Centrality and community detection in a mobile social network

6th UK Social Networks Conference, Manchester

Yannick Rochat, David Jilli, Henri Volken

Institute of Applied Mathematics
University of Lausanne
April 15, 2010

Random instant-messaging networks

 A new type of online social dynamicsMotivation \& goal
Methods
Presentation of Photoswap
Database
Research questions
Results

Future work

Social cybernetworks

- Email networks
- Instant-messaging networks (Google Talk, Skype, MSN)
- Picture-sharing websites (Flickr, Picasa)

Combining these and randomness leads to random instant-messaging applications, e.g. Photoswap, Omegle or Chatroulette.

Random instant-messaging networks

- Mobile phones + camera (P)
- Personal computers + webcam (O, C)
- Free access
- Plug \& play

Screenshots

Photoswap, Chatroulette

Motivation

- Nowadays very popular applications.
- Easy access for children despite age delimiters.
- Influence of anonymity on behavior ?

The context :

- Anonymity
- Privately moderated
- Meeting people
- Entertainment, excitement

Photoswap

During the 50 days under study :

- 71, 785 users.
- 127 pictures pro user.
- 180,000 pictures exchanged everyday.
- 1377 banned users (for three days).
- 1750 times banned.

Chatroulette.com

- 89% male
- 11% female
- $20 \%<20$ years old
- $10 \%>40$ years old
- offensive behaviour : 13\%
(Source : techcrunch.com)

Presentation of Photoswap

How does it work ?

- User A launches the application and takes a picture.
- The picture is randomly sent to user B who can answer the picture with another picture, and so on they exchange pictures..
- If he doesn't, there's no more way to communicate with User A.
- At the same time user A received a picture and so on.

Moderation, control

- Possibility to report offensive pictures.
- Leads to ban concerned users.

Data

- Data go from 19.02.2010 to 10.04 .2010
- Longitudinal analysis is possible.
- Users are anonymous.
- Possibility to ask moderators about pictures from their ids, but not to consult them.

Defining the network

- Nodes are the users.
- Directed networks.
- There is an arc from User A to User B if User A has sent at least one picture to User B.
- Each arc is weighted. The weight is the number of pictures sent.

Description

- \# Nodes (order) 71,785
- \# Edges (size) 9,142,714
- 1,814,915 pictures with response
- 7,327,799 pictures without response
- out-degree max : 17,440
- in-degree max : 2736

Research questions

- Degree distribution.
- Weights of arcs distribution.
- Identify the users showing offensive behavior (mostly exhibitionism). Are they different from the ones of "normal" users ?
- Make an attempt to detect them.

Centrality and community detection in a mobile social network
$\left\llcorner_{\text {Results }}\right.$

Indegree

Outdegree

Centrality and community detection in a mobile social network
$\left\llcorner_{\text {Results }}\right.$

Use of banishment

- Levels of \# times banned : from 0 to 6 .
- In order to study users' behavior according to banishment, it is necessary to define an appropriate measure.

Outdegree - Indegree

- Let's suppose 10% of users are offenders, at least 9 pictures out of 10 won't get any answer.
- The expression

> Out-degree - In-degree
can measure that.

Remark

The expression

Out-degree In-degree

doesn't give as satisfying results as
Out-degree - In-degree.

Centrality and community detection in a mobile social network
$\left\llcorner_{\text {Results }}\right.$

Number of pictures without answer versus number of reports

Future Work

- Detect offenders according to network data ?
- Does any community detection algorithm gives satisfying results ?
- Do people with similar aesthetic tastes cluster ?

Acknowledgements

- Thanks to Gábor Csárdi and Tamas Nepusz for the package igraph and for promptly answering questions appearing in the mailing-list.
- http://igraph.sourceforge.net/
- http://www.r-project.org/
- Thanks to Sarah Dégallier for her help.

THANKS!

