000199990 001__ 199990
000199990 005__ 20190416220316.0
000199990 0247_ $$2doi$$a10.1090/mcom/3114
000199990 022__ $$a0025-5718
000199990 02470 $$2ISI$$a000391546700003
000199990 037__ $$aARTICLE
000199990 245__ $$aLocalized orthogonal decomposition method for the wave equation with a continuum of scales
000199990 260__ $$bAmerican Mathematical Society$$c2017$$aProvidence
000199990 269__ $$a2017
000199990 300__ $$a39
000199990 336__ $$aJournal Articles
000199990 520__ $$aIn this paper we propose and analyze a new multiscale method for the wave equation. The proposed method does not require any assumptions on space regularity or scale-separation and it is formulated in the framework of the Localized Orthogonal Decomposition (LOD). We derive rigorous a priori error estimates for the L2-approximation properties of the method, finding that convergence rates of up to third order can be achieved. The theoretical results are confirrmed by various numerical experiments.
000199990 6531_ $$afinite element
000199990 6531_ $$awave equation
000199990 6531_ $$anumerical homogenization
000199990 6531_ $$amultiscale method
000199990 6531_ $$alocalized orthogonal decomposition
000199990 700__ $$0243806$$g189915$$aAbdulle, Assyr
000199990 700__ $$aHenning, Patrick$$0248065$$g242885
000199990 773__ $$j86$$tMathematics of Computation$$q549-587
000199990 8564_ $$uhttps://infoscience.epfl.ch/record/199990/files/abd_hen-%20ms_wave_eqn_main.pdf$$zn/a$$s5329658$$yn/a
000199990 909C0 $$xU11991$$0252279$$pANMC
000199990 909CO $$ooai:infoscience.tind.io:199990$$qGLOBAL_SET$$pSB$$particle
000199990 917Z8 $$x246304
000199990 917Z8 $$x246304
000199990 917Z8 $$x246304
000199990 917Z8 $$x189910
000199990 917Z8 $$x148230
000199990 937__ $$aEPFL-ARTICLE-199990
000199990 973__ $$rNON-REVIEWED$$sPUBLISHED$$aEPFL
000199990 980__ $$aARTICLE