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Abstract: This paper proposes a method to assess the overall fatigue of human body 

movement. First of all, according to previous research regarding localized muscular 

fatigue, a linear relation is assumed between the mean frequency and the muscular working 

time when the muscle is experiencing fatigue. This assumption is verified with a rigorous 

statistical analysis. Based on this proven linearity, localized muscular fatigue is simplified 

as a linear model. Furthermore, localized muscular fatigue is considered a dynamic process 

and, hence, the localized fatigue levels are tracked by updating the parameters with the 

most current surface electromyogram (sEMG) measurements. Finally, an overall fatigue 

level is computed by fusing localized muscular fatigue levels. The developed  

fatigue-tracking system is evaluated with two fatigue experiments (in which 10 male 

subjects and seven female subjects participated), including holding self-weight (dip start 

position training) and lifting weight with one arm (arm curl training). 
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1. Introduction 

In the field of biomechanics, fatigue is defined as a decrease in physical movement performance 

due to internal and external forces [1]. Cumulative physical fatigue can lead to musculoskeletal 

disorders (MSD) [2]. Thus, monitoring and tracking fatigue is of great importance in order to prevent 

the development of such disorders. Many applications benefit from fatigue monitoring, such as 

promoting muscle performance and growth in sports training [3]; preventing intolerant exercise in 

rehabilitation [4,5], etc. In this paper, we propose a method to assess the overall fatigue status of 

human movement and verify the proposed method by a prototype. An extensive body of literature 

exists on the subject of monitoring localized muscular fatigue, thus our proposed method is based  

on this research. Our final objective is to provide a solution to the assessment of human fatigue 

statuses in whole body movements. In this paper, we focus on developing a prototype of a wearable  

fatigue-tracking system to quantify overall fatigue in a specific human movement. 

Existing approaches to the monitoring of muscular fatigue can be categorized into two types: 

simulation-based and experiment-based. Regarding the simulation-based methods, numerous muscular 

fatigue models have been built according to the Ca2+ cross-bridge mechanism [6,7], force-PH  

relation [8,9], elastic element modeling (e.g., Hill’s model) [10], etc. However, for experiment-based 

methods, the use of surface electromyogram (sEMG), a non-invasive technique, has become popular in 

clinical fatigue measurement, as the subject experiences minimal discomfort while measuring fatigue 

levels (no needle punctures are required) [11,12]. Studies from the field of kinesiology have shown 

that the power spectrum variables (including mean frequency, median frequency, and mode  

frequency) [13] of the sEMG signal decrease during sustained contraction. In practice, the mean 

frequency of the sEMG signal has been widely used for detecting muscular fatigue due to its low 

sensitivity to noise [14,15]. Several computational methods for calculating the mean frequency from 

the power spectrum have been introduced in literature, including classical methods (e.g., the 

periodogram, and the Blackman-Tukey estimator) and modern parametric model methods (such as 

autoregressive, moving average, autoregressive moving average, etc.) [16]. 

Since our method and prototype must be functional in practical applications, we adopt the 

experiment-based methods. Specifically, we use the mean frequency to indicate localized muscular 

fatigue due to its low sensitivity to noise [6]. This paper targets at the quantification and monitoring of 

the overall fatigue status of human body movement based on localized muscular fatigues. Furthermore, 

we treat “overall fatigue” as a dynamic process and, thus, it is updated by the most current sEMG 

measurements. The following issues are addressed in detail in this paper: 

Quantifying an overall fatigue assessment corresponding with a human movement: The current 

literature regarding fatigue addresses the problem either at the muscle level [17] or at the joint  

level [18]. Fatigue assessment at the muscle level is commonly considered fatigue classification. 

Different classifiers can be applied, such as the neural network (NN) classifier, the Bayesian classifier, 

the fuzzy logic (FL) classifier, the support vector machine (SVM) classifier, and the hidden Markov 

model (HMM) classifier [19]. On the other hand, the fatigue assessment at the joint level is usually 

simplified to a first-order differential process of the current joint load torque divided by the maximum 

joint load [18,20]. In this paper, we address on assessing “overall fatigue level” corresponding to a 

specific human movement. More specifically, we fuse the muscle fatigue levels by weighted average, 
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where the weight defined here is customized case by case due to different applications. As an example 

in our research, the weight is set as a normalized gradient of the muscular fatigue level. 

Tracking fatigue status: In previous research, muscular fatigue is essentially considered a static 

process, as it is assessed only by the current measurements [3,12]. However, fatigue is naturally a 

dynamic process, meaning that a previous fatigue status also influences a current fatigue status. Thus, 

we introduce a “forgetting factor”, whose physical meaning is the amount of previous fatigue status 

information that should be considered [21]. In this paper, we propose a tracking method of muscular 

fatigue based on the concept of dynamically “forgetting previous fatigue information”. In computation, 

as the current muscular fatigue status is iteratively updated by the fatigue information at the previous 

time step and most current measurement, it has low sensitivity to disturbances. 

This paper is organized as follows: in Section 2, we describe the system architecture, basic scheme, 

experimental setting and signal pre-possessing; in Section 3, we illustrate segmentation and connection 

of the sEMG signals by detecting periodic movements; in Section 4, we describe the statistical analysis 

and simplification of the localized muscular fatigue level; in Section 5, we present the tracking scheme 

of the localized muscular fatigue levels and their fusion to generate an overall fatigue level; in  

Section 6, the verification of our proposed method is illustrated by the fatigue tracking performance in 

two fatigue experiments; and in Section 7, we conclude the paper and provide plans for our  

future work. 

2. System Architecture and Experiment Setting 

2.1. Hardware 

The fatigue-tracking system includes a central processing PC, a wireless communication center and 

a couple of sEMG sensors (Figure 1). The sEMG sensor used is a Delsys Trigno wireless sensor  

(37 mm × 26 mm × 15 mm, 16-bit resolution, 2,000 Hz sampling rate), which consists of a  

parallel-bar-based EMG measurement device and a triaxial accelerometer. The triaxial accelerometer 

is used to capture dynamic movements and impact simultaneously with the sEMG data measurements. 

Figure 1. System architecture of the fatigue-tracking system. The system consists of a 

central PC, a wireless communication station, and sEMG sensors. 

 
 



Sensors 2014, 14 2055 

 

 

As the sEMG sensor is required to be placed at the center of the muscle during the muscle’s 

contraction, the body movement can be monitored by an accelerometer. The wireless communication 

center (maximum communication distance is 40 m) is used to receive the online data from the sEMG 

sensors and send it to the central processing PC. It can simultaneously communicate with 16 sEMG 

sensors (i.e., having 16 EMG channels, 48 accelerometer channels). The central PC computes and 

displays the tracked fatigue level by human interactive interface. 

2.2. Basic Scheme 

The sEMG signal processing is performed in a central PC and illustrated in Figure 2. Initially, the 

sEMG signal and corresponding acceleration signal are filtered to remove high frequency noise. Next, 

the two signals are re-sampled so that both signals have the same sampling rates. The filtered 

acceleration signal is then used to recognize periodic movements. If periodic movements are detected, 

the filtered sEMG signal is segmented and connected to form a new sEMG signal for mean frequency 

calculation. The localized fatigue levels are then tracked by updating the parameters with the most 

current sEMG measurement. If there is no periodic movement recognized, the sEMG segmentation 

and connection procedure is skipped. Finally, the overall fatigue level is computed by fusing the 

localized fatigue levels. The details of this method are outlined in Sections 3–5. 

Figure 2. Scheme diagram of the system. Periodic movement is recognized by analyzing 

the acceleration signal pattern. Non-active sEMG signals are cut off by segmenting the 

original sEMG signal. The processed sEMG signal is used for tracking localized muscular 

fatigue levels. The overall fatigue level is obtained by fusing the localized fatigue levels. 
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2.3. Experimental Procedures 

We conducted two experiments for the verification of our method (Figure 3). The experiment 

procedures have been approved by the university’s committee. In Experiment 1, the subjects are asked 

to hold their self-body weight with both arms for a period of time (dip start position training); in 

Experiment 2, the subjects were asked to periodically lift a weight (10 kg for males, and  

6 kg for females) with their right arm (arm curl training). In total, 17 subjects, including 10 males and 

7 females, were studied (mean ± SD): age 30.47 ± 6 years; body mass 71.71 ± 16.81 kg; body height  

172.82 ± 11.25 cm; and body mass index (BMI) 23.86 ± 4.03 kg/m2. Before initiating the experiment, 

the subjects were briefed with the experiment's purpose and procedures. The subjects were asked to 

attach the sEMG sensors on the following muscle groups: biceps brachii, anterior deltoids, and triceps 

brachii. Taking into account the muscles measured in the experiments, shaving body hair were not 

necessary. The skin of each subject was cleaned with 90% alcohol and then the sensors were attached 

using double faced adhesive tape (based on the instructions of the Delsys sensors). 

After warming up, each subject was required to hold their self-body weight for 1 min in  

Experiment 1 (Figure 3a) where the angle between lower arm and upper arm is approximately 120°, 

rest for 5–10 min, and then periodically lift a weight (complete bending-stretching movement) with the 

right arm approximately every 2.5 s during a 1 min time span in Experiment 2 (Figure 3b). Lifting 

pace was roughly informed by rhythmic sound. Here, the maximum duration of 1 min was determined 

due to the arm-shaking phenomenon that appeared for all the subjects before 1 min, which clearly 

indicated the subjects’ high fatigue status. 

During the experiments, the sEMG signals were measured and further transferred to the central 

processing PC via a wireless communication station where the signal processing was executed in 

Matlab. The whole experiment process was recorded by a video camera (Figure 3c). 

Figure 3. Fatigue experiment settings. (a) In Experiment 1, the subject was asked to hold 

their self-body weight by arms (dip start position training). (b) In Experiment 2, the subject 

was asked to repeatedly lift up the weight with their right arm (arm curl training). (c) The 

experiment equipment included a video camera, a wireless communication station, and a 

central processing PC. 
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2.4. Pre-Processing Signals 

The sEMG signal and the acceleration signal are filtered using the Butterworth filter. Specifically, 

in designing the Butterworth filter, the lowest order of the filter n and normalized cutoff frequency Wn 

are firstly computed by the designed filter parameters, including passband corner frequency Wp, 

stopband corner frequency Ws, passband ripple Rp, and stopband attenuation Rs. After that, the 

Butterworth filter is determined by n and Wn. According to the feature of sEMG and acceleration 

signals in our designed fatigue experiments, the filter specifications of the two signals are set as 

follows: for sEMG signal, Wp = 0.1 Hz, Ws = 0.4 Hz, Rp = 3 dB, Rs = 40 dB; for acceleration signal,  

Wp = 0.003 Hz, Ws = 0.006 Hz, Rp = 3 dB, Rs = 40 dB. The settings of the moving window are as 

follows: the window length is 0.125s and the window overlap is 0.063 s. In our system, the sampling 

rate of the sEMG signal and the acceleration signal is 4,000 Hz and 296 Hz, respectively. To ensure 

the two signals have the same data length in analysis, the measured sEMG signal is resampled in the 

rate of 4,000/296. 

3. Automatic Periodic Movement Detection 

There are two working patterns in muscle movement: sustained contraction (considered as  

non-periodic movement) and alternate contraction-recovery (considered as periodic movement) [12]. 

The former is simpler to analyze, as it is a continuous and consistent movement pattern; the latter is 

more complex, as it consists of a contraction and a recovery phase, corresponding with active sEMG 

and inactive sEMG signals, respectively. To assess the muscular fatigue of the alternate  

contraction-recovery muscle movement, we segment the contraction movement and connect the 

corresponding active sEMG signals (Figure 4). 

Figure 4. Segmentation and connection of the sEMG signal. The filtered sEMG signal is 

segmented based on the periodic movement pattern. The active sEMG signal parts are 

connected to form a new sEMG signal for the following moving window calculation. 
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Although the periodic movement pattern can possibly be detected by the sEMG signal, this pattern 

is much clearer when the acceleration signal is used. In the following part, we apply correlation 

analysis on the acceleration signal in order to detect the periodic movement. In detail, we use the 

cross-covariance to analyze the acceleration signal to detect if the recorded movement is a periodic 

movement and, if so, to find out the breaking points for segmentation. 

In detail, for the acceleration signal ACC with N samples, we compute the cross-covariance ϕACC  

by [16]: 

ACC m   E ACC n  m   ACC  ACC n   ACC * 

 n0

N m 1

 ACC n  m   1

N
A

i0

N1

 CC i 




 ACC* 

1

N
A

i0

N1

 CC i *





m  0

CovACC
* m  m  0









 (1)

where E{·} is the expected value operator, μACC is the mean values of ACC, and * denotes the complex 

conjugate. The periodic movement is confirmed if: 

Max ACC ,1   Max ACC ,2 
Max ACC ,2     (2)

Otherwise, a non-periodic movement is confirmed. Here, Max(i,j) returns the j-th largest value in 

the vector i.  is a threshold determining the periodic movement judge. 

4. Modeling Localized Fatigue Level 

First of all, we define the localized fatigue level as: 

l fatigue 
fmean,t

fmean,0

1 (3)

where fmean,0 and fmean,i are the mean frequency at the initial moment and moment t, respectively. Its 

physical meaning is the percentages of the relative decrease of the mean frequency. Specifically, the 

mean frequency of the sEMG fmean,i at the moment t is the average frequency of the power  

spectrum, i.e.: 

fmean,t 


0



 PSDsEMG  d
P

0



 SDsEMG  d
 (4)

where PSDsEMG() is the power spectrum density of the sEMG signal and  is the frequency variable. 

In this paper, we compute the power spectrum density of the sEMG signal by fast Fourier transform 

(FFT), as the power spectrum format is identical to the real part of the FFT, i.e.: 

PSDsEMG      FFTsEMG  FFTsEMG
*     FFTsEMG   2

 (5)

where FFTsEMG() is the fast Fourier transform of the sEMG signal. FFTsEMG
*    is the complex 

conjugate of FFTsEMG(). 
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According to previous literature on mean frequency for time-series analysis [19], we assume that the 

mean frequency decreases linearly with working time as the fatigue gradually increases [14,15], i.e.: 

fmean,t t  t   t  (6)

where t  is slope parameter of the model. t is remaining term. t is working time under fatigue status 

of the muscle. In the following, we use the measurement in Experiment 1 to statistically prove the 

linear relation (Equation (6)). At the 95% confidence level (i.e., 5% significance level), we propose a 

hypothesis for F test on the slope parameter as: 

H 0: t  0 (meaning that working time is not a useful predictor of mean frequency change) 

H1: t  0 (meaning that working time is a useful predictor of mean frequency change) 

We apply analysis of variance (ANOVA) on the measurement data of Experiment 1 to prove the 

above hypotheses in Table 1 where m1 to m10 and f1 to f7 are the subject number in male and female 

group respectively. p is the significance number. 

Table 1. Statistical Analysis of Variance (ANOVA). 

Subject Gender Group 

No. m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 

F 

test 

F 296.625 677.604 59.511 18.423 8.032 205.884 57.706 659.796 17.993 482.152 

p 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 

No. f1 f2 f3 f4 f5 f6 f7    

F 

test 

F 968.508 40.212 4.174 438.636 523.176 134.794 1310.249    

p 0.000 0.000 0.041 0.000 0.000 0.000 0.000    

It is shown that all the p values in Table 1 are less than 0.05 and, thus, we reject the null hypothesis 

H0. This means that the variation explained by the linear model is not due to random chance. Meaning 

that we have evidence to conclude that the slope parameter t  is not 0, and hence it can be a predictor 

of fmean,i. In other words, considering the individual differences and the above verification, the linear 

model (Equation (6)) is suitable for describing mean frequency of different individuals. Based on the 

linear model of the mean frequency in Equation (6), we can simplify the localized fatigue level as: 

l fatigue 
t  t   t

fmean,0

1 (7)

5. Tracking and Fusing Localized Muscular Fatigue Levels 

According to the statistical analysis outlined in the previous section, t  is an adequate predictor of 

fmean,i. Thus, we can track the muscular fatigue level lfatigue by identifying the slope t . As t  is a  

time-varying coefficient, we estimate its value at each moment. Here, the estimation model of the 

mean frequency can be formed as: 

f̂mean,t  ̂t  t   t  (8)

where f̂mean,t  is the estimated value of fmean,i. ̂t  is the estimated slope parameter. Equation (8) suggests 

that f̂mean,t  can be updated by estimating the slope parameter̂t . The idea here is to update ̂t  by using 
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the most current information of the mean frequency. Thus, tracking the localized muscular fatigue 

level can be formulated as: 

l fatigue 
̂t  t   t

fmean,0

1 (9)

Here, ̂t  can be obtained by minimizing the total error between the real and estimated model in the 

sense of least-squares, i.e.: 

̂t  arg min e
 

r

t

 s ds fmean ,t ̂tt 2

0

t

 dr  (10)

where 0 ≤  ≤ 1 is the “forgetting factor” indicating how much the previous information of localized 

fatigue level is used in calculating the current one. Specifically,   0  means previous muscular 

fatigue information is completely ignored (i.e., only the current measurement is used when calculating 

the current muscular fatigue level) and   1 means all the previous muscular fatigue information is 

considered in the calculation of the current fatigue level. In order to calculate Equation (10), the 

specific method we use is “recursive least squares with forgetting” [21,22]. 

In detail, by defining pt = t−2, we can rewrite Equation (10) as: 

̂t  ̂t1 
pt1t

  t 2 pt1

fmean,t ̂t1t  (11)

where the updating rule of pt can be written as: 

pt 
1


1

pt1t
2

  t 2 pt1







pt1  (12)

With Equations (11) and (12), we can update 


t  by using 


t1 and the most current measurement 

fmean,i. From the work done by Branch and Evan [23], the least squares with forgetting is a restricted 

form of the Kalman filter with constant gain equaling to 1−. 

The tracked localized muscular fatigue levels are further fused to define the overall fatigue level of 

a human body movement (Figure 5) where Nm is the total muscle number and αi (i = 1, 2,…, Nm) is the 

weight coefficient. In detail, the localized muscular fatigue level fusion can be calculated by: 



Lfatigue 1l fatigue,1  2l fatigue,2 Nm
l fatigue,Nm

1  2 Nm
 1






 (13)

where 1,  2 ,, Nm
are fatigue level fusion coefficients, representing the impact from the localized 

muscular fatigue level to the overall fatigue level. These coefficients are determined by field experts 

based on different human movement patterns and application objectives. In this paper, the weight αi is 

considered as a normalized gradient of the i-th muscle’s fatigue level, i.e., meaning that the localized 

fatigue level with bigger changing rate contributes more in the calculation of the overall fatigue level: 

 i 
l fatigue,i

l fatigue,i
i1

Nm


 (14)
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Figure 5. Fusion of localized muscular fatigue levels. Different localized muscular fatigue 

levels (corresponding with different muscles) are fused together to represent the overall 

fatigue status of a human movement. 

 

The procedures of overall fatigue level computation are summarized in Algorithm 1 as follows: 

 

Algorithm 1: Overall fatigue level computation 

Input: Raw sEMG and corresponding acceleration signals 

Output: Overall fatigue level 

1: Filter and resample the input signals; 

2: For i from 1 to Nm 

3:  Calculate the self-covariance of the filtered acceleration signal ϕACC; 

4: If ϕACC < ε, the movement is recognized as a periodic movement. Then, the 

corresponding sEMG signal is segmented and connected to form a new sEMG signal, 

otherwise, do nothing; 

5: Compute the initial mean frequency of the sEMG signal fmean,0; 
6: Initialize , ̂t  and pt . ̂t (0) can be 0 or an initial guess of the slope parameter, as pt  

is defined as t−2, pt (0)  has to be set as a relatively large number; 

7: Compute fmean,i and update ̂t  and pt  by Equations (11) and (12); 

8: Calculate the localized fatigue level lfatigue,i by Equation (9); 

9: End For 

10: Compute the overall fatigue level lfatigue by lfatigue,i (Equation (13)). 

6. Results and Discussion 

In the following Sections from 6.1 to 6.4, we take one subject's case to discuss the fatigue-tracking 

results. In Section 6.5, we summarize the outcomes from all the participants and evaluate the 

developed system. 

6.1. Measurement 

The filtered sEMG signal of biceps brachii and corresponding resampled acceleration signal in 

Experiments 1 and 2 are shown in Figure 6, where the upper and lower subplots correspond with the 
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sEMG signal and acceleration signal, respectively. The horizontal axis is time (in seconds) and the 

vertical axes are the sEMG signal (in V.) and acceleration signal (in g) where g ≈ 9.8 m/s2. The 

resolution of the acceleration signal is calculated with 8 bits over the full 3.3 V dynamic range, 

encompassing accelerometer ideal maximum outputs of ±2.1 g. It is clear that the movement in 

Experiment 2 is periodic, whereas in Experiment 1 it is non-periodic.  

Figure 6. Pre-processed measurements. Filtered sEMG signal of biceps brachii and 

corresponding resampled rotational acceleration signal in Experiment 1 (a) and  

Experiment 2 (b). The movement in Experiment 1 is non-periodic, whereas the movement 

in Experiment 2 is periodic. 

 
(a) 

 
(b) 

6.2. Correlation Analysis 

In this subsection, we calculate the cross-correlation to analyze the periodic property of the 

acceleration signal corresponding with biceps brachii (Figure 7). Specifically, we remove the mean of 
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the acceleration signal before computing the cross-correlation. Then, we limit the maximum lag to 

50% of the signal to achieve a good estimation of the cross-covariance. 

By comparing the peak difference between the largest and second largest local peak with the 

predefined threshold ε, we determine if the movement is periodic. In this paper, the threshold ε is set as 

twice that of the second largest local peak value. As seen of in Figure 7, the horizontal axis indicates 

data index, and vertical axis indicates the auto-covariance result. The red triangle emphasizes the local 

peaks. According to the proposed method mentioned, Experiment 1 is recognized as a non-periodic 

movement, and Experiment 2 is recognized as a periodic movement. Based on this, the sEMG signal in 

Experiment 2 is segmented and connected as a new sEMG signal for the mean frequency calculation. 

Figure 7. Self-correlation of the acceleration signal corresponding with biceps brachii.  

(a) Experiment 1. (b) Experiment 2. In Experiment 1, as the difference between the first 

and second local peaks is larger than the predefined threshold, the movement pattern is 

recognized as non-periodic. In contrast, the movement pattern in Experiment 2 is 

determined as periodic. 

 
(a) 

 
(b) 

6.3. Mean Frequency Trend 

In this paper, the setting of the forgetting factor is  = 0.95, which means the previous localized 

muscular fatigue level information is partially used in calculating the current muscular fatigue level. 
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The initial value of ̂t  and pt is ̂t 0   0, pt(0) = 10,000. The tracked trend of the mean frequency of 

biceps brachii is shown in Figure 8 where (a) and (b) correspond to Experiment 1 and Experiment 2, 

respectively. In both subplots, the partial view of the mean frequency trend shown below is plotted by 

limiting the x-scale. The horizontal axis denotes time in seconds (or time index). The vertical axis 

denotes the tracked slope (i.e., trend) of the mean frequency. 

Figure 8. Tracked mean frequency trend of biceps brachii. (a) Experiment 1.  

(b) Experiment 2. In both Experiment 1 and Experiment 2, the tracked slope of the mean 

frequency variance converges to a negative value after a short period (around 5 s), 

indicating a linear decrease of the mean frequency with the muscle’s working time. 

 
(a) 

 
(b) 

It is easy to see that the proposed method stabilizes in tracking the mean frequency trend within the 

initial 5 s. The slope of the mean frequency variance in Experiments 1 and 2 converges to −0.247 and 

−0.027, respectively. Both the slopes in Experiments 1 and 2 are negative, which is consistent with the 

scenario of physical fatigue. As the magnitude of time (in Experiment 1) is smaller than the time index 
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(in Experiment 2) on the order of 10, correspondingly, the amount of the tracked slope in Experiment 1 

is larger than that in Experiment 2 on the order of 10. 

6.4. Localized and Overall Fatigue Levels 

The localized muscular fatigue level is updated based on the mean frequency trend (i.e., estimated 

slope parameter of the mean frequency). In addition, we smoothed the computed fatigue level for 

better result visualization. The muscular and overall fatigue level trajectories are shown in Figure 9 

where (a) and (b) correspond the computed overall fatigue level and corresponding localized muscular 

fatigue levels in Experiments 1 and 2, respectively. The horizontal axis is time (or time index) and 

vertical axis is the computed fatigue level in negative percentages. 

Figure 9. Overall fatigue level computed by localized fatigue levels of biceps brachii, 

anterior deltoids, and triceps brachii. (a) Experiment 1. (b) Experiment 2. The overall 

fatigue level starts around 0%, decreases gradually to −32% and −17%, in Experiments 1 

and 2, respectively. 

 
(a) 

 
(b) 

In Experiment 1 (shown in (a)), the localized muscular fatigue level of the biceps brachii, anterior 

deltoids and triceps brachiii starts from 0%, indicating a non-fatigue status, and decreases gradually to 

−37%, −9% and −37%, indicating a fatigue status, whereas the overall fatigue level provides a 
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compromise of the localized muscular fatigue levels starting from 0% to −32%. Similarly, in 

Experiment 2 (shown in (b)), the localized fatigue level of the biceps brachii, anterior deltoids, triceps 

brachii and the overall fatigue level starts from 0%, decreases to −30%, −6%, −28%, −17%, 

respectively. 

6.5. System Validation 

The developed fatigue-tracking system was evaluated with two experiments involving 17 subjects 

(male group: 10 subjects; female group: 7 subjects). The detailed experiment setting was explained in 

Section 2.3. The subjects were quite diverse, originating from 11 countries. According to the BMI 

classification, the subject group covered underweight, normal weight, overweight and obesity 

categories. 

Table 2. Statistics of the fatigue levels. 

Subject No. 

Fatigue Levels in Experiment 1 Fatigue Levels in Experiment 2 

Biceps 
Brachii 

Anterior 
Deltoids 

Triceps
Brachii 

Overall
Biceps 
Brachii

Anterior 
Deltoids 

Triceps 
Brachii 

Overall

Male 
Group 

m1 −9% −13% −8% −10% −9% −24% −20% −20% 
m2 −8% −25% −39% −31% −21% -25% −42% −32% 
m3 −21% −19% −31% −25% −8% −19% −28% −22% 
m4 −13% −18% −21% −18% −10% −40% −24% −31% 
m5 −14% −6% −15% −13% −16% −15% −27% −21% 
m6 −12% −23% −11% −17% −5% −15% −29% −22% 
m7 −14% −21% −15% −17% −10% −17% −56% −42% 
m8 −8% −20% −13% −15% −14% −25% −46% −35% 
m9 −11% −11% −13% −12% −14% −11% −36% −26% 

m10 −10% −21% −16% −17% −4% −24% −8% −18% 

Female 
Group 

f1 −7% −28% −32% −28% −31% −15% −47% −37% 

f2 −22% −5% −36% −29% −33% −15% −24% −26% 

f3 −37% −9% −37% −32% −30% −6% −28% −17% 

f4 −3% −24% −39% −32% −10% −4% −43% −34% 

f5 −14% −28% −14% −21% −13% −19% −14% −16% 

f6 −4% −18% −9% −14% −3% −5% −11% −8% 

f7 −10% −39% −16% −29% −12% −5% −35% −27% 

The statistics of the fatigue levels is given in Table 2. In both experiments, the localized fatigue 

levels (corresponding with biceps brachii, anterior deltoids and triceps brachii) and overall fatigue 

level at the end of the experiments are listed. As the designed experiments targeted at monitoring 

fatigue scenario, all the fatigue levels are negative, which is consistent with the observed  

muscle-shaking scenario. Confirmed by the feedback from the subjects after the experiments, we 

approximately conclude that the more tired the subject feels, the bigger the overall fatigue level is. 

Besides, as seen in Table 2, the fatigue levels differ between subjects. However, if the subject had a 

relatively higher overall fatigue level in Experiment 1, he/she always had a relatively higher overall 

fatigue level in Experiment 2, correspondingly. 
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To evaluate the system from users’ experience, we conducted a survey including seven questions as 

shown in Table 3. The questions cover the alertness, muscle fatigue feeling, calmness and comfort in 

both experiments. The rating starts from 1 to 5 corresponding with the least to the most intensity. Each 

subject is asked to complete the survey after the experiments. 

Table 3. Survey of fatigue experiments. 

Questions 1 2 3 4 5 

Q1: Alertness before Doing 
Experiment 1 

Deeply asleep 
Lightly 
asleep 

Drowsy 
Fully awake 

and alert 
Hyper-alert 

Q2: Muscle Fatigue Feeling 
during Experiment 1 

No fatigue 
Mild 

fatigue 
Moderate 

fatigue 
Extreme 
fatigue 

The worst 
fatigue 

Q3: Calmness during 
Experiment 1 

Calm 
Slightly 
anxious 

Anxious Very anxious Panicky 

Q4: Alertness before Doing 
Experiment 2 

Deeply asleep 
Lightly 
asleep 

Drowsy 
Fully awake 

and alert 
Hyper-alert 

Q5: Muscle Fatigue Feeling 
during Experiment 2 

No fatigue 
Mild 

fatigue 
Moderate 

fatigue 
Extreme 
fatigue 

The worst 
fatigue 

Q6: Calmness during 
Experiment 2 

Calm 
Slightly 
anxious 

Anxious Very anxious Panicky 

Q7: Comfort in Wearing the 
Fatigue-Tracking System 

Not comfortable 
at all 

Mildly 
confortable 

Moderately 
comfortable 

Very 
comfortable 

Extremely 
comfortable 

The statistics of survey results is shown by box plot in Figure 10. The horizontal axis indicates the 

question index. The vertical axis shows the rating statistics. For each box (corresponding with one 

question), the upper and lower boundary represents the 25% and 75% of the interquartile range. The 

line and small square in the middle of the box indicates the median and mean value of the rating, 

respectively. Two small crosses locating above and below the box show the boundary of 1% and 99% 

of the rating values in the whole range. In Figure 10, we conclude the following results. First, nearly 

all the subjects are fully awake and alert before doing the experiments (from Questions 1 and 4), 

meaning their physiological status is proper for doing fatigue experiments. Second, during the fatigue 

experiments, the subjects averagely feel moderate fatigue whereas some of the subjects feel extreme 

fatigue in Experiment 1 and feel the worst fatigue in Experiment 2. All the subjects marked at least 

mild fatigue according to his/her feeling, which is consistent with the negative fatigue levels in  

Table 2. Overall, the subjects feel more fatigue in Experiment 2 compared in Experiment 1 (from 

Questions 2 and 5). Third, we compare the fatigue intensity change in Experiments 1 and 2 between 

the computed overall fatigue level and the subject’s feeling where 73% coincidence is confirmed. 

Fourth, during the fatigue experiments, the subjects are in the condition between calm and slightly 

anxious (from Questions 3 and 6). Fifth, generally, the subjects feel the proposed fatigue-tracking 

system is acceptable in comfort (between moderately comfortable and very comfortable in  

Question 7). 
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Figure 10. Statistics of the survey results regarding the fatigue experiments. Totally,  

7 questions are proposed on the alertness, muscle fatigue feeling, calmness and comfort in 

the fatigue experiments. 

 

7. Conclusions and Future Work 

In this paper, we developed a wearable wireless system for tracking the status of fatigue in human 

movement. The proposed system is based on scientific electromyography and kinesiology studies, 

which show that the mean frequency decreases with the increase of the fatigue intensity. According to 

previous work, we assume that the decrease of mean frequency satisfies a linear relation with working 

time of a muscle under fatigue. We then used a rigorous statistical analysis to prove this assumption, 

upon which the definition of localized muscular fatigue level is based on. We then tracked the 

localized muscular fatigue levels by updating the parameters with the most current measurements by 

considering the fatigue process as a dynamic process. Furthermore, the overall fatigue level 

corresponding to a human movement was computed by fusing different localized muscular fatigue 

levels together. Finally, the developed fatigue tracking system was tested and verified with two fatigue 

experiments involving 17 subjects. In the proposed method, the setting of the “forgetting factor” and 

fatigue level fusion coefficient might vary according to different muscle types and practical 

applications. This could be a limitation to the application of our method. Nonetheless, our future work 

is to clarify this parameter setting issue. 
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