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Introduction

Motivation
•e Basilisk Lizard can sustain highly dynamic legged locomotion on a range
of surfaces from hard-ground to water [1]
•is level of multiterrain locomotion facility is unseen in robotics
•We wish to develop an amphibious legged robotic system
•Gain insight into mobility on other yielding surfaces, such as granular media
and mud

Previous Work and Problem
• Prototype water running robot generates sufficient li forces
•Unstable in roll and pitch
•Undesired pitching motion was remedied by adding a tail [2]
•No proposed method for controlling roll or height

Objective
•Design a controller to regulate roll and height
•Develop a tractable model of the system to improve controller effectiveness
•Controller must simultaneously maintain a trot gait to minimize torques on
the body

SystemModeling
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Foot Trajectory Phase Diagram

(a) Robot foot locus and phase portrait
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Foot Trajectory Phase Diagram

(b) Simpliĕed foot locus and phase portrait

Figure 1: Real and simpliĕed leg trajectories (blue) and phase portraits (red).

Leg Model
•Only considers time-averaged vertical forces generated in one cycle of a
simpliĕed trajectory
•Assumes velocity of legs≫ velocity of body oscillations
•Allows for different foot velocties during the downwards and upwards phases
of the trajectory
•We integrate the following force equation [3] over the simpliĕed trajectory

F (t) = −C∗
D

[
1

2
Sρẏf(t)|ẏf(t)| + Sρgyf(t)

]
(1)

C∗
D drag coefficient, S area of foot, ρ water density, yf position of foot,

g acceleration of gravity

Robot Model
We linearize the result of integrating equation 1 and write the height and roll
dynamics of the robot in the form

M ¨⃗y = Ay⃗ +G +Bω⃗ (2)
y⃗ = [y, θ]T = height and roll
ω⃗ = [ω−

l , ω
+
l , ω

−
r , ω

+
r ]

T = plunge and retract leg frequencies for le
and right sides of robot

Controller Design

Central Pattern Generator (CPG)
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Figure 2: e CPG helps maintain a trot gait. Blue circles represent leg oscillators, black arrows
represent phase couplings, and red arrows represent external forcing signals [4].

Inverse Dynamics
•We use an inverse dynamics approach to reject disturbances

ω⃗ = B† [MPID(y⃗d − y⃗)− Ay⃗ −G] + (1−B†B)ω⃗0 (3)
•A heuristic is used to set ω⃗0 at each time step so that the nullspace is used to
ĕnd control inputs that help the system converge to a trot gait
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•Term 1: leg speeds at the next timestep are close to those at the last time step
•Term 2: leg speeds that help bring the robot back to a trot gait

Simulation Results
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(a) Result with k = 0 in term 2 of equation 4
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(b) Result with k = 10 in term 2 of equation 4

Figure 3: Response of roll angle and leg phase difference when the robot’s right side feet are
exposed to half sine wave changes in water level of varying amplitude at t = 2 s.
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Figure 4: Schematic of control system

Conclusion

Findings
•Using only ĕrst term of heuristic (Figure 3a):

• the robot easily leaves a trot gait when disturbed
• departure from a trot gait reduces the stability of the system
• the robot becomes unstable at higher amplitude disturbances

•Using both terms of the heuristic (Figure 3b):
•∼ 50% increase in maximum disturbance amplitude over a controller that only uses term 1
•∼ 100% increase in maximum disturbance amplitude over the open loop response
• projecting ω⃗0 into nullspace forces the robot to utilize differing plunge and retract rates
• this helps maintain a trot gait
• system can still be forced to leave a trot gait if the disturbance is large enough

Future Work
•We should test other possible heuristics for guiding the system back to a trot
gait
•Test the controller on a real robot to verify its robustness given:

•motor dynamics
•waves produced by feet
• sensor noise

(a) Current Robot Hardware (b) Real Basilisk Lizard

Figure 5: e current robot design compared to a real Basilisk Lizard. A rotating boom setup
will allow us to test the robot as it runs in a circle in a small pool.

Acknowledgement

is material is based upon work supported by the National Science Foundation Graduate
Research Fellowship under Grant No. (0946825).

References

[1] J. Glasheen and T. McMahon, “A hydrodynamic model of locomotion in the basilisk lizard,”
Nature, vol. 380, no. 6572, pp. 340–341, 1996.

[2] H. S. Park, S. Floyd, and M. Sitti, “Roll and pitch motion analysis of a biologically inspired
quadruped water runner robot,”e International Journal of Robotics Research, vol. 29,
no. 10, p. 1281, 2010.

[3] J. Glasheen and T. McMahon, “Vertical water entry of disks at low froude numbers,” Physics
of Fluids, vol. 8, p. 2078, 1996.

[4] A. Crespi and A. J. Ijspeert, “Amphibot ii: An amphibious snake robot that crawls and swims
using a central pattern generator,” in Proceedings of the 9th international conference on
climbing and walking robots (CLAWAR 2006), vol. 11, no. 7-8. Citeseer, 2006, pp. 19–27.

nitisht@andrew.cmu.edu, khoramsh@andrew.cmu.edu, auke.ijspeert@epfl.ch, sitti@cmu.edu


