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Cholera in the Lake Kivu region (DRC): integrating remote

sensing and spatially-explicit epidemiological modeling

Flavio Finger,1 Allyn Knox,1 Enrico Bertuzzo,1 Lorenzo Mari,1,2 Didier

Bompangue,3,4 Marino Gatto,2 Ignacio Rodriguez-Iturbe,5 and Andrea Rinaldo1,6

Abstract. Mathematical models of cholera dynamics can not only help in identifying
environmental drivers and processes that influence disease transmission, but may also
represent valuable tools for the prediction of the epidemiological patterns in time and
space as well as for the allocation of health care resources. Cholera outbreaks have been
reported in the Democratic Republic of the Congo since the 1970s. They have been rav-
aging the shore of Lake Kivu in the east of the country repeatedly during the last decades.
Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera
incidence in eight health zones on the shore of the lake. Remotely sensed datasets of chloro-
phyll a concentration in the lake, precipitation and indices of global climate anomalies
are used as environmental drivers in addition to baseline seasonality. The effect of hu-
man mobility is also modelled mechanistically. We test several models on a multi-year
dataset of reported cholera cases. The best fourteen models, accounting for different en-
vironmental drivers, and selected using the Akaike information criterion, are formally com-
pared via proper cross-validation. Among these, the one accounting for seasonality, El
Niño Southern Oscillation, precipitation and human mobility outperforms the others in
cross-validation. Some drivers (such as human mobility and rainfall) are retained only
by a few models, possibly indicating that the mechanisms through which they influence
cholera dynamics in the area will have to be investigated further.

1. Introduction

The risk, loss and social disruption brought in by cholera
outbreaks can hardly be overestimated and the global rel-
evance of preventive assessments and controls of cholera
spreading is manifest. The recent epidemics in Haiti, the
Congo river basin, Cuba, Sierra Leone and the Sahel re-
gion [Luque Fernández et al., 2009; Kelvin, 2011; Bom-
pangue et al., 2011; Al-Tawfiq and Memish, 2012; Gaudart
et al., 2013] witness the ongoing, widespread inadequacy of
reliable drinking water supply and sanitation infrastructure
all over the developing world. As a result, cholera remains a
major cause of morbidity and mortality in developing coun-
tries even to date, despite all public health policies and hu-
manitarian efforts deployed worldwide. As an example, ac-
cording to the World Health Organization, as much as 85%
increase in the number of reported cholera cases has been
observed globally in 2011 relative to 2010, with 58 countries
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involved and a total of 589, 854 yearly cases leading to an
overall case fatality rate of 1.3% [World Health Organiza-
tion, 2012].

To promote reliable and timely preventive assessments
and controls of cholera spreading, and to evaluate emergency
management alternatives, two main modeling approaches
have been followed. One approach consists of predictive em-
pirical models relying on environmental drivers which pos-
sibly influence the ecology of Vibrio cholerae [Bouma and
Pascual , 2001; Pascual et al., 2002; Lipp et al., 2002; Ruiz-
Moreno et al., 2007; Matsuda et al., 2008], often using re-
motely acquired information [Lobitz et al., 2000; de Magny
et al., 2008; Ford et al., 2009; Akanda et al., 2009; Jutla
et al., 2010, 2013a, b]. Such methods, suited in particular
to regions where cholera is endemic but applied to predict
other infectious disease outbreaks as well [Ford et al., 2009],
have been shown to relate significant changes in remotely-
acquired optical signatures to interannual and annual cyclic
patterns of infections [de Magny et al., 2008; Emch et al.,
2008; Matsuda et al., 2008; Jutla et al., 2013b]. For cholera,
such signatures often consist of chlorophyll a, sea surface
temperature (SST), sea surface height, precipitation, air
temperature, and/or their anomalies (i.e. deviations from
interannual averages).

Predictive empirical models have contributed new epi-
demiological perspectives; however, their use for the un-
derstanding, prediction and control of waterborne disease
outbreaks is challenged by the fact that infection pat-
terns are influenced by spatial structure and temporal asyn-
chrony. Another type of approach relies on mechanistic
models of disease spread, whether deterministic or stochas-
tic, metacommunity- or individual-based. Such mathe-
matical models, either spatially implicit [Codeço, 2001;
Koelle et al., 2005; Hartley et al., 2006; Riley , 2007; King
et al., 2008; Grad et al., 2012] or explicit [Bertuzzo et al.,
2008, 2010, 2011; Tuite et al., 2011; Chao et al., 2011;
Bertuzzo et al., 2012; Mari et al., 2012a, b; Rinaldo et al.,
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2012; Righetto et al., 2013], can lend key insights into the
course of an ongoing epidemic, provide predictive frame-
works and potentially aid real-time emergency management
in allocating health care resources, also by anticipating the
impact of alternative interventions. A selection of recent ap-
plied cholera models and their main characteristics is pre-
sented in Table 1.

A spatially-explicit approach, made possible by the now
widespread access to data mapping of hydrological drivers,
transportation and sanitation infrastructure and population
distribution, can furthermore address the spatiotemporal
evolution of disease propagation as well as the precise con-
ditions under which a waterborne disease epidemic grows
or dies out. Significantly, it has recently been demonstrated
formally [Gatto et al., 2012, 2013] that spatially implicit sta-
bility conditions (based on local reproduction numbers) are
neither necessary nor sufficient for outbreaks to occur ow-
ing to spatial effects. In particular, spatial phenomena are
bound to become fundamental when local settlements are
connected by networks of primary (environmental to hu-
man) and secondary (human to human) infection mecha-
nisms. Networked connectivity models, describing the inter-
play between hydrology, epidemiology, and social behavior
sustaining human mobility, thus prove to be key tools for
prediction and emergency management of waterborne infec-
tions.

Climate variables that have been related to cholera can be
categorized into global and local, where global variables may
mediate local ones [de Magny et al., 2006]. Global scale cli-
mate phenomena, such as the El Niño Southern Oscillation
(ENSO), have been reported to influence cholera dynamics
mostly in endemic regions such as the Bay of Bengal [Col-
well , 1996; Pascual et al., 2000; Lipp et al., 2002; Pascual
et al., 2002; Rodò et al., 2002; Koelle et al., 2005; Pascual
et al., 2008], but also in African countries [de Magny et al.,
2006; Olago et al., 2007; Bompangue et al., 2011]. However,
the causative mechanistic links between ENSO and disease
dynamics remains controversial to date. Some authors point
out correlations between cholera incidence and suitably de-
layed phyto- and zooplankton abundances in coastal waters,
which in turn are driven by local climate anomalies, medi-
ated by ENSO [de Magny et al., 2008; Ford et al., 2009; Jutla
et al., 2010; Bompangue et al., 2011; Mishra et al., 2011;
Jutla et al., 2013a]. It is in fact known that V. cholerae
may attach to zooplankton [Colwell , 1996]. This hypothesis
thus places great importance on the role of aquatic environ-
mental reservoirs in maintaining the disease. Others argue
that the local climate anomalies caused by ENSO may as
well influence disease dynamics via other pathways, such
as droughts, water salinity, or human behaviour and pop-
ulation dynamics [Pascual et al., 2002; Rodò et al., 2002;
Rebaudet et al., 2013].

While the role of local climatic conditions, rainfall, air
temperature and sea surface temperature (SST) in particu-
lar, on patterns of cholera transmission has long been stud-
ied especially in empirical frameworks [Lipp et al., 2002;
Koelle et al., 2005; Altizer et al., 2006; de Magny et al.,
2008], spatially explicit mechanistic models of cholera epi-
demics have incorporated hydroclimatological drivers only
more recently, most notably in models used to study the
course of the Haitian epidemic, starting from the very first
months after its outbreak in late 2010 and following disease
resurgence (May 2011) in connection with unusually intense
tropical rains [Rinaldo et al., 2012; Eisenberg et al., 2013;
Gaudart et al., 2013; Righetto et al., 2013]. Possible mecha-
nisms of enhanced cholera spread due to heavy rains include
increased bacterial concentration in drinking water due to
failure of sanitation systems, washout of open-air defecation
sites [Rinaldo et al., 2012; Gaudart et al., 2013], or the sea-
sonal modification of human water sources and human be-
haviour [Gaudart et al., 2013], possibly including enhanced
exposure owing to crowding effects.

Here we use a semi-mechanistic, spatially-explicit model-
ing framework to describe cholera dynamics around Lake

Kivu, Democratic Republic of the Congo (DRC). Our
approach builds on the multidimensional inhomogeneous
Markov chain (MDIMC) method proposed by Reiner et al.
[2012]. This method requires the discretization of the vari-
able to be modeled (i.e. cholera incidence) into a finite num-
ber of states, and applies a semi-mechanistic description of
the transitions between discrete dynamical states. Tran-
sition probabilities vary in time as they account for envi-
ronmental drivers (estimated through remotely sensed and
objectively manipulated datasets) and human mobility pat-
terns. The case study at hand refers to the regions adjacent
to Lake Kivu (eastern DRC). Routinely collected surveil-
lance data have been used to construct epidemic curves of
cholera cases and map the spatio-temporal progress of the
disease [Bompangue et al., 2009]. Datasets of precipitation,
chlorophyll a concentration in Lake Kivu as well as indices of
global climate phenomena are used as model input, together
with a mechanistic description of human mobility among the
health zones adjacent to the lake. Specifically, the MDIMC
model is fed with all possible combinations of environmental
drivers, with variable lags. The performances of different
model settings are compared using formal model selection
techniques in order to draw conclusions about the relative
importance of environmental drivers for the proliferation of
cholera in the study area. Furthermore, cross-validation is
applied to assess the possibility of predictive modelling of
epidemiological dynamics based on environmental data.

2. Case Study

2.1. Spatial Setting

Lake Kivu is situated in eastern DRC on the border with
Rwanda (Figure 1). In this study we concentrate on eight
health zones (or their aggregations) located on the Con-
golese shore, which include the two major cities of Goma
and Bukavu, respectively at the northern and southern ends
of the lake. Areas further from the lake are not considered
due to their low number of cholera cases and limited pop-
ulation. The total population size of the study area is of
about 1.8 millions.

2.2. Pathogen Transport

The Lake Kivu catchment consists of numerous small sub-
catchments along steep slopes leading down to the lake and a
northern region characterized by porous volcanic soils that
allow for little (to no) surface run-off. Therefore we as-
sume that the hydrological transport of the pathogen (sensu
Bertuzzo et al. [2010] and Rinaldo et al. [2012]) is negligible
at the regional scale. However, rainfall can facilitate lo-
cal pathways of transmission and/or amplify contamination
through failure of inappropriate sanitation systems. The
health zones in our model are connected through human
mobility fluxes, simulated here by a gravity model. Given
the stark difference in sociopolitical stability between the
eastern DRC and neighboring Rwanda, and the low number
of cases reported in Rwanda during the study period, we
assume fluxes between the two countries to be negligible.

2.3. Climate

Local climate in the study area is characterized by a rainy
season from October to May [Plisnier et al., 2000; Bom-
pangue et al., 2009], which is interrupted by a short dry pe-
riod early in the year. The annual precipitation corresponds
to around 1 200 mm. Monthly average temperatures are
fairly constant, close to 20 ◦C throughout the year (available
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from: http://en.climate-data.org/location/1074/ ). Plisnier
et al. [2000] reported highly complex and spatially differen-
tiated effects of ENSO on local climate, such as a positive
correlation of ENSO with rainfall, air pressure and temper-
ature in the area. According to Stager et al. [2007] ENSO
also influences lake levels in the African Great Lakes Re-
gion. Marchant et al. [2007] found that the the Indian Ocean
Dipole (IOD), a cyclic climate phenomenon independent of
ENSO, influences the rainfall in East Africa too. This is
in accordance with Becker et al. [2010], who revealed an
influence of ENSO and IOD on the total water storage in
the area. The exact mechanisms leading to all the above
so-called teleconnections are yet to be determined [Plisnier
et al., 2000; Marchant et al., 2007].

2.4. Data

2.4.1. Cholera
Weekly cholera incidence data (2004–2011) were made

available through the work of Bompangue et al. [2009].
Briefly, data were collected from registries at each Cholera
Treatment Center, aggregated weekly and reported to the
Ministry of Health officials of each health zone, where
they were preserved in electronic or paper format [Piar-
roux and Bompangue, 2007; Bompangue et al., 2008; Bom-
pangue, 2009; Piarroux et al., 2009; Bompangue et al.,
2009, 2011, 2012]. For the purpose of this study we ag-
gregated the data to obtain monthly numbers of cases for
the eight lakeside health zones described above (Figure 2).

The time scale of this study has been chosen to be
monthly because of the level of noise and the number of
missing values in both reported cholera cases and remotely
sensed Chlorophyll a concentrations. Note for instance that
in order to get a high-quality time series of Chlorophyll
a data, every time step must contain a certain number of
cloudless days, which is sometimes difficult to enforce during
the rainy season in the study region.
2.4.2. Demography

A remotely sensed dataset of the estimated 2010 popu-
lation distribution (available from http://www.worldpop.
org.uk) was used to approximate the population of each
health zone, serving as a base to compute monthly cholera
incidence (reported cases divided by population abundance
of each health zone).
2.4.3. Plankton

The optimization of remotely-sensed plankton biomass
estimates for Lake Kivu, described in Knox et al. [submit-
ted], enabled the selection of the plankton biomass proxy
best-suited for this study. Here, we use a chlorophyll a
database generated with the OC3 bio-optical algorithm and
a coastal atmospheric correction model with 90% relative
humidity, spanning the years 2002–2012 (Figure 3). Daily
data were spatially averaged across the entire lake, and
monthly averages were created by weighting each day by
the number of data yielding pixels.
2.4.4. Precipitation

Daily precipitation fields were obtained from a remotely
sensed dataset by the National Aeronautics and Space
Agency (NASA) [Huffman et al., 2010]. The resolution of
the dataset is 0.25 degrees of latitude and longitude. Pre-
cipitation estimates were then projected to each health zone
and aggregated monthly (Figure 3). The projection was
done by assigning the corresponding precipitation value to
each cell in a rasterized version of the health zones delim-
itation and subsequently taking the mean over each health
zone.
2.4.5. ENSO and IOD

In order to account for possible relations between global
climate anomalies and the dynamics of the disease in the
study region, as reported by Bompangue et al. [2011], we
included two additional climatic drivers in our study (Fig-
ure 3). SST anomaly from the Niño 3.4 region made avail-
able by the National Oceanic and Atmospheric Adminis-
tration (NOAA, available online at http://www.cpc.ncep.

noaa.gov/data/indices/sstoi.indices), was used as in-
dex for ENSO. For IOD we used the so called Dipole Mode
Index (DMI) [Saji et al., 1999], a measure of the SST gra-
dient between two regions in the Indian Ocean (available
online at http://www.jamstec.go.jp/frcgc/research/d1/
iod/DATA/dmi.monthly.ascii).

In order to quantify correlations between the different
environmental drivers (precipitation, chlorophyll a, ENSO
and IOD), we computed their cross-correlation functions.
Precipitation and chlorophyll a show low significant correla-
tions (r ≈ 0.2) between lags 0 and 2 months, whereas DMI
and ENSO are weakly correlated at lags around 1 month
(r ≈ 0.2) as well as anti-correlated at higher lags. All other
combinations do not show significant correlations (p > 0.05).

3. Model

3.1. Inhomogeneous Markov Chain Model for Endemic
Cholera

The theoretical framework adopted here builds on a previ-
ous semi-deterministic modeling approach (MDIMC) for en-
demic cholera developed by Reiner et al. [2012] that is based
on finite-state Markov chain modeling. This approach re-
quires cholera incidence data to be categorized into discrete
states. It assigns a probability to the transitions between
epidemic states in a given spatial setting and with a defined
time step. The Markov chain model can be made inhomo-
geneous by allowing transition probabilities to depend on
temporal and spatial environmental drivers, namely precip-
itation, chlorophyll a concentration in the lake, ENSO and
IOD, as well as on spatial interactions induced by human
mobility.

Following Reiner et al. [2012] we categorize cholera inci-
dence into three discrete states, namely low (state 1), mild
(state 2) and high (state 3). We select the monthly incidence
thresholds for the definition of the three discrete states such
that half of the records fall in the low incidence category and
the remaining data are equally partitioned into the remain-
ing two categories. Therefore the thresholds correspond to
the 50th (0.0133% incidence) and the 75th (0.0415%) per-
centiles of the monthly incidence data, respectively.

Figure 2 shows cholera incidence in the eight health zones
considered, and the category each data point belongs to.
Low (state 1), mild (state 2) and high (state 3) incidence are
denoted by blue, green and red color respectively. The cat-
egorization of the data into finite classes causes the merging
of the events in the tail of the incidence distribution with
less severe ones. Although some information is therefore
discarded, the model focuses on levels of variation that are
relevant to public health.

We first define a baseline homogeneous Markov chain
model that does not account for environmental drivers and
spatial interactions. Let Xk,t = 1, 2, 3 be the state of health
zone k at time t. According to this model, the generic tran-
sition (Xk,t = i)→ (Xk,t+1 = j) occurs, at any time t, with
probability pi,j . The baseline model is therefore completely
defined by the following transition probability matrix P:

P =

 p1,1 (1− p1,1 − p1,3) p1,3
p2,1 (1− p2,1 − p2,3) p2,3
p3,1 (1− p3,1 − p3,3) p3,3

 (1)

where the probabilities of transition to state 2 are expressed
so as to enforce P to be a stochastic matrix (i.e. row-wise
sums equal to 1).
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We further assume that environmental drivers and spa-
tial interactions among neighboring human communities can
modify baseline transition probabilities (1). In particu-
lar, we hypothesize that these external drivers can modify,
through a multiplicative factor, the probabilities of tran-
sition from low/mild cholera incidence to a worse state
(pi,j , i < j), as well as the probability of remaining in
the highest incidence state (p3,3). The resulting transition
probabilities p′i,j,k,t are thus site- and time-specific, as both
environmental drivers and cholera incidence patterns vary
in space and time. We adopt the following formulation:

p′i,j,k,t =pi,j (1 + fraink,t )(1 + fchlt )(1 + fENSOk,t )

(1 + fIODk,t )(1 + fmobk,t )(1 + fseat )

for i < j or i = j = 3 .

(2)

The remaining probabilities are adjusted, proportionally to
their baseline values, to ensure that matrix P ′k,t = (p′i,j,k,t)
is stochastic, i.e.:

p′1,1,k,t = 1− p′1,2,k,t − p′1,3,k,t
p′i,1,k,t = (1− p′i,3,k,t)

pi,1
pi,1 + pi,2

for i = 2, 3 (3)

p′i,2,k,t = (1− p′i,3,k,t)
pi,2

pi,1 + pi,2
for i = 2, 3 .

The term fraink,t is assumed to be linearly dependent on the
actual precipitation intensity fraink,t = αJk(t), where Jk(t) is
the mean normalized monthly precipitation of health zone
k during month t. Precipitation data have been normalized
to span the range [0, 1]. Therefore, to enforce p′i,j,k,t > 0
we impose the constraint α ≥ −1. As an example, if
α > 0, rainfall enhances cholera transmission and there-
fore all the probabilities to make a transition to a higher
incidence state (or to stay at the highest) increase. Conse-
quently, all the other transition probabilities decrease. Anal-
ogously, the potential effect of chlorophyll a concentration
on cholera transmission is modelled as fchlt = βC (t − tC)
(β ≥ −1), where C(t) is the mean normalized (i.e. rescaled
in the range [0, 1]) monthly chlorophyll a concentration of
month t. The lag tC is introduced to possibly account for a
delay between the dynamics of phyto- and/or zoo-plankton
and favorable conditions for bacteria survival in the lake. To
account for the possible enhancing effect of climatic drivers
on disease dynamics we model the terms fENSOt and fIODt

equivalently to fchlk,t , i.e. fENSOt = φENSO(t− tENSO) and
fENSOt = ψIOD(t− tIOD), where ENSO(t) is the normal-
ized SST anomaly in the Niño 3.4 region during month t,
IOD(t) is the normalized DMI (see section 2.4.5) during
month t, tENSO and tDMI are time lags and φ ≥ −1 as well
as ψ ≥ −1 are proportionality constants.

Cholera transmission in a health zone can also be en-
hanced by the mobility of people toward health zones with
ongoing outbreaks. This potential effect is accounted for in
equation (2) by the term fmobk,t , which reads

fmobk,t = γ
∑
z 6=k

QkzX
ν
z,t ,

where Qkz is the probability that a traveller from zone k
visits zone z, and γ and ν are two positive parameters. We
model human mobility through a gravity model [Erlander
and Stewart , 1990]. Accordingly, connection probabilities
are defined as

Qkz =
Hze

−dkz/D∑
n 6=kHne

−dkn/D
,

where the attractiveness factor of zone z depends on its pop-
ulation size Hz, while the deterrence factor is assumed to be
dependent on the distance dkz between the two communities

and represented by an exponential kernel (with shape fac-
tor D). Distances between health zones are measured along
the road network.

Finally the term fseak,t in equation (2) accounts for the
seasonality possibly induced by drivers other than those ex-
plicitly considered above. Baseline seasonality is modelled
through a simple sinusoidal function:

fseat = δ

(
1 + sin

(
2π
t− ts

12

))
,

where δ ≥ −1 and ts is the lag of seasonality.

3.2. Model Calibration and Validation

We consider all the 26 = 64 model combinations obtained
by accounting for or neglecting the effects of rainfall, chloro-
phyll a, human mobility, ENSO, IOD and baseline season-
ality. Models are fitted by maximizing their likelihood. In
the most complex setting we must optimize the values of
17 parameters, including the set of lags (if applicable) up
to 6 months that produces the best fit to data. Under the
Markovian assumption of the model, the transition from one
month to the next is independent of all other transitions.
Therefore, likelihood can be defined as the product of the
probabilities of the transitions actually observed for each
month. We use the simplex search algorithm proposed by
Nelder and Mead [1965] to maximize the log-likelihood. We
enforce the constraint that each transition probability must
be between 0 and 1 by a barrier method, i.e. we set like-
lihood to 0 whenever a transition probability falls outside
these limits [Reiner et al., 2012]. Because the Nelder-Mead
method can only ensure the identification of local stationary
points of the considered objective function, the optimiza-
tion algorithm is run 100 times with different initial start-
ing points to better approximate the global maximum of the
likelihood function. The best model is then selected out of
all candidate model combinations through the Akaike infor-
mation criterion (AIC) which evaluates model performance
and discounts for complexity.

The Markovian nature of the model also allows to easily
implement a simulation algorithm. Let us consider a generic
health zone k with discretized cholera incidence i at time
t, i.e. Xk,t = i. Knowing the epidemic state of the other
health zones and the magnitude of the environmental forcing
at the same time t, it is possible to compute the transition
probabilities p′i,j,k,t for j = 1, 2, 3 through equations 2 and
3. A random variable U , uniformly distributed in the [0, 1]
interval, is drawn to determine which transition occurs. If
U < p′i,1,k,t, the considered health zone transitions to the
low incidence state in the next month, i.e. Xk,t+1 = 1.
Otherwise, if U < p′i,1,k,t + p′i,2,k,t, a transition to a mild
cholera state occurs, i.e. Xk,t+1 = 2. In the remaining case
the transition is to a high incidence state, i.e. Xk,t+1 = 3.
Repeating this procedure for all the health zones gives a
1-month time step simulation. The simulated state can be
used to advance the chain for another time step and so on
to simulate the model for any number of time steps.

To evaluate the predictive ability of the different models,
we perform a validation analysis. Specifically, we perform
leave-one-out cross-validation, i.e. we remove one month of
data for all the health zones and recalibrate the model being
tested using the remaining data. Starting from the state of
the system observed in the month before the one removed,
we simulate the model for one time step, using the newly
calibrated parameter set, and compare model prediction to
the removed data. The accuracy of the different models in
validation is estimated by computing the likelihood of the
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observed state. To that end, we infer the probability distri-
bution of the predicted state performing 10,000 independent
simulations. This procedure is then sequentially repeated
removing, once at a time, all the monthly data points avail-
able. We also perform a validation analysis removing 2 and
3 contiguous months of data at a time. In this case the chain
is advanced for 2 and 3 time steps, respectively. Performance
is evaluated through the likelihood of the state observed in
the latest month removed. Note that likelihood values eval-
uated at different lags or between validation and calibration
runs cannot be compared because of different numbers of
data points.

4. Results

Table 2 shows the results of the calibration procedure
described above. The 20 best combinations of model com-
ponents are shown, ranked according to their AIC score. All
64 possible combinations are shown in Supplementary Ta-
ble 1. The best ranked model accounts for the effects of
SST anomalies and seasonality only (parameters are shown
in Table 3). However, models number 2 to 14 have an AIC
score close to that of the top-ranked candidate (∆AIC < 4)
and thus cannot be safely discarded [Burnham and Ander-
son, 2002]. All these models include seasonality. To test the
significance of the individual components of models 1 to 14
(alternative hypothesis) against the model including season-
ality only (number 8, null hypothesis) we employ a likelihood
ratio test. Improvements in likelihood for models 1 and 2
are significant, and so are the effects of ENSO alone, as well
as ENSO combined with precipitation (p < 0.05). Improve-
ments in likelihood for models 4 to 7 and 9 to 14 are not
significant at p = 0.05.

Model validation is performed using the 14 models re-
tained in model selection. Table 4 shows log-likelihood val-
ues obtained by applying cross-validation at lags of one, two
and three months. Model 13 has the highest likelihood val-
ues for all lags. Figure 4 shows the validation of model 13
at respective lags of one, two and three months. Note the
decreasing accuracy of the median as predictor of cholera
incidence as well as the higher uncertainty of the simula-
tions as the lag increases. A less formal but more intuitive
measure of model accuracy is the fraction of times in which
the model correctly predicts the observed cholera incidence
state. If we assume the mode of the distribution over 10’000
runs as the best predictor, model 13 predicts 68% of the
state correctly at lag one month, 62% at lag two months
and 59% at lag three months.

In addition to the results reported above, we also tested
the effect of adding the water surface temperature of
Lake Kivu [MacCallum and Merchant , 2012; Thiery et al.,
2014a, b] as a further explanatory variable. No significant
improvements were found (result not shown for brevity).

5. Discussion

In this work we have applied a MDIMC-based approach
to model cholera dynamics in eight health zones in the Lake
Kivu region (DRC). The semi-deterministic framework cho-
sen allows for a mechanistic description of processes such as
human mobility or the enhancing effect of rainfall on dis-
ease transmission, as well as for an explicit treatment of
space. Its discrete nature allows to characterize spatiotem-
poral cholera dynamics robustly, even if the reported case-
data available present high uncertainties because of over-
and under-reporting and missing records. This robustness is
especially important in endemic regions such as the eastern
DRC, where incidence is generally lower than in epidemic
settings. Conversely, classical SIR-type models (like, e.g.,

the one applied in Rinaldo et al. [2012] to describe the Haiti
cholera epidemic) do heavily rely on detailed epidemiological
datasets for parameter estimation and are thus very difficult
to apply to the current case at a fine spatial resolution be-
cause of the low signal to noise ratio.

Several models were retained during model selection. All
of them account for seasonality, which is thus found to be an
important factor to explain endemic cholera transmission in
the study area. The model that performed best according to
AIC accounts for the effect of ENSO in addition to season-
ality. During validation, though, a more complex model, in-
cluding also the effects of mobility and precipitation, proved
to perform best. This might indicate that higher complex-
ity in this case does not lead to overfitting but to improved
predictive abilities.

Global climate anomalies (ENSO and IOD) seem to be
the most important environmental factors, as they appear
in all but two of the best performing models. Because of
the known interactions between these anomalies and local
climate [Plisnier et al., 2000; Stager et al., 2007; Marchant
et al., 2007] this is not surprising. The effect of precipita-
tion alone did not prove significant compared to a model
with seasonality only. However, its combination with ENSO
and IOD is significant, presumably because of rainfall dete-
riorating sanitary conditions.

Chlorophyll a concentration in Lake Kivu as a driver
of cholera dynamics was retained only by 5 of the mod-
els selected in calibration. Apart from the interaction be-
tween V. cholerae and plankton, possibly being more com-
plex than presumed here, significant correlations might be
clouded by other environmental factors such as precipita-
tion, or by the fact that the estimates of chlorophyll a con-
centrations used here are of insufficient accuracy and/or spa-
tial detail. The subtleties involved in the remote sensing of
chlorophyll a concentrations in lakes indeed deserve further
investigations [Knox et al., submitted]. However, we main-
tain that the search for remotely sensed proxies for param-
eters of mechanistic epidemiological models is an important
field of study towards a new concept of mathematical epi-
demiology.

The effect of human mobility has been retained only by
one of the models selected in calibration, which may be an
artifact of our decision to limit the study to the lakeside
region of Lake Kivu, with only two distant population cen-
ters separated by mostly rural areas. Indeed, the most im-
portant mobility patterns identified in the eastern DRC are
between the lakeside regions and non-lakeside regions [Bom-
pangue et al., 2009] and are thus not accounted for in this
study. In addition, since the description of mobility in the
model includes three parameters, it is penalized in model
selection relative to other model components. Note however
that the best performing model in validation accounts for
human mobility as well, which thus proves to be important
for epidemiological projections.

All models including seasonality have shown to perform
better than models not including it. This can be interpreted
as a clear indication that other environmental and/or social
factors, which have not been explicitly accounted for, might
play a major role in the dynamics of the disease in the study
area. In particular, the influence of population movements
due to war, civil unrest or seasonal migrations [Bompangue
et al., 2009], particularly from and to other endemic areas
in the country, would merit further investigation.

We have been able to show that cholera incidence in the
region is influenced by global (ENSO, IOD) and local (rain-
fall) climatic variables. Thus it seems clear that climatic and
environmental conditions play an important role in the dis-
ease dynamics. Our results do not support the hypothesis of
phyto- and zooplankton being a major factor for persistence
and proliferation of the disease in this area, as indicated
by the lack of any significant effect of chlorophyll a. Alter-
native explanations exist, such as the influence of climate
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on human behaviour and metapopulation dynamics [Pas-
cual et al., 2002; Rodò et al., 2002; Bompangue et al., 2011;
Rebaudet et al., 2013].

Note that, although the framework applied here allows
for prediction of epidemic state a few months in advance,
our results did not identify specific environmental drivers
with long lead times. Thus, in order to use the model for
the purpose of longer-term predictions, projections of envi-
ronmental drivers have to be made first.

Our results provide further evidence that different geo-
graphic and social contexts call for different dominant in-
fection mechanisms, and hence for proxies and modeling ap-
proaches shifting on a case-dependent basis. As an example,
chlorophyll a acts as a suitable proxy in Bangladesh, whereas
rainfall is the most important environmental driver in Haiti.
The proposed modeling framework is flexible and capable of
selecting the dominant infection mechanisms. Thus it can
easily be exported to the study of other regions.
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Figure 1. Study area. Lake Kivu is one of the African
Great Lakes (a), located to the north of Lake Tanganyika
and west of Lake Victoria (b), at the border between the
DRC and Rwanda (c). The eight lakeside health zones
included in this study (1: Goma, 2: Minova, 3: Kirotshe,
4: Kalehe, 5: Katana, 6: Miti Murhesa, 7: Kabare, 8:
Bukavu) as well as Goma and Bukavu, the two main cities
on its shore, are shown in panel (c).
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Figure 2. Cholera incidence data for the eight health
zones considered. Low (state 1), mild (state 2) and high
incidence (state 3) are denoted by respectively blue, green
and red color. Note that in some health zones data are
available only during parts of the study period.
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Figure 3. Environmental drivers. (a) Total monthly
precipitation averaged over all considered health zones.
(b) Remotely sensed, spatially averaged chlorophyll a
concentration in Lake Kivu. (c) Global climate anoma-
lies. ENSO SST anomaly in the Niño 3.4 region (blue)
and IOD Dipole Mode Index (green). Note that the
chlorophyll a and climate anomalies start 6 months be-
fore cholera incidence data in order to allow for lags in
the model.
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Figure 4. Simulations of model 13, which accounts for
mobility, precipitation and SST anomaly in addition to
seasonality, at one (a), two (b) and three (c) months lags
using the cross-validation procedure described in section
3.2. The blue line shows the average over the states of
the eight health zones, where each state is represented
by its mean incidence. The blue dots show the median
of the simulated values and the grey bars the 5th–95th

percentile range over 10,000 simulations.
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Table 1. Summary of recently published applied cholera models.
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Lobitz et al. [2000] BoBa ∗ ∗ ∗ ∗
Pascual et al. [2000] BoBa ∗ ∗ ∗ ∗
Koelle et al. [2005] BoBa ∗ ∗ ∗ ∗
de Magny et al. [2008] BoBa ∗ ∗ ∗ ∗
Bertuzzo et al. [2008] S. Africa ∗ ∗ ∗ ∗
Luque Fernández et al. [2009] Zambia ∗ ∗ ∗ ∗
King et al. [2008] BoBa ∗ ∗ ∗ ∗
Matsuda et al. [2008] BoBa ∗ ∗ ∗ ∗
Pascual et al. [2008] BoBa ∗ ∗ ∗ ∗
Akanda et al. [2009] BoBa ∗ ∗ ∗ ∗
Islam et al. [2009] BoBa ∗ ∗ ∗ ∗
Andrews and Basu [2011] Haiti ∗ ∗ ∗ ∗
Bertuzzo et al. [2011] Haiti ∗ ∗ ∗ ∗
Chao et al. [2011] Haiti ∗ ∗ ∗ ∗
Mukandavire et al. [2011] Zimbabwe ∗ ∗ ∗ ∗
Reyburn et al. [2011] Zanzibar ∗ ∗ ∗ ∗
Tuite et al. [2011] Haiti ∗ ∗ ∗ ∗
Rinaldo et al. [2012] Haiti ∗ ∗ ∗ ∗
Eisenberg et al. [2013] Haiti ∗ ∗ ∗ ∗ ∗
Jutla et al. [2013a] BoBa ∗ ∗ ∗ ∗
Jutla et al. [2013b] BoBa ∗ ∗ ∗ ∗
Mukandavire et al. [2013] Haiti ∗ ∗ ∗ ∗
Reiner et al. [2012] BoBa ∗ ∗ ∗ ∗ ∗ ∗
Gatto et al. [2012] Haiti / S. Africa ∗ ∗ ∗ ∗
Mari et al. [2012a] S. Africa ∗ ∗ ∗ ∗
Righetto et al. [2013] Haiti ∗ ∗ ∗ ∗
Sardar et al. [2013] Zimbawe ∗ ∗ ∗ ∗
a Bay of Bengal
b Attributes refer to the treatment of space by the models. Explicit treatment of

space means that the model incorporates terms for the spatial spread of disease
vehiculed by human mobility, water-ways, etc.

c Attributes describing the treatment of environmental forcings. Simulated refers to
cyclicity based on seasonal and interannual (ENSO) forcings.

d The disease is considered endemic if outbreaks appear to occur every year and if
the outbreak is not apparently the result of recent introduction.
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Table 2. Results of the fitting procedure ordered by increasing AIC score (first 20 lines).a

M
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ti
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C
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S
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D
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A
IC

∆
A

IC

1 + - - - + - 11 −470.02 962.03 0

2 + - + - + - 12 −469.22 962.45 0.4

3 + - - - + + 13 −468.89 963.78 1.6

4 + - - + + - 13 −468.95 963.89 1.9

5 + - - - - + 11 −471.03 964.05 2.0

6 + - + - + + 14 −468.07 964.15 2.1

7 + - - + - + 13 −469.26 964.52 2.5

8 + - - - - - 9 −473.27 964.53 2.5

9 + - + + + - 14 −468.37 964.74 2.7

10 + - - + + + 15 −467.38 964.76 2.7

11 + - + - - + 12 −470.6 965.2 3.2

12 + - + - - - 10 −472.84 965.67 3.6

13 + + + - + - 15 −467.84 965.68 3.6

14 + - + + + + 16 −466.9 965.79 3.8

15 + - + + - + 14 −469.16 966.31 4.3

16 + + + - - - 13 −470.27 966.53 4.5

17 + - - + - - 11 −472.36 966.72 4.7

18 + + - - + - 14 −469.75 967.51 5.5

19 + + - - - - 12 −471.85 967.71 5.7

20 + - + + - - 12 −471.95 967.89 5.9
a See Supplementary Table 1 for all 64 lines.
b Number of parameters plus one (residual variance)
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Table 3. Parameter sets corresponding to the best ranked
models in calibration and cross-validation (respectively models
1 and 13 in Table 2).

Model 1 Model 13

p1,1 0.8841 0.9203

p2,1 0.3822 0.4021

p3,1 0.1151 0.1394

p1,3 0.02575 0.01879

p2,3 0.1366 0.09161

p3,3 0.3736 0.2446

δ 0.4029 0.3702

ts 6.358 5.755

γ 0.2697

D 30.53

ν 0.7578

α 0.5598

φ 0.5014 0.3642

tENSO 0 0

Table 4. Log-likelihood values obtained during validation
by comparing one, two or three months in advance simulations
with reported incidence.

Lag (months) 1 2 3

Modela 1 −482.35 −559.28 −583.37

Model 2 −482.79 −558.34 −581.98

Model 3 −476.72 −552.91 −579.46

Model 4 −472.56 −549.97 −573.83

Model 5 −472.78 −548.69 −575.05

Model 6 −470.53 −546.38 −571.45

Model 7 −479.03 −556.25 −583.36

Model 8 −483.40 −563.09 −591.90

Model 9 −477.77 −554.54 −578.10

Model 10 −473.55 −549.05 −575.05

Model 11 −475.61 −552.38 −579.58

Model 12 −485.75 −564.61 −592.76

Model 13 −469.67 −543.63 −569.04

Model 14 −471.28 −547.75 −571.63
a Model numbering corresponds to the rank

obtained according to Table 2.


