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1 Introduction Having a direct impact on the energy effi-
ciency has made the compliance a favorable element in the
robotic systems. Moreover, legged system can benefit from
compliance for stability, speed, adaptability and robustness.
Recently, we have studied the effects of compliant spine in
quadrupedal robots. We have observed that having nonlinear-
ity in the spine compliance can set a better trade-off between
speed and energy efficiency; see [1]. Similar to the spine
in quadruped robots, compliance at the hip joint of bipedal
robots can also improve the walking performance such as ro-
bustness; see [2]. Here, we test the efficacy of piecewise lin-
ear hip compliance for robust bipedal walking.

2 Passive curved-feet biped To test the effect of nonlinear
spring further, we made a toddler bipedal passive robot (sim-
ilar to [3]). The parts are inaccurate and the robot could not
stably walk on a slope in its original form. We added two lin-
ear rotational springs between the legs on the free joint at the
hip in a serial arrangement; a soft one with ks = 0.59N.m/rad
and one hard spring with kh = 0.8N.m/rad; see Fig. 1. The
arrangement of springs is such that the softer one is always
engaged while the hard spring is detached when the hip an-
gle is between -8 and +8 degrees. This results in a piecewise
linear spring at the hip joint.

3 Results We have tested the walking performance on a slope
in four different conditions: with no spring, only with the
soft one, only with the hard spring, and with the mentioned
piecewise linear spring. Fig. 2 shows four frames of the robot
walking passively. Each experiment starts with disturbing the
robot from standing still. Every experiment is repeated sev-
eral times and the average results are reported. The experi-
ments are categorized in four groups: OK, Damped, Stopped,
and Unstable. The OK category means the robot walks with
a stable and regular gait one meter on the slope. Stopped tag
is used if the robot suddenly stops after a few stable steps
of walking. Damped means having short steps and stopping
shortly after starting to walk. Unstable label is used when
the robot gait becomes unstable and it falls down after a few
steps of walking. Table 1 shows distribution of the experi-
ments with respect to the defined categories. As the results
show, the robot with no spring cannot walk stably while hav-
ing spring at the hip joint enhances the robot stability. The
nonlinear spring is superior in terms of stability – i.e. lowest
(highest) percentage in Unstable (OK) category – as well as
its walking distance.

 

 

 

over 160 cycles of running are logged. Note that the spine 

servos simulate a passive spine and their energy 

consumption is not included in our calculations. As the data 

in Table IV shows, changes in the spine stiffness do not 

affect the robot velocity significantly as the hip and the 

shoulder joint trajectories (the gait) are the same for all 

settings. Nevertheless, using nonlinear spines have resulted 

in energy efficiency over the hard spine case (case 10) up to 
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cases is imposing joint limit on the middle servo; that results 
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Nevertheless, the results show that making the side servos 
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efficiency cannot be attained with the same linear springs. 
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Fig. 20. Walking frames. The toddler robot (a) switches the stance leg 
and the swing leg, (b) stands on the left leg and swings the right leg, (c) 

stands on the right leg and starts swinging the left leg. (d) The robot 

stands on the right leg just before the left leg touches the ground.  

 
Fig. 19. Springs at the hip. (a) the soft spring is engaged and the hard 
one is detached. (b) both springs are engaged when the legs’ angle is 

bigger than a threshold.   
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TABLE V 

WALKING PERFORMANCE OF THE TODDLER ROBOT WITH DIFFERENT 

SPRING SETTING AT ITS HIP JOINT. 

 Ok Damp Stop Unstable 

No spring 0 % 5 % 30 % 65 % 

Soft spring 11 % 23 % 31 % 35 % 

Hard spring 43 % 9 % 19 % 29 % 

Nonlinear spring 56% 17 % 16 % 11 % 

 

 
Fig. 18. The toddler robot with rotational springs at its hip joint. 

Fig. 1: The toddler robot with rotational springs at its hip joint
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Fig. 18. The toddler robot with rotational springs at its hip joint. 
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Fig. 2: Snapshots of the curved-feet passive walker on the slope.

Table 1: Gait performance for different types of compliance.
OK Damped Stopped Unstable

Non-compliant 0% 5% 30% 65%
Soft spring 11% 23% 31% 35%
Hard sping 43% 9% 19% 29%
Nonlinear spring 56% 17% 16% 11%

4 Future Work We will focus on more analytic approaches
to design parallel compliance for legged systems.
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