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Abstract Lower and upper bounds for a given function are

important in many mathematical and engineering contexts,

where they often serve as a base for both analysis anfix,) — f(Xa me[
application. In this short paper, we derive piecewise linea

and quadratic bounds that are stated in terms of the Lipschit Xpi — Xai),
constants of the function and the Lipschitz constants of (X Zlmax[_' ' Xai) } (4)
its partial derivatives, and serve to bound the function’s el

evolution over a compact set. While the results follow fromwherexa. andxy; denote thé™" elements of the vectors,
basic mathematical principles and are certainly not new, wangy, respectively.

present them as they are, from our experience, very difficult  The pounds[{3) and(4) are piecewise linear xn

to find explicitly either in the literature or in most analysi Alternatively, one may also use the piecewise quadratic
textbooks. bounds
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quadratic bounds 52 > min [ﬁ
i=1]=1

f(xp) — f(Xa) > Of (%a) (X — Xa)+
AL j (Xoj — Xal)(xb,j—xa,j)v} (5)
(Xo,i — Xa,i) (Xo,j —Xaj) |’
1 Overview f(Xb)—f( )<Df( )T (X0 — Xa)+
Z maX[_IJ Xbl )(ij ) :| (6)
We consider a functiori : R" — R of the variablesc € R" ZiZ\ Mij (X0 — Xai) (Xo,j —Xaj) |’

that is twice continuously differentiableX) over an open which are locally less conservative but also require more
set containing the compact sgf. Because is C? over.2’, y q

knowledge in the form of both the gradient and the Lipschitz
its first and second derivatives on this set exist and must be

constants on the partial derivatives bf While one may
bounded by the Lipschitz constants

generalize this pattern to even higher orders, we will cainte

K < af i—1 n (1) ourselves with the linear and quadratic cases as we believe

=T 0x Ix T these to be sufficient for most applications — see, however,
o [2] for a discussion of the cubic case.

M < ——— Mii, i,j=1,..,n 2

=) 0XJ aXi N 1] J ( )

forallxe 2. 2 Derivation of the Linear Bounds

The evolution off between any two pointg, x, € 2

may then be bounded as To limit our analysis to a single dimension, we will

consider the line segment betwegrandx,. The following

Laboratoire d'Automatique, Ecole Polytechnique Fétiérale  one-dimensional parameterization is used:
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with X(y) = Xa+ Y(% — %), Y € [0,1]. As f isC?, it follows  where we have ignored the terms correspondirdfig/dy?
that f is as well, which allows us to use the Taylor seriesas all such terms are 0. Applying the chain rule again yields
expansion betweery = 0 and y = 1, together with the

2f 2 , :
mean-value theorernl[1], to state: d-f c i o°f % %’
oF dy? ly Zl axjdx. y dy lydyly (16)
f(1) = f(0)+ (8) 0o g2
W=for+gl|, = 2, 3 35035 by Ot )00 )
for somey € (0,1). We proceed to define the first-order
derivative in terms of the original functioh To do this we Substituting the results df (114) arid{16) info](13), noting
apply the chain rule: that f(0) = f(xa) and f(1) = f(xp), and rearranging then
df’ Cof dx ‘ of ") o leads to
| = B 0)-
Z‘M Zi‘”“ X F() — T0) = Df( )’ (Xb*Xa)JF
. r 12
Noting that f(0) = f(x) and f(1) = f(x,), one may 5 Z (3x (3x Xpi — Xa,i) (Xp,j — Xa,j)- 17)
substitute[(B) intd[(8) to obtain e
= of The bounds on the quadratic term are derived in a
f =f — i — Xai
() = ) + 210 i ‘ X Ve (10) manner analogous to what was done in the linear case:

Becausex(y) € 27, we may use[{l) to bound the (X —Xai) (X.j — Xaj) > 0=
individual summation components as '
M (Xo,i — Xa,i) (Xo,j — Xa,j) <

—Xgi > 0& 221
of _ . .
Ki(Xpi —Xai) < 5| (Xoi—Xai) < Ki(Xoji — Xai), 9% 9% Ix (Xb' Xai) (Xo.j —Xaj) <
0% Ix(y) (11) )
—X%i<0& ot Mij(Xb,i—Xa,i)(Xb,j—Xa,j); (18)
Ki(Xo, — Xaji) < 7% Ix (Xm Xai) < Ki(Xoj — Xai), (X — Xa) (Xoj —¥aj) <0 &
or, to account for both cases, as Mij (Xpj —Xai) (Xo,j — Xa,j) <
i(Xoi — Xaji), } of 9%f
min <—| (x i Xpi —Xa i) <
[ Ki (Xo,i — ,) 3 by 01 %) (12) 9%)0% Ix( p o1~ (0 —Xa)) <
Ki (Xo,i — Xaii),
< max ’ . M;: (X Xo.i —Xa.i),
[K(Xm i 001 1) 4 )
Substituting this result intd{10) then yields (3) afH (4). and, taking both cases into account, we obtain
min{gij(xb,i—xa,i)(xb,j—Xa,j),} <
3 Derivation of the Quadratic Bounds Mij(Xo,i — Xa,i) (Xo,j —Xa,j) | ~
o . . 02 f
The derivation is similar to that of the linear case, and $imp % 9% Ik (Xb Xai)(Xo,j — Xa,j) < (19)
i

involves taking the Taylor series expansion one degree

higher, with maX[M § (% — Xai) (Xp,j Xa,j),]
- or Mij (Xpi — Xa,i) (Xo,j —%a,j) |’
f“(l)—f‘(O)Jrg‘ Eﬂ\ (13)
B dylo  2dy2ly which may be substituted intb {11 7) to yield (5) ahdl (6).
for somey € (0,1). Applying the chain rule
df naf dx i
_’ _ Z = ax; ‘ — OF (x(Y)T (% — Xa) (14) 4 Other Versions

The bounds[{3)E{6) allow a good degree of flexibility by
considering both lower and upper bounds on the different
partial derivatives. Such flexibility may be useful in cénta
) engineering contexts, wheeepriori knowledge about the
dy y (15) system in consideration may be used coherently with the

and then differentiating once more with respecy tgelds

d2f

dTZ‘dev(a
nd/of
_Z@(ﬁm

of

dx; lower and upper bounds on the derivatives [3]. However,
dyly there are also contexts where these bounds may be needed
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for purely conceptual reasons and where simpler versions Local Bounds

are desired. For example, one might want to suppdse [4]:

Kizwi:_ﬁi7

- (20)
Mij = Mijj = —M,

ij s
which, if we follow the same steps as before, yields

f(xp) — Xa)Z—_iKi|Xb,i—Xa,i|, (21)
fOxp) = fxa) < iKilxb,i — Xajl, (22)
f(X) — f( ) 2 Uf (xa )T (X6 — Xa)—
zZZM'JI Xai) (%) = Xa. )| (23)
f (%) — f( ) <0f0a )T (X — Xa) +
Xai) (Xp,j — Xa,j)- (24)

13 Al

As derived, the presented bounds are valid for any arbitrary
pair Xa,X, € £, which follows from the validity of the
Lipschitz constants over all of". In certain applications,
this globality may, however, add unnecessary conservatism
and thus motivate local relaxations| [3]. Noting that the
derivations of the bounds only require them to be valid on
the line betweer, andx, let us define the local Lipschitz
constants with respect to these two points in particular as

0 —ab -
@00 me b weZa (@
2
ab_ 0°f | _srab L
Mij < 9x; 9% Ix Mij", 1j=1..n, VX€ Zap. (33)
with

Zab={Xa+Y(Xp—Xa) 1y € [0,1]}. (34)

One may take this one step further and define the bounds Thjs then yields the corresponding local versions of

with respect to some standard norms. Defining @)-[©):
K= max ki, (25) n abr, . .
i=1,..., f(Xp) — f(Xa) > Zmin %:ayb(xm Xa’?), ) (35)
the bounds[(Zl) an@(P2) become = ki (i —Xai)
n ab
f(Xo) — f(Xa) > —K|[Xo — Xal1, (26)  f(xy)— f(xa) < 3 max| Ki (01 —%ai); (36)
( be) = iZi Ki™ (X, — Xa,)
f(xp) — f(Xa) < KI[Xo —Xal[1- @7 f(x) - f( ) > O (Xa)T (X — Xa) +
. b
For Bounds [[28) and[{24), we may consider the . M?J bi — Xai)(Xo,j —Xa), (37)
following derivation: 2 Z\J "y _ﬂ’b (Xo,i — Xa,i) (Xo,j — Xa,j) ’
n n
le Mij| (%o — Xa,i) (Xb,j — Xa,)| f(%o) — f( ) < Df(xa ) (Xb*Xa)JF
SIS szax _,, ®(Xoi — Xai) (Xo,) —Xa ), - (38)
SZZ Mij[Xoi — Xa,i|[X6,j — Xa,j| (28) Xb| Xai)(Xp,j — Xa,j)
I:n jil ,
_i;gl 101 = Xai)", References
which, with 1. G. A. Korn and T. M. Korn (2000). Mathematical Handbook for
n Scientists and Engineers. Dover Publications.
M= max Mi i (29) 2. C. Cartis, J. M. Fowkes, and N. I. M. Gould (2013). Branghin
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f _f > [Of Ty M _ 2 30 techniques for the SCFO experimental optimization frantkwo
(%) = F(xa) 2 Of ()" (6 —Xa) = SMIXo —allz, - (30)  RMEv 06
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It may also be shown that the boun@s (8), (&), &), (6),

(23), (22), (28),[(24) [(26)[(27).(B0), arld [31) all holdthwi
strict inequality wheneveg, # xy. This follows from [11)

and [18).

We also refer the reader {0 [2] for more alternatives.
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