000199879 001__ 199879
000199879 005__ 20181203023532.0
000199879 022__ $$a0960-9822
000199879 02470 $$2ISI$$a000336340000037
000199879 037__ $$aARTICLE
000199879 245__ $$aContact Angle at the Leading Edge Controls Cell Protrusion Rate
000199879 260__ $$aCambridge$$bElsevier$$c2014
000199879 269__ $$a2014
000199879 300__ $$a7
000199879 336__ $$aJournal Articles
000199879 520__ $$aPlasma membrane tension and the pressure generated by actin polymerization are two antagonistic forces believed to define the protrusion rate at the leading edge of migrating cells [1-5]. Quantitatively, resistance to actin protrusion is a product of membrane tension and mean local curvature (Laplace's law); thus, it depends on the local geometry of the membrane interface. However, the role of the geometry of the leading edge in protrusion control has not been yet investigated. Here, we manipulate both the cell shape and substrate topography in the model system of persistently migrating fish epidermal keratocytes. We find that the protrusion rate does not correlate with membrane tension, but, instead, strongly correlates with cell roundness, and that the leading edge of the cell exhibits pinning on substrate ridges a phenomenon characteristic of spreading of liquid drops. These results indicate that the leading edge could be considered a triple interface between the substrate, membrane, and extracellular medium and that the contact angle between the membrane and the substrate determines the load on actin polymerization and, therefore, the protrusion rate. Our findings thus illuminate a novel relationship between the 3D shape of the cell and its dynamics, which may have implications for cell migration in 3D environments.
000199879 700__ $$0243652$$aGabella, Chiara$$g176669$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0243656$$aBertseva, Elena$$g176766$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0243653$$aBottier, Celine$$g193368$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0245868$$aPiacentini, Niccolo$$g187649$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0246112$$aBornert, Alicia$$g220861$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0240917$$aJeney, Sylvia$$g158461$$uEcole Polytech Fed Lausanne, Lab Phys Complex Matter, CH-1015 Lausanne, Switzerland
000199879 700__ $$0240227$$aForro, Laszlo$$g105148$$uEcole Polytech Fed Lausanne, Lab Phys Complex Matter, CH-1015 Lausanne, Switzerland
000199879 700__ $$aSbalzarini, Ivo F.
000199879 700__ $$0240339$$aMeister, Jean-Jacques$$g105816$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 700__ $$0243647$$aVerkhovsky, Alexander B.$$g129621$$uEcole Polytech Fed Lausanne, Lab Cell Biophys, CH-1015 Lausanne, Switzerland
000199879 773__ $$j24$$k10$$q1126-1132$$tCurrent Biology
000199879 909C0 $$0252255$$pLCB$$xU10146
000199879 909C0 $$0252321$$pLPMC$$xU10142
000199879 909CO $$ooai:infoscience.tind.io:199879$$pSB$$particle
000199879 917Z8 $$x106178
000199879 937__ $$aEPFL-ARTICLE-199879
000199879 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000199879 980__ $$aARTICLE