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Abstract—Soft constrained MPC is frequently applied in prac-
tice in order to ensure feasibility of the optimization during
online operation. Standard techniques offer global feasibility by
relaxing state or output constraints, but cannot ensure closed-
loop stability. This paper presents a new soft constrained MPC
approach for tracking that provides stability guarantees even
for unstable systems. Two types of soft constraints and slack
variables are proposed to enlarge the terminal constraint and
relax the state constraints. The approach ensures feasibility
of the MPC problem in a large region of the state space,
depending on the imposed hard constraints, and stability is
guaranteed by design. The optimal performance of the MPC
control law is preserved whenever all state constraints can be
enforced. Asymptotic stability of all feasible reference steady-
states under the proposed control law is shown, as well as input-
to-state stability for the system under additive disturbances. The
soft constrained method can be combined with a robust MPC
approach, in order to exploit the benefits of both techniques. The
properties of the proposed methods are illustrated by numerical
examples.

Index Terms—Soft constraints, Model Predictive Control

I. INTRODUCTION

In control systems, there are generally two types of con-
straints: those originating from physical limitations of the
actuators or the system itself, including critical bounds related
to, e.g., safe operation of the plant, or constraints derived
from desired system specifications. While input constraints can
therefore generally not be exceeded, state or output constraints
can either be hard if they fall under the first category, or
they can be considered soft. Violation may then in practice
be tolerated for short time periods, e.g. because of unexpected
disturbances. Model predictive control (MPC) is a successful
paradigm for the control of constrained systems and offers
guaranteed constraint satisfaction as well as stability in closed-
loop, when all constraints are enforced in the MPC problem
[1]. Imposing hard state or output constraints can, however,
be overly conservative or render the optimization problem
infeasible in closed-loop operation. One possible remedy is to
simply remove the constraints for some portion of the predic-
tion horizon until the problem becomes feasible. However, this
may lead to large constraint violations in closed-loop, when
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implementing the first control input of the horizon, without any
possibility to tune the amount of violation. A popular approach
is a so called soft constrained technique, where state or output
constraints are relaxed and the size of the violation is penalized
in the cost. While this recovers feasibility of the MPC problem
and offers the ability to tune the performance, standard soft
constrained MPC schemes generally do not provide stability
guarantees.

In this paper we propose a soft constrained linear MPC
approach for tracking that guarantees stability even for open-
loop unstable systems. Although soft constraints are widely
used in practical implementations of MPC, this topic has
received comparably little attention in the literature. In [2],
a condition on the quadratic penalty on the output constraint
violation is derived to guarantee stability for single-input
single-output systems. In [3], MPC with hard input and soft
output constraints is considered and stability is proven for
open-loop stable systems by showing that the stability proof in
MPC extends to this case. This result also holds for marginally
stable systems, if the horizon length is sufficiently long, which
is however difficult to choose in practice. The performance
of soft constrained MPC for relaxing output constraints was
investigated in [4]. The use of exact penalty functions in order
to enforce hard constraints when possible is discussed in [5],
[6], in which case the stability properties are preserved in the
feasible set of the corresponding hard constrained problem. In
[7], a Youla parametrization is employed and robust stability
of the hard or soft constrained problem is enforced by adding
an LMI to the MPC problem. The use of barrier functions to
replace constraints presented in [8] is a related idea, however
the key difference is that the barrier imposes a penalty inside
the constraint set, whereas in soft constrained schemes a
penalty is only imposed on the constraint violation. As a result,
this approach only provides stability in the feasible set of the
corresponding hard constrained problem.

The method proposed in this paper has the advantage
that it is conceptually similar to a standard soft constrained
technique usually applied in practice, but it also maintains the
desirable properties of MPC. Feasibility of the MPC problem
is ensured in a large region of the state-space, which depends
on the imposed hard constraints. Stability is guaranteed by
design, while allowing to tune the system performance and
the amount of constraint violation. The method is based on
the MPC approach for tracking introduced in [9] and uses a
finite horizon with a terminal weight as well as a terminal
constraint. All input constraints are hard constraints, while
state constraints are softened in two ways. Since a complete
relaxation of the terminal constraint leads to a loss of the
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stability properties, we restrict the amount of relaxation by
using an enlarged terminal set. All other state constraints are
softened by the introduction of two types of slack variables,
which is a crucial item for proving stability. The approach
allows for any positive definite, convex penalty function on
the constraint violation. Here, we include a quadratic and an
l1- or l∞-norm penalty in order to allow for better tuning and
for exact penalty functions, which preserve the optimal MPC
behavior whenever the state constraints can be enforced [4],
[5]. The proposed problem setup results in a convex second-
order cone program (SOCP), which can be solved efficiently
using, e.g., interior-point methods [10]–[13].

We show that asymptotic stability of all feasible reference
steady-states in the absence of disturbances is guaranteed
within the feasible set of the soft constrained MPC problem.
In addition, input-to-state stability of the proposed scheme
under additive disturbances is proven. The robust invariant set,
in which input-to-state stability can be guaranteed, depends
on the maximum disturbance size. Using the presented soft
constrained method, stability can be provided in a potentially
much larger set than with a hard constrained method and
unexpected disturbances can be tolerated by relaxing state
constraints. The soft constrained scheme can also be com-
bined with a robust MPC framework. The advantages of both
techniques can be exploited in order to account for a certain
disturbance size with a robust design, while dealing with
exceeding disturbances by means of soft constraints. We show
that the stability results extend to the combined robust and soft
constrained approach.

A numerical example demonstrates that the proposed
scheme provides feasibility and stability for a large region of
the state space and that significant disturbances can be toler-
ated. Application to a large-scale example shows that the soft-
constrained MPC problem can be solved with computation
times in the millisecond range even for significant problem
dimensions.

This paper extends the initial work in [14] to a soft con-
strained method for tracking and proposes a new combination
of the soft constrained scheme with robust MPC, including
new theoretical and numerical results. The outline of the paper
is as follows: After reviewing some preliminary results in
Section II, Section III introduces the problem and the proposed
soft constrained MPC formulation for tracking. Asymptotic
stability of the nominal system under the resulting control
law is proven in Section IV. Section V shows input-to-state
stability of the uncertain system under the soft constrained
control law as well as the combined robust and soft con-
strained approach. The properties of the presented approach
are illustrated in Section VI by numerical examples.

II. PRELIMINARIES

A polyhedron is the intersection of a finite number of
halfspaces P = {x|Ax ≤ b} and a polytope is a bounded
polyhedron. If A ∈ Rm×n, then Ai ∈ Rn is the vector formed
by the i’th row of A. If b ∈ Rm is a vector, then bi is the
i’th element of b. Given a sequence u , [u0, · · · , uN−1], uj
denotes the j’th element of u. If a sequence depends on a

parameter denoted by u(x), uj(x) denotes its j’th element.
If x ∈ Rn is a vector and Q is a positive semi-definite
matrix, then ‖x‖2Q = xTQx and [x]+ = max{0, x} taken
elementwise. A function γ : R≥0 → R≥0 is of class K if
it is continuous, strictly increasing and γ(0) = 0 [15]. If in
addition γ(s) → ∞ as s → ∞, then it is of class K∞. A
function β : R≥0 × R≥0 → R≥0 is of class KL if for each
fixed t ≥ 0, β(·, t) is of class K, for each fixed s ≥ 0, β(s, ·)
is non-increasing and β(s, t)→ 0 as t→∞ [15].

Consider the discrete-time uncertain linear system

x(k + 1) = Ax(k) +Bu(k) + w(k), k ∈ N (1)

that is subject to the following constraints:

x(k) ∈ X ⊂ Rn, u(k) ∈ U ⊂ Rm , (2)

where x(k) is the state, u(k) is the control input and w(k) ∈
W ⊂ Rn is a bounded disturbance at the k’th sample time.
X , {x | Gxx ≤ fx} and U , {u | Guu ≤ fu}, where Gx ∈
Rpx×n, fx ∈ Rpx and Gu ∈ Rpu×m, fu ∈ Rpu , are polytopic
constraints on the states and inputs that each contain the origin
in their interior. W is a convex and compact disturbance set
that contains the origin. When it is convenient, we make use of
the lighter notation x+ = Ax+Bu+w, where x+ denotes the
successor state at the next sampling time. The nominal model
of system (1) describes the system considering no disturbance,
given by

x̄(k + 1) = Ax̄(k) +Bū(k) . (3)

The solution of the uncertain system controlled by the control
law u(k) = κ(x(k)) at sampling time k for the initial state
x(0) and for a sequence of disturbances w is denoted as
φκ(k, x(0),w).

A steady-state and input pair zs , (xs, us) of the nominal
system (3) is characterized by the condition (I−A)xs = Bus.
The constraints limit the set of feasible steady-states to S ,
{(xs, us)| (xs, us) ∈ X×U, (A− I)xs+Bus = 0} and in the
soft constrained case to Ss , {(xs, us) |us ∈ U, (A− I)xs+
Bus = 0}. The set of admissible steady-states for tracking is
given by Str , {(xs, us) | (1+ ξ)Gxxs ≤ fx, (1+ ξ)Guus ≤
fu, (A − I)xs + Bus = 0} ⊂ S , where 0 < ξ � 1 is a
small positive constant, restricting the reference to the interior
of the constraints. While the system under consideration may
be unstable, it is assumed to satisfy the following standing
assumption:

Assumption II.1. The pair (A,B) is stabilizable.

The following standard definitions can be found in [16]:

Definition II.2 ((Robust) positively invariant set). A set
S ⊆ Rn is a robust positively invariant (RPI) set of system
x+ = f(x) + w, if f(x) + w ∈ S for all x ∈ S,w ∈ W .
S is called a positively invariant (PI) set of system x+ = f(x),
if f(x) ∈ S for all x ∈ S.

Stability of an uncertain system will be analyzed using the
framework of input-to-state stability (ISS):

Definition II.3 (Regional ISS [17], [18]). Given an RPI set
Γ ⊆ Rn containing the origin in its interior, system x(k +
1) = f(x(k)) +w(k) is Input-to-State Stable (ISS) in Γ with
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respect to w(k) ∈ W , if there exists a KL-function β and
a K-function γ such that for all initial states x(0) ∈ Γ and
for all disturbance sequences w , [wj ]j≥0 with wj ∈ W:
‖φκ(k, x(0),w)‖ ≤ β(‖x(0)‖, k) + γ(‖w[0,k−1]‖) ∀ k ≥ 0,
where ‖w[0,k−1]‖ , max{‖wj‖, j ∈ [0, k − 1]}.
Note that the condition for input-to-state stability reduces to
that for asymptotic stability, if wj = 0 for all j ≥ 0.

Theorem II.4 (Regional ISS [19], [20]) Let Γ be an RPI set
for system x(k + 1) = f(x(k)) + w(k) and S ⊆ Γ be a
compact set, both including the origin as an interior point.
If there exists a function V : Rn → R+, suitable K∞-class
functions α1, α2, α3 and a K-class function γ such that:

V (x) ≥ α1(‖x‖) ∀x ∈ Γ , (4a)
V (x) ≤ α2(‖x‖) ∀x ∈ S , (4b)
V (f(x) + w)− V (x) ≤ −α3(‖x‖) + γ(‖w‖) (4c)

∀x ∈ Γ, w ∈ W , (4d)

V (·) is called an ISS Lyapunov function in Γ and the system
x(k+1) = f(x(k))+w(k) is ISS in Γ with respect to w ∈ W .

A. MPC for Tracking Piecewise Constant References

We consider the problem of tracking a given reference
steady-state zr , (xr, ur) ∈ Str starting from a given initial
state x. This work employs the tracking formulation introduced
in [9] as the basis for the proposed soft constrained scheme,
offering recursive feasibility and an enlarged region of attrac-
tion compared to the standard approach of applying a change
of variables [20], [21]. An artificial steady-state is introduced,
which may deviate from the desired reference if the latter is
not a feasible target from the current state, and can be seen
as an artificial set point that is simultaneously steered to the
reference. The cost is then designed for tracking the artificial
steady-state, where a penalty term on the deviation between
the artificial and the real steady-state ensures convergence to
the desired reference. The resulting nominal MPC problem for
tracking PN (x, zr) is given by:

VN (x,u, zs, zr) ,
N−1∑
i=0

l(xi − xs, ui − us) + Vf (xN − xs)

+ Vo(xs − xr, us − ur) (5a)

V ∗N (x, zr) , min
x,u,zs

VN (x,u, zs, zr) (5b)

s.t. x0 = x , (5c)
xi+1 = Axi +Bui , (5d)
(xi, ui) ∈ X× U , (5e)
xN ∈ Xf (xs, us) , (5f)
(xs, us) ∈ S , (5g)

for i = 0, . . . , N − 1, where x = [x0, x1, · · · , xN ] and
u = [u0, · · · , uN−1] denote the state and input sequences, the
stage cost is defined as l(x, u) , ‖x‖2Q+‖u‖2R, Vf (x) , ‖x‖2P
is a terminal penalty function and Q,R and P are sym-
metric positive definite matrices. In this tracking formulation
zs = (xs, us) denotes the artificial steady-state and input pair,

Xf (xs, us) is a compact terminal set for tracking that is pa-
rameterized by the steady-state, and Vo(·, ·) : Rn×Rm → R+

is a positive definite cost on the tracking offset. We refer to
[9], [22] for more details on this approach.

Problem PN (x, zr) implicitly defines the set of feasible con-
trol sequences UN (x, zs) , {u | ∃ x s.t. (5c)− (5f) hold} and
feasible initial states XN , {x | ∃zs ∈ S s.t. UN (x, zs) 6= ∅}.
Note that the feasible set is independent of the given reference.
The resulting MPC control law for tracking is given in a
receding horizon fashion by

κ(x, zr) = u∗0(x, zr) , (6)

where u∗(x, zr) is the optimal solution to Problem PN (x, zr).

Assumption II.5. It is assumed that for any given (xs, us) ∈
S, Vf (x− xs) is a Lyapunov function in Xf (xs, us) and that
Xf (xs, us) is a PI set for the nominal system (3) under the
local control law for tracking κf (x) = K(x−xs)+us, which
can be stated as the following conditions:
A1: Vf ((A+BK)(x− xs))− Vf (x− xs)

≤ −l(x− xs,K(x− xs)) ∀x ∈ Xf (xs, us) .
A2: Xf (xs, us) ⊆ X, Ax+Bκf (x) ∈ Xf (xs, us),

κf (x) ∈ U ∀x ∈ Xf (xs, us) .

Theorem II.6 (Nominal stability under κ(x, zr) [9])
Let (xr, ur) ∈ Str be a given reference steady-state.
xr is asymptotically stable for the closed-loop system
x+ = Ax+Bκ(x, zr) with region of attraction XN .

The extension of this tracking scheme to a robust tube-
based MPC framework for systems with bounded additive
disturbances of the form (1) was considered in [23].

III. SOFT CONSTRAINED MPC - PROBLEM SETUP

This paper develops a soft constrained MPC method based
on the tracking formulation PN (x, zr), which provides sta-
bility guarantees in the presence of soft constraints. We first
briefly discuss in the following why the stability properties
are lost using a standard soft constrained technique, and then
present the new formulation.

A. Problem Statement

A commonly applied approach is to relax all state con-
straints by the introduction of slack variables εi and to mini-
mize the amount of constraint violation by including penalty
functions on the slack variables in the MPC cost, i.e. to replace
xi ∈ X in (5e) with Gxxi ≤ fx + εi and to add

∑N−1
i=0 lε(εi)

to the cost function in (5b), where εi ≥ 0 and lε is a positive
definite function. Stability would be preserved in this case
when imposing a terminal set, in which all state and input
constraints are satisfied. Note that the method in [33] can be
considered as an approach with a hard terminal constraint, but
since the terminal set is Rn for stable systems, global stability
can be shown. For marginally stable or unstable systems as
considered in this paper, a hard terminal constraint represents
a significant limitation. In order to ensure feasibility of the
MPC problem in a large region of the state space, an extremely
long prediction horizon would have to be chosen or it would
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have to be adapted online; both approaches are undesirable
for implementation. Similarly, stability would be guaranteed
by using an infinite horizon, which is however intractable in
the presence of additional hard constraints.

If the terminal constraint is relaxed by a slack variable that is
minimized in the cost, the stability guarantee is lost even in the
nominal case. The stability proof employing the optimal MPC
cost as a Lyapunov function fails for two possible reasons.
If the terminal state is outside the region where a control
law stabilizing the unconstrained system is feasible, no input
sequence is available for proving a decrease in the cost. If the
local control law satisfies the input constraints, but the state
constraints are violated, a decrease in the cost can no longer
be guaranteed due to the addition of the slack penalties to the
cost function.

B. Soft Constrained MPC Problem Formulation

A stability guarantee by means of the standard stability
proof in MPC has to be sacrificed in exchange for a complete
relaxation of the terminal constraint. In this work, we therefore
propose to use a restricted relaxation by means of an enlarged
terminal set that enforces only the input constraints. In ad-
dition, two different types of slack variables are employed,
which will be key in proving (input-to-state) stability in a
large feasible set. The proposed soft constrained MPC problem
PsN (x, zr) is given by:

Problem PsN (x, zr) (Soft constrained MPC problem)

V sN (x,u, zs, ε, zr) ,VN (x,u, zs, zr) + lε(εs) +

N−1∑
i=0

lε(εi + εs)

V s∗N (x, zr) = min
x,u,zs,ε

V sN (x,u, zs, ε, zr) (7a)

s.t. x0 = x , (7b)
xi+1 = Axi +Bui , (7c)
Guui ≤ fu , (7d)
Gxxi ≤ fx + εs + εi , (7e)
xN ∈ Esf (xs, us) , (7f)

(xs, us) ∈ Ss , (7g)
(1 + ξ)Gxxs ≤ fx + εs , (7h)
c‖xN − xs‖T ≤ fx + εs −Gxxs (7i)
εi ≥ 0 , εs ≥ 0 , (7j)

for i = [0, . . . , N − 1], where ε = [ε0, . . . , εN−1, εs] are the
slack variables corresponding to the state sequence x. The
offset cost is defined as Vo(xs − xr, us − ur) = ρx‖xs −
xr‖p + ρu‖us − xr‖p and the penalty function on the slack
variables is taken as lε(ε) = ‖ε‖2S + ρε‖ε‖p, where S is a
symmetric positive semi-definite matrix, p ∈ {1,∞}, and
ρx, ρu, ρε ∈ R+ are positive constant weights. We use an
invariant ellipsoidal terminal set, given by

Esf (xs, us) ,
{
x
∣∣∣ ‖x− xs‖2T ≤ 1− r(xs, us)

}
, (8)

where T ∈ Rn×n is a symmetric positive definite matrix and
r : Ss → [0, 1) is a quadratic positive definite function. ξ ∈

R+ is a small positive constant and c ∈ Rpx is a constant
vector with ci , ‖T−

1
2GTx,i‖2 ∀ i = 1, . . . , px.

The modifications introduced in Problem PsN (x, zr) are ex-
plained in the following sections and are illustrated in Figure 1.
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Fig. 1. Illustration of the optimal slack variables ε∗s , ε∗i , i = 0, 1, 2, 3, the
terminal set Esf (x∗s , u

∗
s), the scaled terminal set EsT (x∗N , x

∗
s) and enlarged

terminal set Csf for an initial state x outside X.

Problem PsN (x, zr) implicitly defines the set of feasible con-
trol sequences UsN (x, zs) = {u | ∃ x s.t. (7b)− (7d), (7f) hold}
and feasible initial states X sN , {x | ∃zs ∈ Ss s.t. UsN (x, zs) 6=
∅}. For a given state x ∈ X sN and reference zr ∈ Str, Problem
PsN (x, zr) results in a convex second order cone program
(SOCP) and its solution yields the optimal control sequence
us∗(x, zr). Note that SOCPs can be efficiently solved using,
e.g., interior-point methods [10]–[13]. The implicit optimal
soft constrained MPC control law is then given in a receding
horizon fashion by

κs(x, zr) , us∗0 (x, zr) . (9)

1) Relaxation of the Terminal Constraint: The terminal set
for tracking in (7f) is relaxed by two effects: i) by allowing the
artificial set point to move to any steady-state (xs, us) ∈ Ss
satisfying only the input constraints, ii) by allowing the state
constraints to be violated in the terminal set Esf (xs, us). This
results in an enlarged terminal set Csf , {x | ∃ (xs, us) ∈
Ss s.t. x ∈ Esf (xs, us)} for the MPC problem, given by the
set of all states x, for which there exists a steady-state such
that the terminal constraint is satisfied.

Assumption III.1. For any given (xs, us) ∈ Ss, Esf (xs, us) is
a PI set under the local control law κsf (x) = K(x− xs) + us
satisfying the following conditions:
A3: κsf (x) ∈ U ∀x ∈ Esf (xs, us)
A4: ‖Ax+Bκsf (x)− xs‖2T = ‖(A+BK)(x− xs)‖2T

≤ ‖x− xs‖2T .

It is further assumed that the set Csf is compact.

Note that compared to condition A2 in Assumption II.5,
condition A3 only enforces the input constraints. Condition
A4 is slightly stronger than set invariance and is required
for proving stability in Section IV. If K is taken as the
infinite horizon LQR control law, which is a common choice
in MPC, a matrix T satisfying condition A4 is, e.g., given
by the solution to the discrete-time algebraic Riccati equation.
Compactness of Csf is required to ensure boundedness of the
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feasible set and in turn uniform continuity of the optimal value
function V s∗N (x, zr) (Lemma V.1). It can be easily satisfied by
imposing a large upper bound on the steady-state xs.

Lemma III.2 A matrix T and function r defining the invariant
ellipsoidal target set Esf (xs, us) in (8) such that Assump-
tion III.1 is satisfied can be computed by solving a convex
linear matrix inequality (LMI).

Proof: See appendix.

Remark III.3. The amount, by which the terminal set can be
enlarged depends on Ss. An increase can only be achieved if
the reference steady-state is not the only steady-state, i.e xs
can differ from xr, and the imposed hard constraints are not
limiting the size of the terminal set to be always contained in
the state constraints.

Remark III.4. The combination of moving the artificial
steady-state and neglecting state constraints offers a significant
increase of the terminal set, which is the reason for choosing
the tracking formulation [9]. The proposed scheme could also
be applied to a standard MPC formulation by allowing state
constraints to be violated in the terminal set, which would,
however, result in a smaller terminal and hence feasible set.

2) Slack Variables: We now explain the crucial item in the
proposed soft constrained scheme, the slack variables εs and
εi that are used to soften all state constraints:
• εs represents the amount of constraint relaxation that is

necessary in order to include the ellipsoid EsT (xN , xs)
for a particular value of (xs, us) into the relaxed state
constraints, where

EsT (xN , xs) ,
{
x
∣∣∣ ‖x− xs‖2T ≤ ‖xN − xs‖2T } (10)

is a scaling of the ellipsoidal terminal set Esf (xs, us)
containing xN on its boundary. This can be expressed
as

max
x

{
Gx,ix

∣∣∣‖x− xs‖2T ≤ ‖xN − xs‖2T } ≤ fx,i + εs,i

∀i = 1, . . . , px, resulting in the following condition [24]:

‖T− 1
2GTx,i‖2‖T

1
2 (xN − xs)‖2 ≤ fx,i + εs,i −Gx,ixs

∀i = 1, . . . , px, which corresponds to (7i) with ci =
‖T− 1

2GTx,i‖2 ∀i = 1, . . . , px and is a collection of px
convex second order cone constraints.

• εi in (7e) represents the additional constraint violation of
each state xi for i = 0, . . . , N − 1 with respect to the
state constraints relaxed by εs.

The use of the slack variable εs defined by (7i) ensures that the
terminal state, which is contained in EsT (xN , xs), will lie inside
the state constraints relaxed by the amount εs and will not
require a further relaxation of the state constraints, i.e. εN = 0,
where εN is the slack variable of the terminal state defined by
GxxN ≤ fx+ εs+ εN . This provides feasibility of the shifted
sequence using the shifted slack variables with the last slack
variable being zero. Constraint (7h) additionally enforces that
the steady-state xs always has to lie in the interior of the
constraints relaxed by εs by an amount ξ, which is a user-
specified small, positive parameter. For a state that is close to

the artificial steady-state, this ensures that the steady-state can
always be shifted towards the reference without increasing the
slack variables.

As will be shown in Section IV, these items provide that
the optimal cost function is still a Lyapunov function and
are hence crucial for proving stability of the proposed soft
constrained MPC scheme.

Remark III.5. By Assumption III.1, the set EsT (xN , xs) is a
positively invariant set under the local control law κsf (x).

Remark III.6. Defining εs by the inclusion of Esf (xs, us) into
the relaxed state constraints would also provide εN = 0 and
would allow for proving asymptotic stability. We have chosen
EsT (xN , xs) here, since it results in a slack closer to the actual
constraint violation of the terminal state.

Remark III.7. While a strictly positive value of ξ in con-
straint (7h) is required to prove stability of the closed-loop
system (Lemma IV.2), the particular choice is not crucial and
for ξ � 1, it will have a negligible or no effect on the system
behavior.

Remark III.8 (Hard state constraints). For ease of nota-
tion, we assume the relaxation of all state constraints except
the terminal constraint in PsN (x, zr). However, the results
directly extend to the case where some of the state constraints
are considered as hard constraints with only minor notational
changes.

3) Penalty Functions: A penalty function on the slack
variables is included in the cost in (7a), in order to minimize
the constraint violation and to ensure satisfaction of the state
constraints whenever possible. The penalty can be chosen
as in standard soft constrained schemes. In the proposed
formulation, we include a quadratic penalty, which is often
preferable for tuning the constraint violation [4], and an l1 or
l∞-norm penalty, in order to allow for exact penalty functions.
It is well-known that, when the weights on the l1 or l∞-norms
are sufficiently large and there exists a feasible solution to the
hard constrained problem PN (x, zr), then the optimal solution
to the soft constrained problem PsN (x, zr) corresponds to that
of the hard constrained problem [5], [6], [25]. Note that an
l1 or l∞-norm is also used in the offset cost for penalizing
the deviation of the artificial from the reference steady-state,
in order to enforce the reference as the target point if it is
feasible [22].

Remark III.9. The results presented in this paper hold for
any positive definite, convex penalty function on the slack
variables, i.e. the quadratic penalty could also be omitted. Note
that the linear penalties can be simplified for implementation.
The l1-norm can directly be replaced with the sum of the slack
variables, and the l∞-norm can be formulated by using a single
slack variable for the constraint relaxation at each stage that
is then penalized in the cost.

C. Soft Constrained MPC Properties

The soft constrained formulation PsN (x, zr) enlarges the
feasible set compared to the hard constrained problem since
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XN ⊆ X sN . By selecting the prediction horizon accordingly, it
can be chosen to cover any polytopic region of interest up to
the maximum stabilizable set for the input-constrained system,
i.e. all initial states for which there exists a feasible input at
all times such that the state converges to the origin without
considering the state constraints.

In the following sections, we demonstrate how the intro-
duction of the previously described components allows us to
show that:

1) The optimal cost function V s∗N (x, zr) is a Lyapunov
function and all reference steady-states zr ∈ Str are
asymptotically stable for the controlled nominal system
with an enlarged region of attraction compared to a
standard nominal MPC method (Section IV).

2) The reference steady-state is ISS for the controlled
system under additive disturbances using the proposed
soft constrained method as well as a combined robust
and soft constrained approach (Section V). The region
of attraction is enlarged compared to a pure robust MPC
approach considering the same disturbance size, which
is demonstrated by numerical examples (Section VI).

IV. NOMINAL STABILITY

In the following, we prove that the resulting optimal soft
constrained control law κs(x, zr) in (9) asymptotically stabi-
lizes the nominal system in (3) in the enlarged PI set X sN . For
this, we show in three steps that the optimal cost function of
the soft-constrained MPC problem V s∗N (x, zr) is a Lyapunov
function.

Lemma IV.1 Let us∗(x, zr), xs∗(x, zr), xs∗s (x, zr),
us∗s (x, zr), εs∗(x, zr) be the optimizer of PsN (x, zr) for
some x ∈ X sN and reference steady-state zr ∈ Str and let
x+ = Ax+Bκs(x, zr). The shifted control sequence

ushift = [us∗1 (x, zr), . . . , u
s∗
N−1(x, zr), ũ(x, zr)] , (11)

with ũ(x, zr) = K(xs∗N (x)−xs∗s (x, zr))+us∗s (x, zr) is feasible
for PsN (x+, zr) with steady-state zshift

s = zs∗s (x, zr) and slack
variables εshift = [εs∗1 (x, zr), . . . , ε

s∗
N−1(x, zr), 0, ε

s∗
s (x, zr)]

and

V s∗N (x+, zr)− V s∗N (x, zr)

≤ −l(x− xs∗s (x, zr), u
s∗
0 (x, zr)− us∗s (x, zr)) . (12)

Proof: For brevity, we drop the dependence on (x, zr).
Feasibility of ushift for PsN (x+, zr) with zshift

s and εshift fol-
lows from feasibility of us∗, xs∗s , u

s∗
s , ε

s∗ at x and positive
invariance of EsT (xs∗N , x

s∗
s ). εs∗N = 0 results from the fact that

xs∗N ∈ EsT (xs∗N , x
s∗
s ) and the definition of the slack variables in

(7). (12) then follows from A1 in Assumption II.5 and standard
arguments in MPC.

Lemma IV.1 implies that the closed-loop system converges to
xs∗s . In order to achieve asymptotic convergence to the refer-
ence xr, we have to show that xs∗s simultaneously converges to
xr. We first state a lemma showing that if the state is closer to
the artificial steady-state xs∗s than some fraction of the distance
between the artificial and the target steady-state xr, then we
can move the artificial steady-state towards xr, while providing

a decrease in the cost using the auxiliary control law. This
result will then allow us to prove one of the main results of
this paper in Theorem IV.3 and show asymptotic stability of xr
for the closed-loop system under the proposed soft constrained
MPC control law.

Lemma IV.2 Let (xas , u
a
s) be a steady-state, ua,xa the input

and state sequence generated by applying the auxiliary control
law κsf (x) = uas +K(x− xas) starting from xa0 and let εa be
the associated minimal slacks. Denote xas,α = αxas + (1 −
α)xr, u

a
s,α = αuas + (1 − α)ur. There exist constants δ > 0

and α ∈ (0, 1) such that ‖xa0−xas‖P ≤ (1−α)‖xas−xr‖P ≤ δ
implies that

1) the slacks εaα = εa are feasible for xa and xas,α ,
2) VN (xa,ua, zas,α, zr)− VN (xa,ua, zas , zr)
≤ −(1− α)2‖xas − xr‖2P ,

and therefore

V sN (xa,ua, zas,α, ε
a
α, zr)− V sN (xa,ua, zas , ε

a, zr)

≤ −(1− α)2‖xas − xr‖2P . (13)

Proof: The result is shown by proving 1) and 2) sep-
arately. For 1), we will prove that there exists a δ > 0
such that εas,α = εas is a feasible choice for any α1 ,
(‖xas−xr‖P−δ)/‖xas−xr‖P ≤ α < 1. Feasibility of εai,α = εai
then follows from the use of the same state sequence. For 2),
it is shown that the condition holds for α2 ≤ α < 1, i.e. both
1) and 2) hold for max{α1, α2} ≤ α < 1. Note that 2) is
independent of the soft constrained formulation and can be
shown as in the hard constrained case in [26]. The proof is
included in the appendix for completeness.
Proof of 1): Let AK , A+BK. Using the constraints on εas ,
we can derive the following two conditions on εas,α. From (7h),
(1 + ξ)Gxx

a
s ≤ fx + εas and recalling that (1 + ξ)Gxxr ≤ fx:

(1 + ξ)Gxx
a
s,α

≤ α(fx + εas) + (1− α)fx ≤ fx + αεas ≤ fx + εas,α. (14)

By Assumption III.1 and using T � γ2P , for some γ ≥ 1, we
have that ‖xaN−xas‖2T ≤ ‖xa0−xas‖2T ≤ γ2‖xa0−xas‖2P ≤ γ2δ2.
From (7i) we then obtain:

c‖xaN − xas,α‖T +Gxx
a
s,α (15a)

= c‖xaN − xas + (1− α)(xas − xr)‖T
+ αGxx

a
s + (1− α)Gxxr (15b)

≤ c‖xaN − xas‖T + (1− α)c‖(xas − xr)‖T
+ (1/(1 + ξ))(fx + αεas) (15c)
≤ 2γδc+ (1/(1 + ξ))(fx + αεas) ≤ fx + εas,α . (15d)

Conditions (14) and (15) are satisfied for εas,α ≥
max{αεas , α

1+ξ ε
a
s} and (1 − α)‖xas − xr‖P ≤ δ ≤

ξ
2γci(1+ξ)fx,i ∀i = 1, . . . , px, showing that εas,α = εas is a
feasible choice for any δ and α satisfying the latter condition.

Theorem IV.3 (Asymptotic Stability under κs(x, zr))
Let (xr, ur) ∈ Str be a reference steady-state. xr
is asymptotically stable for the closed loop system
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x(k + 1) = Ax(k) + Bκs(x(k), zr) with region of attraction
X sN .

Proof: Using Lemma IV.1 and IV.2, it can be shown
that V s∗N (x, zr) is a Lyapunov function by following the same
arguments as in the hard constrained case presented in [26].
The proof is included in the appendix.

V. ROBUST STABILITY

In practice, model uncertainties or external disturbances
cause a deviation from the nominal system dynamics in (3).
There are two general approaches to deal with disturbances. In
the case of linear systems and under certain assumptions on the
MPC problem setup, the nominal control law offers inherent
robust stability properties [19], [27] and robust stability can
be guaranteed in an RPI set that depends on the considered
disturbance size. Robust MPC schemes, on the other hand,
take a worst-case disturbance size explicitly into account by
changing the problem formulation and/or tightening the con-
straints, e.g. using a min-max or a tube-based MPC approach
(see e.g. [1], [19], [20], [28] and the references therein).

In a hard constrained setup, both techniques have potential
limitations. Using a nominal MPC scheme, the RPI set, in
which stability can be guaranteed, may be prohibitively small
for the considered disturbance size. Using a robust MPC
scheme, the choice of the disturbance bound employed in the
controller design is often conservative, since feasibility of the
MPC problem may be lost if the disturbance exceeds the pre-
defined bound.

The proposed soft constrained scheme can be used to
improve the properties of both techniques. The nominal soft
constrained method offers inherent robust stability properties
and can thereby provide stability in a potentially much larger
RPI set, since state constraints can be relaxed. It is impor-
tant to note that, while stability is formally only guaranteed
within the RPI set, the control law is defined everywhere
in the enlarged feasible set. If constraint satisfaction should
be guaranteed for a certain expected size of the disturbance,
the soft constrained scheme can be combined with a robust
MPC approach. While the robust method designs the problem
for a certain disturbance bound, the use of the proposed
soft constrained formulation ensures feasibility and stability
of the MPC problem if the disturbance exceeds this bound.
Conservatism in the choice of the disturbance bound for robust
MPC can thereby be avoided and the system performance
improved.

Robust stability under both the nominal soft constrained
MPC scheme as well as the combination with a robust MPC
approach is proven in the following using the framework of
input-to-state stability.

A. ISS of Nominal Soft Constrained MPC

Assume that the system is subject to an additive uncertainty
as given in (1). Because of the disturbance, the shifted se-
quence ushift in (11) may no longer be feasible for PsN (x+, zr).
For all x+ ∈ X sN there does, however, exist a feasible solution
to PsN (x+, zr) and input-to-state stability can be shown in

an RPI set X sW ⊂ X sN . It is given by the maximum robust
positively invariant set for the controlled uncertain system
x+ = Ax+Bκs(x, zr)+w under the optimal soft constrained
MPC control law in (9). We make use of the following result
in order to show that the uncertain system in (1) under the
nominal control law κs(x, zr) is input-to-state stable with
respect to the (unspecified) disturbance setW in Theorem V.2.

Lemma V.1 (Continuity of V s∗N (x)) Consider problem
PsN (x, zr). The optimal value function V s∗N (x, zr) is
uniformly continuous in x on X sN .

Proof: Continuity follows directly from continuity and
convexity of the cost function and the constraints in (7) as well
as compactness of the constraint set for all x ∈ X sN (Theorem
4.3.3 in [29]), where the latter is provided by the fact that the
terminal set is compact (Assumption III.1). Uniform continuity
then follows, since X sN is compact (e.g. Proposition 5 in [20]).

Theorem V.2 (ISS under κs(x, zr)) Let (xr, ur) ∈ Str be
a given reference steady-state. xr is ISS for the closed loop
system x(k+1) = Ax(k)+Bκs(x(k), zr)+w(k) with respect
to w(k) ∈ W with region of attraction X sW .

Proof: From the proof of Theorem IV.3 and Lemma V.1
it follows that V s∗N (x, zr) is a uniformly continuous Lyapunov
function and hence there exists a K-class function γ(·), such
that |V s∗N (y, zr) − V s∗N (x, zr)| ≤ γ(‖y − x‖) (see, e.g.,
[20], A.11) as well as a K∞-class function α3(·) such that
V s∗N (Ax+Bκs(x, zr), zr)− V s∗N (x, zr) ≤ −α3(‖x− xr‖). It
follows from these facts that

V s∗N (x+, zr)− V s∗N (x, zr)

= V s∗N (Ax+Bκs(x, zr) + w, zr)− V s∗N (x, zr)

+ V s∗N (Ax+Bκs(x, zr), zr)− V s∗N (Ax+Bκs(x, zr), zr)

≤ −α3(‖x− xr‖) + γ(‖w‖) ,

i.e. V s∗N (x, zr) is an ISS-Lyapunov function with respect to
w ∈ W and xr is ISS for the closed-loop system.

The uncertain system controlled by the soft constrained control
law κs(x, zr) is hence input-to-state stable against sufficiently
small disturbances. Since the RPI set X sW depends on W ,
the size of the disturbances and the corresponding region, for
which stability can be formally guaranteed, depend on the
particular system of interest.

In the following section we will show that the previously
presented results can be directly extended to the combination
of a robust and soft constrained MPC framework, in order to
take advantage of both properties.

B. Combination of Robust and Soft Constrained MPC

We assume in the following that the system is affected by
two uncertainties:

x(k + 1) = Ax(k) +Bu(k) + w1(k) + w2(k) , (16)

where w1 ∈ W1, w2 ∈ W2 and W1,W2 are convex and
compact sets that each contain the origin. The disturbance
w1 is explicitly taken into account by using a robust MPC
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technique, which provides constraint satisfaction and stability
in the presence of w1. Feasibility and stability in the presence
of w2 is guaranteed by means of the proposed soft constrained
scheme.

In this work, we apply the tube-based robust MPC approach
for linear systems [28]. The method is based on the use of a
feedback policy of the form u = ū + K(x − x̄) that bounds
the effect of the disturbance w1 and keeps the states x of the
uncertain system under w1 close to the states of the nominal
system in (3). The use of tightened state and input constraints
ensures feasibility of the uncertain system in (16) despite
the disturbance w1: X̄ = X 	 Z ,

{
x | Gxx ≤ f̄x

}
, Ū =

U	KZ ,
{
u | Guu ≤ f̄u

}
, with f̄x,i = fx,i−hZ(GTx,i), i =

1, . . . , px, f̄u,i = fu,i − hZ(KTGTu,i), i = 1, . . . , pu, where Z
is an RPI set for the controlled system x+ = (A+BK)x+w1

and hZ(a) = supx∈Z a
Tx is the support function of Z eval-

uated at a. Note that the tightened state and input constraints
again result in compact polytopes. See [28] for a detailed
description of the method. The tracking approach described in
Section II was extended to a robust tube-based MPC method
for tracking in [23], which will be combined in the following
with the soft constrained scheme proposed in Section III.

Problem PrsN (x, zr) (Robust soft constrained MPC problem)

V rs∗N (x, zr) = min
x̄,ū,z̄s,ε̄,zr

V sN (x̄, ū, z̄s, ε̄, zr) + Vf (x− x̄0)

s.t. x ∈ x̄0 ⊕Z ,

(7c)− (7j) ,

where in the constraints (7c)-(7j), fx, fu and Esf (xs, us) are re-
placed with f̄x, f̄u and Ēsf (x̄s, ūs), respectively. The conditions
on the robust terminal set for tracking Ēsf (x̄s, ūs) are obtained
by replacing the input constraints U in Assumption III.1 with
Ū. Compared to [28], we propose to augment the cost with
the term Vf (x − x̄0), which offers the advantage of directly
providing an ISS Lyapunov function (Theorem V.4, see also
[26], [30] for more details).

Remark V.3. The use of tightened state constraints in the soft
constrained formulation, i.e. replacing fx with f̄x, has the
advantage that the behavior of the robust MPC controller is
recovered if the constraints can be enforced. Stability would,
however, also be provided by using fx.

The set of feasible initial states of the robust soft constrained
problem is denoted by X rsN . The robust formulation does not
change the problem structure and Problem PrsN (x, zr) again
results in a convex SOCP. For a given state x ∈ X rsN , the
solution of PrsN (x, zr) yields the optimal control sequence
ūrs∗(x, zr) and the optimal first tube center x̄rs∗0 (x, zr). The
robust soft constrained control law is then given in a receding
horizon fashion by

κrs(x, zr) , ūrs∗0 (x, zr) +K(x− x̄rs∗0 (x, zr)) . (17)

Input-to-state stability will in the following be shown for the
robust invariant set X rsW ⊆ X rsN , given by the maximum robust
positively invariant set for the controlled uncertain system
x+ = Ax+Bκrs(x, zr) +w1 +w2 with w1 ∈ W1, w2 ∈ W2.

Let S̄tr , {(xs, us) ∈ Str | (1+ξ)Gxxs ≤ f̄x, (1+ξ)Guus ≤
f̄u}.
Theorem V.4 (ISS under κrs(x, zr)) Let (xr, ur) ∈ S̄tr
be a given reference steady-state. xr is ISS for the closed loop
system x(k+ 1) = Ax(k) +Bκrs(x(k), zr) +w1(k) +w2(k)
with respect to w1(k) ∈ W1 and w2(k) ∈ W2 with region of
attraction X rsW .

Proof: The first part of the proof assumes w2 = 0 and fol-
lows similar steps as in Section IV to show that V rs∗N (x, zr) is
an ISS Lyapunov function with respect to w1. A more detailed
version of this part of the proof can also be found in [26]. The
second part of the proof then shows that V rs∗N (x, zr) is also an
ISS Lyapunov function with respect to w2. In the following,
we omit the dependence of the optimal solution on (x, zr). Let
w2 = 0, i.e. x+ = Ax+Bκrs(x, zr)+w1. Lemma IV.1 extends
to the robust problem setup showing feasibility of the shifted
sequence with ε̄shift = [ε̄rs∗1 , . . . , ε̄rs∗N−1, 0, ε̄

rs∗
s ]. Using uniform

continuity of Vf (·), x+ = x̄rs∗1 +(A+BK)(x−x̄rs∗0 )+w1 and
Assumption II.5, it can be shown that there exists a K-class
function γ1(·) such that Vf (x+ − x̄rs∗1 ) − Vf (x − x̄rs∗0 ) ≤
−‖x − x̄rs∗0 ‖2Q + γ1(‖w1‖). Using standard arguments and
convexity of ‖ · ‖2Q, it then follows that

V rs∗N (Ax+Bκrs(x, zr) + w1, zr)− V rs∗N (x, zr)

≤ V sN (x̄shift, ūshift, z̄rs∗s , ε̄shift, zr) + Vf (x+ − x̄rs∗1 )

− V sN (x̄rs∗, ūrs∗, z̄rs∗s , ε̄rs∗, zr)− Vf (x− x̄rs∗0 )

≤ −‖x̄rs∗0 − x̄rs∗s ‖2Q − ‖x− x̄rs∗0 ‖2Q + γ1(‖w1‖)

≤ −1

2
‖x− x̄rs∗s ‖2Q + γ1(‖w1‖) . (18)

Following similar arguments as in the proof of Theorem IV.3
and using optimality of V rs∗N (x, zr) it can be shown that there
exist K∞-class functions α(·), α(·) such that V rs∗N (x, zr) ≥
α(‖x− xr‖) ∀x ∈ X rsN and V rs∗N (x, zr) ≤ α(‖x− xr‖) ∀x ∈
Ēsf (xr, ur) ⊕ Z . The condition that remains to be shown is
that (18) also provides a strict decrease that is a function of
‖x−xr‖2Q. Lemma IV.2 directly extends to the robust problem
formulation by replacing the constraints with the tightened
form (Part 1)) and since the additional cost term Vf (x− x̄0)
does not contain the steady-state xs and is irrelevant for the
argument (Part 2)). Considering the same cases and arguments
as in the proof of Theorem IV.3, it can then be shown that there
exists a K∞-class function α3(·) such that

V rs∗N (Ax+Bκrs(x, zr) + w1, zr)− V rs∗N (x, zr)

≤ −α3(‖x− xr‖) + γ1(‖w1‖) .

For the second part of the proof, uniform continuity of the op-
timal value function V rs∗N (x, zr) follows as in the non-robust
case from the proof of Lemma V.1. Therefore, there exists
a K-class function γ2(·), such that |V rs∗N (y) − V rs∗N (x)| ≤
γ2(‖y − x‖) and we obtain

V rs∗N (Ax+Bκrs(x, zr) + w1 + w2, zr)− V rs∗N (x, zr)

≤ −α3(‖x− xr‖) + γ1(‖w1‖) + γ2(‖w2‖) ,

proving the result.
Theorem V.4 proves ISS of the uncertain system in (16) con-
trolled by κrs(x, zr) in (17) with respect to the disturbances
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w1 ∈ W1 and w2 ∈ W2 and shows that the results presented
for the soft constrained MPC method can directly be extended
to the combination of a robust and soft constrained approach.

VI. NUMERICAL EXAMPLES

In this section, the proposed methods for soft constrained
and robust soft constrained MPC are illustrated for a small-
scale example and computation times for a large-scale problem
are provided. All set computations were carried out using
YALMIP [31] and the MPT toolbox [32].

A. Illustrative Example

Consider the following unstable system:

x(k + 1) =

[
1.05 1

0 1

]
x(k) +

[
1

0.5

]
u(k) + w(k) . (19)

The prediction horizon was chosen to be N = 5, the
constraints on the states and control inputs to ‖x‖∞ ≤ 5
and ‖u‖∞ ≤ 1, Q = I , R = 1 and S = 100I . The
terminal cost function Vf (·) is taken as the unconstrained
infinite horizon optimal value function for the nominal system
with P = [ 1.9119 0.2499

0.2499 2.6510 ] and κf (x) = K(x − xs) + us is
the corresponding optimal LQR controller. The exact penalty
multipliers were chosen as ρε = ρx = ρu = 100, which was
observed to provide optimality in XN . For simplicity, we take
xr = 0, ur = 0 as the reference steady-state for the following
illustrations.

1) Soft Constrained MPC: The feasible set X s5 and the
enlarged terminal set Csf for the soft constrained approach
PsN (x, zr) are illustrated and compared with the feasible set X5

and terminal set Cf for the hard constrained problem PN (x, zr)
in Figure 2, which demonstrates that the soft constrained
approach significantly enlarges the feasible set and thereby
the region of attraction for the nominal closed-loop system.
This shows that the proposed method provides the benefits
of soft constraints and ensures feasibility of the optimization
problem in a large region while still guaranteeing stability of
the closed-loop system.
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Fig. 2. Feasible and terminal set for the soft constrained problem Ps
N (x, zr)

for N = 5 in comparison with the feasible and terminal set of the hard
constrained problem PN (x, zr).
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N (x, zr) for w̄ ∈ {0.15, 0.25} together

with a closed-loop trajectory starting at x(0) = [20, 1.25]T under a sequence
of extreme disturbances. Dots represent the optimal steady-state xs∗s (x(k), 0)
at each sampling time.
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5 is the feasible set for the robust hard constrained problem.

We now analyze the robust stability properties of the
example system (19) under the soft constrained control law
κs(x, zr) in (9). Figure 3 shows the size of the RPI sets
X sWw̄

for two bounds Ww̄ , {w | ‖w‖∞ ≤ w̄}, with
w̄ ∈ {0.15, 0.25} assessed by sampling. Note that for a robust
tube-based approach the feasible set is always a subset of
XN . This demonstrates the advantage of the soft constrained
approach, where input-to-state stability in the presence of a
comparably large disturbance w ∈ W0.25 can be guaranteed in
the RPI set X sW0.25

⊃ XN . In addition, a closed-loop trajectory
starting at x(0) = [20 1.25]T under a sequence of extreme
disturbances with ‖w(k)‖2 = 0.25 ∀k ≥ 0 is shown as well
as the corresponding optimal steady-states at each sampling
time, demonstrating that the closed-loop system is stable and
does not leave the RPI set X sW0.25

.
2) Robust Soft Constrained MPC: In the following, the

properties of the robust soft constrained MPC approach de-
scribed in Section V-B are illustrated. Consider again system
(19) with w(k) = w1(k) + w2(k) that is now subject to
two types of disturbances. Figure 4 shows the comparison
of the feasible set X rs5 and the RPI set X rsW0.25

for w1 ∈
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Ww̄1
, w2 ∈ Ww̄2

with w̄1 = 0.1, w̄2 = 0.15 in comparison
with the feasible set X s5 and the RPI set X sW0.25

of the pure soft
constrained approach. The feasible set of the hard constrained
robust MPC problem, i.e. Problem PrsN (x, zr) with (xs, us) ∈
S, εs = 0, εi = 0, w = w1 + w2 ∈ W0.25 is denoted by
X rh5 . Due to the tightening of the input constraints, the robust
soft constrained approach has a smaller feasible set when
compared to the pure soft constrained method. However, in
comparison with the hard constrained robust MPC method, the
feasible set for the combined approach is significantly larger,
while still guaranteeing ISS with respect to w1 in X rs5 . The
RPI set X rsW0.25

is only slightly smaller than X rs5 and input-
to-state stability with respect to the combined disturbance
w = w1 + w2 ∈ W0.25 is provided in a comparably large
set. Closed-loop trajectories starting from x(0) = [−28 3.1]T

are shown for both the robust soft constrained and the pure
soft constrained approach under a sequence of extreme distur-
bances ‖w1(k)‖2 = 0.1 and a disturbance ‖w2(k)‖2 ∈ W0.15

∀k ≥ 0 that additionally affects the system at every third
sampling time. Figure 4 demonstrates that both approaches
provide input-to-state stability of the closed-loop system. The
robust soft constrained approach steers the system earlier to-
wards the origin and the trajectory remains in X rsW0.25

, since the
robust formulation is designed to counteract the disturbance
w1. The soft constrained approach allows for a larger deviation
of the state within the RPI set X sW0.25

. This shows that by
using a combination of a robust and soft constrained method,
robustness against a certain disturbance size can be provided
while ensuring stability if the disturbance exceeds this bound.

B. Large-Scale Example

The following example demonstrates that the proposed
soft constrained MPC approach can be applied to problems
of significant size. We consider two systems of 6 and 12
oscillating masses, which are interconnected by springs and
dampers and are connected to walls on each side. The actuators
exert tension between different masses. The system with 12
masses is illustrated in Fig. 5, where the six masses problem is
obtained by considering the first six masses from the left. The

136 9 Soft Constrained MPC with Robust Stability Guarantees

Robust Soft Constrained MPC

In the following the properties of the robust soft constrained MPC approach described in
Section 9.7 are illustrated. Consider again system (9.17) with w(k) = w1(k)+w2(k) that
is now subject to two types of disturbances. Figure 9.5(b) shows the comparison of the
feasible set X rs

5 and the RPI set X rs
W0.2

for w1 ∈ Ww̄1 , w2 ∈ Ww̄2 with w̄1 = 0.1, w̄2 = 0.1

in comparison with the feasible set X s
N and the RPI set X s

W0.2
of the pure soft constrained

approach. The feasible set of the hard constrained robust MPC problem, i.e. Problem
Prs

N (x) with xs = us = 0, εs = 0, εi = 0, w = w1 + w2 ∈ W0.2 is denoted by X rh
5 . Due

to the tightening of the input constraints, the robust soft constrained approach has a
significantly smaller feasible set when compared to the pure soft constrained method.
However, in comparison with the hard constrained robust MPC method, the feasible
set for the combined approach is significantly larger while still guaranteeing ISS with
respect to w1 in X rs

N , which is almost as large as the nominal feasible set X5. The
RPI set X rs

W0.2
is only slightly smaller than X rs

5 and input-to-state stability with respect
to the combined disturbance w = w1 + w2 ∈ W0.2 is still provided in a comparably
large set. Closed-loop trajectories starting from x(0) = [−9.6 1]T are shown for both
approaches under a sequence of extreme disturbances w1(k) = ±0.1 and a disturbance
w2(k) ∈ W0.1, k ≥ 0, of varying size that additionally affects the system at every third
sampling time. Figure 9.5(b) demonstrates that both approaches provide input-to-
state stability of the closed-loop system, however the robust soft constrained approach
provides a better performance, since it is designed for the disturbance w1 that constantly
affects the system.

9.8.2 Large-Scale Example

We now apply the soft constrained MPC approach to a large scale example and es-
timate the computational effort required to solve the corresponding SOCP. Consider
the problem of regulating a system of 12 oscillating masses which are interconnected
by spring-damper systems and connected to walls on the side, as shown in Fig. 9.6.
The six actuators exert tension between different masses. The masses are 1, the spring

u1 u2

u3

u4 u5

u6F

Figure 9.6: System of oscillating masses.

constants are 1, the damping constants are 0.1 and F = 1.05x1. The state and input
constraints are ‖u‖∞ ≤ 1, ‖x‖∞ ≤ 4, the horizon is chosen as N = 5 and the weight

Fig. 5. System of 12 oscillating masses.

masses have value 1 kg, the spring constant is k = 0.7 N/m, the
damping constant is 0.1 Ns/m and an external force F = 0.5x1

is applied to the first mass on the left. The control inputs
are constrained to lie in ±1 N and the displacement of the
masses is constrained in ±4 m. The system is discretized with
sampling time ts = 0.5 s. The parameters of the problem
PsN (x, zr) are N = 10, Q = I and R = I , S = 100I ,
ρε = ρx = ρu = 100.

In order to exemplify the computation times that can be
achieved for the proposed soft constrained procedure, the
resulting SOCP was solved using the solver MOSEK [12] and
ECOS [13], which is particularly designed to run on embedded

platforms, on a MacBook Pro with Intel Core i7 CPU at 2.6
GHz. The problem dimensions, the size of the resulting SOCP
and the minimum, average and maximum computation times
for the 6 and 12 masses problem using 100 randomly sampled
initial states are given in Table I. The results show that the
SOCP can be solved in the millisecond range even for big
problem dimensions, demonstrating the practical applicability
of the method.

VII. CONCLUSIONS

In this paper, a new soft constrained MPC method based
on a finite horizon MPC scheme for tracking was introduced
that provides closed-loop stability even for unstable systems.
The approach combines the benefits of a soft constrained
scheme with the desirable properties of MPC and ensures
feasibility of the optimization in a large region of the state
space while guaranteeing closed-loop stability. The proposed
control law preserves the optimal tracking performance of the
corresponding hard constrained MPC approach whenever the
state constraints can be enforced. Asymptotic stability of all
feasible reference steady-states for the nominal system under
the soft constrained control law was shown, as well as input-
to-state stability in the presence of additive disturbances. The
proposed soft constrained formulation was combined with a
robust approach, in order to provide constraint satisfaction
despite a certain disturbance size, while ensuring feasibility
and stability for exceeding disturbances by means of soft
constraints. It was shown that the results on input-to-state
stability extend to this case. The presented numerical examples
illustrate the properties of the new soft constrained scheme and
demonstrate that it can be applied to problems of significant
size in order to ensure safety and feasibility during online
operation.
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APPENDIX

Detailed proofs of Lemma III.2, result 2) in Lemma IV.2
and Theorem IV.3 are provided in the following, where the
last two are similar to the proofs of Lemma 5.6 and 5.7 in
[26], but are included to make the paper self-contained.

Proof of Lemma III.2:
Consider a parametrization of the steady-state by the parameter
θ ∈ Rnθ [9]: [

xs
us

]
= Mθ =

[
Mx

Mu

]
θ , (20)

where the columns of M form a basis for the null space of the
matrix

[
I −A −B

]
, nθ is the dimension of the null space

and Mx,Mu are appropriate partitions of M . We define the
augmented system vT = [xT − xTs θT ] with dynamics v+ =
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ECOS [13] MOSEK [12]
M n m N nvar neq ineq (min / avg / max) (min / avg / max)
6 12 3 10 207 132 900 16.7 / 20.2 / 25.0 ms 10.8 / 13.0 / 18.9 ms

12 24 6 10 372 264 2295 93.3 / 106.6 / 154.1 ms 49.3 / 57.3 / 72.9 ms

TABLE I
COMPUTATION TIMES FOR SOLVING THE SOFT CONSTRAINED PROBLEM Ps

N (x, zr) FOR 100 RANDOMLY SAMPLED INITIAL STATES. NVAR, NEQ AND
INEQ DENOTE THE NUMBER OF VARIABLES, EQUALITY CONSTRAINTS AND INEQUALITY CONSTRAINTS, RESPECTIVELY, IN THE RESULTING SOCP.

Av,Kv,where Av,K =
[
A+BK 0

0 I

]
. An ellipsoidal invariant set

of the form

Ωf ,
{
v ∈ Rn

∣∣∣ vT [Q−1
1

Q−1
2

]
v ≤ 1

}
can be computed by solving a convex LMI [10], where only
the input constraints are considered and the state constraints
are neglected:[
Q1

Q2

]
= argmin

Q1,Q2

{
− log det

[
Q1

Q2

] ∣∣∣[ Q1 Q1A
T
K

AKQ1 Q1

]
� 0,

‖Q
1
2
1 K

TGTu,j‖22 + ‖Q
1
2
2 M

T
u G

T
u,j‖22 ≤ f2

u,j∀ j = 1, . . . , pu } ,
(21)

with AK = A + BK. Using the relationship θ = MT
x xs +

MT
u us this can be directly transformed into the ellipsoidal

terminal set Esf (xs, us) in (8) with T = Q−1
1 and r(xs, us) =

(MT
x xs+M

T
u us)

TQ−1
2 (MT

x xs+M
T
u us). Note that if problem

(21) is unbounded, boundedness can be imposed by setting a
large upper bound on xs, e.g. GxMxθ ≤ γfx for some large
constant γ > 0.

Proof of result 2) in Lemma IV.2:
We denote AK , A+BK, ∆xa0 , xa0 −xas , ∆xas , xas −xr,
∆uas , uas − ur, ν = 1 − α. By Assumption II.5, Vf (x)
is a Lyapunov function and P � Q + KTRK, there-
fore ‖AiKx‖Q ≤ ‖AiKx‖P ≤ ‖x‖P and ‖AiKx‖KTRK ≤
‖AiKx‖P ≤ ‖x‖P From the use of the auxiliary control law,
i.e. uai = KAiK∆xa0 +uas , and recalling that xas = Axas +Buas
we obtain

l(xai − xas,α, uai − uas,α)− l(xai − xas , uai − uas)

=‖AiK∆xa0 + ν∆xas‖2Q + ‖KAiK∆xa0 + ν∆uas‖2R
− ‖AiK∆xa0‖2Q − ‖KAiK∆xa0‖2R ,

≤2ν‖AiK∆xa0‖Q‖∆xas‖Q + ν2‖∆xas‖2Q
+ 2ν‖AiK∆xa0‖KTRK‖∆uas‖R + ν2‖∆uas‖2R

≤3ν2‖∆xas‖2P + 2ν2‖∆xas‖P ‖∆uas‖R + ν2‖∆uas‖2R
and similarly Vf (xaN − xas,α)− Vf (xaN − xas) ≤ 3ν2‖∆xas‖2P .
Using Vo(xas,α − xr, uas,α − ur) = αVo(∆x

a
s ,∆u

a
s), we get

VN (xa,ua, zas,α, zr)− VN (xa,ua, zas , zr) + ν2‖∆xas‖2P
≤ ν[3(N + 1)‖∆xas‖2P ν + 2N‖∆xas‖P ‖∆uas‖Rν

+N‖∆uas‖2Rν − Vo(∆xas ,∆uas)] ≤ 0 ,

which is satisfied for

0 < ν ≤ Vo(∆xas ,∆u
a
s )

3(N+1)‖∆xas‖2P+2N‖∆xas‖P ‖∆uas‖R+N‖∆uas‖2R
and

hence α < 1, proving the result.

Proof of Theorem IV.3:

We will show that V s∗N (x, zr) is a Lyapunov function. Let
(xs∗s , u

s∗
s ) be the optimal steady-state for state x and refer-

ence zr. Feasibility of PsN (x+, zr) follows from feasibility
of the shifted sequence shown in Lemma IV.1. We have that
V s∗N (x, zr) ≥ ‖x− x∗s‖2Q + Vo(x

∗
s − xr) ≥ α(‖x− xr‖)∀x ∈

X sN . By optimality of V s∗N (x, zr) we obtain V s∗N (x, zr) ≤
Vf (x − xr) ≤ α(‖x − xr‖) ∀x ∈ Esf (xr, ur) ∩ X, where
α(·), α(·) are suitable K∞-class functions. The important
condition to prove is that ∆V = V s∗N (x+, zr)− V s∗N (x, zr) ≤
−β‖x−xr‖2Q with β > 0, which will be shown by considering
the following two cases. If the state x+ is sufficiently far away
from the optimal artificial steady-state at the previous time step
xs∗s , then the decrease obtained by the shifted sequence when
keeping the same artificial steady-state provides β > 0. If x+

is close to xs∗s (and the decrease could potentially go to zero),
then β > 0 is proven by showing that the steady-state can
be moved towards the target steady-state using the auxiliary
control law. Let α ∈ (0, 1) and δ > 0 be constants satisfying
the conditions in Lemma IV.2, as well as the additional
condition {x|‖x− xs‖P ≤ δ} ⊂ Esf (xs, us)∀(xs, us) ∈ Ss.
Case 1: ‖x+ − x∗s‖P ≥ δ
By the definition of x+, ‖x‖P = ‖P 1

2x‖2 and xas = Axas +
Buas , we obtain: δ ≤ ‖A(x − xs∗s ) + B(us∗0 − us∗s )‖P ≤
‖A‖P ‖x− xs∗s ‖2 + ‖B‖P ‖us∗0 − us∗s ‖2. Therefore either

‖B‖P ‖us∗0 − us∗s ‖2 ≤ 0.5δ ⇒ ‖A‖P ‖x− xs∗s ‖2 ≥ 0.5δ

⇒ ‖x− xs∗s ‖2Q ≥ δ̄2 ,

or ‖B‖P ‖us∗0 − us∗s ‖2 ≥ 0.5δ ⇒ ‖us∗0 − us∗s ‖2R ≥ δ̄2 ,

where δ̄ = 0.5δ√
c2 max(‖A‖P ,‖B‖P ) and c2 ≥ 1 is such that c2Q �

I , c2R � I . From this and (12) we then get ∆V ≤ −β‖x −
xr‖2P with β = minx∈X sN ((‖x−xs∗s ‖2Q+‖us∗0 −us∗s ‖2R)/‖x−
xr‖2Q) and therefore β ≥ minx∈X sN (δ̄2/‖x− xr‖2Q, 1) > 0.

Case 2: ‖x+ − x∗s‖P ≤ δ
In this case, x+ ∈ Esf (x∗s, u

∗
s), and the optimal sequence to

regulate the system to the steady-state (x∗s, u
∗
s) is by applying

the auxiliary control law κtrf (x) = u∗s +K(x− x∗s).

Case 2a: (1− α)‖xs∗s − xr‖P ≤ ‖x+ − x∗s‖P ≤ δ
Following similar arguments as in Case 1 it can be shown that
(1−α)‖xs∗s −xr‖P ≤ ‖A‖P ‖x−xs∗s ‖2 +‖B‖P ‖us∗0 −us∗s ‖2
and by recalling that ‖ · ‖2Q ≤ ‖ · ‖2P there exists a constant
δ̄ ∈ (0, 1] such that δ̄2(1− α)2‖xs∗s − xr‖2Q ≤ ‖x− xs∗s ‖2Q +
‖us∗0 − us∗s ‖2R. From this and (12) we get

∆V ≤ −1

2
‖x− xs∗s ‖2Q −

1

2
δ̄2(1− α)2‖xs∗s − xr‖2P

≤ −1

4
δ̄2(1− α)2‖x− xr‖2Q
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and therefore β = 1
4 δ̄

2(1− α)2 > 0.
Case 2b: ‖x+ − xs∗s ‖P ≤ (1− α)‖xs∗s − xr‖P ≤ δ
In this case we can use result (13) in Lemma IV.2. Let ua,xa

be the input and state sequence generated by applying the
auxiliary control law κtrf (x) = us∗s + K(x − xs∗s ) starting
from x+ and let εa be the associated slacks. We denote
xs,α = αxs∗s + (1 − α)xr and similarly for us,α. We show
that α < 1, i.e. moving the steady-state xs∗s towards xr, is
feasible and provides the required cost decrease. Feasibility
reduces to showing satisfaction of the terminal constraint:

‖xaN − xs,α‖P = ‖xaN − xs∗s + (1− α)(xs∗s − xr)‖P
≤ ‖(A+BK)N (x+ − xs∗s )‖P + (1− α)‖xs∗s − xr‖P ≤ δ ,

which is satisfied for some α < 1, since ‖(A+BK)N (x+ −
xs∗s )‖P < δ, proving that xaN ∈ Esf (xs,α, us,α) by the
definition of δ.

In order to show the decrease, i.e. β > 0, we first prove
that the auxiliary control law provides a lower cost than the
shifted sequence. By optimality of the auxiliary control law
for regulation to (xs∗s , u

s∗
s ), we have VN (xa,ua, z∗s , zr) ≤

VN (xshift,ushift, z∗s , zr). From ‖xai −xs∗s ‖P ≤ ‖x+−xs∗s ‖P ≤
δ, the condition on δ in Lemma IV.2, i.e. 2γδc ≤ ξ

1+ξfx,
where T � γ2P , and (1 + ξ)Gxx

∗
s ≤ fx + εs∗s , we obtain

c‖xai − xs∗s ‖T ≤
1

2
(fx −Gxx∗s +

1

1 + ξ
εs∗s )∀i = 1, . . . , N .

As a result, εsas = εs∗s , εsai = 0 is feasible for xa, pro-
viding that εa ≤ εshift and hence V sN (xa,ua, zas , ε

a, zr) ≤
V sN (xshift,ushift, z∗s , ε

shift, zr). It then follows from optimality
of V sN (x+, zr), Lemma IV.1 and IV.2 that

∆V ≤ V sN (xa,ua, z∗s,α, ε
a
α, zr)− V s∗N (x, zr)

≤ V sN (xa,ua, z∗s , ε
a, zr)− V s∗N (x, zr)

− (1− α)2‖xs∗s − xr‖2P
≤ V sN (xshift,ushift, z∗s , ε

shift, zr)− V s∗N (x, zr)

− (1− α)2‖xs∗s − xr‖2P
≤ −‖x− x∗s‖2Q − (1− α)2‖xs∗s − xr‖2P
≤ −1

2
(1− α)2‖x− xs∗s ‖2Q

i.e. β = 1
2 (1− α)2 > 0.

A decrease of the Lyapunov function with β > 0 is therefore
guaranteed in all cases, which concludes the proof.
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