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How can we develop a first-principle scaling of the SOL width?
The first step: simulations capturing SOL key features

Interpretation of the simulation results to get the SOL width scaling
)
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How do our theoretical estimates agree with experimental data
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First-principle full-scale 3D SOL simulations
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ntermittency in far SOL, Gaussian in near SO

0.5

0.45

at o,

0.35

0.3
0.25

0.2

0.15 | | | | | | | |
20 30 40 50 60 70 80 90 100 110

-1 -0.5 0 0.5 1

o
N

I
“20 30 40 50 60 70 80 20 100 110 t



2‘0 3‘0 46 5‘0 60
(r—a)/ps

10

S ® o - 0w =~ 1 o n < ® N — O
h

0 N ) L
o O O O o o

|
baq \osm: SSOUMD|S  SISOIM)

High fluctuation level, skewed PDF




Macroscopic ballooning turbulence
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Pressure profile fitted with an exponential




Pressure profile fitted with an exponential
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The GBS code, a tool to simulate SOL turbulence

Collisional )
Plasma Braginskii | p<<L, w<<Q, Drift-reduced

= model |=—— | Braginskii equations

ExB
Convection Magnetic curvature Parallel Outflow

an dynamics from core
i+ 1o - Cla) <n6le) - Wil

Te, T., G2 (vorticity) mss) similar equations
V|e V|, == parallel momentum balance
Vig=9

We derived a new, first-principle, set of boundary
conditions, generalizing Bohm-Chodura




The GBS code, a tool to simulate SOL turbulence

Collisional )
Plasma Braginskii | p<<L, w<<Q, Drift-reduced

= model |=—— | Braginskii equations

ExB
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a dynamics from core
i+ 1o - Cla) <n6le) - Wil

Te, T., G2 (vorticity) mss) similar equations
V|e V|, == parallel momentum balance
Vig=9

Solved in 3D, dynamics resulting from: plasma
outflow, turbulent transport, and parallel losses




The GBS code, a tool to simulate SOL turbulence

Collisional )
Plasma Braginskii | p<<L, w<<Q, Drift-reduced

= model |=—— | Braginskii equations

ExB
Convection Magnetic curvature Parallel Outflow

an dynamics from core
o T o] = O(L,) ~nC(0) - WVl - §

Te, T., G2 (vorticity) mss) similar equations

V|e V|, == parallel momentum balance
Vig=9

Simulations contain drift physics, turbulence (ballooning
modes, drift waves, ...), blobs, parallel flows, sheath losses..
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The key questions

How is the SOL width established?

The differences between LFS and HFS limited configurations!?

What determines the SOL electrostatic potential?

Are there mechanisms to generate toroidal rotation in the SOL!?



The key questions

e How is the SOL width established?

The differences between LFS and HFS limited configurations!?

What determines the SOL electrostatic potential?

Are there mechanisms to generate toroidal rotation in the SOL!?




Turbulence saturated by removing its
drive (gradient removal mechanism)
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Turbulence saturated by removing its
drive (gradient removal mechanism) f&

Turbulence Op
saturation: Or

L
t
GR hypothesis

Nonlocal linear theory, k. ~ 1/ ko /L,
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SOL width — operational parameter estimate
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SOL turbulent regimes

Instabilities driving turbulence depends mainly on ¢,7,5.
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SOL turbulent regimes

Instabilities driving turbulence depends mainly on ¢,7,5.
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SOL width in ballooning regime
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SOL width in ballooning regime
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SOL width in ballooning regime
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Simulations agree with ballooning estimates
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Good agreement with multi-machine measurements

The ballooning scaling, in S| units:
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Good agreement with multi-machine measurements

The ballooning scaling, in S| units:
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C-Mod simulations: 2 pressure scale Iength
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C-Mod simulations: 2 pressure scale Iength
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How can we approach the SOL width scaling?

* We can derive a first-principle scaling of the SOL width

* A drift-reduced model is able to represent the main
features observed experimentally in the SOL

* Full-size simulations show large fluctuations, intermittent
events, large scale ballooning turbulence

e SOL width established from the balance of parallel losses
and perpendicular transport, driven by the ballooning

instability and saturated by the gradient removal
mechanism

* Experimental observations generally in agreement with
theoretical observations
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Limited SOL width widens with R
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Limited SOL transport increases with 3 and v
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