms are usually decoupled in the case of turbomachinery application. This

assumption of decoupled structural and aerodynamic forces simplifies the analysis, since both

can be determined individually. The structural eigen-modes can be determined by assuming

no-flow conditions and the influence of the aerodynamic contribution on the stability from a

purely unsteady aerodynamic analysis, as described in Section 2.5.

2.2 Traveling-Wave Formulation

In order to characterize the coupling effect of adjacent blades, an approach is used which was

firstly introduced by Lane [1956]: the so-called “traveling-wave” formulation. This approach

describes the oscillatory motion of a tuned blade-row, for example during flutter. It assumes

that all blades oscillate with the same mode-shape, amplitude and frequency, whereas the

phase lag between adjacent blades is used as the defining factor. This phase lag between

two adjacent blades is known as the inter-blade phase angle. In order to fulfill the kinematic

constraint of full cycle periodicity the inter-blade phase angle as discrete values is defined,

which can be noted as:

σλ =
2πλ

N
λ ∈N, N= {0...N −1} (2.4)

where λ represents the nodal diameter, which defines the oscillation pattern of the blades in

the blade-row. The total number of blades in the cascade (blade-row) is represented by N .

Two examples of nodal diameter are illustrated at the top of Figure 2.1.

Figure 2.1: Two examples of nodal diameter of a blade-row for a single-blade case (top) and
for a two-blade cluster case (bottom).

A cluster can be considered as one single structure which fixes blades together. Thus the

traveling-wave formulation in the case for cluster is based on similar assumptions as for

the single-blade case. It is assumed that all clusters in a blade-row oscillate with the same

oscillation direction, frequency and amplitude, whereas the phase lag between two adjacent

clusters defines the traveling-wave mode. Therefore, as for single-blades, a variable for the

phase lag between adjacent clusters can be defined. In agreement with the inter-blade phase
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angle (IBPA, σλ) defined previously (see Equation 2.4), the inter-cluster phase angle (ICPA, Γλ)

can be written as:

Γλ =
2πλ

J
λ ∈N, N= {0...J −1} (2.5)

where λ defines the order of the traveling-wave and also represents the nodal diameter. The

total number of clusters in the cascade is represented by J . Two examples of nodal diameter

are illustrated at the bottom of Figure 2.1.

Clusters in a cluster row are indexed in descending order with respect to the direction of

rotation. Cluster indices range from 1 to J . The number of clusters J is dependent on the

type of cluster. As noted before, the inter-blade and inter-cluster phase angles are subject

to similar assumptions and therefore the cluster case is used to describe the definition of

positive (forward) and negative (backward) traveling-waves. For a positive inter-cluster phase

angle, the vibration of cluster j precedes that of cluster j −1; thus the traveling-wave of the

cluster moves from one blade’s suction-side to the neighboring blade’s pressure-side, identical

to the direction of rotation. In Figure 2.2 a positive inter-cluster phase angle is depicted.

Additionally, the positive inter-blade phase angle for which the vibration of blade n precedes

that of blade n −1.

Figure 2.2: Definition of positive ICPA (respectively IBPA), of blade n and of cluster j indexing.
The letters A and B denote the cluster-blades in the cluster j .
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Applying the traveling-wave formulation implies that the aerodynamic forces acting on the

blades are determined for all inter-blade phase angles in the case of single-blades, and re-

spectively in the case of clusters for all inter-cluster phase angles. As previously noted, the

traveling-wave mode is defined so that all blades are in motion. One blade in the blade-row is

therefore influenced by itself and by all other blades at the same time. This implies that the

aerodynamic forces can be directly determined on one blade.

2.3 Aerodynamic Influence Coefficient Formulation

In the field of turbomachinery, the aerodynamic influence coefficients are used to describe the

aerodynamic forces on one blade created by the motion of another blade. This is of interest

when the unsteady pressure on one blade is intended to be determined by the influence of

several vibrating blades, without having a certain relationship between the blade motions as it

would be the case in the traveling-wave formulation. In this work, these influence coefficients

and their relation to the traveling-wave formulation will be used to determine the unsteady

pressures for individual cluster-blade vibrations.

In order to determine these influence coefficients, a mathematical transformation can be used,

which describes the relation between the formulations of traveling-wave and of influence coef-

ficients. On the basis of the work by Hanamura et al. [1980] concerning the introduction of the

influence coefficients, Crawley [1988] presented the mathematical relation between traveling-

wave and influence coefficients, which states that for small perturbations the influences of

the various blades are superimposed linearly. In other words, the response of the observed

time-resolved pressures or forces at any given point (e.g. a pressure transducer position on

the blade surface) in a vibrating cascade (traveling-wave) can be linearly superimposed on the

individual responses of the blade itself and the neighboring blades (influence coefficients)

lagged by the respective phase angles between the blades. As this method of Hanamura et al.

[1980] uses as a basis similar assumptions as Carta [1967] for the energy method, the following

limitations apply:

• no change of the blade’s mode-shape due to aerodynamic blade loadings

• no change in the eigenfrequency due to aerodynamic blade loadings

• the blade vibrations are of harmonic nature, as are the resulting unsteady pressure

perturbations

• for small perturbations the influences of the various blades superimpose linearly

The influence coefficients can be determined in numerical simulations (see for example White-

head and Evans [1992], Kahl [1995, 2002], Chernysheva [2004]) or experimentally (see Vogt

[2005] and Rottmeier [2003]1). Rottmeier [2003] also confirmed for single-blade vibrations

1The turbine measuring cascade used by the author is identical to the one in the present work.
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that measurements using the traveling-wave formulation are identical to those measurements

of influence coefficients. The transformation between the response of the coefficients in a vi-

brating cascade (traveling-wave) and the influence coefficients can be performed by applying

a complex Fourier transformation which, according to Schläfli [1989], reads in a general form:

c̃φn

Sum =
N−1∑
n=0

c̃n,0
IC

an

a0
e−i φn (2.6)

where c̃n,0
IC is the complex influence coefficient of the vibrating blade n, acting on the non-

vibrating reference blade 0, φn the phase angle of the vibrating blade related to the reference

blade “0” and with an the individual blade displacement. The left-hand side of Equation 2.6

represents the aerodynamic parameter when all blades of the blade-row vibrate with a phase

lag of φn . Equation 2.6 can be simplified considering the traveling-wave mode technique,

since in this case constant blade vibration amplitudes are present. Additionally, the phase

lag φn can be represented by the inter-blade phase angle and the distance between the n-th

influence coefficient and the reference blade 0. Hence it can be stated that:

an = a0 and φn =σλ n (2.7)

Therefore Equation 2.6 reduces to:

c̃σλTW =
N−1∑
n=0

c̃n,0
IC e−i σλn (2.8)

with c̃σλTW being the traveling-wave coefficient for an inter-blade phase angle σλ. Vice versa

for calculating the influence coefficients at least as many linear independent equations have

to be available as vibrating blades are present in the cascade. This is commonly achieved

by measuring all possible traveling-wave modes given by the inter-blade phase angles. This

formulation can be written as:

c̃n,0
IC = 1

N

N−1∑
λ=0

c̃σλTW e i σλn (2.9)

Next, the summation of Equation 2.8 shall be visualized on the basis of an example in Figure 2.3.

For this, an inter-blade phase angle of σλ=1 = 18° is chosen, which is the minimum inter-blade

phase angle for a cascade composed by 20 blades as in this case. Hence Equation 2.8 results in:

c̃σλ=1=18°
TW =c̃0,0

IC + c̃1,0
IC e−i 18° + c̃2,0

IC e−i 18° 2 + c̃3,0
IC e−i 18° 3 + ...+ (2.10)

c̃(N−3),0
IC e−i 18° (N−3) + c̃(N−2),0

IC e−i 18° (N−2) + c̃(N−1),0
IC e−i 18° (N−1)

Since the summation in Equation 2.8 depends on two variables which are related by the

summation variable n over all blades, a tabular form is chosen for visualization, as presented

in Figure 2.3. Along the horizontal direction the phase lag of the n-th blade to the reference

blade 0 is noted. This is performed in steps which relate to the smallest possible inter-blade
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2.3. Aerodynamic Influence Coefficient Formulation

phase angle of the blade-row (σλ=1 = 18°). Along the vertical direction, the influence coeffi-

cients c̃n,0
IC of all blades are displayed. Considering the aforementioned example (σλ=1 = 18°)

influence coefficient n = 0 acts on itself, hence the phase lag must be σλ=1n = 0° indicated

by the orange box. Both values (vertical and horizontal) are multiplied and this continues

with the next influence coefficient. For the neighboring blades, n = 1 and n = 2, a phase lag of

σλ=1n = 18° and respectivelyσλ=1n = 36° have to be considered. By multiplying the connected

horizontal and vertical terms and adding the result to the previous one, the summation can be

continued. This visualization can be simply adopted to include the blade vibration amplitudes

by noting them in the filled-in boxes. The advantage of this visualization becomes clear when

using it the other way round. Hence the combination of influence coefficient and any arbitrary

combination of phase lag and amplitude can easily be identified, for example of an individual

cluster-blade in a cluster.

Figure 2.3: General processing procedure from the influence coefficient to the single-blade
traveling-wave formulation. This example represents the case to determine the traveling-
wave coefficient c̃σλ=1=18°

TW for an inter-blade phase angle of σλ=1 = 18° based on influence
coefficients.
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In the literature, several different descriptions of the equations shown above can be found,

for example in Schläfli [1989], Försching [1994] and Vogt [2005]. As indicated in Equation 2.8

and in Figure 2.3, the inter-blade phase angle has a major influence on the outcome when

superimposing the influence coefficients. How this effects the results is illustrated in Figure 2.4.

In all four graphs, the influence coefficients (colored arrows) of blade 0 (orange) and its

neighboring blades -1 (red) and +1 (green) are displayed as complex vectors. The length of

each vector represents the magnitude and the orientation by the phase-angle with respect

to the blade motion. Hence the real part displays the pressure or force which is in phase

with the actual vibrating blade (not the traveling-wave reference blade). The imaginary part

displays the ratio which is leading in phase by 90° the vibrating blade. Superimposing these

three example blades (orange- and dashed-arrows), while considering the respective inter-

blade phase angle, the pressure or force vector for the traveling-wave reference blade can be

determined. In the example of Figure 2.4, the inter-blade phase angles of σλ = 0° (top left),

σλ = 90° (top right), σλ = 180° (bottom left) and σλ = 270° (-90°) (bottom right) are displayed.

The real part of the superimposed vector represents the pressure or force which is in phase

with the traveling-wave reference blade. The imaginary part displays the ratio which is leading

in phase by 90° the traveling-wave reference blade.

Figure 2.4: Effect of the inter-blade phase angle on the traveling-wave mode response; super-
position of influence coefficients of blades -1, 0 and +1 for inter-blade phase angles σλ = 0°
(top left), σλ = 90° (top right), σλ = 180° (bottom left), σλ = 270° (-90°, bottom right).

Considering all possible inter-blade phase angles, the pointer of the superimposed traveling-

wave vector creates a closed curved line (see Figure 2.5 on the left). By definition, the negative
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2.3. Aerodynamic Influence Coefficient Formulation

imaginary part of this curved line is the representative of the aerodynamic damping (see

Equations 2.31 and 2.32 and compare to Figure 2.5). Furthermore, the center of the curved

line is given by the vector representing the self-induced influence coefficient (blade 0, orange).

Figure 2.5: On the left: locus of the influence coefficient superposition (black dots) for all
inter-blade phase angles. On the right: imaginary part of the superposition (black dots) and
the influence coefficients of blades -1 (red dots), 0 (orange dots) and +1 (green dots).

When calculating the influence coefficients for all blades of the cascade, as stated in Equa-

tion 2.9, a cyclic influence coefficient matrix can be determined (see the matrix in Equa-

tion 2.11, for better visibility the subscript has been omitted). The mathematics involved in

calculating this matrix can be consulted in Crawley [1988] or in Försching [1994]. Thanks to its

cyclic notation this matrix enables to identify how an individual blade influences any other

blade in the cascade. For example, if one is interested in how the motion of the second blade

influences the first blade, the term in the first column and second row has to be considered

(c1,0). Taking into account the symmetry of the cascade due to geometric identical blades, this

must be the same as the influence of the motion of the third blade on the second, noted in the

matrix in the third row and second column. Therefore it can be deduced that the terms in the

diagonal contain the influences resulting from the blade’s own motion.

[CIC] =



c0,0 cN−1,0 cN−2,0 · · · c1,0

c1,0 c0,0 cN−1,0 · · · c2,0

c2,0 c1,0 c0,0 · · · c3,0

...
...

...
. . .

...

cN−1,0 cN−2,0 cN−3,0 · · · c0,0

 (2.11)
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2.4 Special Cluster Approach of the Aerodynamic

Influence Coefficient Formulation

In the present work, an approach is made to use the traveling-wave aerodynamic data of

the single-blade test cases to reproduce the individual cluster-blades of the experimentally

investigated clusters. A similar approach was introduced by Whitehead and Evans [1992] to

numerically simulate clusters and this approach was also used by Kahl [1995] and Cherny-

sheva [2004]. In order to employ this approach two steps are necessary. First, the influence

coefficients of the single-blade test cases are determined using Equation 2.9. Second, the kine-

matics of the individual cluster-blades are considered in relation to the previously determined

single-blade influence coefficients. The formulation of Equation 2.6 is adjusted in order to

account for the individual cluster kinematics and is written as:

c̃C,I,TW =
N−1∑
n=0

c̃n,0
SB,IC an,0

C ,I e−i σn,0
C ,I (2.12)

In the above equation, c̃C,I,TW represents the cluster traveling-wave coefficient of the zeroth

cluster-blade I in the reference (zeroth) cluster. It shall be noted that “zeroth” relates to the

relation between traveling-wave and influence coefficient formulations, which is applied for

the individual cluster-blades I . The variable c̃n,0
SB,IC represents the n-th single-blade influence

coefficient related to the reference blade in the influence coefficient formulation (Equation 2.9).

The amplitude kinematic of the cluster is introduced by the non-dimensional factor an,0
C ,I . The

subscript index C indicates the relation to the cluster and the subscriptI denotes the zeroth

cluster-blade in the reference cluster. The superscript index represents with n,0 the relation

to the n-th single-blade influence coefficient c̃n,0
SB,IC as well as the relation of the n-th cluster-

blade amplitude kinematic to the zeroth cluster-blade I . The phase kinematic of the cluster is

described by σn,0
C ,I . The sub- and super-script indices denote the same relationships as for the

previous variable an,0
C ,I describing the amplitude kinematic of the cluster.

Next, a cluster of four blades is used as an example to described the above-mentioned ap-

proach. The cluster represents a vane-package of four blades performing a torsional oscillation.

As previously noted in the presented approach, the individual cluster-blade traveling-wave

coefficient is calculated by superimposing the single-blade influence coefficients. Thus, it is

necessary to define the kinematics of the individual cluster-blades as they would be single-

blades oscillating as a cluster configuration. Assuming for the moment, each single-blade

oscillates in an axial-bending oscillation direction with the same blade vibration frequency,

the kinematics of the individual cluster-blades (A, B, C and D) can be defined as follows:

• Cluster-blades A and B are oscillating in-phase.

• Cluster-blades C and D are oscillating in-phase and in opposite phase to cluster-blades

A and B.

• The blade vibration amplitude of cluster-blades B and C is a third of the nominal blade

vibration amplitude of cluster-blades A and D.
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Figure 2.6: Specific processing procedure from influence coefficients to cluster-blade
traveling-wave coefficients for an inter-cluster phase angle of Γλ=1 = 72°. Top: cluster-blade A,
bottom: cluster-blade C.
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For this example, the traveling-wave coefficients for cluster-blades A and C are superimposed

for an inter-cluster phase angle of Γλ=1 = 72°. In Figure 2.6, the amplitude and phase kine-

matics (an,0
C ,I , σn,0

C ,I ) of Equation 2.12 are displayed, with the visualization procedure previously

introduced for the single-blade case only (see Figure 2.3). Cluster-blade A is presented at the

top left in Figure 2.6 and cluster-blade C at the bottom left. In order to reproduce a specific

cluster-blade I in the cluster, the individual cluster-blade I has to be set on the zeroth position

(n = 0) and the other cluster-blades have to be referred to it. As an example the sixth neigh-

boring blade in the pressure-side direction to the zeroth blade is used. It represents the third

cluster-blade in the direct neighboring cluster. Hence, the vibration amplitude must be a third

of the nominal vibration amplitude. With respect to the phase lag, the blade is positioned in

the direct neighboring cluster, which means a phase lag of Γλ=1 = 72° has to be considered.

Additionally, the blade is oscillating in counter-phase to the zeroth cluster-blade thus a phase

lag of 180° must be added. In Table 2.1 the relation of the amplitude and phase kinematics

(an,0
C ,I , σn,0

C ,I ) of Equation 2.12 are stated for all four-cluster-blades.

SB IC

index:
Cluster-blade A: Cluster-blade B: Cluster-blade C: Cluster-blade D:

n an,0
C ,A σn,0

C ,A an,0
C ,B σn,0

C ,B an,0
C ,C σn,0

C ,C an,0
C ,D σn,0

C ,D

0 1 0° 1/3 0° 1/3 180° 1 180°

1 1/3 0° 1/3 180° 1 180° 1 Γ1

2 1/3 180° 1 180° 1 Γ1 1/3 Γ1

3 1 180° 1 Γ1 1/3 Γ1 1/3 Γ1 +180°

4 1 Γλ=1 1/3 Γ1 1/3 Γ1 +180° 1 Γ1 +180°

5 1/3 Γλ=1 1/3 Γ1 +180° 1 Γ1 +180° 1 Γ2

6 1/3 Γ1 +180° 1 Γ1 +180° 1 Γ2 1/3 Γ2

...
...

...
...

...
...

...
...

...

16 1 ΓJ−1 1/3 ΓJ−1 1/3 ΓJ−1 +180° 1 ΓJ−1 +180°

N-3 1/3 ΓJ−1 1/3 ΓJ−1 +180° 1 ΓJ−1 +180° 1 0

N-2 1/3 ΓJ−1 +180° 1 ΓJ−1 +180° 1 0 1/3 0

N-1 1 ΓJ−1 +180° 1 0 1/3 0 1/3 180°

Table 2.1: Kinematic relation between the single-blade influence coefficient terms and the
cluster traveling-wave terms of a four-blade cluster oscillating in torsional motion.
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2.5 Aerodynamic Stability

The aerodynamic interaction between the blade vibration and the fluid flow can be determined

by the motion induced unsteady pressure on the blade surface and the blade motion. The

unsteady pressure results in a force acting on the blade and either supports the blade motion,

which results in an excitation, or counteracts and damps the blade motion. In the latter case,

aerodynamic (flutter) stability is present. In order to determine whether an excitation or a

damping is present, the work per cycle exerted by the fluid on the structure is calculated.

As stated, next to single-blade test cases, cluster test cases are investigated with respect to

their aerodynamic stability. The formulations outlined in the following consider one blade

as a basis and are also used for cluster configurations. This is applicable, since each of the

cluster-blades is investigated as an individual blade. Additionally a two-dimensional turbine-

blade is considered. As no deformation of the blade profile is present, it can be treated as a

rigid body. The principal formulations are noted in the following. For a detailed mathematical

development, Verdon [1987] is an effective starting point. He showed that in the case of small

perturbations the following simplifications can be applied:

• The blade oscillations are of a harmonic nature.

• For small vibration amplitudes, the unsteady pressures can be linearly superimposed.

• The eigen-modes of the individual blades are not coupled.

These assumptions are in line with the approach known as the “Energy Method” which was

introduced by Carta [1967]. Considering a harmonic blade motion, the blade displacement

vibration can be described as follows:

~an(t ) = ~̂a cos(2π f t −nσλ) n ∈N, λ ∈N, N= {0...N −1} (2.13)

where t describes the time, f the vibration frequency of the blade, n the blade number with

n = 0 as the reference blade, σλ the inter-blade phase angle and ~̂a the non-dimensional

displacement vector of the blade at one radial position. In the case of a torsional movement, ~̂a

is defined as:

~̂a = ~̂aα =α~eα (2.14)

with α describing the blade angular displacement in radians and with~eα as the unit vector

parallel to the torsion axis. In the case of a bending movement, ~̂a is defined as:

~̂a = ~̂ah = h

c
~eh (2.15)

with h describing the blade bending displacement in the vibration direction, described by the

vector~eh, and c representing the blade chord length. Based on the harmonic blade motion, the
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pressure acting on the blade surface can be described as a sum of the steady mean pressure

psteady and the time-varying unsteady pressure fluctuations p̃(t ) around this mean value. By

calculating the Fourier transformation of the time-varying unsteady pressure fluctuations p̃(t )

and cross-correlating it with the harmonic blade motion, the pressure amplitude p̂s (modulus)

and phase lag ϕs along the blade surface s can be determined. Hence the time-varying

unsteady pressure p̃s(t ) can be noted in complex form as:

p̃s(t ) = p̂s e i ϕs e i (2π f t−nσλ) p̃s(t ) ∈C (2.16)

Considering that the phase lag between unsteady pressure and blade motion is calculated so

that it relates to the same blade (n = 0), Equation 2.16 can be simplified to:

p̃s(t ) = p̂s e i ϕs e i (2π f t ) p̃s(t ) ∈C (2.17)

The unsteady aerodynamic force ~F (t ) acting on the discretized blade surface element can be

expressed as:

d~F (t ) = b ps(t )~ns(t ) ds (2.18)

with~ns(t ) as the direction of the outward normal unit vector, b the blade span width and ds as

the surface element. These variables are depicted on the left of Figure 2.7. By calculating the

spatial integral of Equation 2.18 the aerodynamic force can be determined:

~F (t ) = b
∮
s

ps(t )~ns(t ) ds (2.19)

Figure 2.7: Determination of the aerodynamic force (left) and moment (right) coefficients.

For convenience, the values describing the aerodynamic stability are depicted in a non-

dimensional form. Hence the unsteady pressure amplitude is normalized by a reference

dynamic head and the blade vibration amplitude. This results in the unsteady pressure

coefficient which is defined as:

c̃p,s(t ) = p̃s(t )

|~̂a| (pt1 −pstat1
) (2.20)
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with |~̂a| the non-dimensional blade displacement (Equation 2.13), pt1 the total pressure and

pstat1 the static pressure at the inlet. The subscript s denotes the non-dimensional curvilinear

coordinate which is calculated as follows:

s = s

c
(2.21)

with c representing the blade chord. Taking into account the normalization of the unsteady

pressure amplitude (Equation 2.20) and the non-dimensional curvilinear coordinate (Equa-

tion 2.21), the unsteady force coefficient vector can be formulated as:

~̃cF =
∮
s

c̃p,s(t )~ns(t ) ds (2.22)

For the torsional motion, the unsteady moment coefficient vector is defined according to the

definitions in Figure 2.7 (on the right) and considering Equation 2.20. It reads:

~̃cM =
∮
s

c̃p,s(t )

[
(~rs(t )−~r0)

c
×~ns(t )

]
ds (2.23)

where ~ns is the outward normal unit vector and (~rs(t )−~r0) is the vector between the center of

rotation and the location on the blade surface.

The work coefficient is next introduced and describes the dimensionless work performed per

unit arc length by the fluid on the blade. This parameter is used in two ways: as “local” (refer-

ring to a specific position on the blade surface defined by the non-dimensional curvilinear

blade coordinate s) and “global” (referring to the entire surface of the two-dimensional blade).

Thus, local changes can be identified more precisely along the blade surface between the test

cases, whereas the global view describes the aerodynamic stability of the blade. In the case of

a bending motion, the local work coefficient can be described as:

wF,s =
T∫

0

c̃p,s(t )~ns(t ) ~̇ah(t ) dt (2.24)

where ~̇ah(t ) is the first derivative of Equation 2.13 taking into account the bending vibration

direction. For the torsional motion, the local unsteady work coefficient is defined as:

wM ,s =
T∫

0

c̃p,s(t )

[
(~rs(t )−~r0)

c
×~ns(t )

]
~̇aα(t ) dt (2.25)

where ~̇aα(t ) is the first derivative of Equation 2.13 taking into account the torsional vibration

direction. In the case of a destabilizing pressure contribution to the blade vibration, the local

work coefficient is positive, hence indicating flow areas where the flow transfers energy to the

blade. This phenomenon reinforces the vibration. Negative values indicate regions where the
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pressure contributes to the stabilization of the vibration. Blade vibration energy is therefore

absorbed by the flow.

The global aerodynamic work coefficient can be calculated by integrating Equations 2.24

and 2.25 over the entire blade surface. Hence it can be stated in the case of a bending motion

that:

WF =
T∫

0

∮
s

c̃p,s(t )~ns(t ) ds

~̇ah(t ) dt (2.26)

Accordingly, in the case of a torsional motion the global aerodynamic work coefficient is:

WM =
T∫

0

∮
s

c̃p,s(t )

[
(~rs(t )−~r0)

c
×~ns(t )

]
ds

~̇aα(t ) dt (2.27)

As highlighted before, the sign of the work coefficient describes whether the blade motion is

either stabilized or excited by the unsteady flow. Reflecting the equations used to define the

work coefficient, it can be stated that the phase lag ϕs between the unsteady pressure and the

blade motion (Equation 2.16) is the key parameter for the sign. In order to avoid any sign errors

of the work coefficient, it is essential to ensure that the phase lag ϕs is always cross-correlated

between the unsteady pressure and the blade motion on which the unsteady pressure is

evaluated. This is essential for evaluating individual cluster-blades since it implicitly accounts

for the phase lag between the individual cluster-blade motions.

Finally, in order to describe the aerodynamic stability of the blade, a normalized parameter

Ξ is commonly used. This parameter, as reported by Verdon [1987], normalizes the negated

work coefficient by the blade vibration amplitude ~̂a and π. It can be written as:

Ξ=− W

π |~̂a|
(2.28)

Thus in case of bending motion it is defined as:

ΞF =− WF

π |~̂ah |
(2.29)

and in case of torsional motion as:

ΞM − WM

π |~̂aα|
(2.30)

Bearing in mind that the key parameter to determining the aerodynamic stability is based

on the phase lag ϕs , it can be also calculated in the case of bending motion as the negative

imaginary part of the unsteady force coefficient (Equation 2.22):

ΞF =−Im
[
~̃cF ·~eh

]
(2.31)
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where~eh is the blade oscillation direction unit vector and ~̃cF is the complex unsteady force

coefficient (Equation 2.23). Accordingly for the torsional motion, it can be written as:

ΞM =−Im
[
~̃cM ·~eα

]
(2.32)

where~eα is the unit vector parallel to the torsion axis and ~̃cM is the complex unsteady moment

coefficient (Equation 2.23). In the case of a positive value, the blade is damped and leads to a

stable behaviour. In contrast, the blade is excited in its oscillations and an unstable behaviour

is present.

In the field of turbomachinery, the reduced frequency is a measure to indicate the likelihood

of starting flutter. As Vogt [2005] described, the reduced frequency is a relation between the

time the air flow needs from LE to TE and the duration of one vibration cycle (see Figure 2.8).

Hence, it can be interpreted as the ability of the flow adapting to the blade vibration and is

commonly defined in the following way:

k = π c fbl

U2
= π c

U2 ∆tbl
(2.33)

where fbl is the blade vibration frequency, c the blade chord length, ∆tbl the blade oscillation

period and U2 the outlet velocity. For low reduced frequencies, a quasi-steady character of the

flow is present, since the flow is able to settle to the changed conditions. Therefore, the smaller

the reduced frequency the higher the susceptibility for flutter. Critical reduced frequencies of

turbine-blades are reported (Vogt [2005]) to be situated between 0.1 and 1.1. At this point it has

to be noted that these aforementioned values are purely empirical and thus have to be applied

with care. The test cases within this work have a reduced frequency of k = 0.26. Schläfli [1989]

reported that non-vibrating single-blade profiles with identical reduced frequency and Mach

number show similar unsteady behaviour in incompressible flows. With respect to test cases

investigating a cascade of oscillating blades not only does the reduced frequency have to be

similar, but also the traveling-wave pattern of the whole cascade. This in order to account for

the influences of the vibrating neighboring blades with respect to the investigated blade.

Figure 2.8: Illustration of the reduced frequency.
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ALL experiments dedicated to this investigation were performed in the non-rotating annular

test facility at EPFL. The performed measurements were part of the research project

FUTURE (Flutter Free Turbomachinery), funded by the European commission as part of the

FP7. Further information about the project details are available on the Website of the project

FUTURE [2008]. The test rig, the annular cascade, the measurement techniques and the test

cases are presented in this chapter.
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3.1 Non-Rotating Annular Test Facility

For decades, the non-rotating annular test facility at EPFL, developed by Bölcs [1983], has

been dedicated to the investigation of aerodynamic and aeroelastic phenomena of turbine

and compressor cascades. The unique design of the test facility changes the flow coordinate

system in such a way that the air is swirled instead of rotating the rotor. The avoidance of a

rotating rotor simplifies the test facility mechanics since, for example, it allows the researcher

to easily implement a system to force the airfoils of a complete blade-row into oscillation.

Furthermore there is no necessity for bearings and telemetric devices to control the rotor

and to perform measurements. The resulting flow conditions are similar to those in real

turbomachinery. An extensive instrumentation is therefore possible and the measurement

techniques can be simplified due to the less complex environment, thus allowing reliable data

acquisition. The test facility was continuously improved by means of measurement techniques

and flow control, thus permitting aeroelastic investigations such as forced response, flutter,

gust response and structural mistuning. An embedded blade vibration control system allows

the test engineer to perform measurements in the traveling-wave mode (all blades in the

cascade vibrate) as well as the influence coefficient mode (only one blade in the cascade

vibrates). Furthermore, aerodynamic investigations are possible, such as active flow-control

and cascades under reverse-flow conditions.

Figure 3.1: EPFL air supply network.

A 2.25 MW four-stage centrifugal compressor supplies the test facility with compressed air in

an open loop (see Figure 3.1). The compressor uses air at ambient pressure and temperature.

The temperature increases during the compression process and is then cooled by two heat

exchangers, thus allowing the air temperature entering the test facility to be adjusted. The

entering air temperature can be regulated between 20°and 60° C. The air outlet pressure of

the compressor is adjusted by the air inlet valve, so that a compression ratio of 3.5 with a

maximum flow rate of 10 kg/s can be achieved.
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Figure 3.2: Schematic view of the non-rotating annular test facility, Bölcs [1983].

Figure 3.2 presents the test facility and details its main functions (for further information

consult Bölcs [1983]). The air enters the test facility radially (Figure 3.2, item 1 and 2) and is

pre-swirled by vanes (Figure 3.2, item 5 and 6) before accelerating in the radial-axial nozzle.

After acceleration, the flow approaches the test section (Figure 3.2, item 7). Behind the test

section, the flow turns in a radial direction and exits (Figure 3.2, item 12) the test facility. With

this setup, a quasi-two-dimensional flow at mid-channel height in the test section can be

achieved. The flow quantities (total pressure, outlet static pressure and inlet flow angle) can

be adjusted by the inlet valves (Figure 3.2, items 1 and 2), outlet valves (Figure 3.2, item 12)

and the pre-swirl vanes (Figure 3.2, items 5 and 6). If necessary, adjustments to the flow

boundary layer can be performed using the boundary layer suction valves, located after the

inlet pre-swirl vanes (Figure 3.2, items 5 and 6) and up- and downstream of the test section

(Figure 3.2, item 7).
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Different measuring systems are used to identify the steady-state flow conditions at different

positions in the test section (Figure 3.2, item 7). Entering the test facility at the upstream

settling chamber (Figure 3.2, items 3 and 4), the total temperature of the flow is measured

using a thermostat. Next, before and after the test section, aerodynamic 5-hole L-shaped

probes (Figure 3.2, item 8) are used to measure the in- and outflow profiles. Additionally, along

the test section tip wall (Figure 3.2, item 10) an array of pressure taps is used to identify the

flow behaviour along the blade tip-gap.

Figure 3.3: Detailed schematic view of the test facility (from Rottmeier [2003]).

For controlled vibration measurements, the test facility can be equipped with a magnetic

excitation system, which excites the cascade’s blades into vibration. The harmonic oscillation

of each blade can be individually varied in amplitude and phase with an identical vibration

frequency for all blades. Figure 3.3 shows the major parts of the excitation system, the displace-

ment transducers to measure the oscillatory location of the blade (item 6), the electromagnets

(item 8) and the transformer plates (item 6) used to create the magnetic force to move the

blades. The cascade vibration system is further detailed in Section 3.3.
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3.2 Annular Turbine Cascade

The annular turbine cascade consists of 20 prismatic turbine-blades (Figure 3.4, bottom right).

The blade profile used is identical to the one used during the Brite-Euram ADTurB I (see

Rottmeier [2003]) and ADTurB II (see Beretta [2006]) projects. In the frame of both projects

the investigations which were performed in the non-rotating annular test facility focused

on the influence of gust response to the aerodynamic stability of the turbine-blade. Major

dimensions of the annular cascade are noted in Table 3.1. Each of the 20 blades are mounted

by a blade-suspension system at the cascade’s core (Figure 3.3, item 1). One blade-suspension

system itself consists of a blade base (Figure 3.3, item 4), a mass (Figure 3.3, item 3) and a

spring (Figure 3.3, item 2). These modular suspension systems can be configured in order to

perform vibrations in the bending direction (Figure 3.4, top right) or in the torsion direction

(Figure 3.4, middle right). The cross-section of the blade-suspension springs in the torsion

mode is cross-shaped, permitting only this type of movement while avoiding all others. For the

bending mode beam-shaped suspension springs are applied. The bending blade-suspension

system has an additional feature, which enables the direction of vibration to be changed. This

feature is realized by a selection of slots for the fitting key between the spring and the mass

element of the blade-suspension system (see Figure 3.5), which allows the spring to be rotated

relative to the mass element. An additional feature of the blade-suspension system design is

that the blade motion is realized only by deforming the spring (Figure 3.3, item 2). Hence the

blades (Figure 3.3, item 5) perform a motion as a rigid body.

Number of blades: N 20 [-]

Blade span height: b 40 [mm]

Blade chord: c 75.2 [mm]

Hub radius: RHub 160 [mm]

Tip radius: RTip 200 [mm]

Table 3.1: Main blade attributes.

In Figure 3.4 on the left, the complete assembly of the turbine test model is presented. The

electro-magnetic excitation system (Figure 3.3, item 8) is placed directly below the turbine

cascade. Above the turbine cascade module, the hydraulic brake, displacement sensors

and wiring/tubing for the various pieces of measurement equipment in the cascade can be

identified. These modules of the complete turbine assembly are detailed in the next two

sections.
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Figure 3.4: On the left: turbine cascade assembly with excitation system, measurement
equipment, connector support and hydraulic brake. On the top right: one bending blade-
suspension system; in the middle right: one torsion blade-suspension system; at the bottom
right: turbine cascade.
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3.3. Cascade Vibration Control System

Figure 3.5: Additional slots in the spring and mass element for the fitting key, in order to alter
the bending direction for the bending blade-suspension system (from Beretta [2006]).

3.3 Cascade Vibration Control System

The cascade vibration control system (Figure 3.6) enables the adjustment of the blade vibra-

tion amplitudes and phases. The 20 blades are excited by electromagnets (Figure 3.3, item 8)

placed below the mass element (Figure 3.3, item 3) of each blade-suspension system. Each of

the electromagnets is connected to an amplitude and phase controller. All of these systems

are connected to one oscillator creating the reference signal and thus control the excitation

frequency of the blade-suspension system. The displacement of the blade is measured con-

tinuously via eddy-current displacement sensors and is input to the amplitude and phase

controlling system closing the control loop. This system of individually controlled blades, in

terms of blade vibration amplitude and phase angle, allows the investigation of the whole set

of blade-row vibration patterns (nodal diameters) in the traveling-wave mode. Additionally,

measurements can be performed at which only one blade oscillates, as for the influence

coefficient formulation. In spite of the advantages of this system, it cannot extract kinetic

energy from the vibrating blade-suspension systems and can only transfer kinetic energy into

the blade vibration system via the electromagnetic excitation. This can result in the possibility

that energy is transferred to the blade vibration system, while the flow conditions also induce a

vibrational excitation. Either of the effects can force the system into flutter, which results in the

failure of the blade vibration system due to excessive blade vibration amplitudes. In order to

avoid exceeding a certain level of vibration amplitude, a hydraulic brake (Figure 3.3, item 9) is

positioned above the blade-suspension system. In the case of flutter it can be lowered to stop

any blade vibration. Typical vibration frequencies are situated between 150 - 300 Hz, which

is the design range of this system. The eigenfrequencies of the investigated blade vibration

system structures are in the range of 250 - 280 Hz. The vibration frequency which is finally
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used is as close as possible to the eigenfrequency of the structure. This in order to allow the

electromagnetic actuation system to excite the blade vibration systems at efficiently large

vibration amplitudes. A vibration frequency too close to the eigenfrequency would result in

resonance of the blade vibration system and possibly damage it.

Figure 3.6: Cascade vibration control system (from Rottmeier [2003]).

3.4 Overview of Cascade Instrumentation

Figure 3.7 presents an overview of the cascade instrumentation. The airfoils of the cascade

are equipped in total with four sets of pressure taps. One set is used to measure the unsteady

pressures at 50% blade height and the remaining three sets to measure the steady-state blade

surface pressure at three different span heights (25%, 50% and 90%). Each of these sets covers

one inter-blade channel; that is, blade n of the inter-blade channel has nine pressure taps on

the pressure-side (PS) and blade n +1 twelve on the suction-side (SS). Figure 3.8 presents the

pressure taps along the blade surface; for documentation the pressure-side and suction-side of
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the inter-blade channel are depicted onto one blade. Table 3.2 documents the distribution of

the pressure taps via the curvilinear coordinate s. As mentioned in Section 3.3, 20 contactless

eddy-current displacement transducers are positioned above each of the blade-suspension

masses (Figure 3.3, item 3) to measure time-accurately the displacement of the blades.

Figure 3.7: Overview of steady (orange 25%, green 50% and red 90% blade height), unsteady
(blue 50% blade height) and tip-wall pressure-tap distributions along the cascade.

Figure 3.8: Steady and unsteady pressure-tap locations along the blade surface, merged onto
one blade (from Rottmeier [2003]).
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Table 3.2: Relation between the curvilinear coordinate s and the steady and unsteady pressure-
tap locations along the blade surface.
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4 Experimental Test Cases

THIS chapter presents the investigated test cases and depicts their motivation. The test

cases comprise single-blade and cluster configurations. The difference between both is

that for single-blades no physical connection between the individual blades in the blade-row

exists, whereas for cluster configurations fixations between the blades are simulated in the

non-rotation test facility. This, as they appear in real turbomachinery applications, such as

two blades which are welded-in-pair or four blades which are cast as a piece. These types of

clusters are introduced in order to increase the aerodynamic stability of the configuration in

contrast to only single-blades in a blade-row and also to reduce the part count in the blade-row

and therefore the production costs too. The grouping of the blades, cast or welded, depends

on the complexity of the three-dimensional blade design.

As a result of the increase in stiffness, which is due to the grouping of the blades the cluster

oscillates in a different mode-shape as it would be the case for single-blades, thus influencing

differently the aerodynamic stability. The kinematics of these new mode-shapes can be

specified by the oscillation direction, the vibration amplitude and the phase relation of the

individual cluster-blades.

The test cases investigated in this work are selected on the basis of the two above-mentioned

parameters:

1. the number of blades per cluster, which is defined to be identical for all clusters in the

blade-row

2. the mode-shape of the cluster

In order to enable a comparison of the individual test cases, one subsonic flow condition

is chosen and applied on a rigid prismatic turbine blade, illustrated in Figure 4.1. All mea-

surements are carried out in the traveling-wave mode (see Section 2.2), with the blade-row

oscillating in all possible inter-cluster phase angles which can be achieved for the individual

test case. Additionally to the cluster test cases, single-blade test cases are carried out. It shall

be noted at this point, that if not otherwise indicated in the following, single-blade test cases
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always refer to measurements for which the blades in a blade-row are not fixed together and

all blades are oscillating in the traveling-wave mode. The single-blade test cases are selected

so that similar oscillation directions are investigated as applied to the individual cluster-blades

in a cluster. They therefore represent the reference in terms of aerodynamic stability as they

are the base configuration in a blade-row. This enables a comparison between the cluster

and the single-blade test cases and thus identification of differences in the aerodynamic

stability of the individual cluster-blades due to the grouping of the blades. Additionally, as the

single-blade test cases have the same oscillation direction as the individual cluster-blades, an

attempt is made to validate the procedure of using single-blade test data to predict individual

cluster-blades by using the relationship between the traveling-wave and influence coefficient

formulation.

The following subsections introduce first the sign convention of the blade vibration direction,

and second the cluster and the single-blade test cases. A brief summary of all test cases can be

found in Table 1.2.

Figure 4.1: Definition of the blade vibration coordinate system. The positive oscillation
directions of the investigated test cases are indicated with an solid line.
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4.1 Sign Convention of the Blade Vibration Direction

Figure 4.1 presents, besides the cross-section of the investigated prismatic turbine blade, the

blade coordinate system for which the following definition can be noted:

• The origin of the system is positioned in the center of rotation of the blade and the blade

structure.

• The positive axis ξ in the blade axial direction is parallel to the machine axis and points

downstream.

• In the blade circumferential direction, the positive axis η is perpendicular to the axis in

the axial direction and points towards the suction-side of the blade.

• The torsional direction ζ is defined as positive in the clockwise direction, completing

the coordinate system and complying with the right-hand rule.

Based on the sign-convention, the positive torsion, axial and flap-bending oscillation direc-

tions are indicated by a solid line at the lower blade depicted in Figure 4.1.

4.2 Two-Blade Cluster

Overall, three two-blade cluster test cases are investigated in the non-rotating test facility

(see Chapter 3). These test cases are based on two blades welded-in-pair and oscillating

with different cluster mode-shapes. From a mechanical point of view, both blades are fixed

together at both ends in the radial direction. In Figure 4.2 at the top left, an example of such a

configuration is presented.

As previously outlined and as stated in various works of research (for example Whitehead and

Evans [1992], Chernysheva [2004] and Corral et al. [2007]), the mode-shape of the cluster has a

significant influence on the aerodynamic stability. Therefore the mode-shape of the cluster is

chosen being the parameter to be investigated. One mode-shape of particular interest is an

oscillation of both welded-in-pair blades which is perpendicular to the chord. This oscillation

direction appears most in turbines due to the curvature of the blades in combination with

the flow direction. It should be pointed out that this oscillation direction is therefore also

of interest in the case of single-blades. In the following, this oscillation direction is referred

to as flap-bending. In addition to the flap-bending oscillation direction, a second bending

oscillation direction is selected, which is in the axial-direction. This is chosen in order to

identify any influences on the aerodynamic stability of the blade related to a change in the

oscillation direction. The third oscillation direction chosen is in the torsional direction, since

it has been identified by previous works of research (the same authors as noted above) that

the minimum aerodynamic damping in this case is susceptible to the grouping of blades

compared to single-blades. Furthermore it is one of the oscillation directions that appears

frequent in turbines.
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Figure 4.2: Left: example of a welded-in-pair low-pressure turbine cluster (from Zanker et
al. [2013]). Middle and right: deformation example of a welded-in-pair low-pressure turbine
cluster for the first bending and first torsion mode-shapes obtained from a bladed-disk finite
element method (from Corral et al. [2007]).

The deformation pattern of the welded-in-pair blades for a bending- and a torsion mode-shape

are exemplified in Figure 4.2, respectively in the middle and on the right. Both deformation

examples are obtained by a bladed-disk finite element method performed by Corral et al.

[2007]. The authors stated that the identified mode shapes are almost two-dimensional,

whereas for the torsion mode-shape an exception of the two-dimensionality is stated for

the blade root. For the bending mode-shapes, they concluded that both blades have similar

deformation iso-contours and are seen in a first approximation as rigid bodies. Thus they

can be modelled with the turbine blades of the non-rotating test facility (see Section 3.2). For

the torsion mode-shape, because minimal differences between the iso-contour lines can be

found at the blade root and tip, a part span height of this configuration is simulated in the

non-rotating test facility.

The kinematic features of the welded-in-pair configuration can be replicated in the test facility

by adjusting the blade-vibration amplitude and phase individually for each blade vibration-

system (see Section 3.3). This is done in such a way that each two consecutive blades in the

blade-row are always moving in-phase with an identical blade vibration amplitude. Therefore,

with respect to the traveling-wave formulation, an inter-blade phase angle of σλ = 0° is always

present between the blades of a cluster. Between the blades of two adjacent clusters, the

inter-cluster phase angle Γλ is applied, thus in the case of 20 blades in the blade-row results

in a total of 10 possible clusters and 10 inter-cluster phase angles, all of which have to be

considered.

In order to simulate the previously-introduced oscillation directions the modular setup of the

blade vibration system is applied. In the case of bending-oscillation, a bending-suspension

is chosen, which can be adapted in order to represent either a suspension in an axial- or

flap-bending direction (see Section 3.2 and Figure 3.4 at the top right). To simulate the torsion

oscillation a suspension is chosen which enables a movement of the blade vibration system in
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the torsional direction and suppresses any bending movement (see Figure 3.4, middle right).

In Table 4.1 the principal parameters defining this cluster are stated, namely for the test cases:

C2-A for the bending mode-shape in the axial direction (Figure 4.3, top right), C2-F for the

bending mode-shape in the flap direction (Figure 4.3, middle right) and C2-T for the torsion

mode-shape (Figure 4.3, bottom right). It should be noted that each oscillation direction

suppresses all others possible, thus the oscillation is assumed to be one-dimensional.

Figure 4.3: Left: two blade-vibration systems indicated as a cluster. Right: two-blade cluster
oscillation directions (top: flap-bending; middle: axial-bending; bottom: torsion).

Test case: C2-A C2-F C2-T

Cluster

blade A:

Oscillation-direction: Axial Flap Torsion

Amplitude: hax hfl α

Cluster

blade B:

Oscillation-direction: Axial Flap Torsion

Amplitude: hax hfl α

Cluster-blades phase-constraint: In-phase In-phase In-phase

Traveling-wave type: ICPA ICPA ICPA

Total number of ICPA: 10 10 10

Table 4.1: Test case specifications of the two-blade cluster configurations.
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4.3 Four-Blade Cluster Simulating Torsion

This cluster is meant to represent a four-vane stator segment of a low-pressure turbine per-

forming a torsional movement as a cluster. Such a four-vane stator segment is presented in

Figure 4.4 on the left. All four vanes are fixed to one another on the hub and shroud side. On

the right of this figure, a structural analysis is presented (performed by GE Avio S.r.l.) which

simulates a torsional movement of the four-vane stator segment fixed together at the tip.

The structural analysis indicates that in the region near the hub side an almost rigid body

movement of the individual cluster-blades is present. The present test case intends to simulate

this motion.

Figure 4.4: Left: four-vane stator segment of low-pressure turbine (from GE Avio S.r.l.). Right:
torsional deformation of a four-vane package fixed together at the tip, simulated using a
structural analysis (from GE Avio S.r.l.).

The blade-row in the non-rotating test-facility consists of 20 single-blades. This means five

clusters can be modelled and thus five inter-cluster phase angles Γλ can be investigated. In

order to simulate a torsional motion of a cluster using individual blade oscillations, an axial-

bending direction is chosen and the blade oscillation amplitudes and phases are adjusted

accordingly. In Figure 4.5 at the top, the torsional movement of a four-vane stator segment is

schematically illustrated. In the middle of Figure 4.5 the oscillation of the individual blade

vibration-systems (see Section 3.3) in the axial-bending direction is depicted in red and shown

at the bottom as the movement of the blades. Before further detailing the kinematics of this

cluster, the following two definitions shall be introduced. The inter-blade channel existing

between two consecutive clusters is in the following referred to as the outer-cluster channel.

Accordingly, the inter-blade channels existing between the individual cluster-blades are re-

ferred to as the inner-cluster channels in a cluster.

Due to the grouping of the blades, a fixed blade-vibration phase lag exists between the individ-

ual cluster-blades of the inner-cluster channel. In order to simulate the torsional movement

of the cluster, cluster-blades A and B have to move in-phase. Cluster-blades B and C have to
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move in opposite-phase and cluster-blades C and D in-phase. As cluster-blades B and C move

in opposite-phase, cluster-blades A and D also move in opposite-phase, as previously stated.

With respect to the blade vibration amplitudes, cluster-blades A and D are defined as having

a nominal amplitude in the axial-direction. Thus cluster-blades B and C have a third of the

nominal blade vibration amplitude in order to simulate the torsional movement around the

cluster-rotation axis between cluster-blades B and C. The individual cluster-blade kinematics

are summarized in Table 4.2.

Overall, and as previously defined, it can be noted that for all inter-cluster phase angles appear-

ing in the outer-cluster channels, the individual cluster-blade vibration amplitudes and phase

angles have to be adjusted. This is necessary in order to simulate a torsional movement of the

cluster by applying an axial-bending oscillation direction of the individual cluster-blades.

Figure 4.5: Modelling of the torsional cluster movement by using an axial-bending oscillation
direction for the individual cluster-blades. Exaggerated schematic description of the real
four-blade vane segment motion (black) and the simulated motion (red) in the non-rotating
test facility.
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When reflecting a real torsional motion of the four-blade cluster as a whole (see Figure 4.5 at

the top), each individual cluster-blade would vibrate along a fraction of a circle and would

underly a translational-torsional displacement. Whereas the cluster movement simulated in

the non-rotating test facility is defined by each cluster-blade oscillating along the axial-bending

direction (see Figure 4.5 in the middle). Comparing both movements (real torsional: black;

simulated via the axial-bending direction: red) the following can be identified: differences

between the end position and the rotation of the individual cluster-blades. For example,

cluster-blade A in the non-rotating test-facility is not rotated and is further away from the

rotation axis of the cluster than the same cluster-blade performing a real torsional movement.

In order to estimate the impact of this, the ratio between the cluster-blade vibration amplitude

and the radius from the center of the cluster to the individual cluster-blade is determined.

As the ratio indicates (three orders of magnitude difference) it is assumed that the vibration

along the circle is linear and the fraction of torsional movement negligible.

Test case: C4-A-S-T

Cluster

blade A:

Oscillation-direction: Axial

Amplitude: hax

Phase: ICPA

Cluster

blade B:

Oscillation-direction: Axial

Amplitude: hax/3

Phase relative to blade A: 0°

Cluster

blade C:

Oscillation-direction: Axial

Amplitude: hax/3

Phase relative to blade A: 180°

Cluster

blade D:

Oscillation-direction: Axial

Amplitude: hax

Phase relative to blade A: 180°

Traveling-wave type: ICPA

Total number of ICPA: 5

Table 4.2: Test case specifications of the four-blade cluster configuration.
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4.4 Single-Blade

The single-blade test cases comprise three oscillation directions, which are directly related to

the cluster test cases introduced in the previous sections. This is because the single-blade test

cases are meant to serve as a reference to compare to the cluster test cases. The single-blade

traveling-wave measurements comprise all possible inter-blade phase angles (20). In Table 4.3

the test case specifications are summarized.

Test case: SB-A SB-F SB-T

Oscillation-direction: Axial Flap Torsion

Amplitude: hax hfl α

Traveling-wave type: IBPA IBPA IBPA

Total number of IBPA: 20 20 20

Table 4.3: Test case specifications of the single-blade configurations.
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IN this chapter, the measurement techniques applied to determine the aerodynamic stability

of cluster- and single-blades are detailed. As highlighted in Chapter 2, different steady and

unsteady values are necessary to determine the trend towards aerodynamic stability of an

oscillating blade. The following sections highlight the measurement techniques necessary

to determine these values. This includes a description of the individual steady and unsteady

values measured next to the data acquisition procedure. The last section details the data-

reduction procedure which determines the aerodynamic stability parameters for cluster- and

single-blades. This is based on the measured data and the theoretical concept described in

Chapter 2. The following Chapters 6 and 7 present the steady-state and the time-resolved

results.
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5.1 Steady-State Measurements

5.1.1 Up- and Downstream Flow Quantities

Two 5-hole L-shaped aerodynamic probes (Figure 5.1, left) are used to measure the steady-

state flow quantities up- and downstream of the test section. In Figure 5.1 on the right, the

positions of the probes relative to the blade’s leading-edge (LE) and trailing-edge (TE) are

presented.

Figure 5.1: Left: 5-hole L-shaped probe (from Rottmeier [2003]). Right: probe traversing
locations relative to the blade LE and TE.

The probes are fixed on precise industrial linear displacement systems, which are in turn

fixed on the probe holders and mounted on the outer wall of the test facility (see Figure 3.3,

item 13). The probe heads are aligned with the mean flow direction. The displacement

system allows a stepwise displacement of the probes in the radial direction, and the rotation

indexing of the cascade allows a stepwise movement in the circumferential direction. A typical

measurement grid includes locations in the radial direction in steps of 2.5 mm (maximal step

distance 3.5 mm) and in the circumferential direction in steps of 1◦ (minimum length; 1 pitch

consisting of 18 steps x 1°, see Figure 5.2).

The probes are calibrated at EPFL in the Laval nozzle. The pitch angle is calibrated for a range

of ±15◦ and the yaw angle for ±16◦. Both angles are calibrated for a Mach-number range

of 0.1 - 0.95. The calibration is performed according to the process proposed and verified

by Schläfli [1986] and Capone [2000, 2001]. During the calibration process, five coefficients

are determined for each probe. These coefficients are implemented in the data-acquisition

52



5.1. Steady-State Measurements

program applied to the measurements. The calibration allows the data-acquisition program

to determine the total- and static-pressure, the Mach-number as well as the yaw- and the

pitch-angles.

To acquire the probe pressure data in digital form, a Scanivalve Digital Sensor Array (DSA,

range: 2068 mbar) is used. This device records the pressures and transfers them to the

data-acquisition PC, at which a LabViewT M program applies the calibration coefficients to

determine the flow quantities of interest. Additionally, the acquisition program ensures that

each measured pressure is within a certain margin of reliability. The applied procedure calcu-

lates the arithmetic average and the standard deviation of a certain number of measurement

samples (minimum 5). If the standard deviation is not less than one millibar after 20 acquired

samples, the program is stopped and the measurement has to be repeated. This routine

serves to identify whether stable flow conditions are present and guarantees a precise data

acquisition.

Figure 5.2: Probe traversing measurement grid.
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5.1.2 Blade Surface Pressures

The steady-state blade surface pressures at the three different blade heights (25%, 50%

and 90%) are measured using a Scanivalve DSA 3000 system. It consists of electric pres-

sure sensors of the type Scanivalve DSA 3016, each having 16 pressure channel inputs. To

control each of the channels, the DSA 3000 system has an embedded computer. This com-

puter handles the ethernet communication with the data-acquisition computer and is able to

perform a “zero calibration” of all channels. This is performed before each test cycle. Thanks

to the calibration performed by the manufacturer, further calibrations of the temperature-

compensated, piezoresistive differential pressure sensors (range: 2068 mbar) are not necessary.

The calibration of the system leads to an accuracy of ±0.8 mbar. The primary source of error

is associated with the steady-state pressure values due to the settling time of the pressures.

As settling time, the duration is considered until a change in pressure passes the long cavity

between the blade surface and measuring sensor. This error is estimated to be approximately

±0.5 mbar. As for the 5-hole L-shape probe measurement technique, a LabViewT M program

is put into place to monitor the standard deviation of the arithmetic average of the acquired

pressure data samples. Furthermore, the LabViewT M program is able to control the DSA 3000

system and to display the acquired blade surface pressures as blade surface isentropic Mach-

numbers per blade height.

In order to ensure the comparability between the different test cases, the blades equipped with

measuring sensors (Figure 3.7) are always positioned on the same circumferential position in

the test facility for each test case.

5.1.3 Casing Surface Pressures

The steady-state outer-casing surface pressures are acquired to better understand the passing

flow at the blade-tip region. In total, 18 pressure taps are located in the axial direction along

the casing surface in the region of the test section (see Figure 3.2, item 10). The pressures

are acquired in the same way as documented in Section 5.1.2, using a Scanivalve DSA 3000

system connected to the LabViewT M data acquisition program. To map the passing tip-gap

flow for the whole cross section of the blade profile, the airfoils are moved stepwise in the

circumferential direction, passing the pressure taps at the shroud wall with their fixed location.

For details, see the procedure measuring the flow quantities up- and downstream of the test

section using 5-hole L-shaped probes (see Section 5.1.1). The measurement grid comprises a

pressure tap array in the axial direction along the test section height (see Figure 3.2, item 10),

and in the circumferential direction 18 measurements are acquired by moving the airfoil in

steps of 1° covering one pitch.
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5.2 Time-Resolved Measurements

5.2.1 Blade Surface Pressures

The unsteady pressure fluctuations along the blade surface are measured by two neighboring

blades covering one inter-blade channel at the mid-span section (50% blade height). The

cylindrically-shaped sensors are high-response piezo-resistive absolute pressure transducers

(Endevco, Model 8534A-50) with a pressure range of 3448 mbar and a sensitivity in the region

of 0.087 mV/mbar. Variations in the sensitivity are related to the manufacturing tolerances.

The frequency response can range up to 300 kHz. In Figure 5.3, the mounting of the unsteady

pressure transducer (UPT) in the blade is presented.

Figure 5.3: Embedded unsteady pressure transducer (adapted from Rottmeier [2003]).

The pressure taps have a diameter of 0.4 mm and are tap-drilled perpendicular to the blade

surface. The pressure transducers are placed in a lateral hole passing below the blade surface. A

second hole next to the pressure tap is filled with epoxy glue to fix the pressure transducer in the

lateral position. The main advantage of this fixation is, that it protects the pressure transducer

from physical impacts. In addition, the pressure measuring-membrane of the transducer

is mounted perpendicular to the blade vibration directions, which means the influence of

any acceleration effects due to the blade vibrations are negligible (see also Rottmeier [2003]

and Beretta [2006]).

5.2.2 Blade Vibration Measurements

The displacement of each blade is measured using proximity probes. As described in Sec-

tion 3.3, the displacement information is used to feed back the actual sinusoidal position

of the blade to the vibration control system. This is in order to determine and control the

amplitudes and phases of the blade movements by the vibration control system. The sensors

used are Vibro-Meterr TQ 402 (Figure 5.4). Together with the matching IQS 452 conditioner,

they allow a contactless measurement of the relative displacement between the mass element

of the blade (Figure 3.3, item 3) and the displacement transducer (Figure 3.3, item 6).

The operation mode of the sensor is based on the eddy current principle. The sensor provides

a small magnetic field which changes due to the movement of the metallic plate, placed in
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Figure 5.4: Displacement transducer, Vibro-Meterr TQ 402.

front of the sensor (Figure 3.3, item 6) on top of the mass element (Figure 3.3, item 3). This

change in the magnetic field induces an eddy current in the sensor, which is measured and

amplified. This type of sensor is capable of measuring with a sensitivity of up to 4 mV/µm

and has a frequency response of up to 20 kHz. The calibration procedure is described in

Section 5.4.1 as well as details about the influences of the amplifiers.

5.2.3 Cluster Specific Procedures

For the time-resolved measurements of cluster test cases, a procedure is employed which is

adjusted to the experimental setup of the test facility, the measurement equipment and the

cluster configuration. Beforehand to the description, the following can be summarized as

influencing factors of the procedure:

• two blades are equipped with unsteady pressure transducers (together they cover one

inter-blade channel)

• the cluster configuration under investigation (e.g. two- and four-blade cluster)

• traveling-wave mode

As the items indicate, a complete data set for the minimum cluster configuration of two-blades

cannot be acquired during one test run. Hence several test runs have to be performed in

order to determine the unsteady pressures on all cluster-blade surfaces in a cluster for one

inter-cluster phase angle in the traveling-wave mode measurement technique. This procedure

will be illustrated using the four-blade cluster test case C4-A-S-T, and can be used respectively

for the two-blade cluster test-cases.

Figure 5.5 depicts the measuring procedure for the individual blades in the four-blade cluster.

Bearing in mind that only one inter-blade channel is equipped with unsteady pressure trans-

ducers, in total four measurements (first four lines in Figure 5.5) have to be performed to cover

each inter-blade channel of the cluster. In order to do this the blade actuation (amplitude and

phase) is adjusted accordingly via the vibration control system (see Section 3.3). The last line

56



5.2. Time-Resolved Measurements

in Figure 5.5 shows how the four measurements fit together to create a complete data set for

each individual cluster-blade. As noted before, this method can be used accordingly for the

test cases of a two-blade cluster.

Figure 5.5: Description of the measuring and post-processing procedure of the four-blade
cluster simulating a torsional movement.
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5.3 Data Acquisition Systems

Two standard PCs are used to operate the data acquisitions systems (DAQ). One is dedicated

to the steady-state parameters and the other to the unsteady parameters. Both are operated

with National Instrument’s LabViewT M software, which allows the acquisition and saving of

the measurement data as well as the handling of the measurement equipment. In Figure 5.6 a

schematic overview of the data acquisition and control system is presented. In the following

sections the context of the different sensors, amplifiers, control modules and data acquisition

PCs is presented.

Figure 5.6: Schematic view of the data acquisition and control system (adapted from Beretta
[2006]).

5.3.1 Steady-State Measurements

The steady-state measurement system is devoted to the control and acquisition of the following

measurement data:

• steady-state blade-surface and casing-surface pressures

• US- & DS-5-hole L-shaped aerodynamic probe pressures

• indexing of the measuring cascade
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The steady-state blade-surface and shroud pressures are acquired using an Ethernet connec-

tion via the TCP/IP protocol to connect with the Scanivalve DSA 3000 system, as documented

in Section 5.1.2. Another task of the steady-state PC is to acquire the pressures of the US-

and DS- 5-hole L-shaped probes, as well as to move the probes in the radial direction. The

communication with the industrial linear displacement motors is achieved by using a General

Purpose Interface Bus (GPIB) and a probe position controlling device (isel step motor con-

troller C-116). The pressures are acquired using a DSA module connected to the PC using an

Ethernet connection with a TCP/IP protocol. The rotational indexing of the cascade permits

a stepwise rotation of the cascade. Hence measurements in circumferential direction of the

5-hole L-shaped aerodynamic probes and the steady-state shroud pressure-taps are possible.

Both measurement procedures are detailed in Section 5.1.1 and 5.1.3.

5.3.2 Unsteady Measurements

The unsteady measurement system is devoted to acquiring the unsteady blade surface pres-

sures and the individual blade displacements. To guarantee a good signal quality both time-

resolved measurements have to be acquired simultaneously, preferably over several vibration

cycles. The time depending of the signals allows different post-processing methods to be used

(e.g. direct method or the ensemble-average method) to determine the unsteady pressure

amplitude (modulus) and phase angle. In a second step, this enables the determination of the

aerodynamic values of interest for the entire blade, such as the aerodynamic-damping and

aerodynamic-work coefficient.

Figure 5.6 shows in a representative way two amplifiers and a power-supply unit connected

to one unsteady pressure transducer. Each of the 21 pressure transducers is connected to

such a set of electronics in order to provide the necessary power to the transducer to per-

form measurements. Furthermore, this system filters the DC component (steady part of the

pressure) out of the signal and amplifies the unsteady signal by a factor of 10. In the second

amplifier, a low pass filter (4 kHz) is applied to the measured signal supporting the signal

quality (less aliasing errors). Furthermore, another amplification with a gain of either 10, 100

or 1000 is applied. The variation in gain of the second amplifier is used to adapt the voltage

range of the measured unsteady pressure transducer signal to the voltage input range of the

acquisition data boards. This adjustment is necessary, since the strength of the unsteady

pressure transducer signal can vary due to local variations in the unsteadiness of the flow, for

example when aerodynamic shocks exist.

Representative of displacement sensors, one measuring chain is detailed showing an amplifier

and a signal conditioner (Figure 5.6). The signal conditioner provides the displacement

transducer with the necessary power to create the magnetic field and to sense any change in

the eddy-current value, which is proportional to the displacement of the corresponding blade.

The following amplifier has the property of an adjustable gain. This is essential, since the

vibration control system requires tuned sensitivities for all 20 blade-suspension systems, so
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that for one given voltage all blades have an identical vibration amplitude (see Section 3.3). In

total 21 displacements are measured: 20 are used to measure the displacements of the blade

vibrations and one displacement sensor is dedicated to measure the position of the hydraulic

brake (Figure 3.3, item 9).

Both time-resolved signal types, the 21 unsteady pressures and the 20 blade displacements,

are connected via three Bayonet Neill Concelman (BNC) connector platforms (outside the

PC) to three internally synchronized PCI-6071E National Instruments data-acquisition boards

(inside the PC). Each of these cards can perform a multiplexed sampling of 32 signals with a

maximum sampling rate of 1.25 MHz divided by the total number of acquired channels. The

internal synchronisation of the three boards allows the sharing of the external trigger and

external scan clock between the cards, ensuring that the three boards take the samples at the

same moment.

For the data acquisition, a phase-locked technique is applied, ensuring that the number

of samples per acquisition corresponds to a multiple of the number of samples per blade

oscillation period. This technique avoids the effects of FFT leakage due to non-periodic

samples, which would be the case if an arbitrary sampling frequency was used. Furthermore,

the phase-lock technique ensures a high signal-to-noise ratio. The data-acquisition boards

from National Instruments require two common input signals: a start trigger signal and a

scan clock signal. Both signals are connected to the reference TTL signal of the cascade

vibration-control system oscillator (see Figure 3.6), whereas the scan clock signal is multiplied

(multiplication factors are in the range of 2n with n = 1−5) to conform with the phase-lock

technique requirements. Each scan clock signal initializes the acquisition of a single sample

for all connected data channels. Common data sets consist of 32 samples per oscillation

period with a total number of 512 periods (total number of samples per acquisition: 16384,

representing one data set) for each acquired channel (in total 41 channels: 21 unsteady

pressure transducers and 20 blade displacement sensors). Bearing in mind the applied phase-

lock technique, the sampling frequency is a multiple of the oscillation frequency. To ensure

the signal quality and verify the repeatability of the measured results, a minimum of two

data sets per test condition (per IBPA/ICPA) are acquired and used as input for the data-

reduction determining the aerodynamic values of interest. The two or more sets are acquired

consecutively within a time frame of 2-3 minutes.

5.4 Unsteady Data-Reduction Technique

The basis of the unsteady data-reduction technique is the acquired unsteady data, as described

in Section 5.3.2, and the application of the Fast Fourier Transformation. Of interest for detailed

aerodynamic investigations are:

• the individual blade vibration amplitude

• the individual blade vibration phase angle
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• the unsteady pressure-fluctuation amplitudes on the blade surfaces

• the unsteady pressure-fluctuation phase angle along the blade surface related to the

reference blade displacement phase (typically the blade in which the unsteady pressure

transducer is incorporated)

These parameters can be determined with the aforementioned measurement procedures. The

data-reduction program is coded in the MATLABr programming language and set up in a

modular way permitting the simple adjustment of the different data-reduction program parts

to the different blade vibration directions of the single-blade and the cluster configurations. In

the following chapters further details are documented describing the unsteady data-reduction

techniques for single-blade, two-blade cluster and four-blade cluster measurements. In

particular, Section 5.4.1 is dedicated to the general data-reduction technique and the modular

setup. Section 5.4.2 describes how the program modules are adjusted in order to enable a

data-reduction of the different cluster types.

5.4.1 General Procedure

The data-reduction technique converts the acquired digital voltage signals of the unsteady

pressure transducers and the blade displacement transducers to physical units of interest,

(respectively Pascal and meter/degree of arc). In addition, it provides synchronous data of

the aforementioned signals. The introduced time delay due to the applied measurement

electronics (see Section 5.3.2) is known and corrected. For an overview of the used measure-

ment electronics, see Figure 5.6. The main steps of the data-reduction process, starting with

the sensor reading saved on the data acquisition PC and ending with the true physical value

output, are presented in Figure 5.7.

The data-reduction process splits each signal into identical sections in a first step and performs

then for each section a Fast-Fourier Transformation to convert it from the time to the frequency

domain. As each signal consists of at least two data sets (each with 16384 data points) and as

an overlapping of 50% for the individual data sections (8192 data points) is applied, in total six

data sections are considered. In a following step the average of the sections is calculated. This

is performed in order to increase the reliability of the results and to enable an estimation of

the random error, which is described later in this section.

The Fast-Fourier transformation (also known as: harmonic signal analysis) of the data section

permits an easy phase angle correction of the investigated signals. Furthermore it identifies

the fundamental harmonics present at the vibration frequency of interest. The data-reduction

continues and applies a time correction of each signal due to the multiplexing of the unsteady

data acquisition. As described in Section 5.3.2, one data sample per channel is acquired with

each rising edge of the scan clock signal. Each data sample of the different channels is stored

in a consecutive way, with a fixed time delay of about 3 µs1. Hence, knowing the time delay

1This value is given by the manufacturer and was validated by Beretta [2006].
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Figure 5.7: Overview of the unsteady data-reduction process for unsteady pressure transduc-
ers and blade displacement transducers.

means an effective correction can be performed during the data-reduction process.

The output of electrical sensors is usually given in voltage, which is proportional to the mea-

sured physical unit. The relation between the electrical signal of the sensor and the physical

unit is described by the sensor’s sensitivity, commonly provided by the sensor manufacturer.

This sensitivity does not account for any influences introduced by external parameters. In

order to maintain an accurate sensitivity, the latter have to be identified and accounted for. In

the case of unsteady pressure transducers the influencing parameters are:

• the travel distance of the pressure fluctuation from the point of measurement (blade

surface) to the sensor (embedded in the blade; see Figure 5.3)

• electronics handling the functionality of the sensor (amplifier, filter and power supply)

• range of the pressure fluctuation frequency

• orientation of the sensing surface with respect to the sensor’s direction of movement

The last item is mentioned for completion, as documented in Section 5.2.1. The sensing

surface of the unsteady pressure transducer is placed perpendicular to its movement axis and

is therefore negligible. In order to cover the above-mentioned first three items, a calibration of

each unsteady pressure transducer is necessary to account for modifications in the pressure

amplitude and phase signal. This calibration is performed using an in-house-designed cali-

bration device, displayed in Figure 5.8. The device creates a fluctuating pressure-signal which
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is measured simultaneously by a reference unsteady pressure transducer2 and the transducer

to be calibrated. As the latter is connected to the measurement chain as described previously,

a corrected sensitivity was determined. Finally, the corrected sensitivities are used in the

unsteady data-reduction process to convert the measured voltage signal into pressure values

(see Figure 5.7).

Figure 5.8: Application of the unsteady pressure transducer calibration device (adapted from
Rottmeier [2003]).

As for the unsteady pressure transducers, the blade displacement transducers are affected

by the electrical devices between each of the transducers and the data acquisition interface

(see Figure 5.6). For the purpose of calibration, an acceleration sensor (type 4375, Brüel &

Kjær) and a matching charge amplifier (type 2635, Brüel & Kjær) are used. As for the unsteady

pressure transducers, the resulting amplitude and phase corrections are included in the post-

processing procedure. The next step adjusts the gain of the sensor’s amplifiers so that each

calibrated sensitivity is identical. This is necessary to comply with the signal requirements

of the vibration control system. An identical sensitivity allows the vibration control system

to properly adjust amplitudes and phases of the vibrating blades. In total 21 displacement

transducers are present, one for each blade vibration system plus one for the hydraulic flutter

break (Figure 3.3, item 9).

In the last steps of the unsteady data-reduction technique, the unsteady pressure transducer

and the blade displacement transducer corrections are applied, including the conversion from

voltage to physical values. Furthermore, the aerodynamic parameters of interest (such as

aerodynamic forces, damping and work) are calculated on the basis of the first harmonic of

the unsteady pressure signal and then stored.

The unsteady data-reduction technique described above is similar to the one of Rottmeier

[2003]. In his investigation he concluded that by taking into account the aforementioned

calibrations and signal corrections, the unsteady pressure measurement incertitude related to

the systematic errors is considerably smaller than those originated from random errors. The

latter are a result of random disturbances due to the turbulence in the flow or interferences. In

order to account for these random errors a statistical error estimation is performed. As the

true value of the unsteady pressure is unknown, it has to be assumed that it is situated with

2The sensitivity of the reference transducer was provided by the manufacturer and verified in-house.
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a certain probability inside of a confidence interval. This confidence interval is determined

by considering the number of sections per signal and by using the Student’s t-distribution to

determine the variance of the signal for a 95% confidence interval. It should be noted that the

Student’s t-distribution is chosen in order to account for the low number of sections as it is

developed especially for low test sample numbers (see Bendant and Piersol [2009], section 4.4).

The detailed mathematical procedure to determine this confidence interval of the complex

unsteady pressure is detailed in Schläfli [1989] and was also used in other works of research as

for example in Körbächer [1996] and Rottmeier [2003]. In Figure 5.9 it is illustrated how the

confidence intervals of the unsteady pressure amplitude ∆p̂s and phase ∆ϕs influence the

complex unsteady pressure coefficient p̃s . In order to determine the confidence interval of

the global aerodynamic damping coefficient (see Section 2.5), the confidence intervals of the

unsteady pressure amplitude ∆p̂s and phase ∆ϕs are used.

Figure 5.9: Illustration to determine the random error related to the unsteady pressure mea-
surements (adapted from Schläfli [1989]).

5.4.2 Cluster Specific Procedures

The data-reduction technique described in the previous section is created in a modular way

to easily adjust it for varying configurations, e.g. cluster. In Section 5.2.3, the measuring

procedure was introduced for cluster test cases. It resulted in multiple test cycles for each of

the cluster test cases. In order to combine and sort the data of the test cycles, an extra step has

to be included in the data-reduction process. This step can be identified in the second line of

Figure 5.7. The sorting is performed so that a complete data set (pressure- and suction-side)

for the individual cluster-blades are present. It should be noted that a data set consists of

unsteady pressure data and blade displacement data of the blade on which the unsteady

pressure is measured. This ensures that the resulting phase lag between the unsteady pressure

and the blade motion relates to the individual cluster-blades.
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5.4.3 Exemplary FFT Spectra of Raw Signals

The previous section described the data-reduction of the time-resolved measurement data, in

particular the unsteady pressure on the blade surface next to the blade oscillation. One of the

first steps after rearranging the data is converting it from the time to the frequency domain.

This is achieved by means of calculating a Fast-Fourier Transformation and the results are

given as averaged raw amplitude spectra. In order to calculate the phase lag between both

signals, it is necessary to determine the cross-correlation between both.

The example presented in this section represents a single-blade test case oscillating with

an axial-bending oscillation direction (SB-A) and an inter-blade phase angle of σλ = 90°. In

Figure 5.10, the raw amplitude spectra of the unsteady pressure signal are presented. The

graph at the top-left represents the pressure tap at the leading-edge position. The top-middle

and top-right hand graphs represent pressure taps on the pressure-side positions, PS 3 and

PS 7. The graphs below represent the pressure taps at the suction-side positions, SS 10, SS 16

and SS 19. The individual positions can be consulted in Figure 3.8. In Figure 5.11, the raw

amplitude spectra of the blade oscillation is shown for two blades, which represent those on

which the unsteady pressure transducers are mounted (see Figure 3.7).

Figure 5.10: Averaged raw unsteady pressure amplitude spectrum for the single-blade test
case SB-A (axial-bending oscillation direction), IBPA σλ = 90°.

Within both figures, the fundamental (1st) harmonic amplitude is indicated with a circle.

Focussing on the shape of the detected peaks, it can be observed that all are of a sharp nature.

This is an indicator that no spectral leakage is present when calculating the Fast-Fourier
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Figure 5.11: Averaged raw blade oscillation amplitude spectrum for the single-blade test case
SB-A (axial-bending oscillation direction), IBPA σλ = 90°.

transformation. Hence, it can be assumed that the determined amplitudes reflect the mea-

sured amplitudes. Additionally, it can be seen that the detected peaks are well distinguishable

from the noise. These two factors support the calculation of the cross-correlation (phase lag)

between the unsteady pressure and the blade oscillation, since the better these two factors are

the better the cross-correlation determines the phase lag.

As Rottmeier’s [2003] conclusions show, the 2nd peak observed in Figure 5.10 between 1 -

1.1 kHz is a result of the vibrating splitter disk, which is placed between the inner and outer

settling chamber (see items 3 and 4 in Figure 3.2). Its vibrations in the aforementioned

frequency range produce the detected pressure fluctuations. Considering that no further

peaks can be identified within the unsteady pressure spectra, it can be stated that the unsteady

pressure fluctuations generated by the blade oscillation and measured at the blade vibration

frequency are sinusoidal. For all test cases investigated, the measured signals are similar to

those presented, whereas it is stated that a variation in the amplitudes exists depending on

the blade vibration direction, the inter-blade/-cluster phase angle and cluster configuration.
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THIS chapter is dedicated to present the steady-state flow measurement results of the test

cases investigated in Chapter 7, all of which feature identical steady-state flow conditions.

Since the unsteady results of the different test cases (single-blade and cluster) are compared

to each other, the steady-state test results have to be as identical as possible. This is also

presented in this chapter.

The steady-state test conditions are measured by two 5-hole L-shaped probes (see Sec-

tion 5.1.1), one upstream and one downstream of the measuring cascade. Additionally,

measurements are taken along the outer wall (see Section 5.1.2) and the blade surface (see

Section 5.1.3).

6.1 Definitions

For expressing steady-state parameters, next to the isentropic Mach-number the in- and

outflow angles are commonly used. The isentropic Mach-number is defined as:

Mis =
√√√√ 2

κ−1

[(
pt1

pstat

) κ−1
κ −1

]
(6.1)

where κ is the ratio of specific heats for air (κ= 1.4) and pstat the static pressure at the measur-

ing location along the blade surface (see Section 5.1.2) or the shroud wall (see Section 5.1.3).

The inlet total pressure pt1 is represented by the arithmetic average along one pitch at mid-

channel height, which is measured by the upstream 5-hole L-shaped probe (see Section 5.1.1).

The in- and outflow angles are defined in relation to the machine axis as described in Figure 4.1.
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6.2 Measurement Results

In Table 6.1 the results of the 5-hole L-shape probes are presented for each test case. The doc-

umented measured values (upstream and downstream) are calculated as arithmetic averages

in the circumferential direction over one blade passage (18°, every 1°) at mid-channel height

in the radial direction.

Case

Mach-

number

Flow

angle

Total

pressure

Static

pressure

Ambient

pressure

Total

temper-

ature

M [-] β [°] pt [hPa] pstat [hPa] pamb [hPa] T [K]

SB-A & C2-A
US: 0.35 45.9 1337 1231

958
301.6

DS: 0.68 -57.7 1292 949 -

SB-F & C2-F
US: 0.34 46.0 1354 1249

976
300.9

DS: 0.68 -58.5 1310 961 -

SB-T
US: 0.34 45.9 1332 1232

950
300.6

DS: 0.70 -57.8 1297 933 -

C2-T
US: 0.34 45.9 1332 1231

948
300.4

DS: 0.70 -57.9 1296 928 -

C4-A-S-T
US: 0.35 46.0 1358 1250

967
300.9

DS: 0.68 -57.8 1315 958 -

Average
US: 0.34 46 1343 1239

-
300.9

DS: 0.69 -57.9 1302 946 -

Standard US: 1.4 0.1 0.9 0.8
-

0.1

deviation [%] DS: 1.9 -0.6 0.8 1.6 -

Table 6.1: Steady-state mean flow quantities at mid-span (50% blade-height), arithmetically
averaged in circumferential direction over one pitch (18°, each degree one measurement).

By comparing the results of the various measurements in Table 6.1, it can be seen that almost

identical test conditions for all test cases are achieved. At the bottom of the table, the average

and the standard deviation of all test cases are noted. The low values of the standard deviation

confirm the aforementioned conclusion, that close to identical test conditions were achieved

for the different test cases. The small differences between the individual test cases were

expected and are related to external parameters, such as slightly varying ambient conditions.

Considering that the unsteady measurement results of the different configurations (single-

blade and cluster) are compared with one another, these almost identical steady-state flow

results are the basic requirement to perform this comparison.
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In addition to the aforementioned 5-hole L-shaped probe measurements, the blade surface

static pressures are evaluated by using the isentropic Mach-number (see Equation 6.1). These

results serve as a basic requirement for comparing the test cases with one another. Tables 6.2

and 6.3 document the isentropic Mach-number as a function of the non-dimensional curvi-

linear coordinate on the pressure and suction-side surface at 50% blade height. Similar to

Table 6.1 above, the average and standard deviation of all test cases are noted. The very low

standard deviation indicates almost identical results for all test cases and therefore supports

the aforementioned steady-state measurement basis for combining and comparing the test

cases with each other. In addition to Tables 6.2 and 6.3 shows Figure 6.1 the blade surface

isentropic Mach-numbers of the individual test cases. It can be identified that all test cases

have identical profiles. In Appendix A.1 the blade surface isentropic Mach-numbers for 25%

blade-height (Tables A.1 and A.2 and Figure A.1) and 90% blade-height (Tables A.3 and A.4

and Figure A.2) are presented.

Non-

dimensional

curvilinear

location on PS

Isentropic Mach-

number on PS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.00 0.09 2.5

0.09 0.18 3.8

0.19 0.18 2.4

0.33 0.19 1.7

0.47 0.24 1.0

0.63 0.33 0.4

0.75 0.42 0.3

0.87 0.54 0.3

1.00 0.71 1.0

Table 6.2: Blade surface isentropic Mach-
number on PS at mid-span (50% blade-
height).

Non-

dimensional

curvilinear

location on SS

Isentropic Mach-

number on SS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.07 0.49 0.4

0.15 0.60 0.5

0.23 0.68 0.6

0.32 0.74 0.3

0.40 0.76 0.4

0.49 0.77 0.7

0.57 0.78 0.8

0.64 0.77 0.8

0.73 0.76 0.9

0.81 0.75 1.3

0.90 0.75 1.2

Table 6.3: Blade surface isentropic Mach-
number on SS at mid-span (50% blade-
height).
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Figure 6.1: Isentropic Mach-number distribution along the blade surface at mid-span
(50% blade-height) of all test cases.

Figure 6.2: Averaged (for all test cases) isentropic Mach-number distribution along the blade
surface for three different channel heights (25%, 50% and 90%).

In Figure 6.2, the average values of the blade surface isentropic Mach-number is visualized for

all three blade heights (25%, 50% and 90%). Overall, the measurements at the three different

blade heights indicate a typical turbine-blade loading pressure distribution. However, for the

blade heights of 25% and 90%, humps can be identified in the distributions. These humps

are related to leakage flows created either by the gaps between the individual blade bases on

the hub side or by the tip-gap. In Figure 6.3, an overview of the different secondary flows is
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given, the yellow and blue arrows indicating the flow at the hub region, and the red and black

arrows the flow in the tip-gap region. How the tip-gap influences the flow on the pressure- and

suction-side can be observed in Figure 6.4 by the graph showing the isentropic Mach-number

distribution along the shroud wall surface for two pitches. It can be seen that due to the

pressure differences a fluid flow from the pressure- to suction-side is present and creates a

tip-gap vortex on the suction-side towards the trailing-edge. A detailed description of the

different leakage flows is documented in Rottmeier [2003], whose investigations show that

the observed secondary flow effects along the hub and shroud region of the test section do

not affect the mid-channel flow. Hence, a quasi two-dimensional flow can be considered in

this region. These conclusions of Rottmeier [2003] are assumed to be valid, since the same

turbine cascade configuration was used and almost identical flow conditions were applied.

A comparison of the steady-state flow conditions between this work and those of Rottmeier

[2003] is documented in Appendix A.2.

Figure 6.3: Schematic view of the secondary flow (from Rottmeier [2003]).
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Figure 6.4: Isentropic Mach-number distribution along the outer wall (tip).
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6.3 Summary on Steady-State Measurement Results

Considering the steady blade- and shroud-surface and probe measurements, the following

main findings can be recapitulated:

• Close to identical flow conditions are achieved for all investigated test cases, allowing a

comparison of the different test cases.

• The average Mach-numbers of all test cases (single-blade and cluster) are M1 = 0.34 at

the inlet and M2 = 0.69 at the outlet.

• The average flow angles of all test cases (single-blade and cluster) are β1 = 46◦ at the

inlet and β2 =−57.9◦ at the outlet.

• The blade surface is exposed to subsonic flow conditions typical for a turbine-blade

loading at mid-channel (50% blade height).

• Along the hub and shroud region, secondary flows are observed but do not influence the

flow at mid-channel height. Therefore a quasi two-dimensional flow can be considered

in this region.
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7 Time-Resolved Results and
Aerodynamic Stability Analysis

THIS chapter is dedicated to the investigation of the aerodynamic stability of the different

cluster test cases. The main structure is as follows:

• Single-blade reference test cases with a different oscillation direction per test case
– SB-A (axial-bending oscillation direction)
– SB-F (flap-bending oscillation direction)
– SB-T (torsion oscillation direction)

• Two-blade cluster test cases with varying oscillation directions per test case
– C2-A (axial-bending oscillation direction)
– C2-F (flap-bending oscillation direction)
– C2-T (torsion oscillation direction)

• Four-blade cluster test case (C4-A-S-T) which simulates a torsional oscillation direction

of the cluster by imposing an individual cluster-blade oscillation in the axial-bending

direction

• Prediction of the aerodynamic parameters of individual cluster-blades by using aerody-

namic data of single-blades as input
– Two-blade cluster test case C2-A (axial-bending oscillation direction)
– Four-blade cluster test case C4-A-S-T (axial-bending oscillation direction of the cluster-

blades simulating a torsional oscillation of the cluster)

In addition to the summary above of the test cases, a detailed description of the measured

clusters is presented in Chapter 4. The associated steady-state flow conditions are discussed in

Chapter 6. For the aerodynamic stability analysis, the following parameters are of main interest:

the local aerodynamic work coefficient and the global aerodynamic damping coefficient.

The first one is used to identify the local regions on the blade surface which influence the

aerodynamic stability. The second one, the global aerodynamic damping coefficient, is used

to assess whether the individual blade of the test case is aerodynamically stable or unstable.

Both parameters are based on the unsteady pressure coefficient amplitude and phase, which

will also be used to discuss aerodynamic effects in certain test cases. In Section 2.5, the

aforementioned parameters are described in detail.
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Time-Resolved Results and Aerodynamic Stability Analysis

In order to visualize the parameters previously mentioned, a type of diagram is used which is

of similar structure, except for the data included. Prior to the analysis of the different test cases,

the structure of this type of diagram is described, using as an example the unsteady pressure

coefficient amplitude in Figure 7.1 on the left. The x-axis denotes the non-dimensional

curvilinear coordinate s along the blade surface. The trailing-edge (TE) is indicated by s =±1

and the leading-edge (LE) by s = 0. The pressure-side (PS) is represented by positive non-

dimensional curvilinear coordinates and the suction-side (SS) by the negative. The exact

locations of the pressure measurement positions can be consulted in Figure 3.8 and Table 3.2.

They are indicated by dashed lines within the figure. Along the y-axis, either the inter-blade

phase angle (IBPA) or the inter-cluster phase angle (ICPA) is displayed. Each phase angle is

indicated within the figure by dashed lines. For single-blade test cases the y-axis ranges from

an inter-blade phase angle of −180° to +180°, with both being identical due to the sine identity.

In the case of cluster test cases, the range of the y-axis is adjusted to the inter-cluster phase

angle, which depends on the number of clusters in the cascade (blade-row) (see Equation 2.5).

Each x/y-crossing of the aforementioned dashed lines represents a measurement location.

The coloring in each figure is dedicated to the value presented and detailed within the analysis.

7.1 Single-Blade Reference Test Cases

Three single-blade reference test cases are analyzed in the following. An overview of the

principal unsteady parameters is presented in Table 7.1. It can be noted that very similar

reduced frequencies are achieved for the different test cases. The minor differences are due

to the slightly different blade excitation frequencies, as well as to minor variations in the

steady-state flow conditions. The variation in the selected vibration frequencies is related

to the vibration control system. Due to the different oscillation directions interacting with

the flow, the excitation frequencies had to be adjusted in order to excite all blade vibration

systems with the same blade vibration amplitude.

Case

Vibration

frequency

Bending

vibration

amplitude

Torsional

vibration

amplitude

Reduced

frequency

f [Hz] âh ∗10−6 [m] âα∗10−3 [°] k [-]

SB-A 261 68 - 0.26

SB-F 270 44 - 0.27

SB-T 259 - 75 0.25

Table 7.1: Unsteady measurement specifications of the single-blade test cases

In Figure 7.1 on the left, the unsteady pressure amplitude for the single-blade test case SB-A

vibrating in an axial-bending vibration direction is displayed for all inter-blade phase angles.
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7.1. Single-Blade Reference Test Cases

In order to identify the influence of different inter-blade phase angles onto the unsteadiness

around the blade, the distributions along the blade surface are compared between the different

inter-blade phase angles. For this purpose, the chord-wise distribution with the highest peak

is used as a reference for comparison, which can be observed for an inter-blade phase angle of

σλ = 162°. In a next step by varying the inter-blade phase angle in both directions (positive and

negative) and comparing each of the chord-wise distributions to the reference distribution, a

decrease in the unsteady pressure amplitude can be observed. Its minimum level is found at

about an inter-blade phase angle of σλ = 0°.

Figure 7.1: Unsteady pressure coefficient amplitude (left) and phase lag (right) of the single-
blade test case SB-A (axial-bending oscillation direction).

A similar observation can be made for the test case with a torsional oscillation direction (SB-T)

presented in Figure 7.2 on the left, whereas the peak value in this case is present for an inter-

blade phase angle of σλ =−126° and the minimum level is reached for an inter-blade phase

angle of σλ = 18°.

Figure 7.2: Unsteady pressure coefficient amplitude (left) and phase lag (right) of the single-
blade test case SB-T (torsion oscillation direction).
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Time-Resolved Results and Aerodynamic Stability Analysis

The aforementioned effects are based on the movement of the blades with different inter-blade

phase angles. In Figure 7.3, this is illustrated exemplarily for an inter-blade phase angle of

σλ =±180°. It can be seen that the positions of two consecutive neighboring blades oscillate

so that they are either closest together or farthest away. Hence, the throat of an inter-blade

channel is either the smallest or largest and the highest unsteady pressure amplitudes are

usually discovered in this region of inter-blade phase angles. It can be stated that this effect

has a great influence on the unsteady pressure distribution. As previously noted, because

of other effects which also influence the unsteadiness around the blade, the peak values are

observed at an inter-blade phase angle different to σλ =±180°. These are the influences of

the neighboring blades, the oscillation direction of the blade, the flow conditions and the

curvature of the blade.

As highlighted in the previous paragraph, the curvature of the blade as well as the flow in-

fluences the unsteady pressure amplitude. To illustrate this, a reference distribution in the

chord-wise direction for an inter-blade phase angle of σλ = 162° is used again (in Figure 7.1

on the left). Along the suction-side, it can be seen that the increase starts close to the leading-

edge and ends at about mid-chord. Identifying this surface area at the blade profile (see

Figure 3.8) shows the highest curvature for this particular region. Hence, an acceleration of

the flow is given (see the isentropic Mach-number distribution in Figure 6.2) which increases

the susceptibility to flow disturbances due to the blade motion. Continuing further towards

the trailing-edge, the curvature of the blade flattens and less unsteadiness occurs. Along the

pressure-side a nearly consistent blade profile curvature is present and thus the variation of

the unsteady pressure amplitude is smooth too. For the test case with a torsion oscillation

direction SB-T, similar observations can be made.

Figure 7.3: Schematic example of a single-blade traveling-wave for an inter-blade phase angle
of σλ =±180°. On the left: SB-A (axial-bending oscillation direction) and on the right: SB-T
(torsion oscillation direction).

In Figure 7.1 on the right, the unsteady pressure coefficient phase shift is displayed for the

single-blade test case SB-A, vibrating in an axial-bending oscillation direction. In Figure 7.2

on the right, the unsteady pressure coefficient phase shift of the torsion oscillation direction is

shown. The documented phase lag is calculated between the individual unsteady pressure
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7.1. Single-Blade Reference Test Cases

transducer signal at blade mid-span and the blade displacement signal of the blade carrying

the individual unsteady pressure transducer. Some step changes in coloring are possible and

are related to the fact that the interpolation used for scaling does not account for the sine

periodicity, stating that a phase angle of -180° is equal to +180°. As expected, the inter-blade

phase angle has a noticeable impact on the appearance of the flow unsteadiness, which relates

to the blade motion. The pressure-side shows overall, for both test cases, that the appearance

of the unsteady pressure is lagging behind the blade motion, which is indicated by a negative

phase-angle. Furthermore, a rather uniform distribution in the chord-wise direction can

be identified. In contrast, the suction-side shows a less uniform distribution with varying

inter-blade phase angles thus expecting varying aerodynamic work contributions.

With respect to the unsteady pressure amplitude and phase shift distribution of the test case

SB-F with a flap-bending oscillation direction, similar observations can be identified as for

the axial-bending oscillation direction test case (SB-A). For completeness, both distributions

can be seen in Appendix A.3.

The previous part of this section analyzed the results of the unsteady pressure coefficient. It

could be seen that the inter-blade phase angle and the blade curvature in combination with

the flow is influencing the unsteadiness around the blade. Furthermore, a strong impact of the

inter-blade phase angle on the unsteady pressure coefficient phase shift was observed. The

local aerodynamic work coefficient will be discussed next and is visualized in Figure 7.4. The

aerodynamic work coefficient can be seen as a direct measure of the work performed on the

blade. It indicates either if energy is transferred from the flow to the blade (indicated as red

coloring within the plot) or areas where the pressure contributes to stabilizing the vibration.

Blade vibration energy is therefore absorbed by the flow, displayed as green coloring in the

figures. In order to highlight local influences, the normalization of the local work coefficients

is carried out using the absolute peak value in the individual test cases.

The local aerodynamic work coefficient is calculated using the unsteady pressure coefficient

amplitude and phase lag, as well as accounting for the oscillation direction of the individual

test case (see Equation 2.24 for the bending oscillation direction test cases and Equation 2.25

for the torsion oscillation direction test case in Section 2.5). It can be seen from the mathe-

matical formulations, the key parameters influencing the result of the integration over one

oscillation period are the unsteady pressure coefficient phase angle and the direction in which

the pressure is acting on the blade in relation to the oscillation direction.
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In Figure 7.4 the local aerodynamic work coefficient is presented for each single-blade test

case: at the top, test case SB-A with an axial-bending oscillation direction; in the middle, test

case SB-F with a flap-bending oscillation direction; at the bottom, test case SB-T with torsion

oscillation direction. Overall it can be stated that the pressure-sides for the test cases with a

bending oscillation direction have a stabilizing contribution to the aerodynamic stability of

the blade. In contrast, the suction-sides show varying distributions. For the test case with a

torsion oscillation direction, varying distributions are present for both blade-sides. As noted

perviously, these variations are mainly influenced by the unsteady pressure coefficient phase

shift combined with the oscillation direction.

An influence only of the oscillation direction on the local distribution of the aerodynamic

work coefficient can be observed by considering in which direction the pressure is acting on

the blade surface with respect to the oscillation direction of the blade. The reason is, that any

pressure fluctuations which act perpendicularly to the bending oscillation direction have no

impact on the work coefficient (see Equation 2.24). For the torsion oscillation direction, this is

the case when the pressure fluctuation acts in a direction so that it crosses the rotation axis of

the blade and thus has no impact due to the moment-of-force (see Equation 2.25). In order

to identify these areas on the blade surface, the relation between the oscillation direction

and the acting pressure direction on the blade surface have to be considered. The oscillation

directions are shown in Figure 4.1 and the curvature of the blade sides in Figure 3.8. For the

three test-cases, the following areas having a minimum local aerodynamic work coefficient

can be seen:

• Axial-bending oscillation direction SB-A: on the suction-side from s =−0.35 to s =−0.25

and on the pressure-side from s = 0.1 to s = 0.2.

• Flap-bending oscillation direction SB-F: on the suction-side from s =−0.2 to s =−0.05

and none on the pressure-side.

• Torsion oscillation direction SB-T: on the suction-side from s =−0.6 to s =−0.5 and on

the pressure-side from s = 0.3 to s = 0.4.

It should be noted that these areas, as previously described for the different oscillation di-

rections, are used in the following sections of this chapter to describe aerodynamic effects

observed by cluster test cases.
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7.1. Single-Blade Reference Test Cases

Figure 7.4: Normalized local aerodynamic work coefficient of the single-blade test cases. Top:
SB-A (axial-bending oscillation direction), middle: SB-F (flap-bending oscillation direction)
and bottom: SB-T (torsion oscillation direction).
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Up to now the blade-row is observed with all blades vibrating in the traveling-wave formu-

lation. In order to identify the influence of one blade on another, the local work coefficient

is transformed into influence coefficients. This is done by first transforming the unsteady

pressure coefficient from the traveling-wave formulation to the influence coefficient formula-

tion and then calculating the local and global work coefficients. The related mathematical

formulations are detailed in Section 2.3. In Figure 7.5 on the left, the local work coefficient

transformed into influence coefficients is individually presented for all test cases (top: SB-A,

middle: SB-F and bottom: SB-T). The bars in the right diagram represent the global aero-

dynamic work coefficient. In contrast to the graphs for the traveling-wave formulation, the

y-axis represents the blade number instead of an inter-blade phase angle. The coloring of

the local work coefficient in these distributions is identical to those of the traveling-wave

formulation. The normalization is calculated by using the absolute peak value of the indi-

vidual test case. Identical to the distributions in traveling-wave formulation, the local work

oscillation direction axis can be identified by the zero values of the local work coefficient at

the respective chord-wise coordinates as highlighted in the previous paragraph. In addition

shows Figure 7.6 the influence coefficients for all test cases representing the global aerody-

namic work coefficient. Within this figure the normalization of all test cases is performed

using the absolute peak value of the test case with flap-bending oscillation direction (SB-F),

thus enabling a comparison between the test cases. It should be noted that a negative work

coefficient represents a stabilization of the blade vibrations.

Overall it can be seen that the influence of the reference blade 0 on itself is stabilizing as it

is indicated by the green coloring along the blade surface. It can also be observed that the

neighboring blades of the test cases with a bending oscillation direction have a significant

influence on the reference blade. Previous research identified similar tendencies, for example

Hanamura et al. [1980] and Crawley [1988]. Furthermore, this influence is greater for the blades

in the pressure-side direction (positive blade numbering) than for those in the suction-side

direction (negative blade numbering). For the test case with a torsional oscillation direction

this is not the case. Here, the neighboring blades in both directions show similar influences

on the reference blade. The comparison of the test cases with a bending oscillation indicate

that the direct neighbors have a different influence on the reference blade. Since the flow

conditions for both test cases are identical, this difference is mainly induced by the bending

oscillation. The influence coefficients presented previously are compared qualitatively to those

found in Panovsky and Kielb [2000]. The latter used influence coefficients to predict the impact

of a varying torsion axis location on the aerodynamic stability. As a basis of this prediction,

they used similar oscillation directions (flap-bending and torsion) to those in the present work,

which were applied on a thin and strongly curved turbine-blade profile. Furthermore, they

used similar reduced frequencies. The comparison showed similar tendencies in terms of the

order of magnitude of the influence coefficients for the different test cases.
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7.1. Single-Blade Reference Test Cases

Figure 7.5: Influence coefficient of the normalized aerodynamic work coefficient of the single-
blade test cases. Top: SB-A (axial-bending oscillation direction), middle: SB-F (flap-bending
oscillation direction) and bottom: SB-T (torsion oscillation direction).
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Figure 7.6: Influence coefficient of the normalized global aerodynamic work coefficient of the
single-blade test cases, SB-A, SB-F and SB-T.

The local work coefficient, indicates the local contributions of stabilizing or destabilizing blade

surface sections. Integrating these values leads to the global aerodynamic work coefficient,

which is then used to determine the global aerodynamic damping coefficient as described in

Section 2.5 (see Equation 2.29 and 2.30). A positive global aerodynamic damping coefficient

indicates an aerodynamic stabilization. In Figure 7.7 the global aerodynamic damping coeffi-

cient is presented for all three test cases including the corresponding confidence intervals of

the random error. The presented values are normalized using the highest damping value of

the three test cases, which is the flap-bending oscillation direction test case (SB-F). It can be

observed that all three test cases have a positive contribution for all inter-blade phase angles.

Hence, it can be stated that all are aerodynamically stable. For the bending test cases the

minimum can be observed for an inter-blade phase angle of σλ = 0° and, for the torsion test

case, for an inter-blade phase angle of σλ = 90°.

In order to validate the test results, comparisons of the global aerodynamic work coefficient

were performed with other researchers. Rottmeier [2003] focused his investigations on the

superposition of gust response and traveling-wave measurements for a single-blade test case

with a torsion oscillation direction. Next to the superimposed measurement results, only

traveling-wave results were documented. As the steady-state flow conditions are similar to

this work (see Appendix A.2), the comparison of the global aerodynamic damping coefficients

between this work and Rottmeier [2003] showed almost identical distributions1.

Furthermore, a qualitative comparison was carried out with the work of Panovsky and Kielb

[2000]. As previously noted, similarly oscillation directions were used (flap-bending and tor-

sion) to those in the present work, and were applied on a thin turbine-blade profile. Further-

more, they used similar reduced frequencies. Although the comparison showed, in principle,

similar curve progressions, different global aerodynamic damping values were observed. In

1It should be remembered that the turbine-blade profile used in this work is identical to this of Rottmeier [2003]
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summary it is concluded from these comparisons, that the test results of this work show typical

local aerodynamic work coefficient and global aerodynamic damping coefficient distributions

as is expected for this type of turbine-blade profile and flow conditions.

Figure 7.7: Normalized global aerodynamic damping coefficient of the single-blade test cases,
SB-A, SB-F and SB-T. (A positive aerodynamic damping value indicates stabilization.)
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7.1.1 Summary of Aerodynamic Stability of Single-Blade Reference Test Cases

The previous section presents the reference single-blade test cases. The main differences

between the test cases are the oscillation directions of the lowest eigenmode: torsion, axial-

and flap-bending. As a basis for the analysis of the cluster test cases discussed in the fol-

lowing sections, the characteristic aerodynamic effects related to the individual single-blade

oscillation directions were highlighted and are summarized below:

• Traveling-wave formulation:

– The parameters influencing the unsteady pressure around the blade is the inter-

blade phase angle at which the blade-row is oscillating and the curvature of the

blade.

– The local distribution of the aerodynamic work is mainly influenced by the un-

steady pressure coefficient phase lag and the oscillation direction.

– Overall, the aerodynamic damping for all three test cases is positive for all inter-

blade phase angles and thus aerodynamically stable operating conditions are

present.

– The test results for the flap-bending and torsion oscillation direction are qualita-

tively validated with other researchers (Rottmeier [2003] and Panovsky and Kielb

[2000]).

• Influence coefficient formulation:

– For the test cases with a bending oscillation direction, the immediate neighboring

blades have a larger influence on the reference blade than in the torsion test case.

– For all test cases the neighboring blades in the suction-side direction have a larger

influence than those neighboring in the pressure-side direction.

– The global distribution of the influence coefficients show similar tendencies for

the test cases with flap-bending and torsion oscillation direction as known from

the literature (for example see Panovsky and Kielb [2000]).
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7.2 Cluster Test Cases

In total, four cluster test cases are presented and analyzed in this section. The difference

between the individual test cases is summarized below:

• Three two-blade cluster test cases; for each cluster, both cluster-blades have identical

oscillation directions. The difference between the test cases are the applied oscillation

directions (torsion (C2-T), axial-bending (C2-A) and flap-bending (C2-F)).

• One four-blade cluster, which simulates a torsional movement of the cluster by individ-

ually oscillating the cluster-blades in the axial-bending oscillation direction (C4-A-S-T).

A detailed description of the different cluster test cases can be consulted in Chapter 4.

7.2.1 Two-Blade Cluster

This type of two-blade cluster simulates two blades which are fixed at the hub and welded

together at the tip as pairs. A detailed description of this type of two-blade cluster is docu-

mented in Section 4.2. Similarly to the single-blade test cases discussed in the previous section,

all three vibration directions are analyzed (axial- and flap-bending, torsion). In Figure 7.8 a

schematic example is displayed showing a two-blade cluster with an axial-bending oscillation

direction. The relative positions of the clusters is a snap shot for an inter-cluster phase angle

of Γλ = 180°.

Figure 7.8: Example of the two-blade cluster oscillation with axial-bending direction (test case
C2-A). It represents a snap shot for an inter-cluster phase angle of Γλ = 180°. (For visualization
purposes the blade displacements are exaggerated.)
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In Table 7.2, the vibration amplitudes and the reduced frequencies are documented. Similar

values as for the single-blade test cases (see Table 7.1) are aimed for and achieved in order to

allow an easy comparison.

Case

Vibration

frequency

Bending

vibration

amplitude

Torsional

vibration

amplitude

Reduced

frequency

f [Hz] âh ∗10−6 [m] âα∗10−3 [°] k [-]

C2-A 261 67 - 0.26

C2-F 270 43 - 0.27

C2-T 259 - 75 0.25

Table 7.2: Unsteady measurement specifications of the two-blade cluster test cases.

In Figure 7.9, the local aerodynamic work coefficient of cluster-blade A (left) and B (right)

of all three cluster test cases is presented. Below the schematic illustration of the cluster

configuration, the top graphs display the results for the axial-bending vibration direction

test case C2-A, the middle graphs for the flap-bending vibration direction test case C2-F and

the bottom graphs for the torsional vibration direction test case C2-T. For each test case, the

absolute peak value of both cluster-blades is used for normalization in order to highlight local

differences.

By comparing the inner-cluster channel (between the pressure-side of cluster-blade A and

the suction-side of cluster-blade B) with the outer-cluster channel (between the suction-side

of cluster-blade A and the pressure-side cluster-blade B), it can be seen that less work is

exchanged within the inner-cluster channel than in the outer-cluster channel. Reflecting the

setup of the cluster, this effect is related to the kinematic relationship of the cluster-blades. It

states that for the whole range of inter-cluster phase angles, both cluster-blades are always

moving in-phase and thus the work exchanged by the flow and the blade is at a minimum in

the inner-cluster channel. As shown later in this section, this can be observed in the variation

of the local work coefficient impacting on the global aerodynamic stability of the individual

cluster-blades.

Similar observations are made by Corral et al. [2007], who investigated the aerodynamic

stability of welded-in-pair low-pressure turbine blades by solving the linearized Reynolds

averaged Navier-Stokes equations on a moving grid. As in this work, the blade oscillation

directions and the reduced frequency were similar, whereas a thin turbine-blade was used.

Considering only the test cases with bending oscillation direction, it can be seen that the

suction-side of the individual cluster-blades is more sensitive to any blade vibration mode

change than the pressure-side. This observation is based on the comparison of pressure- and

suction-sides between the cluster-blades for the whole range of inter-cluster phase angles.
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Furthermore it can be observed that, apart from a change in value, the local work coefficient

distribution in the chord-wise direction is similar for both cluster-blades at the pressure-side.

The suction-sides show contrasting behaviour. For the cluster-blades with a torsion oscillation

direction, apart from the value of the local work coefficient, both blade-sides of both cluster-

blades have similar distributions in the chord-wise direction.

Thus, as expected, it can be stated that the blade oscillation direction influences the inter-

actions between the cluster-blades. This observation is in-line with the literature (see for

example Corral et al. [2007]).

Figure 7.9: Normalized local aerodynamic work coefficient of cluster-blade A (left) and B
(right) of the two-blade cluster cases. Top: axial-bending oscillation direction (C2-A), middle:
flap-bending (C2-F) and bottom: torsion (C2-T).
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As a next step, a qualitative comparison of the local aerodynamic work coefficient between

the single-blade test cases (Section 7.1) and the cluster test cases of this section is performed.

The results of this comparison are summarized as follows:

• high similarity between the suction-side distribution of cluster-blade A and the respec-

tive single-blade test case

• high similarity between the pressure-side distribution of cluster-blade B and the respec-

tive single-blade test case

• low similarity between the pressure-side distribution of cluster-blade A and the respec-

tive single-blade test case

• almost no similarity between the suction-side distribution of cluster-blade B and the

respective single-blade test case, except for the cluster test case with torsion vibration

direction, which has a low similarity to the respective single-blade test case

The previous comparison indicates that a relationship between the respective single-blade

and cluster test cases exists. This can be illustrated by the following simplified example:

two blade-rows are considered: blade-row X with 10 blades and blade-row Y with 20 blades.

For both blade-rows a similar oscillation pattern is considered, for example the first nodal

diameter. Thus, by definition of the traveling-wave formulation (see Section 2.2), blade-row X

would oscillate with an inter-blade phase angle of σλ=1 = 36° and blade-row Y with an inter-

blade phase angle of σλ=1 = 18°. The analogy to the present cluster test cases is made by

considering that each blade in blade-row X would represent a two-blade cluster. It should be

stated that only the outer-cluster channel can be qualitatively illustrated with this example.

As this analogy excludes the influences of the second, third and farther distant neighboring

blades, the relationship between traveling-wave and influence coefficient formulation may be

used to predict the aerodynamic parameters of individual cluster-blades by using single-blade

input data. Later in this chapter this attempt is presented.

The global aerodynamic damping coefficient is presented in Figure 7.10 for the three two-

blade cluster test cases discussed in this section. The graphs on the left show the aerodynamic

damping coefficient per cluster-blade and on the right per cluster blade-channel (inner- and

outer-cluster channel). The graphs at the top represent the two-blade cluster with an axial-

bending oscillation direction, in the middle with a flap-bending and at the bottom with a

torsion. In each graph, the respective single-blade test case is included and used for normal-

ization. Furthermore, the average of both cluster-blades including the confidence interval is

presented.
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Figure 7.10: Normalized global aerodynamic damping coefficient of the two-blade cluster test
cases. Left column: all curves represent a blade, right column: all curves represent a blade-
channel. Top: axial-bending oscillation direction (C2-A); middle: flap-bending oscillation
direction (C2-F); bottom: torsion oscillation direction (C2-T).

In general the positive effect of the two-blade cluster can be seen as the increase of the

minimum stability over all inter-cluster phase angles. This can be observed for the test case

with a torsion vibration direction. For the bending oscillation direction test cases this is

not possible due to the following reasons: the minimum damping of the single-blade test

case is found for an inter-blade phase angle σλ=1 = 0° (for the torsion vibration direction

σλ=1 = 90°) and the oscillation pattern of the single-blade test case is identical to the cluster

for an inter-blade phase angle σλ=1 = 0° (also for the cluster test-case with torsion oscillation
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direction). However, and as stated previously, the oscillation direction of the cluster-blades

has a significant influence on the stabilizing behaviour of the cluster.

Similar observations as for the test case with a torsion oscillation direction are found in the

literature (see for example Corral et al. [2007]). The numerical investigations of Corral et

al. [2007] also included test cases with bending oscillation directions for which only slight

improvements of the minimum aerodynamic damping were observed.

As noted before, the inner- and outer-cluster channels influence the behaviour of the clus-

ter differently. This is due to the kinematics of the cluster oscillation. As both blades move

in-phase, less unsteadiness of the flow is present in the inner-cluster channel. Thus low aero-

dynamic damping values are present, which can be observed as green curves in the graphs

on the right in Figure 7.10. For the outer-cluster channel (present between two consecutive

clusters) the unsteadiness of the flow is higher, which is a result of the relative blade oscilla-

tions defined by the inter-cluster phase angles. Thus variations of the aerodynamic damping

values as a function of the inter-cluster phase angle are present and can be observed as red

curves. Additionally, it can be seen that the curve profile of the outer-cluster channel has

a close similarity to the respective single-blade test cases. This is in line with the previous

observations for the local aerodynamic work coefficient.

For the test-case with torsional oscillation direction it can be observed that both cluster-blades

have an almost an identical damping curve. Thus it can be concluded that the lower unsteadi-

ness in the inner-cluster channel influences similarly the global aerodynamic damping of both

cluster-blades. Furthermore it can be seen that differently to the bending cases the cluster

increases the damping of the inner-cluster channel with respect to the outer-cluster channel

for positive inter-cluster phase angles. The opposite can be observed for negative inter-cluster

phase angles.
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7.2.2 Four-Blade Cluster Simulating Torsion

This section presents the aerodynamic results of the four-blade cluster test case (C4-A-S-

T). First the local work coefficient for each cluster-blade is investigated, followed by the

global aerodynamic damping coefficient. As noted previously (see Section 4.3), the blades

of the cluster test case vibrate in the bending oscillation direction and simulates a torsional

cluster motion of a vane package composed of four blades. This is achieved by vibrating each

cluster-blade in an axial-bending oscillation direction and by individually controlling the

blade vibration amplitude and phase angle. The unsteady measurement specifications are

displayed in Table 7.3. It should be noted that due to restrictions in the blade vibration control

system, the vibration amplitudes of the inner-cluster blades do not represent exactly a third

of the outer-cluster blades. As they are smaller than the nominal value, it is assumed that

the unsteady pressure level is lower than as it would be in the nominal case. In the following

analysis of the four-blade cluster, this difference in the blade vibration amplitude is assumed

to be negligible.

Case

Vibration

frequency

Bending

vibration

amplitude

Reduced

frequency

f [Hz] âh ∗10−6 [m] k [-]

C4-A-S-T 259
Outer: 71

Inner: 17
0.26

Table 7.3: Unsteady measurement specifications of the four-blade cluster test case.

Preliminary to the aerodynamic stability analysis, the kinematics between neighboring cluster-

blades in the cluster are summarized. In the case of a four-blade cluster, there are four

combinations of neighboring cluster-blades. It should be noted that the documented cluster-

blades and -channels can be inspected in Figure 7.11.

1.) cluster-blade D of cluster j −1 and suction cluster-blade A of cluster j :

• The inter-blade channel created by the pressure-side of cluster-blade D and by the

suction-side of cluster-blade A is further referred to as the outer-cluster channel.

• The phase-angle variation depends on the inter-cluster phase-angle, since these

adjacent blades are related to different clusters.

• Both blades have an identical vibration amplitude.

2.) cluster-blade A and cluster-blade B, both of cluster j :

• The inter-blade channel created by the pressure-side of cluster-blade A and by the

suction-side of cluster-blade B is further referred to as inner-cluster channel.

94



7.2. Cluster Test Cases

• Both blades are always moving in the same direction, thus they have an inter-blade

phase-angle of σλ = 0°.

• Both blades have different vibration amplitudes (cluster-blade A > cluster-blade B,

proportion âh vs. âh/3).

3.) cluster-blade B and cluster-blade C, both of cluster j (inner-cluster channel):

• The inter-blade channel created by the pressure-side of cluster-blade B and by the

suction-side of cluster-blade C is further referred to as the inner-cluster channel.

• Both blades are always moving in the opposite direction, thus they have an inter-

blade phase-angle of σλ = 180°.

• Both blades have identical vibration amplitudes.

4.) cluster-blade C and cluster-blade D, both of cluster j (inner-cluster channel):

• The inter-blade channel created by the pressure-side of cluster-blade C and by the

suction-side of cluster-blade D is further referred to as the inner-cluster channel.

• Both blades are always moving in the same direction, thus they have an inter-blade

phase-angle of σλ = 0°.

• Both blades have different vibration amplitudes (cluster-blade C < cluster-blade D,

proportion âh/3 vs. âh).

Figure 7.11: Overview of the four-blade cluster displaying the normalized local aerodynamic
work coefficient next to the schematically displayed cluster-blades. (It should be noted that
Figures 7.12 to 7.15 show identical local work coefficient distributions more in detail).

In the following, the local aerodynamic work coefficient is presented in two steps. First, an

overview is displayed of all four cluster-blades in Figure 7.11. Second, the local aerodynamic

work coefficient distribution is presented as a pair of cluster-blades showing the individual
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inter-blade channel of the cluster (Figures 7.12 to 7.15). The local aerodynamic work coefficient

(see Equation 2.24) is calculated by using the individual cluster-blade vibration amplitudes

and is then normalized using the absolute peak value of the four cluster-blades. The absolute

peak value can be observed at the suction-side of cluster-blade A as the positive value for an

inter-cluster phase angle of Γλ =−72°).

In the following analysis, cluster-specific aerodynamic effects are detailed. Additionally to

refer them to the respective local aerodynamic work coefficient, they are also referred to

the global aerodynamic damping coefficient, presented in Figure 7.16. This figure consists

out of two graphs. One displays each cluster-blade surface distribution and the other each

cluster-blade channel distribution, as described in the text above detailing the kinematics

of the cluster. Additionally to the cluster results, the result of the single-blade test case with

axial-bending (SB-A) is plotted in both graphs.

In order to determine the global aerodynamic damping coefficient of the cluster, it has to be

accounted for the amplitude relationship between the inner- and the outer-cluster blades. This

is based on the assumption that the global aerodynamic damping coefficient of the cluster can

be determined by summing up the global aerodynamic work of the individual cluster-blades.

In Appendix A.4, the derivation of the global aerodynamic damping coefficient for the cluster

and the individual cluster-blades is presented by taking into account the aforementioned

assumption. The global aerodynamic damping coefficient for the individual cluster-blade in

the four-blade cluster is defined as:

ΞC ,I =
|~̂aI |WF,I

|~̂a|2π
(7.1)

The global aerodynamic damping coefficient for the four-blade cluster is noted as:

ΞC = 1

IC

IC∑
I=1

ΞC ,I = 1

IC

IC∑
I=1

|~̂aI |WF,I

|~̂a|2π
=− WC

|~̂a|π
(7.2)

where IC describes the total number of cluster-blades in the cluster, |~̂a| the blade vibration

amplitude of the outer-cluster blades, and |~̂aI | the blade vibration amplitude of the individual

cluster-blades, and WF,I the global aerodynamic work coefficient of the individual cluster-

blade as described before (see Equation 2.26).

It should be noted that the global aerodynamic damping coefficients presented in Figure 7.16

are normalized using the absolute peak value of the single-blade test case. This is done in

order to be consistent with similar figures presented in the previous sections.

By taking into account the kinematics of the cluster-blades, specifically the vibration am-

plitudes, it can be deduced that a larger amount of aerodynamic work is exchanged in the

outer-cluster channel between the neighboring cluster-blades (D and A) than within the inner-

cluster channels. This assumption is confirmed when comparing qualitatively the overall

value of the local aerodynamic work coefficient between the inner- and outer-cluster channels

(see Figures 7.11 to 7.15). From the kinematics, as referred to in the inner-cluster channels
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of item 2.) and 4.), it can be deduced that the individual cluster-blade vibration amplitudes

as well as the non-symmetric curvatures of the pressure- and the suction-side are the main

influencing parameters. The inner-cluster channel of item 2.) is presented in Figure 7.13 and

that of item 4.) in Figure 7.15.

For the inner-cluster channel of item 2.), it can be observed that the aerodynamic work on the

pressure-side of cluster-blade A is stabilizing and on the suction-side for cluster-blade B it is

exciting. In sum, both blade-sides of this inner-cluster channel result in a low aerodynamic

work coefficient. It should be noted that cluster-blade A has a higher blade vibration amplitude

than cluster-blade B.

For the inner-cluster channel of item 4.) the sum of both blade-sides of this inner-cluster

channel also result in a low aerodynamic work coefficient. The contributions of the blade-

sides in this inner-cluster channel, however, differ to those in item 2.). It can be observed

that the aerodynamic work on the pressure-side of cluster-blade C is exciting whereas on the

suction-side for cluster-blade D it is stabilizing. Another difference to item 2.) is that this

inner-cluster channel for cluster-blade D has a bigger amplitude than for cluster-blade C.

In this paragraph, the focus is aimed at the outer-cluster channel. It can be observed that

the suction-side of cluster-blade A has local stabilizing as well as a exciting aerodynamic

work coefficients, whereas the pressure-side of cluster-blade D is overall solely stabilizing

as the negative aerodynamic work coefficient indicates. By comparing the aforementioned

blade-sides to the respective single-blade test case SB-A (see Figure 7.4 at the top), similar

distributions can be identified. In order to obtain this similarity, one distribution has to be

phase shifted by 180° along the inter-blade phase angle direction. This is due to the kinematic

definition of the cluster, as between the outer cluster-blades (cluster-blade A and D) a phase

shift of 180° is defined, which is due to the simulated torsional movement of the cluster.

Apart from the local aerodynamic work coefficient distributions, this similarity can also be ob-

served in the global aerodynamic damping coefficient distribution (lower graph of Figure 7.16).

Here the global aerodynamic damping coefficient per cluster-channel, as well as the one

for the single-blade test case, can be observed. When comparing the outer-cluster channel

with the single-blade test case which, as already stated, has to be overall phase shifted by

180°, the aforementioned similarity can be seen. Thus, it is concluded that the flow of the

outer-cluster channel underlies similar blade-to-blade influences as for the respective single-

blade test case with respect to the relating traveling-waves. Furthermore, this is an indicator

that the superposition principle between the traveling-wave and the influence coefficient for-

mulation may be applied to predict the aerodynamic work of cluster-blades using single-blade

data as input. Such a similarity between the inner-cluster channels and the single-blade test

case cannot be observed from this comparison. Later in this chapter it will be shown that the

relationship between the traveling-wave and influence coefficient formulation can be applied

for all cluster-blades.
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Figure 7.12: Detailed normalized local aerodynamic work coefficient of cluster-blades D
and A of the four-blade cluster, simulating a torsional movement of the cluster (axial-bending
oscillation direction per cluster-blade).

Figure 7.13: Detailed normalized local aerodynamic work coefficient of cluster-blades A
and B of the four-blade cluster, simulating a torsional movement of the cluster (axial-bending
oscillation direction per cluster-blade).
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Figure 7.14: Detailed normalized local aerodynamic work coefficient of cluster-blades B
and C of the four-blade cluster, simulating a torsional movement of the cluster (axial-bending
oscillation direction per cluster-blade).

Figure 7.15: Detailed normalized local aerodynamic work coefficient of cluster-blades C
and D of the four-blade cluster, simulating a torsional movement of the cluster (axial-bending
oscillation direction per cluster-blade).
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In Section 7.1 it was claimed that the vibration axis for the individual oscillation directions

of the single-blade test cases can be identified in the local aerodynamic work distributions.

This vibration axis can also be identified in the results of all cluster-blades and on both

blade-sides (see Figures 7.12 to 7.15), for example on cluster-blade A (see Figure 7.12) on the

suction-side between the non-dimensional curvilinear coordinates s = −0.35 to s = −0.25

as local aerodynamic work coefficient equal to zero. In this context it should be noted that

the curvature of the blade profile influences the unsteadiness around the blades and thus

the local aerodynamic work coefficient. The influences of the curvature can be observed

when comparing the suction- to the pressure-side for all cluster-blades. Overall, the pressure-

sides present much less chord-wise variations of the aerodynamic work coefficient over all

traveling-waves than the suction-sides.

In contrast to the outer-cluster channel, less chord-wise variations of the local aerodynamic

work coefficient for varying inter-cluster phase angles are observed for the inner-cluster

channels (see Figures 7.13 to 7.15). This is related to the blade vibration phase-angles between

the cluster-blades, which are all constant for the inner-cluster channels, as indicated by the

cluster kinematics. For varying inter-cluster phase angles, small chord-wise variations of the

local work coefficient can be observed. These variations are due to the influences from the

neighboring cluster-channels. Thus, it can be concluded that these influences are related

mainly to the outer-cluster channel, as the local aerodynamic work coefficient varies for

inter-cluster phase angles. This consideration implies that the inner-cluster channel between

cluster-blades B and C (see Figure 7.14) is less influenced by the outer-cluster channel, as this

inner-cluster channel is at a larger distance than the inner-cluster channels between cluster-

blades A and B (see Figure 7.13); and cluster-blades C and D (see Figure 7.15). This assumption

cannot be directly confirmed in the results presenting the local aerodynamic work coefficient,

as all inner-cluster channels show chord-wise variations for varying inter-cluster phase angles.

In contrast, by observing the results of the global aerodynamic damping coefficient, which

is presented for individual cluster-channels in the lower graph of Figure 7.16, it can be seen

that the inner-cluster channel between cluster-blades B and C (green line) varies less for

different inter-cluster phases angles than the other two inner-cluster channels (between

cluster-blades A and B, red line and C and D, blue line). Thus it can be concluded that the

influence of the outer- on the inner-cluster channel is larger than the influences between

inner-cluster channels only. Furthermore, it can be stated that all inner-cluster channels

have less chord-wise variations for varying inter-cluster phase angles than the outer-cluster

channel.

Figure 7.16 shows the global aerodynamic damping coefficient of the four-blade cluster (lines

with dots) in comparison to the related single-blade test case SB-A (black line with triangles).

The global aerodynamic damping coefficients for the individual cluster-blades, as well as

for the average, are determined using Equations 7.1 and 7.2. Furthermore, the confidence

intervals are noted for the single-blade test case and the weighted average. In the top graph in

Figure 7.16, the global aerodynamic damping coefficient is presented per cluster-blade and, at

the bottom, per blade-channel between neighboring cluster-blades.
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Figure 7.16: Normalized global aerodynamic damping of the four-blade cluster C4-A-S-T
(axial-bending oscillation direction per cluster-blade), top: shown per cluster-blade, bottom:
shown per cluster-channel. Both include the corresponding single-blade test case SB-A.

As indicated by the local aerodynamic work coefficient distributions, it can be observed that

the outer cluster-blades (A and D) have a positive damping, whereas the inner cluster-blades

(B and C) have a damping which is close to neutral. The orange line represents the average of

the four cluster-blades, which has a nearly constant positive aerodynamic damping coefficient

for the whole range of inter-cluster phase angles. This is in contrast to the single-blade test

case, which shows a significant variation in the aerodynamic damping for the whole range of

inter-blade phase-angles. Thus, it is concluded that the four-blade cluster is advantageous,

since it increases the minimum aerodynamic stability level of a blade-row compared to single-

blades. This increase in the minimum aerodynamic stability is achieved due to the small

flow-interactions in the inner-cluster channels of the cluster.

101



Time-Resolved Results and Aerodynamic Stability Analysis

7.2.3 Summary of Aerodynamic Stability of Cluster Test Cases

Four different types of cluster were investigated in the previous section, all with the same

steady-state flow conditions as described in Chapter 6. The analyzed clusters differ in the type

of oscillation direction used for the individual cluster-blades and in the number of blades per

cluster. The investigated cluster types and the individual test cases are summarized below:

1. Three two-blade clusters with each cluster-blade having the same oscillation direction.

Three vibration directions were investigated (axial- and flap-bending, torsion)

2. One four-blade cluster with each cluster-blade oscillating in the axial-bending direction,

while having the blade vibration amplitudes and phase angles of the individual cluster-

blades adjusted so that a torsional movement of the cluster as a whole is simulated.

The measurements of the two-blade cluster test cases lead to the following findings:

• For all three oscillation directions, the local aerodynamic work transferred between the

blades and the flow is larger for the blade channel between two consecutive clusters

(outer-cluster channel) than for the blade channel within the cluster (inner-cluster

channel).

• The test cases with a bending oscillation direction are more sensitive to blade vibrations

on the suction-side than on the pressure-side. For the test cases with a torsion oscillation

direction, no difference between both blade-sides is observed.

• When comparing both cluster-blades with each other, similar local aerodynamic work

distributions are observed for the pressure-side but not for the suction-side. This can

be seen, apart from the level of the distribution and only for the bending oscillation

cases. For the test case with a torsion oscillation both blade-sides show similar local

aerodynamic work distributions, apart from the level.

• As expected the comparison of the three cluster test cases showed that the oscillation

direction is influencing the interactions between the cluster-blades. This experimental

observation is in-line with the literature describing numerical simulations, see for

example Corral et al. [2007].

• For all test cases, the local aerodynamic work coefficient distributions of the outer-

cluster channel demonstrate a high similarity to the respective single-blade test cases.

• For the test cases with bending oscillation a similarity to the respective single-blade

test cases is observed only for the pressure-side of the inner-cluster channel. For the

test cases with a torsion oscillation direction, it is detected for the entire inner-cluster

channel. It should be noted that for the reported observations of the inner-cluster

channel, apart from the similar distributions, different average value levels are observed.
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• The positive effect of increasing the minimum damping is observed for the torsion

oscillation test case. For the bending oscillation test cases this is not observed.

The measurements of the four-blade cluster test case lead to the following findings:

• The exchange of the aerodynamic work between the flow and the cluster-blades is

higher for the blades between neighboring clusters (outer-cluster channel) than for the

inner-cluster channels, as to be expected.

• The interaction between the flow and the blades in the outer-cluster channel is similar

to the interactions of the respective single-blade test case SB-A.

• The influence of the outer-cluster channel on the inner-cluster channel is higher than

the influences between inner-cluster channels only.

• For the inner-cluster channels less chord-wise variations of the local aerodynamic work

coefficient can be seen. This is a result of the cluster kinematics, which state that for

varying inter-cluster phase angles the phase angle between neighboring cluster-blades

in a cluster is constant.

• Next to the blade motion, the curvature of the blade is identified as an influencing factor

of the unsteadiness around the blade and thus to the aerodynamic damping.

• Overall, both outer cluster-blades have a positive global aerodynamic damping, whereas

the inner cluster-blades have almost no contribution to the global aerodynamic damp-

ing.

• All cluster-blades are averaged in a way to represent the cluster and are compared to the

respective single-blade test case SB-A. The comparison shows that the cluster has an

increased minimum damping which is a positive result with respect to the aeroelastic

stability.
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7.3 Prediction of the Aerodynamic Values of Cluster-Blades by

Using Single-Blade Test Results

This chapter presents the applicability of the traveling-wave and influence coefficient formu-

lation to predict the aerodynamic stability parameters of cluster-blades by using single-blade

measurements as input. The related mathematical formulation of this method was introduced

in Section 2.4. The principal steps to predict an individual cluster-blade are displayed in

Figure 7.17.

Figure 7.17: Procedure to predict the aerodynamic values of individual cluster-blades by using
single-blade measurement data as input.

In the next two sections, the previously-introduced method (see Figure 7.17 in Section 2.4)

is applied and the predicted results are compared to the measured cluster results. First, this

is done for the two-blade cluster (see Section 7.2.1) and second, for the four-blade cluster

(see Section 7.2.2). The transformation of the complex unsteady pressure coefficient from

single-blade influence coefficients to the individual cluster-blade traveling-wave formulation

is described as:

c̃C,I,TW =
N−1∑
n=0

c̃n,0
SB,IC an,0

C ,I e−i σn,0
C ,I (7.3)

In order to solve Equation 7.3, the following input parameters are necessary:

• The cluster-specific blade-vibration amplitude an,0
C ,I , based on the kinematics of the

individual cluster-blades in the cluster configuration

• The cluster-specific blade-vibration phase lag σn,0
C ,I , based on the kinematics of the
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individual cluster-blades in the cluster configuration

• The complex unsteady pressure coefficients for the single-blade test case c̃n,0
SB,IC ex-

pressed in the influence coefficient formulation

It should be noted that Equation 7.3 was introduced in Section 2.4 and is displayed again for

the sake of completeness. A detailed description of the individual terms in Equation 7.3 can

be found in the aforementioned section.

7.3.1 Two-Blade Cluster

The two-blade cluster oscillating with an axial-bending oscillation direction (C2-A) is used in

this section to show the applicability of the aforementioned method. Thus, as a basis for the

prediction of the cluster-blades, the single-blade test case SB-A is employed (see Section 7.1).

In the following, the predicted cluster-blade results are compared to the measured results of

the cluster test case C2-A (see Section 7.2.1).

As previously noted, next to influence coefficients of the unsteady pressure coefficient, two

principal parameters have to be defined as input for Equation 7.3. These are the cluster-related

blade vibration amplitude and phase lag kinematics (for details regarding the cluster kinemat-

ics refer to Section 4.2). Since both cluster-blades have the same blade vibration amplitudes,

the parameter describing the relation between the individual cluster-blade vibration ampli-

tudes is set to an,0
C ,I = 1 for n = 0, ..., N −1. Furthermore, the values which define the phase-lag

kinematics of the cluster-blades σn,0
C ,I are described in Table 7.4. These phase-lag values are

based on the inter-cluster phase angle definition and the fact that both cluster-blades oscillate

in-phase. The values in the table describes the phase lag between the regarded cluster-blade

(σn,0
C ,A or σn,0

C ,B ) and the blade n for the chosen influence coefficient.

SB IC

index:

Cluster

blade A:

Cluster

blade B:

n σn,0
C ,A σn,0

C ,B

0 0 0

1 0 Γ1

2 Γλ=1 Γ1

3 Γλ=1 Γ2
...

...
...

N-3 ΓJ−2 ΓJ−1

N-2 ΓJ−1 ΓJ−1

N-1 ΓJ−1 0

Table 7.4: Kinematic relation between single-blade influence coefficients and cluster traveling-
wave coefficients of the two-blade cluster test cases.
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In Figure 7.18 at the top, the results of the individually-predicted cluster-blades are presented

as local work coefficient distributions. In order to compare the measured test results of the

individual cluster-blades with the predicted results, the measured test results are shown in the

middle of Figure 7.18 and the absolute difference between both (predicted and measured) is

shown at the bottom. All distributions are normalized using the absolute peak value of the

measured cluster test case. It should be stressed that the absolute differences between the

measured and the predicted results were determined before the normalization was carried

out.

Figure 7.18: Normalized local aerodynamic work coefficient of cluster-blades A (left) and B
(right) of the two-blade cluster test case C2-A (axial-bending oscillation direction). Top:
predicted results; middle: measured results; bottom: absolute difference between predicted
and measured results.
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In addition to the local aerodynamic work coefficient, the global aerodynamic damping

coefficient of the simulated and the measured cluster-blades is presented in Figure 7.19. Here

the normalization is performed using the absolute peak value of the single-blade test case. It

should be noted that this normalization is chosen in order to be in-line with those applied in

the previous sections.

Before analyzing the comparison, it should be noted that this procedure is applied accord-

ingly for the two-blade cluster test cases with flap-bending (C2-F) and torsion oscillation

direction (C2-T) (detailed in Section 7.2.1). The predicted distributions of the respective local

aerodynamic work coefficient and global aerodynamic damping coefficient are displayed in

Appendix A.5.

Overall, it can be observed from the local comparisons (Figure 7.18) that a good local agree-

ment between the measured and the predicted cluster test case is achieved for all inter-cluster

phase angles. For each inter-cluster phase angle, a good agreement along the chord-wise

direction can be seen for both cluster-blades. Furthermore, the characteristic of the two-blade

cluster having lower local aerodynamic work coefficient values for the inner-cluster channel

than for the outer-cluster channel also shows a good agreement. A similar conclusion can

be drawn in the two-blade cluster test cases with different oscillation directions presented in

Appendix A.5 (for flap-bending see Figure A.6, and for torsion see Figure A.8).

The current test case (C2-A) shows a local anomaly for both cluster-blades on the rear part

of the suction-side mainly for an inter-cluster phase angle of Γλ = 72°. It is assumed that this

is a result of slight measuring variations. For both blades very low local aerodynamic work

coefficients are observed in this region. Thus small variations of the flow between the results

used for the prediction (single-blade test case) and the measured results (cluster case) can

result in large differences. This can also be observed in the results presented in Appendix A.5,

which show also differences in the same region on the rear part of the suction side, but for

different inter-cluster phase angles and different locations.
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Figure 7.19: Normalized global aerodynamic damping coefficient of the predicted two-blade-
cluster test case C2-A (axial-bending oscillation direction).

The comparison of the global aerodynamic damping results is presented for both cluster-

blades in Figure 7.19. Similar to the comparison between the predicted and measured results

of the local aerodynamic work coefficient, a good agreement of the results for the global

aerodynamic damping coefficient can be seen. In addition to the predicted and measured

results, the figure shows the confidence interval representing the estimated random error of

the measured cluster-blades (for details regarding the random error refer to Section 5.4.1).

It can be observed that the differences between the prediction and the measured results are

situated within the confidence interval of the measured cluster-blade results, which confirms

the previously made assumption of small flow variations influencing the results. Hence, it can

be concluded that the method is able to predict the aerodynamic values of individual blades

in the two-blade cluster within the limits of the experimental measurement accuracy.
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Figure 7.20: Impact of the number of applied influence coefficients to simulate the aerody-
namic damping coefficient of cluster-blade A (top) and B (bottom) of the two-blade cluster
case C2-A.

On the basis of the normalized global aerodynamic damping coefficient, Figure 7.20 displays

the impact of the number of influence coefficients applied to simulate cluster-blade A (top) and

B (bottom) of the two-blade cluster test case C2-A. All graphs within the figure are normalized

using the absolute peak value of the single-blade test case SB-A. The coloring from red to

green indicates an increasing number of influence coefficients used additionally to the zeroth

(reference) influence coefficient. It can be seen that, next to the impact of the blade itself, the

influence of the neighboring six blades (in both directions) have to be considered in order to

achieve an error of less than 10%. Including one more neighboring blade in both directions

(in total ±7 influence coefficients) lowers the error to less than 5%. As the transformation

between the traveling-wave and influence coefficient formulation is based on the harmonic

superposition relation, it can be stated that the closer the predicted curvature is to a sine curve

the smaller becomes the number of necessary influence coefficients.
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7.3.2 Four-Blade Cluster Simulating Torsion

In the previous section it was shown that the aerodynamic parameters of the individual

cluster-blades of a two-blade cluster can be predicted using single-blade test results as input

data. This section is dedicated to analyzing the applicability of this procedure to predict the

aerodynamic parameters of the individual cluster-blades of a four-blade cluster. In order to

validate the predicted results, they are compared to those of the test case C4-A-S-T presented

in Section 7.2.2. This cluster test case simulates a four-blade segment oscillating in the torsion

direction by vibrating each cluster-blade in the axial-bending direction and by adjusting the

blade-vibration amplitude and phase lag accordingly (for details refer to Section 4.3 and

Section 7.2.2). In order to apply the procedure previously introduced, the input parameters of

Equation 7.3 have to be defined for this test case.

The cluster-specific kinematics relating to the blade-vibration amplitude and the phase lag

have been presented in Section 2.4 and are listed in Table 2.1. Briefly summarized, the

relationship between the inner- and outer-blade vibration amplitudes has to be account for

as noted in Table 7.3. Furthermore, the phase-lag has to be adjusted so that the first two

cluster-blades are always in the opposite phase to the last two in the cluster. In addition to the

individual cluster-blade phase-shift relations, the respective inter-cluster phase angles have

to be accounted for, too.

The local aerodynamic work coefficient distributions of the individually-predicted cluster-

blades are presented in Figures 7.21 and 7.22 at the top. For the purpose of comparison, the

measured test-results of the individual cluster-blades are displayed in the middle and the

absolute difference between the measured and the predicted results of the cluster-blade is

shown at the bottom. All distributions are normalized using the absolute peak value of the

measured cluster test case. It should be stressed that the absolute differences between the

measured and the predicted results are calculated before the normalization was performed.

In addition to the local aerodynamic work coefficient, the global aerodynamic damping

coefficient of both, the simulated and the measured cluster-blades, are presented in Figure 7.23.

In this case, the normalization is performed using the absolute peak value of the single-blade

test case.
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Figure 7.21: Normalized local aerodynamic work coefficient of cluster-blades A (left) and B
(right) of the four-blade cluster test case C4-A-S-T (axial-bending oscillation direction per
cluster-blade, representing a torsional movement of the cluster). Top: predicted results;
middle: measured results; bottom: absolute difference between predicted and measured
results.

Overall, it can be observed that the predicted results of the local aerodynamic work coefficient

(see Figures 7.21 and 7.22) are almost identical to the measured results of the individual

cluster-blades. Details show that the suction-sides of the individual cluster-blades are less

well predicted than the pressure-sides. In specific it can be observed that the second part in

chord-wise direction of the cluster-blade is less well predicted than the first part. A similar

observation was made in the previous section describing the prediction of the two-blade

cluster configurations. As noted before it is assumed that the differences between the predicted

and measured results in this region of the blade are related to small variations in the flow. In

order to estimate the influence of the minor flow variations the confidence interval of the
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random error is calculated for the measured cluster-blades, and included in the next figure

presenting the comparison of the predicted and measured results for the global aerodynamic

damping coefficient. (For details of the confidence interval refer to Section 5.9.)

Figure 7.22: Normalized local aerodynamic work coefficient of cluster-blades C (left) and D
(right) of the four-blade cluster test case C4-A-S-T (axial-bending oscillation direction per
cluster-blade, representing a torsional movement of the cluster). Top: predicted results;
middle: measured results; bottom: absolute difference between predicted and measured
results.
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Figure 7.23: Normalized global aerodynamic damping coefficient of the predicted two-blade-
cluster test case C4-A-S-T (axial-bending oscillation direction per cluster-blade, representing
a torsional movement of the cluster).

In Figure 7.23 the predicted and measured results of the global aerodynamic work coefficient

are presented. Similar to the analysis of the local aerodynamic work coefficient an overall

good agreement between the predicted and measured results is observed. Furthermore, it can

be seen that the method is capable to reproduce the individual cluster-blade distributions for

varying inter-cluster phase angles.

As previously noted small differences can be identified between the predicted and the mea-

sured results of the individual cluster-blades, which are caused by small variations of the flow.

Taking into account the confidence intervals of the measured signals it can be observed that

almost all are in the margin of the confidence intervals. Furthermore, it can be observed that

for inner cluster-blades the difference between predicted and measured results is smaller than

for the cluster-blades at the corner of the cluster.

As shown for the two-blade cluster test case in Figure 7.20, the same number of neighboring

blades (six) additionally to the to the zeroth (reference) blade itself are necessary in order to

achieve an error of less than 10%. Including one more neighboring blade in both directions

(in total ±7 influence coefficients) lowers the error to less than 5%. In the Appendix A.5.3 the

impact of the number of applied influence coefficients to simulate the aerodyanmic values of

the cluster-blades is shown Figures A.10 and A.11.

7.3.3 Summary and Conclusion of Predicting the Aerodynamic Values of
Cluster-Blades by Using Single-Blade Test Results

The procedure introduced at the beginning of Section 7.3 was successfully applied to the

two-blade cluster test cases with identical oscillation directions for both cluster-blades. Fur-

thermore, it was successfully applied for the four-blade cluster test case simulating a torsional
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movement of the whole cluster by individually adjusting the blade vibration amplitudes.

For all oscillation directions of the two-blade cluster a good agreement between the predicted

and measured results could be observed. This for comparison of the local values, represent-

ing the chord-wise distribution along the blade surface and also for the global comparison,

representing the entire blade. For the four-blade cluster also a good agreement between the

predicted and measured results could be observed. This as for the two-blade cluster locally

and globally.

For all cluster cases the suction side was less well predicted than the pressure side as the

local work coefficient distributions showed. The differences between predicted and measured

results of both blade-sides were attributed to small variations in the flow, which occurred for

the compared cases (single-blade case used for prediction and cluster case). The confidence

interval of the random error estimating variances in the flow field confirmed this.

On the basis of the prior results it is concluded that the prediction method is experimentally

validated within the limits of the measurement accuracy. In addition, it can be noted that

this validation serves as a basis for numerical simulations using a similar method to perform

parameter studies for cluster configurations under similar flow conditions, see for example

Chernysheva [2004].

In order to apply this procedure, it is important to know the kinematics of the individual

cluster-blades. These kinematics have to be defined by means of the oscillation direction of

the individual cluster-blades, as well as the individual cluster-blade vibration amplitude and

phase relationships. Furthermore, the assumptions on which this method is based have to be

considered, as stated in Sections 2.3 and 2.4.

It should be noted that this procedure is based on the linearized unsteady aerodynamic theory

as described by Verdon [1987]. The linearization implies that small blade vibration amplitudes

are a prerequisite for the applicability of this theory. As limitation for a maximum blade

vibration amplitude it is assumed that for the test cases described in this work, values up to

about fifteen times higher are representative. Furthermore it has to be considered that with an

increasing vibration amplitude the incidence angle changes and thus different flow conditions

have to be considered. This effect is of more significance for torsion oscillation directions than

for bending.

With respect to the applicability for varying flow conditions, it is assumed to be valid for

subsonic flow conditions. As only one flow condition is investigate in this work this assumption

is based on the experimental investigations for single-blade test cases found in the literature.

For example Nowinski and Panovsky [2000] used the superposition principle for a parameter

study on thin, highly-curved low-pressure turbine blades oscillating in torsion mode-shape

with reduced frequencies in the range of 0.16 to 0.31 and inlet Mach-numbers in the range of

0.36 to 0.5. Schläfli [1989] reported similar flow conditions as found in Nowinski and Panovsky

[2000], but has shown that the superposition principle can be applied also for flat profiles in

case of single-blade configurations.
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IN this chapter the key findings are summarized and conclusions supporting the design

procedure of cluster configurations are highlighted.

8.1 Summary and Conclusions

The main objective of the present work was to validate experimentally the applicability of the

superposition principle to predict the aerodynamic parameters of the individual cluster-blades

in a cluster by using single-blade data acquired during traveling-wave mode measurements.

Furthermore, this thesis analyzed experimentally the aerodynamic stability of a two-blade

cluster, which has different oscillation directions (torsion, axial- and flap-bending) and a

four-blade cluster, which oscillates in a torsional motion.

The applied approach consisted of establishing a data base of experimental traveling-wave

measurements under identical steady-state flow conditions. In order to achieve this, two

cluster test-cases simulating blade-row configurations applied in low-pressure turbines were

selected and investigated. The first consisted of two blades simulating a welded-in-pair con-

figuration and the second of four blades representing a cast vane-segment. For the two-blade

cluster case, three oscillation directions were investigated, the first torsion, axial- and flap-

bending mode. The torsional oscillation of the four-blade cluster was simulated by oscillating

each cluster-blade with an axial-bending vibration direction and by individually adjusting the

cluster-blade vibration amplitudes and phase angles according to the cluster kinematics. As a

basis for the prediction of the cluster-blades in a cluster, single-blade tests were carried out

with the vibration conditions of the individual cluster-blades.

All measurements were performed in a non-rotating test facility under subsonic flow condi-

tions on a turbine cascade composed of 20 blades. For each test case, all possible oscillation

patterns of the single-blade (inter-blade phase angles) and cluster configurations (inter-cluster

phase angles) were performed in the traveling-wave mode. During these tests the steady-state

flow conditions were measured using pressure taps along the blade-chord at three different

blade heights (25%, 50% and 90%), 5-hole L-shaped probes upstream and downstream of
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the test section, as well as pressure taps on the shroud wall along the test section. The time-

resolved measurements were acquired by unsteady pressure taps along the blade surface at

50% blade height and by displacement sensors measuring the corresponding position of the

blades.

The analysis of the steady-state flow measurements, which was used for all time-resolved test

cases showed the following main findings:

• Close to identical flow conditions are achieved for all investigated test cases, allowing a

comparison of the different test cases.

• The average Mach-numbers of all test cases (single-blade and cluster) were M1 = 0.34 at

the inlet and M2 = 0.69 at the outlet.

• The average flow angles of all test cases (single-blade and cluster) were β1 = 46◦ at the

inlet and β2 =−57.9◦ at the outlet.

• The blade surface was exposed to subsonic flow conditions typical for a turbine-blade

loading at mid-channel (50% blade height).

• Along the hub and the shroud region, secondary flows were observed but did not

influence the flow at mid-channel height. Therefore the flow could be considered as

quasi two-dimensional in this region.

Single-blade test cases were performed in order to predict the aerodynamic parameters of

the individual cluster-blades using the superposition principle, and as a reference to the

cluster test cases. The blade vibration directions were chosen to be identical to the vibration

directions of the individual cluster-blades. All measurements were performed with the same

reduced frequency (k = 0.26). Overall, for both cluster test cases, three vibration-directions

were investigated: torsion, axial-bending and flap-bending. The analysis of the corresponding

single-blade test results revealed the following aerodynamic effects:

• In the traveling-wave formulation:

– The parameters influencing the unsteady pressure around the blade was the inter-

blade phase angle which the blade-row was oscillated and the curvature of the

blade.

– The local distribution of the aerodynamic work was mainly influenced by the

unsteady pressure coefficient phase-lag and the oscillation direction.

– Overall, the aerodynamic damping for all three test cases was positive for all inter-

blade phase angles and thus aerodynamically stable operating conditions were

present.
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• In the influence coefficient formulation:

– For both test cases with a bending oscillation, the immediate neighboring blades

had a larger influence on the reference blade than in the torsion case.

– For all test cases, the neighboring blades in the suction-side direction had a larger

influence than those in the pressure-side direction.

– The global distribution of the influence coefficients showed similar tendencies

for the test cases with a flap-bending and torsion oscillation as observed in the

literature (for example see Panovsky and Kielb [2000]).

The analysis of the measurement results obtained for the two-blade cluster test cases revealed

the following findings:

• For all three oscillation directions, the local aerodynamic work transferred between the

blades and the flow was larger for the blade channel between two consecutive clusters

(outer-cluster channel) than for the blade channel within the cluster (inner-cluster

channel).

• When comparing both cluster-blades with each other, similar local aerodynamic work

distributions could be observed for the pressure-side but not for the suction-side. This

could be seen, apart from the level of the distribution and only for the bending oscillation

cases. For the test case with a torsion oscillation both blade-sides showed similar local

aerodynamic work distributions, apart from the level.

• As expected by the comparison between the three cluster test cases, the blade oscillation

direction influenced the interactions between the cluster-blades. This experimental

observation was comparable to the literature, see for example Corral et al. [2007].

• For all vibration modes, the local aerodynamic work distributions of the outer-cluster

channel demonstrated a high similarity to the respective single-blade test cases.

• For the test cases with bending oscillation a similarity to the respective single-blade

test cases was observed only for the pressure-side of the inner-cluster channel. For the

test cases with a torsion oscillation direction, it was detected for the entire inner-cluster

channel.

• The positive effect of increasing the minimum damping was observed for the torsion

oscillation test case. For the bending oscillation test cases this was not observed.

The measurements of the four-blade cluster test case lead to the following findings:

• The exchange of the aerodynamic work between the flow and the cluster-blades was

higher for the blades between neighboring clusters (outer-cluster channel) than for the

inner-cluster channels, as to be expected.
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• The interaction between the flow and the blades in the outer-cluster channel was similar

to the interactions of the respective single-blade test case SB-A.

• The influence of the outer-cluster channel on the inner-cluster channel was higher than

the influences between inner-cluster channels only.

• For the inner-cluster channels less chord-wise variations of the local aerodynamic work

could be seen. This was a result of the cluster kinematics, which state that for varying

inter-cluster phase angles, the phase angle between neighboring cluster-blades in a

cluster is constant.

• Next to the blade motion, the curvature of the blade was identified as being an influenc-

ing factor of the unsteadiness around the blade and thus to the aerodynamic damping

of the blade.

• Overall, both outer cluster-blades had a positive global aerodynamic damping, whereas

the inner cluster-blades had almost no contribution to the global aerodynamic damping.

• All cluster-blades were averaged in a way to represent the cluster and were compared to

the respective single-blade test case SB-A. The comparison showed that the cluster had

an increased minimum damping which is a positive result with respect to the aeroelastic

stability.

From an aerodynamic point of view, it can be summarized that fixing blades together as

clusters is, in principle, advantageous. This is because it minimizes the aerodynamic work

within the inner-cluster channels and thus enables a possible increase in the minimum

aerodynamic damping compared to a single-blade test case with a similar blade vibration

direction. This could be shown for the two-blade cluster in the torsional vibration direction,

as well as for the four-blade cluster test case simulating a torsional oscillation (for a blade-

row of 20 blades). For the two-blade clusters oscillating in bending direction, no increase in

the minimum damping could be observed for the flow conditions investigated in this work.

These observations for the two-blade cluster test cases are in agreement with the findings of

Corral et al. [2007]. His numerical parameter study showed in addition that the minimum

aerodynamic damping of the two-blade cluster with bending direction increases for lower

reduced frequencies. Thus, it is assumed that for lower reduced frequencies the two-blade

cluster with bending oscillation can also be of advantage, since an increase of the minimum

aerodynamic damping can be observed with respect to the single-blade case.

At this point, a data base of single-blade and cluster test cases was established. It was used

to investigate the applicability of the superposition principle to predict the aerodynamic

parameters of individual cluster-blades by using experimental aerodynamic single-blade data

as input. To apply this procedure, it was important that the single-blade test cases had an

identical vibration-direction and -frequency as the individual predicted cluster-blades.

In the first step of the procedure, the single-blade results in the traveling-wave formulation
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were converted to influence coefficients. In the next step, these single-blade influence co-

efficients were transformed back into the traveling-wave formulation, including the cluster

kinematics of the individual cluster-blades (instead of single-blades). Thus, the resulting

aerodynamic parameters in the traveling-wave formulation represent those of the individual

cluster-blade.

This procedure was used to predict the aerodynamic stability of the individual cluster-blades

for the two- and four-blade cluster cases described earlier. The experimentally acquired

aerodynamic parameters of the single-blade cases were used as input data for this procedure,

taking into account the corresponding oscillation direction. In order to validate the predicted

results of the procedure, they were compared to the measurements of the respective cluster

cases. The comparison of both results lead to the following findings:

• A good agreement, within the limits of the experimental accuracy, exists between the

predicted and the measured results of the global aerodynamic damping distributions.

These were determined, by accounting for small flow variations between the compared

results in terms of confidence intervals of the measured cluster-blade signal.

• Overall, a good agreement of the local (chord-wise) aerodynamic work distributions

were observed. This shows that the prediction is capable to reproduce the aerodynamic

effects occurring within the inner- and outer-cluster channels.

• The local (chord-wise) aerodynamic work distributions also showed that the suction-

sides were less well predicted than the pressure-sides. This was attributed to small flow

variations occurring between the measured single-blade case used for the prediction,

and the measured individual cluster-blade to which it was compared to.

• The observations of the three aforementioned bullet-points were identified for both

cluster cases and for all corresponding oscillation directions investigated in this work.

This comparison leads to the conclusion that the aforementioned procedure was successfully

validated experimentally within the limits of the experimental accuracy.

Therefore it can be stated that aerodynamic parameters acquired for single-blade cases can be

used to predict the aerodynamic stability of individual cluster-blades, and thus of the whole

cluster, this experimentally and thus also numerically. Furthermore, this validated procedure

now serves as a basis for numerical simulations, which are using a similar approach to perform

parameter studies for cluster configurations under similar flow conditions.
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8.2 Recommendations for Future Work

For future investigations, the following points could extend the accuracy of the results and

enhance their interpretation:

• A simplification of the blade vibration system and cascade assembly could minimize the

time necessary to change the blade oscillation direction, thus enabling the investigation

of an increased number of oscillation directions.

• Introducing a coupled oscillation direction, as for example bending and torsion com-

bined in one vibration system. The benefit would be an increased similarity to the

real motion of a four-blade cluster oscillating in the first torsion mode-shape, although

additional validation procedures might be necessary in order to ensure the foreseen

oscillation pattern of the cluster, respectively of the individual cluster-blades.

• An increase of the blade vibration amplitudes could be achieved by tuning the cascade.

This would result in higher unsteady pressure signals in regions along the blade surface

with low signal strength, as observed on the second half of the suction-side. But it should

be noted that achieving controlled vibrations for all necessary traveling-wave patterns

will become more difficult.

• Further analysis of the applicability-boundaries of the superposition principle as to

predict the aerodynamic parameters of the cluster-blades. The following possibilities

could be considered:

– Combine cluster measurements with forced response (i.e. wakes, shocks from up-

stream blade rows) in order to identify any influence on the aerodynamic stability

of the blade.

– Introduce a vibration pattern mistuning on the blade-row by defining clusters with

an arbitrary number of blades per cluster.

– Consider supersonic flow conditions in order to identify the influence of shocks.

– Consider a large variation of the inflow angle in order to identify the influence of

flow separation. Furthermore, consider in combination supersonic flow condi-

tions.

– Consider a variation of the reduced frequency parameters in order to identify the

influence of the blade vibration frequency and flow velocity.

• Use of a blade-row with a different blade staggering in order to enable the simulation

of more combinations of blades clustered together. Furthermore, additional vibration

patterns of the blade-row could be investigated. For example a cascade with 24 blades

would allow the following combinations of cluster-blades in a cluster: 2, 3, 4 and 6

(instead of 2 and 4 with a blade-row of 20 blades).
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A Appendix

A.1 Blade Surface Isentropic Mach-Number at 25% and

90% Blade Height

Non-

dimensional

curvilinear

location on PS

Isentropic Mach-

number on PS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.00 0.14 1.1

0.09 0.19 1.0

0.19 0.19 0.8

0.33 0.22 0.8

0.47 0.27 0.6

0.63 0.36 0.6

0.75 0.47 0.6

0.87 0.58 0.7

1.00 0.75 0.8

Table A.1: Blade surface isentropic Mach-
number on PS at 25% blade-height.

Non-

dimensional

curvilinear

location on SS

Isentropic Mach-

number on SS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.00 0.15 3.3

0.07 0.50 0.2

0.15 0.60 0.3

0.23 0.66 0.5

0.32 0.70 0.5

0.40 0.74 0.5

0.49 0.72 1.0

0.57 0.81 0.7

0.64 0.81 0.9

0.73 0.80 0.9

0.81 0.78 0.8

0.90 0.76 0.8

Table A.2: Blade surface isentropic Mach-
number on SS at 25% blade-height.
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Figure A.1: Isentropic Mach-number distribution along the blade surface at 25% blade-height
of all test cases.

Non-

dimensional

curvilinear

location on PS

Isentropic Mach-

number on PS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.00 0.12 4.5

0.09 0.22 6.1

0.19 0.21 6.3

0.33 0.22 5.8

0.47 0.25 3.8

0.63 0.31 1.5

0.75 0.39 0.7

0.87 0.49 0.5

1.00 0.69 0.8

Table A.3: Blade surface isentropic Mach-
number on PS at 90% blade-height.

Non-

dimensional

curvilinear

location on SS

Isentropic Mach-

number on SS

Average of all

test cases

Standard

deviation

s [-] Mis [-] [%]

0.00 0.12 7.8

0.07 0.46 1.0

0.15 0.58 0.9

0.23 0.68 0.8

0.32 0.74 0.9

0.40 0.83 1.2

0.49 0.88 1.5

0.57 0.88 1.4

0.64 0.84 1.6

0.73 0.79 0.5

0.81 0.75 0.8

0.90 0.71 0.9

Table A.4: Blade surface isentropic Mach-
number on SS at 90% blade-height.
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A.1. Blade Surface Isentropic Mach-Number at 25% and 90% Blade Height

Figure A.2: Isentropic Mach-number distribution along the blade surface at 90% blade-height
of all test cases.
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Appendix

A.2 Steady-State Flow Conditions Compared to Rottmeier [2003]

and Beretta [2006]

The turbine test model used for this investigation was used in previous experimental in-

vestigations performed by Rottmeier [2003] and Beretta [2006]. Rottmeier [2003] focused

his work on the investigation into how upstream guests influence the vibrational behaviour

of turbine-blades. Beretta [2006] dedicated his work to investigating the influence of me-

chanically mistuned blade vibration systems (in mode-shape and frequency) on the forced

response of turbine-blades. Certain findings of both authors are of use for this investigation.

To show the applicability, this chapter documents the comparison of the steady-state flow

conditions of both authors and this work. The comparison includes the measurements of

the 5-hole L-shaped probes (upstream and downstream) and of the blade surface isentropic

Mach-number. In Table A.5 the results of the 5-hole L-shaped probes are noted. Figure A.3

displays the blade isentropic Mach-number for the blade heights 25% (top), 50% (middle)

and 90% (bottom). In Figure 5.1 on the right the locations of the 5-hole L-shaped probes

relative to the blade leading-edge are documented. Beretta [2006] has measured upstream

at the almost identical position, downstream measurements were 5% of the chord further

downstream. In Rottmeier [2003], no information of the exact 5-hole L-shaped probe locations

are documented. It is assumed the measurements of Rottmeier [2003] took place in close

vicinity to those of Beretta [2006].

A comparison of the 5-hole L-shaped probe results (Table A.5) indicates almost identical

Mach-numbers for inlet M1 and outlet M2 between the three test campaigns, whereas the flow

angle at inlet β1 and outlet β2 varies slightly. Figure A.3 shows for all three blade heights (25%,

50% and 90%) an overall similar distribution of the blade surface isentropic Mach-number.

Small changes can be identified at the stagnation point and along the first half of the pressure-

side. This can be attributed to the slight variation of the inlet flow angles β1. The leakage flows

described in Figures 6.3 and 6.4 relate to the flow effects indicated in Figure A.3 for 25% (top)

and 90% (bottom) in the mid-chord vicinity of the suction-side. For all three investigations,

identical flow effects are present. Thus the considerations of Rottmeier [2003] concerning the

secondary flows as well as the conclusions are applicable in this work.
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A.2. Steady-State Flow Conditions Compared to Rottmeier [2003] and Beretta [2006]

Configuration

Mach-

number

Flow

angle

Total

pressure

Static

pressure

Total

temper-

ature

M [-] β [°] pt [hPa] pstat [hPa] T [K]

Arithm. average US: 0.34 46.0 1343 1239 300.9

of all test cases DS: 0.69 -57.9 1302 946 -

Rottmeier [2003]
US: 0.35 46.7 1238 1139 296

DS: 0.67 -56.9 - 890 -

Beretta [2006]
US: 0.35 46.1 1278 1174 305.7

DS: 0.65 -57.7a 1234 974 -

Table A.5: Comparison of steady-state mean flow quantities vs. Rottmeier [2003] and Beretta
[2006].

a In Beretta [2006] this value is noted as -67.7°. The high discrepancy with the other two values indicated the
presence of a typing error, which was confirmed by the author. This is also in agreement with the blade surface
isentropic Mach-numbers (Figure A.3), since in the case of a flow angle deviation of this magnitude it would
indicate a different blade surface Mach-number distribution.
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Figure A.3: Comparison of the isentropic Mach-number distribution along the blade surface
for 25% (top), 50% (middle) and 90% (bottom) channel height to Rottmeier [2003] and Beretta
[2006].
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A.3. Additional Graphs of the Single-Blade Test Case with Flap-Bending
Oscillation Direction

A.3 Additional Graphs of the Single-Blade Test Case with

Flap-Bending Oscillation Direction

Figure A.4: Unsteady pressure coefficient amplitude (left) and phase lag (right) for the single-
blade test case SB-F (flap-bending oscillation direction).
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Appendix

A.4 Determination of the Global Aerodynamic Damping of the

Four-Blade Cluster Test Case

In this section a description is given of how the global aerodynamic damping coefficient is

determined for a cluster consisting of IC blades, where each individual cluster-blade can have

a different blade vibration amplitude. As a basis for the following derivation, the formulations

introduced in Section 2.5 are used. The aerodynamic work performed on blade I during a

period of time can be written as:

ΥI =
T∫

0

~FI (t ) ~̇aI (t ) dt (A.1)

where ~FI (t) describes the aerodynamic force acting on the individual cluster-blade, as de-

scribed by Equation 2.19, and ~̇aI (t ) the velocity of the individual cluster-blade. Thus the global

aerodynamic work can be formulated as:

ΥI = b
(
pt1 −pstat1

) |~̂aI |WF,I (A.2)

with WF,I describing the global aerodynamic work coefficient, as noted in Equation 2.26 for

the individual cluster-blade. The global aerodynamic work of the four-blade cluster can be

defined as the average of the individual cluster-blade aerodynamic work contributions and

can be noted as:

ΥC = 1

IC

IC∑
I=1

ΥI (A.3)

with IC describing the total number of cluster-blades in a cluster. By normalizing the global

aerodynamic work of Equation A.3 with the blade span width b, the difference between the

total pressure pt1 and the static pressure pstat1 and the blade vibration amplitude |~̂a| of the

cluster, it can be noted as:

WC = ΥC

b
(
pt1 −pstat1

) |~̂a| (A.4)

By taking into account the individual cluster-blade contributions of the global aerodynamic

work, as noted in Equation A.2, and substituting them in Equation A.3, Equation A.4 can be

rewritten as:

WC = 1

IC

IC∑
I=1

|~̂aI |
|~̂a|

WF,I (A.5)

Equation 2.28 describes the global aerodynamic damping coefficient based on the global

aerodynamic work coefficient. Thus, by using Equation A.5, the global aerodynamic damping
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A.4. Determination of the Global Aerodynamic Damping of the Four-Blade Cluster
Test Case

of the cluster can be noted as:

ΞC =− WC

|~̂a|π
= 1

IC

IC∑
I=1

|~̂aI |WF,I

|~̂a|2π
(A.6)

It can be seen that in the case of different blade vibration amplitudes, the global aerodynamic

work contribution of the individual cluster-blades are weighted by their amplitude in relation

to the whole cluster movement. Thus, it can be deduced that the global aerodynamic damping

coefficient for each cluster-blade related to the torsional cluster movement can be determined

using:

ΞC ,I =
|~̂aI |WF,I

|~̂a|2π
(A.7)

As the theorem on intersecting lines describes (see Figure A.5), the following relation between

the torsional cluster vibration amplitude and the individual cluster-blade vibration amplitude

can be defined for the first two cluster-blades assuming small angles:

hax,A
3L
2

= hax,B
L
2

=αC (A.8)

with hax,A and hax,B the blade vibration amplitudes of cluster-blades A and B, and L the

circumferential distance (pitch) between two neighboring blades. Due to the similarity of

the cluster related to the cluster-motion, this relationship can be applied accordingly to

cluster-blades C and D.

Figure A.5: Theorem on intersecting lines of the four-blade cluster case.
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Appendix

A.5 Additional Graphs of Predicting the Aerodynamic Values of

Cluster-Blades by Using Single-Blade Test Results

A.5.1 Two-Blade-Cluster with Flap-Bending Oscillation Direction

Figure A.6: Normalized local aerodynamic work coefficient of cluster-blades A (left) and B
(right) of the two-blade cluster test case C2-F (flap-bending oscillation direction). Top: pre-
dicted results; middle: measured results; bottom: difference between predicted and measured
results.
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A.5. Additional Graphs of Predicting the Aerodynamic Values of Cluster-Blades by Using
Single-Blade Test Results

Figure A.7: Normalized global aerodynamic damping coefficient of the predicted two-blade
cluster test case C2-F (flap-bending oscillation direction).
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A.5.2 Two-Blade-Cluster with Torsion Oscillation Direction

Figure A.8: Normalized local aerodynamic work coefficient of cluster-blades A (left) and B
(right) of the two-blade cluster test case C2-T (torsion oscillation direction). Top: predicted
results; middle: measured results; bottom: difference between predicted and measured results.
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A.5. Additional Graphs of Predicting the Aerodynamic Values of Cluster-Blades by Using
Single-Blade Test Results

Figure A.9: Normalized global aerodynamic damping coefficient of the predicted two-blade
cluster test case C2-T (torsion oscillation direction).
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Appendix

A.5.3 Impact of the Number of Applied Influence Coefficients of the
Four-Blade Cluster Test Case

Figure A.10: Impact of the number of applied influence coefficients to simulate the aerody-
namic damping coefficient of cluster-blades A (top) and B (bottom) of the four-blade cluster
test case C4-A-S-T.
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A.5. Additional Graphs of Predicting the Aerodynamic Values of Cluster-Blades by Using
Single-Blade Test Results

Figure A.11: Impact of the number of applied influence coefficients to simulate the aerody-
namic damping coefficient of cluster-blades C (top) and D (bottom) of the four-blade cluster
test case C4-A-S-T.
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