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Abstract The transmission of waterborne pathogens is
a complex process that is heavily linked to the spatial
characteristics of the underlying environmental matrix as
well as to the temporal variability of the relevant hydro-
climatological drivers. In this work, we propose a time-
varying, spatially explicit network model for the dynamics
of waterborne diseases. Applying Floquet theory, which
allows to extend results of local stability analysis to peri-
odic dynamical systems, we find conditions for pathogen
invasion and establishment in systems characterized by
fluctuating environmental forcing, thus extending to time-
varying contexts the generalized reproduction numbers
recently obtained for spatially explicit epidemiology of
waterborne disease. We show that temporal variability may
have multifaceted effects on the invasion threshold, as it
can either favor pathogen invasion or make it less likely.
Moreover, environmental fluctuations characterized by dis-
tinctive geographical signatures can produce diversified,
highly nontrivial effects on pathogen invasion. Our study
is complemented by numerical simulations, which show
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that pathogen establishment is neither necessary nor suffi-
cient for large epidemic outbreaks to occur in time-varying
environments. Finally, we show that our framework can
be used to reliably characterize the early geography of
epidemic outbreaks triggered by fluctuating environmental
conditions.
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equilibrium · Monodromy matrix · Periodic signal ·
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Introduction

Waterborne diseases are transmitted through the ingestion of
pathogenic microorganisms (protozoa, bacteria, or viruses)
that can be found in contaminated water or food. Diarrhea,
commonly associated with waterborne pathogens, is respon-
sible for the deaths of about 1.8 million people every year,
thus representing one of the leading causes of death world-
wide, especially among infants and children in low-income
countries. According to the World Health Organization,
most of that burden is attributable to unsafe water sup-
ply, lack of sanitation, and poor hygienic conditions (World
Health Organization 2008).

The transmission of waterborne diseases is heavily linked
to environmental drivers and their seasonal patterns (e.g.,
Altizer et al. 2006; McMichael et al. 2006; Eisenberg et al.
2007). This relation has been widely studied for cholera,
probably the best known among potentially lethal water-
borne diseases. The seasonality and interannual variability
of endemic and epidemic cholera and the interplay between
environmental drivers (such as temperature, precipitation,
plankton concentration) and disease dynamics are in fact
receiving increasing attention (e.g., Colwell 1996; Pascual
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et al. 2000, 2002, 2008; Bouma and Pascual 2001; Lipp
et al. 2002; Ruiz-Moreno et al. 2007; Hashizume et al.
2008; de Magny et al. 2008; Mendelsohn and Dawson 2008;
Akanda et al. 2009; Emch et al. 2010; Gaudart et al. 2013;
Eisenberg et al. 2013a). However, although convincing
empirical evidence shows that cholera occurrence is typi-
cally seasonal because of climatic and environmental fac-
tors, there is no clear indication yet of a robust, unam-
biguous correlation between a specific exogenous driver
and the observed patterns of cholera incidence. Seasonal
fluctuations are also often related to spatial variation of dis-
ease distribution—yet, despite its importance, seasonality
has seldom been considered in spatially explicit models for
waterborne disease dynamics. Some exceptions do exist,
though. For instance, Bertuzzo et al. (2008) considered sea-
sonal temperature patterns in a spatial simulation model
of the cholera epidemic that stroke KwaZulu-Natal (South
Africa) in 2000–2002; also, temperature and discharge fluc-
tuations proved instrumental to explaining spatiotemporal
patterns of cholera incidence in the Bengal region (Bertuzzo
et al. 2012); seasonal precipitation patterns have been
implied in the resurgence of cholera in Haiti (Rinaldo et al.
2012; Righetto et al. 2013); at a smaller spatial scale, Reiner
et al. (2012) used a spatial stochastic model to show that
localized sensitivity to climate forcing drives the endemic
dynamics of cholera in the city of Dhaka, Bangladesh.

In general, defining the environmental conditions that
can favor waterborne pathogen invasion and ensuing long-
term persistence (endemism) still represents an open theo-
retical challenge, whose solution could bear major implica-
tions for health care practice. In highly idealized settings
(i.e., disregarding both spatial dynamics and seasonal envi-
ronmental fluctuations), threshold conditions for pathogen
invasion and establishment are linked to the so-called basic
reproduction number R0 (R0 > 1 being the necessary con-
dition for pathogen invasion). For waterborne diseases (and
in particular for cholera), expressions for R0 have been pro-
posed since the very first modeling studies (e.g., Capasso
and Paveri-Fontana 1979; Codeço 2001; see also Tien and
Earn 2010; Tian and Wang 2011). Attempts to define inva-
sion thresholds for waterborne pathogens in more realistic
cases are very recent. Gatto et al. (2012, 2013) analyzed a
spatially explicit model for waterborne diseases and gener-
alized the concept of basic reproduction number to spatially
structured environments (see also Eisenberg et al. 2013b).
They found that the condition that all the local basic repro-
duction numbers be larger than one is neither necessary
nor sufficient for pathogen invasion to occur whenever the
characteristic timescales of the epidemiological dynamics
are shorter than those of pathogen relocation mechanisms
(namely hydrological transport and human mobility), hence
in cases in which spatial dynamics must be accounted for
(Bertuzzo et al. 2010).

Regarding the interplay between temporal variability and
pathogen invasion conditions, the definition of a reproduc-
tion number in periodic environments has been proposed
by Bacaër and Guernaoui (2006) and Bacaër (2007) with
application to vectorborne diseases. This definition has been
subsequently extended to generic compartmental models
by Wang and Zhao (2008), who provided a generaliza-
tion of the so-called next-generation matrix method (see
Diekmann et al. 1990, 2010; Diekmann and Heesterbeek
2000; van den Driessche and Watmough 2002) to period-
ically varying environments. The compartmental approach
used by Wang and Zhao (2008) can be naturally extended
to patchy environments (see also Zhang and Zhao 2007).
Following the approach developed by Bacaër (2007) and by
Wang and Zhao (2008), Zhou and Cui (2013) have stud-
ied invasion conditions in a spatially implicit model for
cholera epidemics with periodic transmission rates. Using
the same theoretical framework, Sardar et al. (2013) have
recently estimated local reproduction numbers for cholera in
Zimbabwe subject to seasonal environmental fluctuations.
Long-term cholera dynamics in a time-varying (yet, again,
spatially implicit) setting has been analyzed also via bifur-
cation analysis (Righetto et al. 2012). To the best of our
knowledge, though, no attempts have been made so far to
find waterborne pathogen invasion thresholds in a realistic
setting, that is both spatially explicit and time-varying. It
is also important to remark that in periodic environments
sizable epidemic outbreaks may occur (because of tran-
sient dynamics) even if pathogen invasion conditions are not
met—in other words, if long-term pathogen establishment
is not possible (Bacaër and Gomes 2009).

In this work, we determine the conditions under which
pathogen invasion is possible within a specific territory,
described as a river basin, that is (i) endowed with cer-
tain demographic, epidemiological, climatic, and socioeco-
nomic characteristics and (ii) subject to seasonal variations
of the relevant environmental drivers. To that end, we make
use of Floquet theory, a mathematical framework that allows
the study of systems of periodically forced differential (or
difference) equations (see Bittanti and Colaneri 2009, for a
review of the theory and the related methods). In a nutshell,
Floquet theory provides means to extend the results of local
stability analysis to periodic dynamical systems. Despite
its usefulness in studying and understanding nonequilib-
rium dynamics, it is seldom applied in epidemiological and
ecological research (see Heesterbeek and Roberts 1995a, b
for the first epidemiological applications and Klausmeier
2008 for a review of some ecological problems that can
be addressed by the theory). Another important aim of our
work is the analysis of the geography of epidemic out-
breaks in time-varying environments, i.e., the prediction of
the areas of the territory under study that will be initially
hit should an epidemic outbreak unfold. This is especially
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important because knowledge of the epidemic epicenter can
assist in an efficient allocation of interventions that can
minimize the extent of a disease outbreak.

The paper is organized as follows. In “The model”
we describe our spatially explicit, time-varying model for
the dynamics of waterborne infections. In “Derivation of
pathogen invasion conditions” we derive the condition for
pathogen invasion. Then, in “Analysis of the invasion
conditions: local model” and “Analysis of the invasion
conditions: network model” the invasion condition is ana-
lyzed with respect to the parameters of the model, respec-
tively in spatially implicit and explicit settings. The analysis
of the invasion thresholds is complemented with numeri-
cal simulations of the network model to investigate transient
epidemiological dynamics. “Spatial patterns of epidemic
spread” is devoted to linking invasion conditions to the spa-
tial patterns of epidemic outbreaks. Spatial analyses are
pursued via both stability analysis (through Floquet theory)
and numerical simulations. Finally, concluding remarks are
given in “Discussion and conclusions”.

The model

We generalize to time-varying environments a recent net-
work model of waterborne disease dynamics that has

already been used in both theoretical (Mari et al. 2012b;
Gatto et al. 2013) and applied (Gatto et al. 2012; Mari et al.
2012a; Rinaldo et al. 2012; Righetto et al. 2013) studies.
The model describes local epidemiological, demographic,
and ecological dynamics, pathogen transport along water
systems, and the effects of short-term human mobility on
disease propagation. Network nodes represent human com-
munities (villages, towns, or cities) of assigned population,
arranged in a given spatial setting, and connected by hydro-
logical pathways and human mobility (multilayer network
model, see, e.g., Mari et al. 2011, 2014 for other ecologi-
cal applications). Specifically, we assume here that human
communities constitute the nodes of a so-called optimal
channel network (OCN), i.e., a mathematical structure char-
acterized by scaling forms that closely conform to the
observed geomorphological features of real river networks
(Rinaldo et al. 1992, 2014; Rodriguez-Iturbe et al. 1992).
The OCN is embedded in a square of arbitrary side 1.

Let Si(t) and Ii(t) be the local abundances of suscepti-
ble and infected individuals in each node i of the network at
time t , and let Bi(t) be the concentration of the pathogens
(e.g., bacteria, viruses, or protozoa) in the local water reser-
voirs. Epidemiological dynamics and pathogen transport
over the hydrological and human mobility networks can be
described by the following set of 3n ordinary differential
equations:

dSi
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(1)

Model (1) represents a broad scheme of waterborne dis-
ease transmission across spatial and temporal scales. A
comprehensive list of all model parameters is reported in
Table 1 for easy reference. Note that some of them may
be assumed to be time-dependent and/or site-specific, while
others may be seen as constant in time and/or independent
of the node.

Regarding local processes (Fig. 1a), the evolution of the
susceptible compartment (first equation of model 1) is a
balance between population demography and infections due
to contact with the pathogen. The host population, if unin-
fected, is assumed to be at demographic equilibrium Hi ,
with μ being the human mortality rate. The parameter βi(t)

represents the site-specific rate of exposure to contami-
nated water, and Bi/(K +Bi) is the dose-response function
describing the probability of becoming infected due to the
exposure to a concentration Bi of pathogens, with K being
the half-saturation constant (Codeço 2001). The dynamics
of the infected compartment (second equation of model 1)
is a balance between newly infected individuals and losses
due to recovery or natural/pathogen-induced mortality, with
γ and α being the rates of recovery and mortality due to the
disease, respectively. The evolution of the local concentra-
tion of pathogens that live free in the aquatic environment
(third equation of model 1) assumes that pathogens are
released in the water (e.g., excreted) by infected individuals
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Table 1 Model parameters and their definitions. Parameters for which
dependence on node i and/or time t is not made explicit are assumed
to be constant in space and/or time

Parameter Definition

μ Baseline human mortality rate

K Half-saturation constant

γ Recovery rate from disease

α Disease-related mortality rate

Hi Population size

βi(t) Exposure rate

pi(t) Contamination rate

μBi(t) Pathogen mortality rate

Wi(t) Water reservoir volume

li (t) Pathogen transport rate

Pij (t) Fraction of pathogens moving from node i to node j

mi(t) Fraction of people moving from their home node

Qij (t) Fraction of people traveling from node i to node j

n Number of nodes in the network

and immediately diluted in a well-mixed local water reser-
voir of volume Wi(t) at a rate pi(t). Free-living pathogens
are also assumed to die at rate μBi(t).

To mimic hydrological transport (Fig. 1b), which defines
the first layer of spatial connectivity, the spread of pathogens
over the river network is described as a biased random
walk process on an oriented graph (Bertuzzo et al. 2007,
2008). Specifically, we assume that pathogens can move
between any two nodes i and j of the hydrological net-
work at a rate li(t) with a probability Pij (t). The rate li (t)

depends on both downstream advection and other possible
pathogen transport mechanisms along the hydrological net-
work, e.g., pathogen attachment to phyto- and zooplankton.
The hydrological connection matrix P(t) = [Pij (t)] is given
by

Pij (t) =
⎧
⎨

⎩

Pd
i (t) if i → j

P u
i (t) if i ← j

0 if i � j ,

where Pd
i (t) [Pu

i (t)] is the site-dependent fraction of
pathogens moving along an outward (downstream) [inward
(upstream)] edge (arrows indicate downstream connec-
tions). The transport process is assumed to be possibly
nonconservative, i.e.,

∑
j∈Ni

Pij (t) = 1 − ai(t), where Ni

is the set of neighbors connected to node i (of cardinality
ndi +nui , where ndi [nui ] is the outdegree [indegree] of node i,
that is the number of outward [inward] edges) and ai(t) ≥ 0
is the node-dependent fraction of dispersing pathogens that
do not reach any other node of the river network. This
parameter can be used to prescribe specific boundary con-
ditions (BCs) and/or other possible losses in the stream.
To close the specification of Pij (t), we define the bias
bi(t) of hydrological transport as the difference between
downstream (Pd

i (t)) and upstream (Pu
i (t)) movement prob-

abilities (path-wise partitioning sensu Johnson et al. 1995).
Therefore, in the inner nodes of the network, where ndi > 0
and nui > 0, the following equalities must hold:

ndi P
d
i (t) + nui P

u
i (t) = 1 − ai(t)

P d
i (t) − Pu

i (t) = bi(t),

from which we get

Pij (t) =

⎧
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1+bi (t)n
u
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if i → j

1−bi(t)n
d
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As stated above, the hydrological connection matrix P(t)
can account for proper BCs for the headwaters and the out-
let of the river network. All the numerical results described
later in the paper refer to reflecting BCs for the leaves,
absorbing BCs for the outlet of the river network and con-
servative transport elsewhere. Therefore, we set Puv = 1 in

j

i

j
P

ij
Q

ij

a

b c

Si Ii
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i

Fig. 1 A spatially explicit network model for the dynamics of waterborne diseases. a Local epidemiological dynamics in the i-th community. b
Pathogen transport along the river network. c Human mobility network. Communities of different sizes constitute the nodes of the network model
(green circles). Connections between nodes (specified by matrices P and Q) can be due to hydrological pathways and/or human displacements
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every leaf u of the network (v being its downstream nearest
neighbor), ai(t) > 0 at the network outlet (conventionally
labeled as node 1), and ai(t) = 0 in all the other nodes.
Specifically, the fraction of particles absorbed at the outlet
is assumed to be equal to the fraction that would move along
a downstream edge, i.e., a1(t) =

[
1 + bi(t)n

u
1

]
/
(
1 + nu1

)
.

To describe human mobility (Fig. 1c), representing the
second layer of spatial connectivity, we assume that suscep-
tible and infected individuals can undertake short-term trips
from the communities where they live toward other nodes.
While traveling or commuting, susceptible individuals can
be exposed to pathogens and return as infected carriers to
the community where they usually live. Similarly, infected
hosts can disseminate pathogens away from their home
community. Human mobility patterns are defined according
to a connection matrix Q(t) = [Qij (t)] in which indi-
viduals leave their original node (say i) with probability
mi(t), reach their target location (say j ) with probability
Qij (t) and then come back to node i. Matrix Q(t) is defined
according to a gravity model (Erlander and Stewart 1990) in
which

Qij (t) =
Hj exp

(
− dij

Di (t)

)

∑n
k �=i Hk exp

(
− dik

Di(t)

) ,

where dij is the pairwise distance between any two nodes
i and j , and Di(t) is the scale parameter of the exponen-
tial kernel. Note that here, human mobility is assumed to be
conservative, i.e.,

∑
j Qij (t) = 1, but different assumptions

can be made as well. Gravity-like models, although very
simple, have often been used in the epidemiological litera-
ture to describe human mobility (see Truscott and Ferguson
2012, for a recent discussion on the adequacy of gravity
models to describe human mobility in an epidemiological
context).

Some of the parameters of model (1)—namely those
related to human demography (μ) and the physiological
response to the disease (α, γ , K)—are assumed to be con-
stant over the spatial and temporal scales considered in
this study. The size of local human communities (Hi) is
assumed to possibly vary in space but not in time, at least
over timescales of epidemiological interest. Some other
parameters—namely the exposure and contamination rates
βi(t) and pi(t), the pathogen mortality rate μBi(t), the
hydrological movement rate li(t) and bias bi(t), the frac-
tion of traveling people mi(t) and the average movement
distance Di(t), and the volume of the local water reser-
voir Wi(t)—can vary in time and/or space. We restrict
our analysis to periodical fluctuations linked to seasonal
environmental drivers. The period of the environmental
fluctuations is assumed to be 1 year without loss of gener-
ality. While sinusoidal oscillations may provide a simplistic
representation of the natural frequencies of the relevant

environmental drivers, they nevertheless capture the essence
of the issue addressed—whether a time-varying frame-
work affects macroscopically the conditions for waterborne
pathogen invasion and the resulting patterns of infection.

Derivation of pathogen invasion conditions

Pathogens can invade the system if and only if the disease-
free equilibrium X0, i.e., a state of model (1) where Si =
Hi, Ii = 0 and Bi = 0 for all i = 1, . . . , n, is unsta-
ble under the assumption of periodic parameter fluctuations.
To analyze the stability of X0, we consider the linearized
system

d�S
dt

= −μ�S − [Un − m(t)] Hβ(t)B∗ − m(t)HQ(t)β(t)B∗

dI
dt

= [Un − m(t)] Hβ(t)B∗ + m(t)HQ(t)βB∗ − (γ + μ+ α)I

(2)

dB∗

dt
= − [μB(t)+ l(t)] B∗ + W−1(t)PT (t)W(t)l(t)B∗+

+ 1

K
p(t)W−1(t)

[
Un − m(t)+ QT (t)m(t)

]
I,

where the superscript T indicates matrix transposition;
Un is the identity matrix of dimension n; �S =
[S1 − H1, · · · , Sn − Hn]T ; I = [I1, · · · , In]T ; B∗ =
[B1/K, · · · , Bn/K]T ; and H, β(t), p(t), μB(t), l(t), m(t),
W(t) are diagonal matrices whose nonzero elements are
made up by the parameters Hi , βi(t), pi(t), μBi(t), li (t),
mi(t), Wi(t), with i = 1, 2, · · · , n, respectively.

Because of the block-triangular structure of the Jacobian
of system (2), in which all but the first n elements of the first
n columns are identically equal to 0, we can evaluate the sta-
bility of the disease-free equilibrium X0 applying Floquet
theory to the subsystem S that includes the linearized equa-
tions for the “infected” compartments of the model (see also
Bacaër 2007; Wang and Zhao 2008), namely infective abun-
dances Ii and pathogen concentrations B∗

i . Specifically, X0
is unstable (thus allowing pathogen invasion) if and only
if the maximum Floquet exponent ξmax is larger than zero
(e.g., Bittanti and Colaneri 2009). The procedure used to
compute the Floquet exponents is detailed in Appendix S1
(section S1.1, Online Resources).

Note that this derivation of the invasion threshold is sim-
ilar to one proposed by Bacaër (2007) (see Section 3.4
therein). Conversely, we do not set our analysis in the next-
generation matrix framework, i.e., we do not decompose the
matrix of the linearized system into transmission and tran-
sition parts, as done, e.g., in Wang and Zhao (2008). This
decomposition might in fact be nontrivial for waterborne
diseases involving free-living pathogen stages, especially
if the pathogen population can self-sustain (Bani-Yaghoub
et al. 2012). Also, it has been shown that linear stability
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analysis and the next-generation matrix approach (of which
Floquet theory and the work by Wang and Zhao 2008 pro-
vide extensions) can lead to the same threshold results for
spatially explicit models of waterborne disease dynamics
(Gatto et al. 2013).

Analysis of the invasion conditions: local model

Floquet exponents vary as a function of the model
parameters—and so obviously do pathogen invasion condi-
tions. We illustrate the analysis of these conditions starting
from the simple case of model (1) with no spatial struc-
ture and with periodic fluctuations of one of the model
parameters expressed as

θ(t) = θ0[1 ± ε sin(2πt)]. (3)

Similar spatially implicit models for waterborne disease
dynamics have been analyzed in Righetto et al. (2012)
and Zhou and Cui (2013) with particular focus on long-
term dynamics and the global stability of periodic solutions,
respectively. To obtain a spatially implicit version of model
(1), it is sufficient to consider the dynamics in the i-th node
and to set li(t) = 0 and mi(t) = 0 for all t , i.e., to disre-
gard pathogen transport and human mobility. The stability
of the disease-free equilibrium X0 = [H 0 0]T is thus deter-
mined by the maximum Floquet exponent of the following
linearized subsystem S ′ accounting for the local dynamics
of infectives and pathogen concentrations:

dI

dt
= β(t)HB∗ − (γ + μ+ α)I

dB∗

dt
= −μB(t)B

∗ + p(t)

KW(t)
I,

where B∗ = B/K . A step-by-step guide for the computa-
tion of Floquet exponents for the local model is given in
Appendix S1 (section S1.2), together with a basic imple-
mentation of the numerical algorithm in MATLAB® lan-
guage (section S1.3).

Local pathogen invasion conditions in periodic environ-
ments are shown in Fig. 2, where the invasibility curves
(identified by the condition ξmax = 0) are reported for dif-
ferent assumptions regarding the time-varying parameter,
taken in the form of Eq. (3) (note that the sign is imma-
terial for invasion dynamics). Depending on the parameter
that is assumed to vary over time, in fact, periodic fluctua-
tions can make pathogen invasion either less (β, p) or more
likely (μB , W ), i.e., occurring for either larger or smaller
average values of the time-varying parameter than in the
time-constant case (β(t) = β0, μB(t) = μB0, p(t) = p0,
W(t) = W0). Therefore, simplistic conclusions like “sea-
sonality favors [plays against] pathogen invasion” cannot

be drawn because the effect of seasonality will depend on
which of the drivers (of either biotic or abiotic nature) fluc-
tuate seasonally. Figure 2 also shows that the effects on
pathogen invasion of time-varying exposure and contamina-
tion rates are qualitatively indistinguishable from each other
(panels a and b, where the analytical approximation for the
invasion threshold proposed in Section 3.3 of Bacaër 2007
is also reported).

In a time-constant and spatially implicit environment, the
condition for pathogen invasion is

R0 = β0p0H

μB0(γ + μ+ α)KW0
> 1,

i.e., pathogen invasion is possible if and only if the basic
reproduction numberR0 is larger than one (see, e.g., Codeço
2001). In a periodically fluctuating environment, one can
still calculate an “approximate” R̃0 using the values of the
model parameters averaged over time, but the condition
R̃0 > 1 will no longer correspond to pathogen invasion
because the maximum Floquet exponent must be evalu-
ated instead. However, from now on, we will still term
“basic reproduction number” this approximate R̃0 because it
allows a straightforward comparison of the invasion thresh-
olds obtained in a periodic environment (and, in the sequel,
in a spatially explicit setting) with those relevant to the sim-
ple case of constant parameters (and no spatial structure).
The assessment of the invasion thresholds can be usefully
complemented by the analysis of the initial dynamics of
infection conducted via simulation. For the numerical exper-
iments, we use the initial condition S(0) = H − I (0),
I (0) = 10−3H , and B∗(0) = 0 and introduce environ-
mental fluctuations that increase infection risk at the begin-
ning of the simulation timespan (i.e., initially increasing
[decreasing] exposure [pathogen mortality/water volumes]).
These experiments allow us to assess the severity of a
waterborne disease epidemic. Specifically, the size of an
outbreak can be measured in terms of the attack ratio Y ,
here defined as the annual incidence normalized by total
population, i.e.,

Y = 1

H

∫ 1

0
β(t)

B∗(t)
K + B∗(t)

S(t)dt.

Figure 3 reports the invasibility curves of Fig. 2 redrawn
as a function of R̃0. In the case of temporally varying
pathogen mortality rate μB or water volume W [exposure β
or contamination rate p], the value of R̃0 for which ξmax = 0
is smaller [larger] than one for ε > 0. Therefore, sub-
/super-threshold pathogen invasions (i.e., occurring for R̃0

smaller or larger than one, respectively; see, e.g., van den
Driessche and Watmough 2002; Gatto et al. 2012, 2013)
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Fig. 2 Effects of parameter
fluctuations on the pathogen
invasion threshold. a Periodic
fluctuations (Eq. (3)) of the
exposure rate β. The solid black
line represents the invasibility
curve, along which ξmax = 0.
Pathogens can invade for
parameter combinations lying in
the gray-shaded area. b–d As in
panel a, respectively for periodic
fluctuations of contamination
rate p (panel b), pathogen
mortality rate μB (panel c), and
water reservoir W (panel d),
whose average volume is
assumed to be proportional to
population abundance H

(W̄ = cH ). The dotted curves in
panels a and b have been
computed with the analytical
approximation proposed by
Bacaër (2007). Baseline
parameter values: β0 = 1,
μ = 5 · 10−5, α = 5 · 10−4,
γ = μB0 = 0.2,
p/(Kc) = 0.04, H = 1. All
rates are chosen to reproduce the
basic timescales of cholera
dynamics (e.g., Mari et al.
2012a) and are expressed as
days−1 for the sake of clarity
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are possible, provided that temporal variability is accounted
for. Figure 3 also shows that in some cases, parameter
fluctuations can indeed trigger epidemics whose size is con-
siderably large even if ξmax < 0 (see again Bacaër and
Gomes 2009). We can term these cases “outbreaks with-
out endemism” (OwE). They are identified in Fig. 3 by
ξmax < 0 and, conventionally, Y ≥ 0.5. This might seem
very high a number, but it must be noticed that our defini-
tion of attack ratio also accounts for asymptomatic cases,
which can be a large share of the total number of infec-
tions in several waterborne diseases such as cholera (about
75 % of all cases according to World Health Organization
2010) and amoebiasis (about 80 % for infections caused by
Entamoeba histolytica; see Guerrant 1986). Cases of OwE
are particularly interesting because they signal conditions
for which the analysis of invasion thresholds alone would
have failed to identify epidemic waves triggered by transient
dynamics, possibly characterized by very large attack ratios.
Conversely, there are parameter combinations for which
ξmax > 0, yet the size of the ensuing epidemic is rather
small. These cases are termed “endemisms without out-
break” (EwO) and are identified by ξmax > 0 and Y < 0.5 in
Fig. 3.

Analysis of the invasion conditions: network model

Some results for very simple network topologies are given
in Appendix S1 (section S1.4 and Fig. S1). Here, we pro-
ceed to the analysis of pathogen invasion conditions for the
full network model applied to a realistic river network using
the general method illustrated in “Derivation of pathogen
invasion conditions”. Specifically, we consider two different
cases: (i) space-time fluctuations of one single parame-
ter and (ii) coupled fluctuations of two parameters over
time. As for case (i), we assume that the space/time-varying
parameter (generically termed θi(t)) is described by

θi(t) = θ̄i [1 ± ε sin(2πt + φπδi)] , (4)

where θ̄i is the average value of θi(t), 0 ≤ ε < 1 and φ ≥ 0
quantify amplitude and lag of space-time oscillations, and
δi is a parameter suitably accounting for the lag dependence
on the position of node i within the spatial domain. As for
case (ii), we assume that the two parameters θ ′i (t) and θ ′′i (t)
follow

θ ′i (t) = θ̄ ′i
[
1 + ε′ sin(2πt)

]

θ ′′i (t) = θ̄ ′′i
[
1 + ε′′ sin(2πt + φ′′π)

]
(5)
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Fig. 3 Simulation of epidemic dynamics and analysis of pathogen
invasion conditions for the time-varying local model. a Numerical sim-
ulations obtained with a periodic exposure rate β: the black curve is
an example of outbreak without endemism (OwE, R̃0 = 1.1, ε = 0.9,
corresponding to ξmax < 0), while the gray curve is an example of
endemism without outbreak (EwO, R̃0 = 1.1, ε = 0.1, corresponding
to ξmax > 0). Inset Long-term dynamics, showing pathogen extinction
(black) or persistence (gray). b Effect of periodic fluctuations (Eq. (3))
of exposure rate on the invasion threshold (solid black) and the yearly

attack ratio Y of the epidemic (gray shadings, see legend); pathogens
can invade for parameter sets on the right of the invasibility curve,
along which ξmax = 0. c As in panel a, for periodic fluctuations of
pathogen mortality rate μB . d As in panel a, for periodic fluctuations
of water reservoir W . Periodic fluctuations are chosen so as to increase
infection risk at the beginning of the simulation period (panels a and d:
θ(t) = θ̄ [1 + ε sin(2πt)]; panels b and c: θ(t) = θ̄ [1 − ε sin(2πt)]).
Other parameters as in Fig. 2

where θ̄ ′i and θ̄ ′′i are the average values of θ ′i (t) and θ ′′i (t),
respectively, 0 ≤ ε′ < 1 and 0 ≤ ε′′ < 1 quantify the
amplitude of seasonal fluctuations, and 0 ≤ φ′′ ≤ 1 is the
lag between θ ′i (t) and θ ′′i (t). In the reminder of the paper,
the average value(s) of the time-varying parameter(s) will be
assumed to be spatially homogeneous (i.e., θ̄i = θ0, θ̄ ′i = θ ′0,
θ̄ ′′i = θ ′′0 ), except for the average volumes of the local water
reservoirs, that will be assumed to be proportional to local
population abundances (W̄i = cHi , Bertuzzo et al. 2010).

Single-parameter fluctuations

Figure 4 reports the invasibility curves computed for dif-
ferent parameter values and different assumptions regarding
one single time-varying parameter, here taken in the form

of Eq. (4), in a network in which population distribution is
assumed to be spatially homogeneous (Hi = H for all i).
If ε = 0 (constant parameter values), pathogen invasion is
possible if and only if R̃0 > λ0, with λ0 being the value
of R̃0 for which the dominant eigenvalue 
0 of the gener-
alized reproduction matrix of size 2n introduced by Gatto
et al. (2012, 2013) is equal to zero. This matrix represents
the time-invariant counterpart of matrix J0(t) defined above,
therefore it accounts not only for epidemiological dynamics
but also for spatial connectivity. Note that, for this parame-
ter setting, λ0 is larger than 1, which implies that pathogen
transport and human mobility impose a stricter invasion
condition than the one derived in the simple case of no
spatial connectivity and no temporal variability (R0 > 1).
This result indicates that the spatiotemporal dynamics of
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Fig. 4 Analysis of pathogen invasion conditions for spatiotemporal
periodic fluctuations of the parameters (Eq. (4)) in the full network
model applied to a realistic river network. Pathogens can invade for
parameter combinations on the right of the invasibility curves (along
which ξmax = 0). a Effect of synchronous (φ = 0) fluctuations of
different parameters (color coded). b Effect of different lags φ for δi
following a N-S gradient (see text for details). c Effect of different
gradient directions for the spatiotemporal fluctuations of the model

parameters (φ = 0.5). In panels b and c, colors are the same as in panel
a. Population is assumed to be homogeneously distributed (Hi = H )
over the river network (inset of panel c; the network has been obtained
by extracting from an OCN the 100 nodes with largest cumulative
drainage area), and the average volume of local water reservoirs is pro-
portional to local population size (W̄i = cHi ). Parameter values as
in Fig. 3. Other parameters: l0 = 0.5 [day−1], b0 = 0.5, m0 = 0.5,
D0 = 0.1 (fraction of domain length), H = 1

the epidemiological process in our dendritic network share
some basic properties with contact processes (Harris 1974)
or spatially explicit metapopulations (Casagrandi and Gatto
2006; Mari et al. 2014).

More importantly, Fig. 4 shows that, if ε > 0, fluctua-
tions of the environmental conditions, subsumed by fluctu-
ations of the model parameters, can remarkably influence
pathogen invasion in a spatially explicit setting. Pathogen
invasion can in fact be either favored (i.e., expected to occur
for values of R̃0 lower than λ0) or made more difficult,
depending on the parameter assumed to vary in time (panel
a). Specifically, periodic fluctuations of the parameters that
appear at the denominator of R̃0 (namely pathogen mortality
and water volume) favor pathogen invasion, while fluctua-
tions of the other parameters considered here play against it.
Remarkably, for sufficiently large values of ε, fluctuations
of pathogen mortality or water volume can induce pathogen
invasion not only for R̃0 < λ0 but also for R̃0 < 1, i.e., for
values of the parameters that would not allow it in a local
model (a case of subthreshold epidemic, see above).

These results hold true not only for a spatially homo-
geneous population distribution but also for more realistic
spatial arrangements. For instance, the size of each local
community can be set so as to follow the so-called Zipf’s
law (Zipf 1949), according to which the probability density
function of local population sizes decays proportionally to
H−2. The remarkable feature of Zipf’s distribution is that
it is suggested to accurately describe the sizes of cities of
any country in a purportedly universal fashion regardless of
geographical, environmental, social, or economic condi-
tions, once properly corrected for the finite size effect
induced by total population (Newman 2005; see also

Bertuzzo et al. 2010; Gatto et al. 2012; Mari et al. 2012b;
Gatto et al. 2013 for relevant epidemiological applications).
For the sake of simplicity, here, we do not introduce any
(likely yet nontrivial) correlation of population size and
position in the river network. Also, to ease comparison with
the spatially homogeneous case, the average reservoir vol-
umes are assumed to be proportional to the size of the
local communities (W̄i = cHi), and the total population
abundance is set to be the same in the two different spa-
tial arrangements (i.e.,

∑n
i=1 Hi = nH ). Figure S2 shows

that a heterogeneous population distribution is expected to
favor pathogen invasion, as already found in a time-invariant
setting elsewhere (Gatto et al. 2012, 2013).

While the spatially explicit case retains most of the prop-
erties outlined for the implicit case, new additional features
of disease dynamics clearly emerge in the analysis of the
network model. In particular, a space-dependent temporal
delay in environmental fluctuations (φ > 0, Eq. 4) can
determine a heterogeneous spatial distribution for the time-
varying parameter in large river basins. This heterogeneity
may have important implications for pathogen invasion, as
shown in Fig. 4b, in which 0 ≤ δi ≤ 1 (Eq. (4)) is supposed
to increase from the bottom (i.e., where the network outlet
lies, see inset of panel c) to the top of the spatial domain
(north-south, N-S, direction), so that θi(t) is characterized
by early peaks moving northward from the outlet. Increas-
ing spatiotemporal asynchrony of the seasonal fluctuations
(represented by increasing values of φ) favor pathogen
invasion, with subthreshold epidemics being possible for
sufficiently large values of ε and φ. Different spatial pat-
terns of parameter fluctuations (represented by different
choices of geographic gradients δi) may also matter. Figure



360 Theor Ecol (2014) 7:351–365

4c shows in fact that invasion thresholds can be quite dif-
ferent for different directions of the spatial perturbations. A
clear difference emerges for latitudinal vs. longitudinal pat-
terns, with the former leading to lower invasion thresholds
for all tested time-varying parameters. As for latitudinal pat-
terns, it does not seem possible to infer a general rule, with
N-S variations leading to higher invasion thresholds than
those in the S-N directions for some parameters (β, p), to
lower thresholds for others (μB)—and being almost indis-
tinguishable for yet others (W ). As for longitudinal patterns,
which are “orthogonal” to the main direction of the water
flow, the invasion thresholds obtained for west-east (W-E)
vs. E-W perturbations are remarkably similar. This finding
is not surprising given the almost-symmetric structure of
the OCN used in the numerical experiments. Quantitative
details aside, most of these findings are valid for different
choices of the baseline epidemiological parameters. As an
example, Fig. S3 reports the results for a different parameter
setting, in which λ0 < 1.

The analysis of the invasion conditions can be usefully
complemented by numerical simulations of the network
model (Fig. 5). Simulations have been initialized by assum-
ing that a small fraction (0.1 %) of the population living in
the outlet node of the river network is initially infected and
that infection risk is increasing at the beginning of the model
simulation. Epidemic size, here measured as

Y = 1
∑n

i=1 Hi

n∑

i=1

∫ 1

0

⎧
⎪⎨

⎪⎩
[1 −mi(t)] βi(t)

B∗
i (t)

K + B∗
i (t)

+ mi(t)

n∑

j=1

Qij (t)βj (t)
B∗
j (t)

K + B∗
j (t)

⎫
⎬

⎭
Si(t)dt,

and pathogen invasion are not necessarily related to each
other also in a spatially explicit setting. Rather, for the
parameter combinations explored in Fig. 5, large epidemics
are expected to develop even for low values of R̃0, corre-
sponding in fact to ξmax < 0, provided that the amplitude
of seasonal fluctuations ε is sufficiently large. This phe-
nomenon is more remarkable for fluctuations of β and W ,
less for fluctuations of μB . Qualitatively similar results are
also found for a spatially heterogeneous population distri-
bution following Zipf’s law (Fig. S4). However, contrasting
Fig. 5 to Fig. S4 shows that, all the other things being equal,
a heterogeneous population is much more likely to be hit by
a large epidemic than a homogeneously distributed one.

Coupled-parameter fluctuations

It is also interesting to briefly analyze the case in which
two parameters fluctuate periodically over time (according
to Eq. (5) above) as a response to different environmen-
tal drivers. For instance, rainfall and temperature patterns
may be characterized by different amplitude and timing
and can produce different effects on the model parame-
ters (with rainfall influencing, e.g., water volumes and/or
exposure rates and temperature affecting pathogen mortality
rates), thus affecting in turn eco-epidemiological dynamics.
Phase lag can introduce complexities in the long-term pat-
terns of seasonally forced ecosystems not only at the local
scale (Rinaldi and Muratori 1993) but also in real, spa-
tially explicit settings. As an example, cholera incidence
in some regions of the Indian subcontinent exhibits two
annual peaks, although each of the main environmental
drivers linked to the disease in the area (river discharge,
temperature, zooplankton abundance) peak only once per
year (Akanda et al. 2009). Results from a modeling study

S
ea

so
na

lit
y 
ε

0.5 0.75 1 1.25 1.5
0

0.05

0.1

0.15

0.2

0.5 0.75 1 1.25 1.5 0.5 0.75 1 1.25 1.5

b

Y < 0.1
0.1 - 0.3
0.3 - 0.5
0.5 - 0.7
0.7 - 0.9
Y > 0.9

c

Basic reproduction number R0

~

a

OwE

EwO

OwE

EwO

OwE

EwO

Basic reproduction number R0

~
Basic reproduction number R0

~

Fig. 5 Simulation of epidemic dynamics for the network model with
time-varying parameters. a Effect of periodic fluctuations (Eq. (4) with
φ = 0) of the exposure rate β on the yearly attack ratio Y of the
epidemic (gray shadings, see legend). b As in panel a, for periodic
fluctuations of the pathogen mortality rate μB . c As in panel a, for
periodic fluctuations of the water reservoir W . Periodic fluctuations

are chosen so as to increase infection risk at the beginning of the sim-
ulation period (panel a: θi(t) = θ̄i [1 + ε sin(2πt)]; panels b and c:
θi(t) = θ̄i [1 − ε sin(2πt)]). Invasibility curves (solid black lines) cor-
respond to those already shown in Fig. 4a (note that axes have different
scales). Other details and parameter values as in Fig. 4a
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(Bertuzzo et al. 2012) indicate that the interaction among
these drivers is fundamental to explain emergence and
localization of double-peak patterns of cholera incidence.

Figure 6 reports the conditions for pathogen invasion
to occur (ξmax > 0) for periodic fluctuations of either
exposure or pathogen mortality rates coupled to periodic
fluctuations of the local water reservoirs in the network
model with homogeneous population distribution. Our anal-
ysis shows that, for a given amplitude of the seasonal
fluctuations of the water reservoir volumes, a marked syn-
chronous seasonality of the exposure rate (β) contrasts
pathogen invasion (panel a). This result can be explained
by noting that in this setting, exposure is high [low] when
pathogen dilution is also high [low], so that a compensa-
tion might occur between these two components of disease
transmission. Conversely, ample fluctuations of pathogen
mortality (μB ) favors pathogen invasion for a given ampli-
tude of the fluctuations of the water reservoir (panel b).
In this case, the synchrony between low water volumes
and low pathogen mortality rates most likely has a dis-
proportionate effect toward pathogen invasion. Seasonal
environmental drivers can thus play either synergistically
or antagonistically to set the invasion threshold because

of specific eco-epidemiological interactions between model
parameters. Differences in the timing of the fluctuations can
be important as well. As an example, Fig. 6c shows that
increasing the delay between the fluctuations of the local
water reservoirs (W ) and the exposure rates makes pathogen
invasion more likely. In this case, in fact, asynchrony makes
the aforementioned compensation between exposure and
pathogen concentration less effective. Note that there also
exist cases in which timing does only marginally influence
pathogen invasion, as documented in Fig. 6d.

Spatial patterns of epidemic spread

Defining the conditions for pathogen invasion represents an
important step toward a better understanding of waterborne
disease outbreaks. However, the identification and possible
prediction of the spatial patterns of initial epidemic spread
becomes crucial in operational terms, e.g., for early alloca-
tion of health care staff and supplies. In the simpler case of
time-constant parameter values, the spatial signature of an
epidemic outbreak has been linked (Gatto et al. 2012, 2013)
to the dominant eigenvector of a generalized reproduction

Fig. 6 Analysis of pathogen
invasion conditions for coupled
periodic fluctuations of pairs of
model parameters (Eq. (5)) in
the network model. Pathogens
can invade (ξmax > 0) for
parameter combinations lying
on the right of the invasibility
curves, computed for different
values of R̃0 (legend). a
Synchronous fluctuations of
local water reservoir volumes W
(characterized by amplitude εW )
and exposure rates β (with
amplitude εβ and phase φβ = 0).
b As in a, for synchronous
fluctuations of water reservoirs
and pathogen mortality μB

(characterized by amplitude εμB

and phase φμB
= 0). c

Asynchronous fluctuations of
local water reservoirs and
exposure rates (with amplitudes
εW = εβ and phase φβ ). d As in
c, for asynchronous fluctuations
of water reservoirs and pathogen
mortality (with amplitudes
εW = εμB

and phase φμB
).

Other parameters as in Fig. 4
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matrix accounting for epidemiological processes and the
relevant pathogen relocation mechanisms. In fact, when the
disease-free equilibrium is unstable, the dominant eigen-
vector of the generalized reproduction matrix pinpoints the
direction in the state space along which the system orbit,
after a transient due to initial conditions, will diverge from
the equilibrium. By continuity with the time-constant case
(see Wang and Zhao 2008), Floquet theory suggests that in
the presence of time-varying parameters, the spatial patterns
of pathogen invasion and epidemic outbreak will be given
respectively by the infectives’ and pathogens’ components
of the dominant eigenvector � of the monodromy matrix
F(1) defined above. Note that, in analogy with the time-
constant case, transient dynamics can (at least partially)
cloud the predictions of Floquet theory, especially in case of
fast-developing epidemics that emerge soon after pathogen
introduction.

The predictions of Floquet theory applied to the spatial
patterns of epidemic spread can be easily verified by per-
forming numerical simulations of model (1) and contrasting
the infectives’ components of � to the spatial distribution
of disease prevalence at epidemic emergence, here defined
as the point in time in which the sign of d

∑n
i Ii/dt switches

from negative to positive in response to the periodic oscilla-
tion of the time-varying parameter (e.g., the volume of local
water reservoirs in Fig. 7, see panels a and b). The compari-
son between eigenvector components and simulation results
can be performed not only for a homogeneous population
distribution (panel c) but also for other, more complex spa-
tial patterns, even in case of outbreaks without endemism.
As an example, panel d is obtained under the hypothesis
that the size of local human communities follows Zipf’s law.
Other patterns of population distribution are analyzed in
Fig. S5, namely population size proportional to cumulative

Fig. 7 Spatial patterns of
epidemic outbreak. a
Fluctuations around the
reference value of the local
water reservoir volumes
�Wi(t). b Temporal pattern of
total disease prevalence (semilog
scale); the filled dots represent
epidemic emergence as defined
in the text. c Population density
map (left, homogeneous
population), components of the
dominant eigenvector of the
monodromy matrix F(1)
(middle, ξmax = 2.04), and
spatial distribution of disease
prevalence at epidemic
emergence as simulated by
model (1) (right). d As in panel
c, for population density
following Zipf’s law
(ξmax = 4.82). The quantities
shown in panels c and d have
been normalized (so that the
maximum has value 1).
Parameters and simulation
details as in Fig. 4a, with
R̃0 = 1, ε = 0.5, φ = 0
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drainage area (panel c) or sampled from a random uniform
distribution (panel d). Note that in the case of population
proportional to drainage area, an epidemic outbreak may
occur even if ξmax < 0. However, the agreement between
the components of � and simulation results is very satisfac-
tory for every tested population distribution (coefficient of
determination R2 ≥ 0.98 for all cases). Similar correspon-
dences are found also in the case of periodic fluctuations
initially leading to an increase of infection risk (coefficient
of determination R2 ≥ 0.95 for all cases).

Note also that, despite differences in the underlying
population distributions, the time series of total disease
prevalence shown in Fig. 7b are very similar. Key to explain-
ing this nontrivial result is the observation that epidemic
emergence is triggered by increasing local pathogen con-
centrations resulting from a decrease in the volumes of
the local water reservoirs. Once started, for ε 
 0 the
course of the epidemic is very fast and “explosive.” As
the attack ratio approaches very high values (>90 %), the
spatial distribution of human communities loses importance
in comparison with less explosive epidemics.

Discussion and conclusions

In this work, we have analyzed invasion conditions for
waterborne pathogens in spatially explicit and time-varying
systems. Our approach is based on Floquet theory, an essen-
tial tool to study the stability of periodically forced dynam-
ical systems (see, e.g., Bittanti and Colaneri 2009). Unlike
linear stability analysis, Floquet theory has been somewhat
neglected in ecology and epidemiology, especially with
reference to realistic, spatially structured problems. How-
ever, seasonal fluctuations of environmental factors are cru-
cial determinants of many ecological and epidemiological
problems, notably including invasion conditions for com-
peting species (Klausmeier 2008) or pathogenic organisms
(Heesterbeek and Roberts 1995a, b; Bacaër 2007; Wang
and Zhao 2008; Bacaër and Ait Dads 2012). In this frame-
work, the quantity that actually controls pathogen invasion
is the largest Floquet exponent ξmax of the linearized sys-
tem describing epidemiological dynamics. Specifically, the
threshold condition is ξmax > 0, which does not require that
local R0 values be larger than one. Subthreshold epidemics
(van den Driessche and Watmough 2002) are thus pos-
sible. This invasion condition generalizes previous results
obtained in a spatially explicit setting under the assump-
tion of time-invariant dynamics (Gatto et al. 2012, 2013).
Therefore, it is particularly suited to address the study of
pathogen invasion whenever seasonal fluctuations of the
relevant environmental drivers cannot be safely neglected.
Numerical simulations are useful to complement the analy-
sis of invasion conditions because in time-varying systems,

long-term pathogen invasion is neither necessary nor suffi-
cient for large epidemic outbreaks to occur.

We remark that accounting for environmental fluctua-
tions can be crucially important, especially when dealing
with pathogens in regions where the hydroclimatological
drivers commonly linked to waterborne infections (e.g.,
temperature and rainfall) can be characterized by marked
seasonal patterns. Our analysis shows that in those regions
not only the amplitude but also the geographic signatures
(e.g., the predominant direction) associated with the envi-
ronmental fluctuations may contribute to defining the con-
ditions under which waterborne pathogens can invade. Also,
the likely coupling of environmental drivers, each with dif-
ferent seasonality, is expected to produce intriguing results,
with implications for the analysis of real case studies, in
which the identification of all the relevant seasonal drivers
would thus be essential. Furthermore, seasonality can influ-
ence the spatial patterns of pathogen invasion. The impor-
tance of generalizing the concept of basic reproduction
number not only to spatially explicit (Gatto et al. 2012,
2013) but also to time-varying systems (this study) is
also demonstrated, in fact, by the ability of our approach
to describe the geography of disease outbreaks, which is
shown to be well characterized by the dominant eigenvec-
tor of the monodromy matrix. This result can be easily
applied to other realistic landscapes described by networks
of any given complexity (of which the present examples act
as a proof of concept), ranging from a few to thousands of
nodes.

The framework presented here could obviously be made
more realistic in many respects. First, seasonal fluctuations
are here represented as simple periodic signals, perhaps
too crude an oversimplification of the erratic patterns often
observed in time series of, e.g., temperature or rainfall
intensity, which are known to influence pathogen demog-
raphy, water availability, and exposure/contamination rates.
Fourier expansion of more complex periodic signals is
possible, at the expense of the clarity of analysis. How-
ever, overcoming this limitation would need a mathematical
framework considerably more involved than Floquet theory,
as it would require the (typically numerical) computation
of the Lyapunov exponents associated with the disease-free
equilibrium (e.g., Ferrière and Gatto 1995), or the use of
suitable approximations to evaluate the long-term growth
rate of the pathogen population (e.g., Tuljapurkar and
Orzack 1980). We also remark that the techniques adopted
in this paper cannot be reliably used to derive long-term
epidemiological patterns. This task would in fact require
the determination of the attractor(s) of the model and the
analysis of their dynamical characteristics (e.g., via bifurca-
tion analysis, as done in Righetto et al. 2012, in a spatially
implicit setting). To that end, the model should be fur-
ther extended to include partial/waning immunity because
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individuals recovered from waterborne diseases usually can
become susceptible again after a certain time.

Despite the inevitable limitations, we believe that the
generality of the mathematical approach used here to derive
invasion conditions for waterborne pathogens in a spatially
explicit network model subject to seasonal fluctuations
could possibly be applied to other diseases (not necessarily
waterborne) as well as to other geographic settings (not nec-
essarily river networks). We thus suggest that our results,
general as they are because they reduce exactly to par-
ticular cases already dealt with for spatially homogeneous
and/or time-invariant conditions, may define a framework
(as opposed to a model) for the realistic description of
waterborne pathogen invasion and the geography of epi-
demic spread addressed by spatially explicit, multilayered
and time-varying network models.
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