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How can we develop a first-principle scaling of the SOL width?	


The first step: simulations capturing SOL key features 	

Interpretation of the simulation results to get the SOL width scaling	


How do our theoretical estimates agree with experimental data?	




First-principle full-scale 3D SOL simulations	
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Intermittency in far SOL, Gaussian in near SOL 	
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High fluctuation level, skewed PDF 	
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Macroscopic ballooning turbulence	
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Pressure profile fitted with an exponential	
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Pressure profile fitted with an exponential	
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The GBS code, a tool to simulate SOL turbulence  	


ρi<<L, ω<<Ωci	
Braginskii 
model	


Drift-reduced 
Braginskii equations	


Collisional	

Plasma	


Te, Ti ,Ω (vorticity)        similar equations	


V||e, V||i             parallel momentum balance	
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Parallel 
dynamics	


Magnetic curvature	
 Outflow 
from core	


E×B	

Convection	


∂n

∂t
+ [φ, n] = Ĉ(nTe)− nĈ(φ)−∇�(nV�e) + S

We derived a new, first-principle, set of boundary 
conditions, generalizing Bohm-Chodura	
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Solved in 3D, dynamics resulting from: plasma 
outflow, turbulent transport, and parallel losses	
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Parallel 
dynamics	


Magnetic curvature	
 Outflow 
from core	


E×B	

Convection	


∂n

∂t
+ [φ, n] = Ĉ(nTe)− nĈ(φ)−∇�(nV�e) + S

Simulations contain drift physics, turbulence (ballooning 
modes, drift waves, …), blobs, parallel flows, sheath losses… 	




The key questions	


	

•  How is the SOL width established? 	

	

	

•  The differences between LFS and HFS limited configurations? 	


•  What determines the SOL electrostatic potential?	


	

•  Are there mechanisms to generate toroidal rotation in the SOL?	
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SOL width – operational parameter estimate	


Simulations show 
expected scaling	


Balance of perpendicular 
transport and parallel losses 	


Bohm’s	
Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

Good agreement between theory and simulations
Lp predicted using self-consistent procedure
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SOL width in ballooning regime	
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Simulations agree with ballooning estimates	
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Good agreement with multi-machine measurements	


The ballooning scaling, in SI units:	
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C-Mod simulations: 2 pressure scale length	
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C-Mod simulations: 2 pressure scale length	
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C-Mod simulations: 2 pressure scale length	
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How can we approach the SOL width scaling?	

•  We can derive a first-principle scaling of the SOL width	

•  A drift-reduced model is able to represent the main 

features observed experimentally in the SOL	


•  Full-size simulations show large fluctuations, intermittent 
events, large scale ballooning turbulence 	


•  SOL width established from the balance of parallel losses 
and perpendicular transport, driven by the ballooning 
instability and saturated by the gradient removal 
mechanism 	


•  Experimental observations generally in agreement with 
theoretical observations	


http://people.epfl.ch/paolo.ricci	




Limited SOL width widens with   
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Limited SOL transport increases with     and  	


Introduction
Global model for SOL turbulence

What have we learnt so far ?
Conclusions

Saturation mechanism
Dominant instabilities
Electromagnetic effects
Scrape-off layer width scaling
Intrinsic rotation

Electromagnetic phase space
� Build dimensionless phase space with full linear system...
� Verify turbulent saturation theory with GBS simulations

� R = 500, βe = 0 to 3× 10−3, ν = 0.01, 0.1, 1, q = 3, 4, 6
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(it is not possible to run GBS with yz4 and no 
filtering...)	



