000199990 001__ 199990
000199990 005__ 20181203040055.0
000199990 0247_ $$2doi$$a10.1090/mcom/3114
000199990 022__ $$a0025-5718
000199990 02470 $$2ISI$$a000391546700003
000199990 037__ $$aARTICLE
000199990 245__ $$aLocalized orthogonal decomposition method for the wave equation with a continuum of scales
000199990 260__ $$aProvidence$$bAmerican Mathematical Society$$c2017
000199990 269__ $$a2017
000199990 300__ $$a39
000199990 336__ $$aJournal Articles
000199990 520__ $$aIn this paper we propose and analyze a new multiscale method for the wave equation. The proposed method does not require any assumptions on space regularity or scale-separation and it is formulated in the framework of the Localized Orthogonal Decomposition (LOD). We derive rigorous a priori error estimates for the L2-approximation properties of the method, finding that convergence rates of up to third order can be achieved. The theoretical results are confirrmed by various numerical experiments.
000199990 6531_ $$afinite element
000199990 6531_ $$awave equation
000199990 6531_ $$anumerical homogenization
000199990 6531_ $$amultiscale method
000199990 6531_ $$alocalized orthogonal decomposition
000199990 700__ $$0243806$$aAbdulle, Assyr$$g189915
000199990 700__ $$0248065$$aHenning, Patrick$$g242885
000199990 773__ $$j86$$q549-587$$tMathematics of Computation
000199990 8564_ $$s5329658$$uhttps://infoscience.epfl.ch/record/199990/files/abd_hen-%20ms_wave_eqn_main.pdf$$yn/a$$zn/a
000199990 909C0 $$0252279$$pANMC$$xU11991
000199990 909CO $$ooai:infoscience.tind.io:199990$$pSB$$particle$$qGLOBAL_SET
000199990 917Z8 $$x246304
000199990 917Z8 $$x246304
000199990 917Z8 $$x246304
000199990 917Z8 $$x189910
000199990 917Z8 $$x148230
000199990 937__ $$aEPFL-ARTICLE-199990
000199990 973__ $$aEPFL$$rNON-REVIEWED$$sPUBLISHED
000199990 980__ $$aARTICLE