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Abstract Lower and upper bounds for a given function are
important in many mathematical and engineering contexts,
where they often serve as a base for both analysis and
application. In this short paper, we derive piecewise linear
and quadratic bounds that are stated in terms of the Lipschitz
constants of the function and the Lipschitz constants of
its partial derivatives, and serve to bound the function’s
evolution over a compact set. While the results follow from
basic mathematical principles and are certainly not new, we
present them as they are, from our experience, very difficult
to find explicitly either in the literature or in most analysis
textbooks.

Keywords Lipschitz bounds· Twice continuously
differentiable functions· Piecewise linear and piecewise
quadratic bounds

1 Overview

We consider a functionf : Rn → R of the variablesx ∈ R
n

that is twice continuously differentiable (C2) over an open
set containing the compact setX . Becausef is C2 overX ,
its first and second derivatives on this set exist and must be
bounded by the Lipschitz constants

κ i <
∂ f
∂xi

∣

∣

∣

x
< κ i, i = 1, ...,n (1)

Mi j <
∂ 2 f

∂x j∂xi

∣

∣

∣

x
< Mi j , i, j = 1, ...,n (2)

for all x ∈ X .
The evolution off between any two pointsxa,xb ∈ X

may then be bounded as
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f (xb)− f (xa)≥
n

∑
i=1

min

[

κ i(xb,i − xa,i),

κ i(xb,i − xa,i)

]

, (3)

f (xb)− f (xa)≤
n

∑
i=1

max

[

κ i(xb,i − xa,i),
κ i(xb,i − xa,i)

]

, (4)

wherexa,i andxb,i denote theith elements of the vectorsxa

andxb, respectively.
The bounds (3) and (4) are piecewise linear inx.

Alternatively, one may also use the piecewise quadratic
bounds

f (xb)− f (xa)≥ ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

min

[

Mi j(xb,i − xa,i)(xb, j − xa, j),

Mi j(xb,i − xa,i)(xb, j − xa, j)

]

, (5)

f (xb)− f (xa)≤ ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

max

[

Mi j(xb,i − xa,i)(xb, j − xa, j),

Mi j(xb,i − xa,i)(xb, j − xa, j)

]

, (6)

which are locally less conservative but also require more
knowledge in the form of both the gradient and the Lipschitz
constants on the partial derivatives off . While one may
generalize this pattern to even higher orders, we will content
ourselves with the linear and quadratic cases as we believe
these to be sufficient for most applications – see, however,
[2] for a discussion of the cubic case.

2 Derivation of the Linear Bounds

To limit our analysis to a single dimension, we will
consider the line segment betweenxa andxb. The following
one-dimensional parameterization is used:

f̂ (γ) = f (x(γ)), (7)
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with x(γ) = xa + γ(xb − xa), γ ∈ [0,1]. As f is C2, it follows
that f̂ is as well, which allows us to use the Taylor series
expansion betweenγ = 0 and γ = 1, together with the
mean-value theorem [1], to state:

f̂ (1) = f̂ (0)+
d f̂
dγ

∣

∣

∣

γ̃
, (8)

for some γ̃ ∈ (0,1). We proceed to define the first-order
derivative in terms of the original functionf . To do this we
apply the chain rule:

d f̂
dγ

∣

∣

∣

γ
=

n

∑
i=1

∂ f
∂xi

∣

∣

∣

x(γ)

dxi

dγ

∣

∣

∣

γ
=

n

∑
i=1

∂ f
∂xi

∣

∣

∣

x(γ)
(xb,i − xa,i). (9)

Noting that f̂ (0) = f (xa) and f̂ (1) = f (xb), one may
substitute (9) into (8) to obtain

f (xb) = f (xa)+
n

∑
i=1

∂ f
∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i) . (10)

Becausex(γ̃) ∈ X , we may use (1) to bound the
individual summation components as

xb,i − xa,i ≥ 0⇔

κ i(xb,i − xa,i)≤
∂ f
∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)≤ κ i(xb,i − xa,i),

xb,i − xa,i ≤ 0⇔

κ i(xb,i − xa,i)≤
∂ f
∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)≤ κ i(xb,i − xa,i),

(11)

or, to account for both cases, as

min

[

κ i(xb,i − xa,i),

κ i(xb,i − xa,i)

]

≤
∂ f
∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)

≤ max

[

κ i(xb,i − xa,i),

κ i(xb,i − xa,i)

]

.

(12)

Substituting this result into (10) then yields (3) and (4).

3 Derivation of the Quadratic Bounds

The derivation is similar to that of the linear case, and simply
involves taking the Taylor series expansion one degree
higher, with

f̂ (1) = f̂ (0)+
d f̂
dγ

∣

∣

∣

0
+

1
2

d2 f̂
dγ2

∣

∣

∣

γ̃
(13)

for someγ̃ ∈ (0,1). Applying the chain rule

d f̂
dγ

∣

∣

∣

γ
=

n

∑
i=1

∂ f
∂xi

∣

∣

∣

x(γ)

dxi

dγ

∣

∣

∣

γ
= ∇ f (x(γ))T (xb − xa) (14)

and then differentiating once more with respect toγ yields

d2 f̂
dγ2

∣

∣

∣

γ
=

n

∑
i=1

d
dγ

(

∂ f
∂xi

∣

∣

∣

x(γ)

dxi

dγ

∣

∣

∣

γ

)

=
n

∑
i=1

d
dγ

(

∂ f
∂xi

∣

∣

∣

x(γ)

)

dxi

dγ

∣

∣

∣

γ
,

(15)

where we have ignored the terms corresponding tod2xi/dγ2

as all such terms are 0. Applying the chain rule again yields

d2 f̂
dγ2

∣

∣

∣

γ
=

n

∑
i=1

n

∑
j=1

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ)

dx j

dγ

∣

∣

∣

γ

dxi

dγ

∣

∣

∣

γ

=
n

∑
i=1

n

∑
j=1

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ)
(xb,i − xa,i)(xb, j − xa, j).

(16)

Substituting the results of (14) and (16) into (13), noting
that f̂ (0) = f (xa) and f̂ (1) = f (xb), and rearranging then
leads to

f (xb)− f (xa) = ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)(xb, j − xa, j).

(17)

The bounds on the quadratic term are derived in a
manner analogous to what was done in the linear case:

(xb,i − xa,i)(xb, j − xa, j)≥ 0⇔

Mi j(xb,i − xa,i)(xb, j − xa, j)≤

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)(xb, j − xa, j)≤

Mi j(xb,i − xa,i)(xb, j − xa, j),

(xb,i − xa,i)(xb, j − xa, j)≤ 0⇔

Mi j(xb,i − xa,i)(xb, j − xa, j)≤

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)(xb, j − xa, j)≤

Mi j(xb,i − xa,i)(xb, j − xa, j),

(18)

and, taking both cases into account, we obtain

min

[

Mi j(xb,i − xa,i)(xb, j − xa, j),

Mi j(xb,i − xa,i)(xb, j − xa, j)

]

≤

∂ 2 f
∂x j∂xi

∣

∣

∣

x(γ̃)
(xb,i − xa,i)(xb, j − xa, j)≤

max

[

Mi j(xb,i − xa,i)(xb, j − xa, j),

Mi j(xb,i − xa,i)(xb, j − xa, j)

]

,

(19)

which may be substituted into (17) to yield (5) and (6).

4 Other Versions

The bounds (3)-(6) allow a good degree of flexibility by
considering both lower and upper bounds on the different
partial derivatives. Such flexibility may be useful in certain
engineering contexts, wherea priori knowledge about the
system in consideration may be used coherently with the
lower and upper bounds on the derivatives [3]. However,
there are also contexts where these bounds may be needed
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for purely conceptual reasons and where simpler versions
are desired. For example, one might want to suppose [4]:

κi = κ i =−κ i ,

Mi j = Mi j =−Mi j ,
(20)

which, if we follow the same steps as before, yields

f (xb)− f (xa)≥−
n

∑
i=1

κi|xb,i − xa,i|, (21)

f (xb)− f (xa)≤
n

∑
i=1

κi|xb,i − xa,i|, (22)

f (xb)− f (xa)≥ ∇ f (xa)
T (xb − xa)−

1
2

n

∑
i=1

n

∑
j=1

Mi j|(xb,i − xa,i)(xb, j − xa, j)|,
(23)

f (xb)− f (xa)≤ ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

Mi j|(xb,i − xa,i)(xb, j − xa, j)|.
(24)

One may take this one step further and define the bounds
with respect to some standard norms. Defining

κ = max
i=1,...,n

κi, (25)

the bounds (21) and (22) become

f (xb)− f (xa)≥−κ‖xb− xa‖1, (26)

f (xb)− f (xa)≤ κ‖xb − xa‖1. (27)

For Bounds (23) and (24), we may consider the
following derivation:

n

∑
i=1

n

∑
j=1

Mi j|(xb,i − xa,i)(xb, j − xa, j)|

≤
n

∑
i=1

n

∑
j=1

Mi j|xb,i − xa,i||xb, j − xa, j|

≤
n

∑
i=1

n

∑
j=1

Mi j(xb,i − xa,i)
2,

(28)

which, with

M = max
i=1,...,n

n

∑
j=1

Mi j, (29)

allows for (23) and (24) to be simplified to:

f (xb)− f (xa)≥ ∇ f (xa)
T (xb − xa)−

1
2

M‖xb − xa‖
2
2, (30)

f (xb)− f (xa)≤ ∇ f (xa)
T (xb − xa)+

1
2

M‖xb − xa‖
2
2. (31)

It may also be shown that the bounds (3), (4), (5), (6),
(21), (22), (23), (24), (26), (27), (30), and (31) all hold with
strict inequality wheneverxa 6= xb. This follows from (11)
and (18).

We also refer the reader to [2] for more alternatives.

5 Local Bounds

As derived, the presented bounds are valid for any arbitrary
pair xa,xb ∈ X , which follows from the validity of the
Lipschitz constants over all ofX . In certain applications,
this globality may, however, add unnecessary conservatism
and thus motivate local relaxations [3]. Noting that the
derivations of the bounds only require them to be valid on
the line betweenxa andxb, let us define the local Lipschitz
constants with respect to these two points in particular as

κa,b
i <

∂ f
∂xi

∣

∣

∣

x
< κa,b

i , i = 1, ...,n, ∀x ∈ Xa,b, (32)

Ma,b
i j <

∂ 2 f
∂x j∂xi

∣

∣

∣

x
< M

a,b
i j , i, j = 1, ...,n, ∀x ∈ Xa,b, (33)

with

Xa,b = {xa + γ(xb − xa) : γ ∈ [0,1]}. (34)

This then yields the corresponding local versions of
(3)-(6):

f (xb)− f (xa)≥
n

∑
i=1

min

[

κa,b
i (xb,i − xa,i),

κa,b
i (xb,i − xa,i)

]

, (35)

f (xb)− f (xa)≤
n

∑
i=1

max

[

κa,b
i (xb,i − xa,i),

κa,b
i (xb,i − xa,i)

]

, (36)

f (xb)− f (xa)≥ ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

min

[

Ma,b
i j (xb,i − xa,i)(xb, j − xa, j),

M
a,b
i j (xb,i − xa,i)(xb, j − xa, j)

]

,
(37)

f (xb)− f (xa)≤ ∇ f (xa)
T (xb − xa)+

1
2

n

∑
i=1

n

∑
j=1

max

[

Ma,b
i j (xb,i − xa,i)(xb, j − xa, j),

M
a,b
i j (xb,i − xa,i)(xb, j − xa, j)

]

.
(38)
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