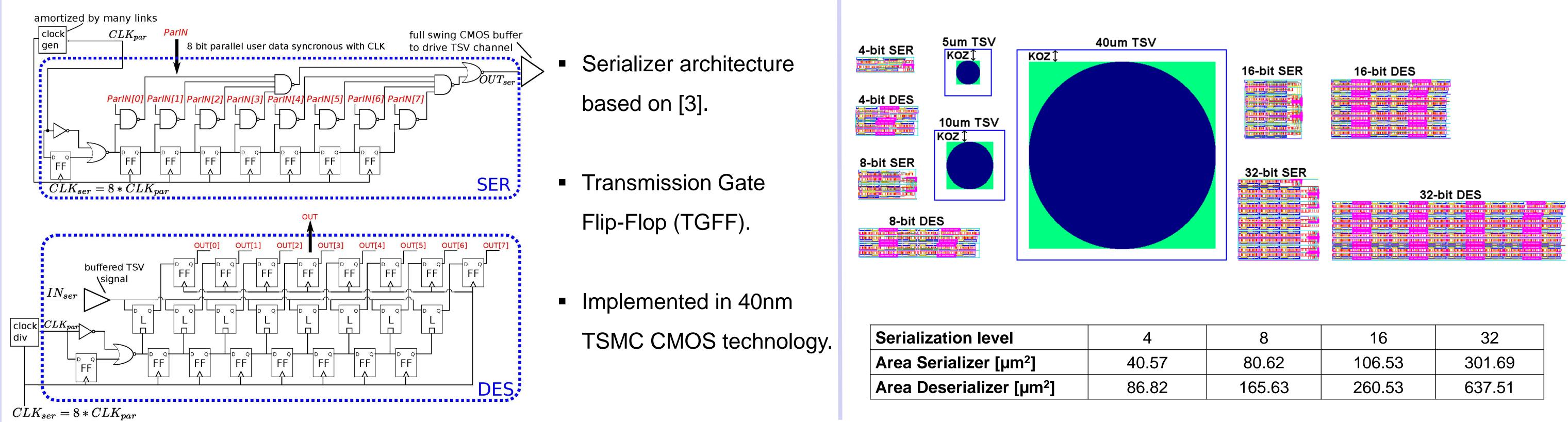
G. Beanato A. Cevrero	LOW POWER 3D SERIAL TSV LINK FOR HIGH		
G. De Micheli Y. Leblebici	BANDWIDTH CROSS-CHIP COMMUNICATION		
Microelectronic Systems Laboratory	tel: +41 21 693 6955 fax: +41 21 693 6959		
Swiss Federal Institute of Technology EPFL	giulia.beanato@epfl.ch alessandro.cevrero@epfl.ch		
CH – 1015 Lausanne Switzerland	giovanni.demicheli@epfl.ch yusuf.leblebici@epfl.ch http://lsm.epfl.ch		

ABSTRACT

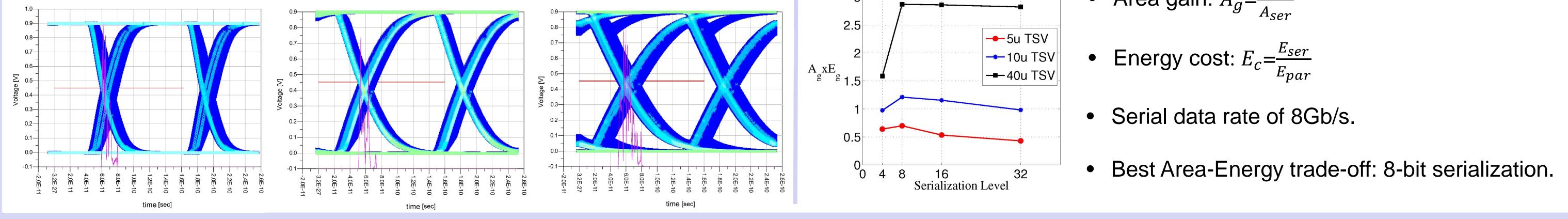
3D-ICs based on TSV technology provide high bandwidth inter-chip connections. The drawback is that most of the existing TSVs consume a large amount of silicon real estate. We present circuit-level design and analysis of area efficient, low power, high-data-rate 3D serial TSV links. A design space exploration is performed and trade-offs in terms of area, power and performance are presented. Circuit simulations of RC-extracted layouts in 40nm CMOS-technology reveals that 8:1 serialization efficiently balances area consumption and energy efficiency. Using 10µm-diameter TSV technology, an 8Gb/s serial link consumes only 84fJ/bit with 10X area reduction over 8b parallel bus.

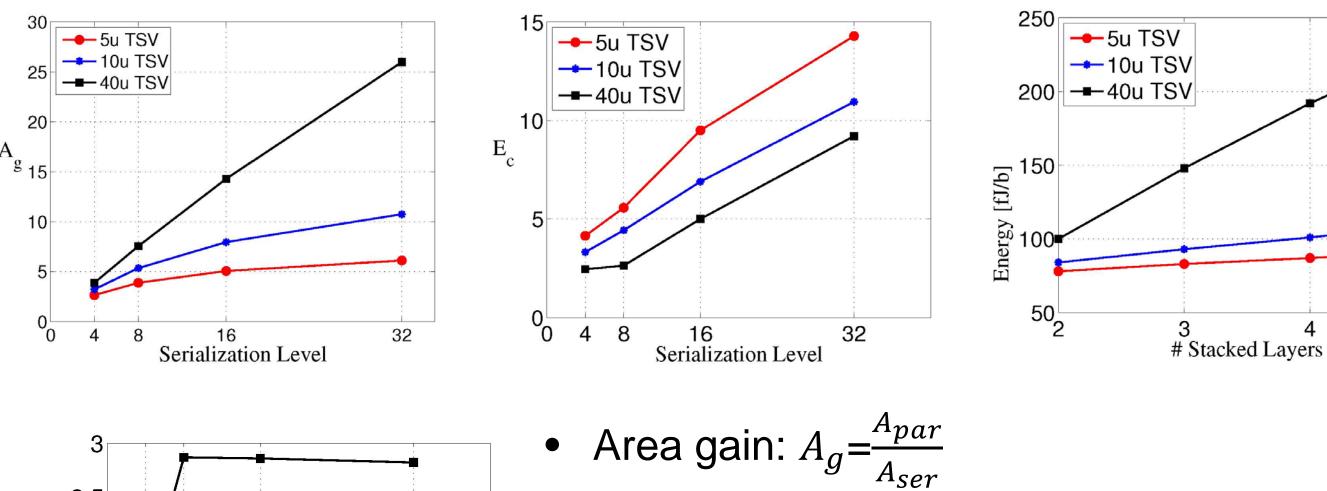

TSV TECHNOLOGY

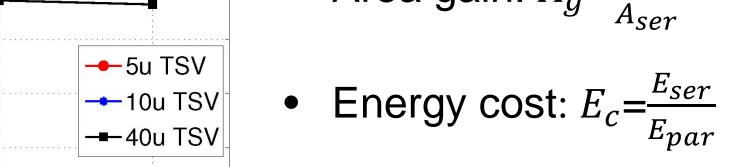
].	Diameter [µm]	Height [µm]	Resistance [mΩ]	Capacitance [fF]	Inductance [pH]]
	5	50	147	18	46	
V.	10	50	36	41	36	
	40	50	7	174	20	
		igh frequency p	•	TS	nimize number of Vs without sacrifi	cing
20 ter[um]	Footprint is	bigger compare	ed to the BEOL	vias. ver	tical data bandwi	dth.
ERDES (CIRCUIT DE	SIGN				
ency <i>f_{par}</i> are s	serialized into a hig	n speed data strea	m at $f_{ser} = N \times$	f _{par} , where N	serialization	level
ializer archit sed on [3].	tecture 4-bit SE 4-bit DE		40um TSV	16-bit SER	16-bit DES	

S

vel High speed 3D serial vertical link: N slow speed channels at a frequent




Serialization level	4	8	16	32
Area Serializer [µm ²]	40.57	80.62	106.53	301.69
Area Deserializer [µm ²]	86.82	165.63	260.53	637.51


EXPERIMENTAL RESULTS

A PRBS input stream is sent at a serial data rate of 8Gb/s. The energy efficiency is extracted averaging the power consumption over 80,000 received bits.

TSV diameter	5 µm	10 µm	40 µm
Paralel link energy [fJ/bit]	14	19	38
4-bit SERDES energy [fJ/bit]	58	63	93
8-bit SERDES energy [fJ/bit]	78	84	100
16-bit SERDES energy [fJ/bit]	133	131	190
32-bit SERDES energy [fJ/bit]	200	208	350

CONCLUSIONS

The potential of 3D IC stacking has a limitation caused by the large area footprint of its vertical interconnects. In this paper we propose a 3D serial link that reduces the number of TSVs in a 3D IC maintaining the performance unvaried. A serialization scheme is proposed in order to exploit the TSVs' high bandwidth. We show how the serialization level can affect both area and energy for different TSV technologies. For a mature TSV technology such as 40µm, 15X area reduction can be achieved within a low power budget for 16-bits serialization. Moreover, a serialization level of 8-bit guarantees a good balance between area consumption and energy efficiency across all the explored TSVs.

[1] M. Goldfarb et al. Modeling via hole grounds in microstrip. Microwave and Guided Wave Letters, IEEE, 1(6):135–137, june 1991.

[2] G. Katti, et al. Electrical modeling and characterization of through silicon via for three-dimensional ics. Electron Devices, IEEE Transactions on, 57(1):256-262, jan. 2010.

[3] M. Kurisu, et al. 2.8 gb/s 176 mw byte-interleaved and 3.0 gb/s 118 mw bit-interleaved 8:1 multiplexers. In Solid-State Circuits Conference, 1996. Digest of Technical Papers. 42nd ISSCC., 1996 IEEE International, pages 122–123, 1996.

Swiss Federal Institute of Technology - Microelectronic Systems Laboratory

