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Abstract This paper measures the performance in terms

of costs of Swiss drinking water utilities accounting for

environmental factors. We estimate a translog stochastic

variable cost frontier using two different techniques on an

unbalanced panel of 141 water distribution utilities over the

years 2002–2009, for a total of 745 observations. Results

show that exogenous factors have an impact on variable

cost. More precisely, we find that the share of pumped over

total extracted water, population density, altitude and

meteorological factors (maximum 30 days temperature and

extreme precipitation events) have a significant impact on

variable cost. Likelihood ratio tests emphasize the impor-

tance to include observed heterogeneity in the estimations.

Efficiency rankings provided by models accounting for

exogenous factors and their counterparts without them are

however relatively similar. On the contrary, the efficiency

ranks differ strongly between alternative estimation tech-

niques. In assessing the economic performance of utilities,

the most important choice thus seems to be about the way

unobserved heterogeneity is treated.
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Abbreviations

BC Battese and Coelli

DEA Data envelopment analysis

FTE Full time equivalent

PL Pitt and Lee

SFA Stochastic frontier analysis

SGWA Swiss Gas and Water Industry Association

TRE True random effect

1 Introduction and context

Growing concerns about the performance of network

industries as well as climate change are challenging

drinking water distribution utilities and triggering interest

in their production structure and efficiency. The determi-

nants of cost and efficiency need to be explored to provide

drinking water of the highest quality at minimum possible

cost. Indeed an increasing literature seeks to determine

economies of density, scale and scope to judge water

industry market structure (Carvalho et al. 2012). The

comparison of the cost and performance of private and

public companies has also attracted particular attention

(Walter et al. 2009). Today, many countries are using

various regulatory schemes that involve benchmarking of

water distribution utilities to enhance performance, for

example the United Kingdom, Australia or the Netherlands

(de Witte and Marques 2010). Measuring the efficiency of

water distribution utilities is thus a major challenge. Par-

ticularly, given that drinking water utilities typically face

very diverse environmental conditions, the assessment of
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their performance has to account for the impact of exoge-

nous factors and unobserved heterogeneity. Exogenous or

environmental factors characterise the operational envi-

ronment in which the drinking water utility operates: they

cannot be controlled by the management, but have an

impact on its costs and performance. As shown by the

literature reviews of Renzetti and Dupont (2003), Conti

(2005), Abbott and Cohen (2009), Walter et al. (2009) and

Berg and Marques (2011) there are a range of exogenous

factors which impact the technology and the performance

of water distribution utilities, such as population density,

the regulatory context, water input source, customer type,

water quality and local topography. Some recent studies

that are particularly dedicated to the assessment of the role

of exogenous factors in the estimation of the efficiency of

water utilities also highlight the necessity to include those

environmental factors in the analysis. Carvalho and Mar-

ques (2011) employ non-parametric estimation techniques

to evaluate the influence of the operational environment on

the efficiency of water utilities in Portugal. They find

regulation, the share of purchased and surface water, cus-

tomer density, peak factor and the percentage of residential

customers to be significantly related to the performance of

water utilities. Picazo-Tadeo et al. (2009a, b) investigate

the role of environmental factors in water utilities’ tech-

nical efficiency in Andalusia. Private outperform public

utilities, and firms located in highly and densely populated

areas have a higher technical efficiency. Utilities providing

water services to tourist municipalities also exhibit effi-

ciency levels that differ from those in other areas. Marques

et al. (2011) investigate the influence of exogenous factors

on the performance of water utilities in Japan with data

envelopment analysis (DEA). They find significant links

between efficiency and peak factor, water consumption per

capita, prefecture GDP and subsidization. Zschille and

Walter (2012) estimate the performance of German water

utilities with both parametric and non-parametric tech-

niques. Groundwater input, share of water losses, output

density, elevation differences, per capita debt in the

municipality, eastern location, private governance and

provision of sewage services impact efficiency. While

many studies now include environmental factors, research

on the impact of meteorological factors is still sparse.

Renzetti and Dupont (2009) include maximum weekly

summer temperature and total precipitation in the estima-

tion of the efficiency of water utilities in Ontario in 1996.

They find that those meteorological factors are associated

with increased inefficiency.

Switzerland is an interesting case of study. Although

there seems to be a general consensus that the Swiss water

sector has to be preserved from liberalization pressures

which are presently acting in other network industries, there

is nevertheless a growing concern about their performance

and the relatively small size of many of the utilities (cf.

Kilchmann 2003). Switzerland is classified as a high water

availability country, but regions and thus drinking water

utilities face very diverse conditions, constraints and man-

agement structures. In particular, population density, cli-

matic, topographic and water conditions are very different

from one region to the other. Even though it is a small

country, weather conditions can be very different. Particu-

larly, temperature varies between mountainous and plain

regions and from year to year. Climate change is expected

to increase the frequency of heat waves, a phenomenon that

already occurred in 2003 and 2006 summer periods.

Moreover, heavy precipitation episodes may increase in the

future. These are mostly local and often do not affect the

whole country, but rather specific small regions, thus

impacting some water utilities while sparing others.

Since Switzerland is a federal state, the responsibility of

water supply is divided between the federal, cantonal and

municipal levels (for a detailed discussion of water insti-

tutions in Switzerland, see Luı́s-Manso 2005). The Con-

federation mainly sets the legal framework for water

protection and drinking water quality standards, with a

limited role in the financing of infrastructures for water

protection. Contrary to other countries, except for quality

standards, there is no central water regulator, although

there is a price supervisor who can express recommenda-

tions on water price levels. Drinking water provision and

control are thus mostly within the competence of the

Cantons, which however generally delegate those respon-

sibilities to various degrees to the municipalities. As a

result, the Swiss drinking water market is highly seg-

mented, characterized by a very large number of water

utilities operating in a very heterogeneous context, acting

as local monopolies very often controlled by the munici-

palities. The Swiss drinking water distribution industry

thus provides a very interesting framework to study the

impact of both observed and unobserved heterogeneity on

cost and performance.

Recently, there has been a surge in literature related to

the analysis of the cost and performance of the drinking

water sector, reflecting worries about market structure and

performance. European examples outside the United

Kingdom include the studies discussed above for Germany,

Portugal and Spain, and further work about the Netherlands

(de Witte and Saal 2010; de Witte and Dijkgraaf 2010),

France (Garcia et al. 2007), Italy (Abrate et al. 2011; Di

Cosmo 2012) and Slovenia (Filippini et al. 2007). On the

contrary, the Swiss water distribution sector has received

little attention in the literature. To our knowledge, there is

only a study by Farsi and Filippini (2009) analysing the

performance of 34 Swiss water multi-utilities for the years

1997–2005. They estimated stochastic cost frontiers

accounting for population density, which the authors find to
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have a positive impact on the marginal cost of water

distribution.

Our paper adopts a parametric approach and estimates a

stochastic cost frontier to measure the efficiency of Swiss

drinking water utilities, accounting for differences in

environmental constraints. Its contributions are threefold.

First, it accounts not only for customer density, water type,

or regional environmental factors, but it also analyses the

impact of weather-related factors on cost and performance,

an issue that has received little attention yet. Second, it

measures the efficiency of Swiss drinking water distribution

utilities, using an unexploited database of the Swiss Gas and

Water Industry Association (SGWA). Third, it compares

alternative estimation techniques to treat both observed and

unobserved heterogeneity. The structure of the paper is the

following. Section 2 discusses the model specification and

empirical implementation. Section 3 defines the variables

and presents the descriptive statistics of the sample. Sec-

tion 4 discusses the results, and finally Sect. 5 concludes.

2 Model specification

To analyse performance, the literature proposes various

parametric and non-parametric methodological approaches,

the two most common being stochastic frontier analysis

(SFA) and DEA. Both have their strengths and shortcom-

ings and have been used to study the efficiency of water

distribution utilities in various contexts. We use SFA,

independently introduced by Aigner et al. (1977) and

Meeusen and van den Broeck (1977), to estimate the var-

iable cost frontier and efficiency scores of Swiss drinking

water utilities. The main weakness of SFA is that it calls

for distributional assumptions on the error terms, as well as

a functional form for the cost frontier. These can have an

important impact on results, while particularly the appro-

priateness of the distribution of error terms is difficult to

ascertain. However, in the context of our study, SFA offers

some important advantages over alternative techniques.

Firstly, measurement errors and random shocks are

accommodated in SFA, and the technique is consequently

less sensitive to outliers. Secondly, it easily allows for

statistical hypothesis testing. Thirdly, SFA proposes solu-

tions to distinguish between unobserved heterogeneity and

inefficiency and to deal with both observed and unobserved

heterogeneity in a one-step procedure.

We estimate a variable rather than a total cost frontier,

because the latter supposes that the producers are at their

long term equilibrium and that they use their production

factors at the level minimizing total cost. In the case of

water utilities, such an assumption is relatively strong, in

particular with regard to their capital stock, which may not

be at its optimal level for two main reasons (Baranzini

1996). Firstly, modifications in the capital stock are rela-

tively costly and thus the size of the main water utilities

infrastructures is typically based on demographic and

economic forecasts, which can be wrong. Secondly, water

utilities are obliged to respond to all the demand, and thus

they typically dispose of excess capacities to account for

seasonal and unexpected demand variations (e.g. in case of

fire). For those reasons, the capital stock of the water

utilities can be considered fixed in the short term and only

adjusting partially with respect to its long term equilibrium.

The stochastic variable cost frontier can be expressed in

general terms as:

lnVCit ¼ c yit; pit;mit; zit; bð Þ þ vit þ uit ð1Þ

where VCit are the variable costs of firm i at time t, yit the

output, pit the vector of factor prices, mit the quasi-fixed

input, zit the exogenous (environmental) factors and b the

vector of coefficients to be estimated. The vit is a random

error term measuring white noise, while uit is a non-neg-

ative random variable interpreted as the cost inefficiency

measure. uit must take positive values, because firms can-

not operate below the cost frontier.

The cost frontier does not only include output, price and

quasi-fixed input variables, but accounts for the environ-

ment in which the firms operate. Environmental variables

can be included in the estimated model following two

different approaches (e.g. see Coelli et al. 1999).

The first approach assumes that the exogenous variables

have a direct impact on the cost frontier, affecting the

technology and the production structure, and therefore the

shape of the frontier. Environmental factors are thus

directly included into the cost frontier. In this approach,

every firm faces a different frontier, or benchmark,

depending on the environment in which it operates, and the

resulting inefficiency scores are net of environmental

influences. In other words, by including the exogenous

factors directly in the frontier, the level of the cost frontier

is adapted to the environmental conditions of the utility.

For example, a utility faced with a particularly hostile

environment will be confronted with a scaled-up cost

frontier, thus lowering its inefficiency score. The environ-

ment impacts performance by altering the structure of the

cost frontier and not efficiency levels, as it is assumed

uncorrelated to them (Kumbhakar and Lovell 2000). This

approach has among others been used by Filippini et al.

(2007) in their study on the cost efficiency of the Slovenian

water distribution utilities, by Abrate et al. (2011) in their

paper about the cost efficiency of the Italian water service

and by Zschille and Walter (2012) to analyse the perfor-

mance of water distribution utilities in Germany.

The second approach assumes that exogenous variables

do not directly influence the frontier, but rather impact the

cost-inefficiency score. Consequently, in this approach the
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environment does not affect the technology, a strong

assumption in heterogeneous sectors: all the firms share an

unique cost frontier and are evaluated against the same

benchmark. The exogenous variables are modelled to

influence the distribution of the uit and therefore the dis-

tance that separates the firms from the benchmark. Their

effect is included in the inefficiency scores, which conse-

quently are gross values. This approach was developed by

Kumbhakar et al. (1991), Reifschneider and Stevenson

(1991), Huang and Liu (1994) and Battese and Coelli

(1995) and it has for example been chosen by Fraquelli and

Moiso (2005) in their study about the cost efficiency of the

Italian water industry.

There are no compelling theoretical arguments to prefer

one approach over the other. In this paper, we have opted

for the first approach, allowing for the exogenous variables

to directly influence the shape of the frontier. We indeed

believe that the environmental background of the Swiss

water utilities is so heterogeneous that it is likely to affect

their technology and production structure, therefore com-

manding the inclusion of environmental factors into the

cost frontier. Nevertheless, a model in which observed

heterogeneity is included in the variance of the inefficiency

is also estimated as a robustness check of the results.

In the empirical application it is then necessary to

specify the functional form of the cost frontiers to be

estimated. In the literature, several studies use a Cobb-

Douglas cost function (e.g. Antonioli and Filippini 2001).

Although its simplicity and easily interpretable results

make it an attractive choice, the Cobb-Douglas specifi-

cation imposes unnecessary restrictions on the production

technology, in particular regarding economies of scale.

For this reason, the majority of studies use a translog

form, which is more flexible and also contains the Cobb-

Douglas specification as a special case. The translog cost

function, first introduced by Christensen et al. (1973),

corresponds to a second degree Taylor approximation in

the logarithms of an arbitrary cost function, with some

restrictions in the parameters to respect the main desired

economic properties (e.g. symmetry and homogeneity).

The main disadvantage of the translog is related to its

definition: since it is a local approximation, the results are

reliable only close to the approximation point.1 For Swiss

water utilities, we specify a one output, two input translog

frontier, including six exogenous factors. To save degrees

of freedom, the environmental factors are not interacted

with the other variables, implicitly assuming separability

between these factors and the other variables.2 The tran-

slog thus takes the following form:

ln
VCit

pMAit

� �
¼ aþ bY lnYit þ bpLln

pLit

pMAit

� �
þ bcaplnCAPit

þ 1

2
bYY lnYitlnYit þ

1

2
bpLpLln

pLit

pMAit

� �
ln

pLit

pMAit

� �

þ 1

2
bcapcaplnCAPitlnCAPit þ bYpLlnYitln

pLit

pMAit

� �

þ bYcaplnYitlnCAPit

þ bpLcapln
pLit

pMAit

� �
lnCAPit þ

X
n

bnZn
it þ

X
t

btDt

þ vit þ uit ð2Þ

where Yit is the quantity of water delivered by utility i at

time t, pL is labour price, pMA the material price and CAP

the stock of capital. The n environmental factors are con-

tained within the vector Z, n = PUM, DENS, DMALT,

DHALT, MAXTEMP and DPREC. PUM is the share of water

that has to be pumped, DENS is customer density and

DMALT and DHALT are dummy variables that equal one if

the utilities are located in medium or high altitudes, as

opposed to low altitude regions. MAXTEMP is the maxi-

mum 30 days average temperature over the year and DPREC

is a dummy indicating whether the utility was exposed to a

high precipitation event during a given year. Finally, D03 to

D09 are time dummies for the years 2003–2009.

All monetary amounts are deflated to 2003 constant

Swiss francs using the producer’s price index of the Federal

Office of Statistics. Cost and factor prices are normalized by

the material price to guarantee homogeneity in input prices

and bjn = bnj imposes symmetry. Given that some proper-

ties of the translog cost function are not imposed (in par-

ticular concerning its curvature), they should be verified ex

post, based on the estimated coefficients.

To estimate Eq. (2), we use two alternative stochastic

frontier estimation techniques that differ in the way uit is

defined.3 They are random effects models, because there is

very little or no within-group variability in many of the

variables. The drawback of these models is the assumption

that individual effects are uncorrelated with the regres-

sors, because random noise and inefficiency as well as

unmeasured heterogeneity are distributed independently of

each other and the regressors.

1 The globally flexible Fourier functional form (Gallant 1981) could

offer an even more flexible solution. However, it would increase the

number of parameters to be estimated and result in a further loss of

degrees of freedom (Filippini et al. 2007), which is why it is not

estimated in this paper.

2 Possible interactions between output and exogenous factors seem

intuitively appealing, as the impact of environmental conditions on

variable cost may vary with utility size. The model was also estimated

including interaction terms between output and exogenous factors.

However, none of these proved to be statistically significant and a

likelihood ratio test rejected the model including interactions in

favour of the restricted one.
3 For a detailed description of the different estimation methods, see

Kumbhakar and Lovell (2000) and Greene (2005a, b).
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First, to investigate the issue of observed heterogeneity

and its impact on cost and efficiency, we use the Pitt and

Lee (1981) (PL) stochastic cost frontier estimated by

maximum likelihood (ML). In this approach, the ineffi-

ciency term is time invariant, and the distribution of the

inefficiency and random noise terms are the following:

ln VCit ¼ c yit; pit;mit; zit; bð Þ þ vit þ ui

ui�Nþ 0;r2
u

� �
vit�N 0; r2

v

� �
We will refer to this model as ‘‘Model I with environment’’.

An obvious shortcoming of this model is the time-invariant

inefficiency term. Therefore, our second approach relaxes

this restrictive assumption by using the Battese and Coelli

(1992) (BC) model, where:

uit ¼ Ui exp �g t � Tið Þð Þ

vit�N 0; r2
v

� �
where g is a parameter to be estimated and Ui are inde-

pendent and identically distributed as an Nþ 0; r2
u

� �
distri-

bution. This model has the advantage of allowing time

variation in the inefficiency term. Indeed, uit varies through

time; however the random component Ui is still constant

through time.

As discussed above, observed heterogeneity can enter

the model through various avenues, one being the cost

frontier itself, while in the other the exogenous factors

influence the distribution of the inefficiency term. As a

robustness check of the results, we have introduced heter-

ogeneity in the variance of the inefficiency term.4 This

model offers the advantage of both correcting for hetero-

scedasticity in ui and providing an alternative method to

account for heterogeneity (Kumbhakar and Lovell 2000).5

We will refer to this model as ‘‘Model II with environ-

ment’’. The distribution of the one-sided error term

becomes (with c the coefficients to be estimated):

ui�Nþ 0; r2
ui

� �
r2

ui ¼ exp zicð Þ

The other important issue to address in (2) is the treatment

of unobserved heterogeneity. Both the PL and the BC models

suppose that unobserved time-invariant heterogeneity is

entirely inefficiency. This can be problematic especially

under very heterogeneous conditions, where many of the

differences in environmental conditions cannot be observed

and as a result inefficiency may be overestimated. A potential

solution to this issue lies in the estimation of the ‘‘true random

effect’’ (TRE) model by Greene (2005b). This model

introduces a stochastic term denoted wi that captures time-

invariant unmeasured heterogeneity and separates it from the

inefficiency measure uit. It addresses both the problems of

time-invariant firm specific heterogeneity and time-varying

inefficiency:

ln VCit ¼ wi þ c yit; pit;mit; zit; bð Þ þ vit þ ui

uit�Nþ 0; r2
u

� �
vit�N 0; r2

v

� �
wi�N 0; r2

w

� �
By assuming none of the unobserved persistent differences

to be inefficiency, the TRE model can in turn lead to an

underestimation of inefficiency levels, and the true

inefficiency may thus lie somewhere between the PL

model on one side and Greene’s TRE on the other side. The

TRE is estimated by simulated maximum likelihood using

300 quasi-random Halton draws. Inefficiency terms uit are

estimated indirectly, using the Jondrow et al. (1982)

estimator to obtain estimates of the conditional

expectation of uit given the observed values of eit (with

eit = vit ? uit),
6 E[uit | eit]. For the ith firm in year t, cost

inefficiency CI is defined as:

CIit ¼ exp uitð Þ ð3Þ

Cost inefficiency estimates measure the distance that sep-

arates the firm from the cost frontier. The score of a per-

fectly cost-efficient water utility is one and its uit, which

accounts for inefficiency, is zero. Consequently, the per-

fectly efficient water utility operates on the cost frontier. At

the other extreme, an infinite cost inefficiency score would

occur if uit ? ?. More generally, the higher the CI

coefficient is, the higher the cost-inefficiency of the firm.

3 Data description

We use a database of the SGWA, which originally contains

information on approximately 400 water utilities, over the

period 2000–2009. The database results from a detailed

survey done by the SGWA every 5 years (thus in our case

in 2000 and in 2005), and a shorter survey which is con-

ducted each year (SGWA 2002–2010). It gives information

on the type of the water production process, the network

characteristics, customer attributes and the costs of water

supply. The survey is not compulsory and therefore many

utilities do not participate every year or give incomplete

4 We thank an anonymous referee for this suggestion.
5 As only time-invariant exogenous factors are accommodated in this

model, the mean values of the variables are used for time-varying

environmental variables. This is not problematic for density and the

share of pumped water, which display very little within group

variability. However, it entails some loss of information for both

meteorological factors that vary from year to year. 6 For the TRE model, eit = vit ? uit ? wi.
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answers, resulting in a high number of missing values. In

the original database, the missing value issue is particularly

important for the years 2000 and 2001, especially for the

variables needed to measure labour cost. These years are

thus excluded from our sample. After eliminating some

aberrant values that were misreported, our final sample is

an unbalanced panel containing data on 141 water distri-

bution utilities and a total of 745 observations over the

years 2002–2009. The final sample does only include about

5 % of the about 3,000 existing Swiss water utilities.

However, the utilities included in the sample supplied

water to about 27 % of the Swiss population on average

over the years 2002–2009. This implies that larger water

utilities are overrepresented. Also, bigger utilities have a

slightly lower probability to be missing in the dataset than

smaller ones, so that missing values are not random.

Nonetheless, the utilities included in the database still

differ widely in terms of size, structure, water resources,

geological characteristics of the distribution area, produc-

tion processes and weather conditions and are situated all

across Switzerland. As already mentioned, most of them

are public companies owned by the municipalities, some

acting as well as electricity and gas distributors.

The output is measured as the yearly total quantity of

water delivered in thousands of cubic meters. As shown in

Table 1, it varies between 22 thousand and 65 million

cubic meters of drinking water. The number of customers

goes from about 200 for the smallest utility to more than

450,000 for the biggest. These figures highlight the large

diversity of the drinking water distribution utilities inclu-

ded in the sample in terms of size. Variable costs are cal-

culated by summing labour costs and all material expenses,

including energy costs. Given the differences of the utilities

in terms of size, the spread of variable cost is not surpris-

ing. However, average variable costs vary from 0.15 CHF

per cubic meter of water to 3.3 CHF per cubic meter7.

These large differences emphasize the importance of

understanding the determinants of the costs of drinking

water utilities, and in particular of separating cost differ-

ences due to inefficiency from those stemming from het-

erogeneity in the operating environment.

The price of labour is defined as total labour cost divi-

ded by the number of employees in full time equivalent

(FTE)8. The second input is materials, which includes

energy costs, water treatment products, material costs and

all remaining ‘‘other expenses’’. We follow Garcia and

Thomas (2001) in constructing a price variable for

materials by dividing it by the quantity of water delivered.

This procedure seems acceptable, given the heterogeneity

of the costs included in the material and other expenses

categories and the lack of access to more pertinent data. To

lessen the impact of outliers on estimation results and to

avoid problems due to misreported values, the labour price

values lower than the 1 % quantile and higher than the

99 % quantile of labour costs in Switzerland in the water

distribution sector are eliminated from the sample, as are

the 1 % smallest and the 1 % largest material price values.

Capital stock can be measured either by using a capacity

measure or a cost measure applying the perpetual inventory

technique, as for example in Nelson (1989). Although the

latter method is theoretically more appropriate, we cannot

apply it due to the lack of data. Therefore, as in other studies

(e.g. Nauges and van den Berg 2008) we use the total net-

work length as measure for the capital stock. Data on net-

work length is collected every 5 years only (in our case in

2000 and 2005). We have interpolated the data assuming a

linear investment path, which is a reasonable assumption,

given that network length is relatively stable in the period

under observation. For 2009 and for those utilities which

have missing data in 2000 or in 2005, we estimate the net-

work length with lagged network length and total investment

in the network during the period as regressors.9

Six exogenous factors are included in the analysis. First,

we consider the proportion of pumped water over total

water adduction. We expect that utilities with larger shares

of pumped water have higher energy and treatment cost.

Indeed, the water that does not have to be pumped is spring

water, which in Switzerland is generally of very high

quality and needs less treatment than ground or surface

water. In our sample, while some small utilities use only

spring water that flows by gravity, an average of approxi-

mately 70 % of the water has to be pumped.

Second, we include customer density, which is mea-

sured as the number of customers per meter of network.

Customer density is integrated as an environmental factor

rather than including the number of customers directly as

7 In 2003, 1 CHF = 0.74 USD = 0.66 EURO.
8 We have information about FTE in 2009 only. For the previous

years, the survey reports the total number of employees working part

time and the total number of employees working full time only. We

assume that the FTE of part-time employees in 2009 is constant over

the whole period. For those utilities for which we do not have FTE for

Footnote 8 continued

2009, part-time employees correspond to the median FTE of utilities

of comparable size. To test the possible impact of this variable on our

results, we have estimated the cost frontier and inefficiency scores

using alternative labour cost data from the Swiss Federal Office of

Statistics based on the median gross salary in 7 Swiss regions. Results

are very similar and the main conclusions are unchanged. Therefore,

we use the much more precise utility-specific cost of labour data

instead of the regional median salaries.
9 The estimated equation is the following:

lnðnetworklengthtÞ ¼ 0:69 ð0:43Þ þ 0:81 ð0:05Þ lnðnetworklengtht�1Þ
þ 0:11 ð0:04Þ lnðsum of investmentsÞ

With SEs in brackets. R2 = 0.87.
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an output dimension. Indeed, the inclusion of additional

output dimensions would entail adding not only the vari-

ables, but also their squares and interaction terms, as the

functional form is a translog. This would lead to the loss of

degrees of freedom and possibly to multicollinearity

problems, as the number of customers is highly correlated

with both output and capital stock. This problem does not

arise with customer density. However, the model including

the number of customers as an output dimension instead of

customer density as an environmental factor is estimated as

a robustness check of our results. The main results and

conclusions remain unchanged.10

The impact of customer density on costs can be positive

or negative. On the one hand, distributing water to more

densely populated areas can be more costly since water has

to be extracted outside these areas and consequently

transported (Saal and Reid 2004), increasing not only

capital expenses, but also energy and other operating costs.

Further, Torres and Morrison (2006) note that higher

density may call for more complex connections and thus

cause pressure or maintenance problems. On the other

hand, distributing water in less populated areas could be

expensive because it requires long distribution pipelines

(Torres and Morrison 2006) and thus increases capital cost.

Also, more pumping is needed to bring the drinking water

to the customers and energy expenses are thus heightened.

Estimation of the cost frontier has to determine if the

positive or the negative effect prevails.

The third and fourth environmental factors relate to the

altitude at which the water utility is situated. Dummies are

used to differentiate lowland utilities (i.e. those below

460 m) from those at medium or high altitude (between

460 and 670 and above 670 m, respectively). There is a

variety of reasons why costs could be related to altitude.

Firstly, the need for pumping may be influenced by altitude

(Corton 2011). As it is already controlled for by the

inclusion of a variable measuring the share of pumped

water, these impacts should be limited. Secondly, chal-

lenging topography can lead to higher costs for the building

and maintenance of infrastructure. Additionally, cold

winter temperatures or landslides may damage infrastruc-

ture and lead to an increase in labour and material

expenditure. One should note that these dummy variables

may also capture regional heterogeneity like geographic

differences that the model does not address.

The remaining exogenous variables are weather-related

factors and are collected from MeteoSwiss: maximum

mean temperature over 30 days and heavy precipitation

events. We use X–Y geographic coordinates to determine

the closest weather station for each water distribution

utility and then associate the two weather-related events to

it. These environmental factors are included to assess the

impact of extreme weather events on drinking water dis-

tribution cost, as it is expected they will occur more fre-

quently in Switzerland due to climate change (OcCC

2008).

Maximum 30 days temperature is expected to increase

variable cost for a number of reasons. Firstly, episodes of

high temperatures can impact water quality by affecting

oxygen content of the water and favour algae growth

(Gander 2009). They can lead to taste and odour problems

and the water may require additional treatment. Secondly,

higher temperatures are expected to cause an increase in

drinking water demand and thus lead to higher variable

Table 1 Descriptive statistics

Variable Measurement unit Mean Median SD Min Max

Variable cost CHF (thousands) 2,927 897 8,379 12 61,700

Output 1,000 m3/year 2,787 924 7,803 22 65,411

Labour price 1,000 CHF/worker/year 104 101 36 40 294

Material price CHF/1,000 m3 water/year 636 543 422 35 2,653

Network km 129 76 214 8 1,624

Customers Thousands 21.8 8.8 58.5 0.2 456.9

Density Customers/network unit 0.13 0.12 0.06 0.02 0.36

Pumped water Part of total water delivered 0.71 0.86 0.33 0 1

Medium altitude Dummy 0.51 1 0.5 0 1

High altitude Dummy 0.25 0 0.43 0 1

Max. 30 days temperature Degrees 26.1 26 2.6 17.4 32.5

Heavy 2 days precipitation Dummy 0.12 0 0.32 0 1

Number of observations 745

Utilities 141

Data source: SGWA and MeteoSwiss

10 Detailed results are available upon request.
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cost. Further, high summer temperatures may lead to peaks

in water demand and small water distribution utilities that

are not interconnected with others may encounter problems

to meet drinking water demand if episodes of high tem-

perature come along with drought, as was the case during

the very hot and dry summer of 2003 (ProClim 2005).

Maximum 30 days temperature varies across weather sta-

tions due to different altitudes and locations across Swit-

zerland. Year to year patterns are similar across stations,

with a peak in 2003, a year that saw an exceptionally warm

and dry summer, as well as high temperatures in 2006, due

to very hot July temperatures.

The occurrence of high precipitation events during

1 year is measured with a dummy variable. MeteoSwiss

defines various levels of threats associated with precipita-

tions, on a scale from 1 to 5. To define high precipitation

we consider degree 4 and 5 threats only, as these are the

levels at which important floods and landslides that

potentially damage infrastructure can occur. The dummy

indicating high precipitation takes the value 1 if there has

been during the year an episode where precipitation

exceeded 110 mm in 2 days, which is a degree 4 threat as

defined by MeteoSwiss. The 2-day time-frame was chosen

after estimating the model with variables for 1, 2 and 3 day

episodes. 1 day seems to be too short a time frame, as the

estimated coefficients are not statistically significant. As

3-day coefficients are slightly less significant than those

measuring 2-day episodes, we include the latter in the cost

frontier. This variable is expected to increase cost. Indeed,

high precipitation events can result in water quality dete-

rioration due for example to sewage overflow and call for

additional treatment. In extreme cases they might damage

the utilities’ infrastructure and cause higher expenses for

repairs, increasing labour and material as well as capital

expenses, although the latter would impact total and not

variable cost. In our sample, about 12 % of observations

have at least one heavy precipitation event over the period.

4 Results and discussion

The variable cost frontier (2) is estimated using the PL

(1981) and Greene (2005b) models. We also estimate the

BC (1992) model. However, a likelihood ratio test of the

BC model with time-varying inefficiency against the PL

model favours the latter.11 Indeed, with g equal to zero, the

normal half-normal BC model reduces to the PL (1981)

model. This result might be due to the relatively short time-

span of the panel or the modelling of time-varying ineffi-

ciency, where the random component Ui is still constant

through time. Table 2 reports the likelihood ratio tests of

the translog (2) against a Cobb-Douglas functional form.

The test statistic has a Chi squared distribution and equals

-2(LLr-LL0), where LLr and LL0 are respectively the log

likelihoods of the restricted (Cobb-Douglas) and the

unrestricted (translog) models. Degrees of freedom equal

the number of restrictions imposed on the restricted model.

As reported in Table 2, likelihood ratio tests reject the

Cobb-Douglas in favour of the translog in all models.12

Furthermore, models excluding exogenous variables are

rejected when tested against their counterpart that accounts

for the environment, emphasizing the importance to

include heterogeneity in the estimations.

We also estimate a nested PL model including observed

heterogeneity both in the cost frontier and the variance of

the inefficiency term. None of the estimated c coefficients

were significant at 10 % levels, and a likelihood ratio test

rejects the nested model with heteroscedasticity in ineffi-

ciency in favour of a model accounting for environmental

factors in the cost frontier only. This indicates that the

inclusion of heterogeneity in the cost frontier rather than in

the inefficiency distribution appears as a more suitable

solution for Swiss drinking water utilities.

Table 3 displays the estimation of Eq. (2) and a varia-

tion that excludes environmental factors for the PL as well

as the Greene TRE models. Estimation results for the PL

model with heterogeneity in the variance of the inefficiency

term (Model II) are included as robustness check of the

results. The estimated coefficients of the traditional vari-

ables included in the cost frontier possess the expected

signs and are similar across the PL and TRE models.

Differences arise mostly in the estimated efficiency scores

that will be discussed later.

We choose the median water utility as reference point

for local approximation, thus all regressors except the

dummies are normalized by their sample medians. This

allows for the direct interpretation of the first order coef-

ficients as cost elasticities evaluated at the median. Thus,

referring for example to the TRE model with environment,

a 1 % increase in the quantity of drinking water distributed

results in an about 0.75 % increase in variable cost, ceteris

paribus. The coefficients of the output and of the price

variables are statistically significant and have the expected

positive sign in all models. Although theory suggests the

capital stock should have a negative impact on variable

cost (Antonioli and Filippini 2001), the estimated coeffi-

cient is positive and significant. This result is observed very

frequently in the literature, see for instance Bottasso and
11 Time-variance was tested only in the model where heterogeneity is

directly included in the cost frontier. Indeed, the BC model could not

be estimated with heterogeneity included in the inefficiency distri-

bution as models did not converge.

12 Detailed results of the estimation of the Cobb-Douglas cost

frontier are available upon request.
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Conti (2008) and Garcia and Thomas (2001). This problem

may result from several causes. Firstly, the positive coef-

ficient may be due to a multicollinearity problem between

the network length and output variables (Filippini 1996).

Indeed, the correlation between output and network length

is high, a remark that would probably apply for most

capital measures. Secondly, network length may be con-

sidered an output characteristic, which would explain the

positive impact on cost. Thirdly, as suggested by Cowing

and Holtmann (1983) this result may also indicate high

levels of overcapitalisation. When discussing variable cost

functions that are increasing in capital, these authors point

Table 2 Likelihood ratio tests

Restrictions PL (Model I) PL (Model II) Greene TRE

Translog with environment versus translog without environment 6 43.8*** 15** 58.2***

Translog with environment versus Cobb-Douglas with environment 6 148.8*** 149.3*** 179.9***

Statistically significant at 1 %***, 5 %**

Table 3 Estimation results

Pitt and Lee Greene TRE

Environment (Model I) Without environment Environment (Model II) With environment Without environment

bY 0.7651*** 0.0305 0.8346*** 0.0236 0.7964*** 0.0198 0.7467*** 0.0077 0.8523*** 0.0054

bPL 0.2989*** 0.0090 0.2962*** 0.0094 0.2993*** 0.0080 0.3041*** 0.0036 0.2992*** 0.0037

bCAP 0.2422*** 0.0346 0.1699*** 0.0252 0.1824*** 0.0226 0.2665*** 0.0094 0.1566*** 0.0074

bYY -0.0024 0.0356 -0.0638* 0.0365 -0.0818** 0.0407 0.0159 0.0119 -0.0426*** 0.0115

bPLPL 0.1100*** 0.0122 0.1061*** 0.0125 0.1050*** 0.0085 0.0919*** 0.0045 0.0906*** 0.0047

bCAPCAP 0.1525*** 0.0507 0.1289*** 0.0484 0.1316** 0.0565 0.1239*** 0.0217 0.0826*** 0.0212

bYPL -0.0242* 0.0128 -0.0257** 0.0131 -0.0235** 0.0117 -0.0218*** 0.0059 -0.0220*** 0.0060

bYCAP -0.0358 0.0351 -0.0001 0.0356 0.0003 0.0431 -0.0533*** 0.0145 0.0017 0.0139

bPLCAP 0.1072*** 0.0179 0.1135*** 0.0181 0.1137*** 0.0124 0.1033*** 0.0074 0.1047*** 0.0077

bPUM 0.0630** 0.0311 0.0900*** 0.0088

bDENS 0.1316*** 0.0337 0.1780*** 0.0087

bMALT 0.0911*** 0.0359 0.0495*** 0.0075

bHALT 0.1319*** 0.0424 0.1179*** 0.0104

bMAXTEMP 0.5183*** 0.1884 0.5215*** 0.0429

bPREC 0.0353*** 0.0132 0.0290*** 0.0101

b03 -0.0971*** 0.0330 -0.0210 0.0139 -0.0192 0.0218 -0.0977*** 0.0188 -0.0180 0.0174

b04 -0.0294** 0.0147 -0.0168 0.0139 -0.0170 0.0192 -0.0309** 0.0146 -0.0178 0.0145

b05 -0.0332** 0.0133 -0.0329** 0.0134 -0.0333** 0.0166 -0.0342*** 0.0132 -0.0347*** 0.0133

b06 -0.0850*** 0.0283 -0.0229 0.0151 -0.0237 0.0215 -0.0802*** 0.0166 -0.0149 0.0158

b07 0.0297 0.0198 0.0019 0.0151 -0.0010 0.0201 0.0225 0.0142 -0.0022 0.0144

b08 0.0153 0.0169 -0.0066 0.0155 -0.0082 0.0215 0.0048 0.0145 -0.0140 0.0147

b09 -0.0043 0.0151 -0.0047 0.0151 -0.0074 0.0163 -0.0197 0.0127 -0.0153 0.0123

a -0.4298*** 0.0487 -0.3243*** 0.0202 -0.3242 0.0223 -0.2023*** 0.0153 -0.0978*** 0.0108

cPUM 0.6700 0.4443

cDENS 0.8256** 0.3490

cMALT 0.3875 0.5946

cHALT 0.6880 0.8465

cMAXTEMP 2.5508 3.5838

cPREC -0.0144 1.4674

Sigma u 0.3512 0.3773 0.2468 0.1291 0.1311

Sigma v 0.0882 0.0900 0.0892 0.0401 0.0429

LL 531.38 509.487 516.97 563.86 534.77

Statistically significant at 1 %***, 5 %** and 10 %*; SEs in italics
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out that ‘‘although this condition is clearly inconsistent

with long-run equilibrium, it is not inconsistent with a

short-run equilibrium if current operating conditions are

substantially different from those prevailing, or expected,

when the original capital decision was made.’’ This state-

ment is particularly relevant for water distribution utilities,

where the need to meet all demand and very long planning

horizons for modification of capital stock often result in

excess capacity. In such case, a total cost function would be

mis-specified and the estimated coefficients biased. This

article would benefit from the estimation of the frontiers

with other capital stock measures to shed more light on this

issue. However, there is no data available on other vari-

ables that could serve as a proxy for the capital stock.

Concerning the environmental variables, the coefficient

associated with the share of pumped water is positive and

statistically significant at least at the 5 % level in both

models that include heterogeneity in the frontier. As

expected, a higher share of pumped water relates to

increased variable costs. This result is in line with Bottasso

and Conti (2003), who associate higher levels of average

pumping head with increased cost inefficiency.

A higher population density also possesses a significant

positive impact on variable costs. Possible congestion,

pressure and maintenance problems thus seem to override

the potential cost savings of distributing drinking water to

more densely populated areas. Population density is found

to increase cost in other studies as well, such as Saal and

Reid (2004), where density is found to increase variable

cost, or Fraquelli and Moiso (2005), who associate higher

density with increased total cost inefficiency. This result is

also compatible with the findings of Farsi and Filippini

(2009), who conclude that population density has a positive

impact on the marginal cost of water distribution.

Estimation results further show variable cost to be sig-

nificantly higher in high and medium altitude regions than

in the plain. The drawbacks of a difficult topography and

adverse climatic conditions seem to offset possible

advantages of being located at a higher altitude.

The coefficient of the dummy measuring the occurrence of

heavy rainfall has the expected positive sign and is statistically

significant at the 1 % level for both the PL and the TRE models,

indicating that very heavy rain is linked to increased variable

cost. Drinking water utilities that experience an episode of

heavy precipitation during the year display variable costs about

3 % higher than a utility that is not subjected to such an episode.

Heavy rainfall and consequent floods or landslides can damage

the infrastructure or contaminate the drinking water. This may

not only result in higher total, but also variable cost, as for

example expenditures in labour and material could increase due

to repair works and cleaning of the pipes.

Maximum 30 days temperature has a relatively high and

statistically significant impact. In the TRE model, a 1 %

increase in the maximum 30 days average temperature

results in 0.52 % higher variable costs. This result is

compatible with the findings of Renzetti and Dupont

(2009), who show maximum weekly summer temperature

to increase the inefficiency of water distribution utilities.

The positive relationship between high summer tempera-

ture and variable cost might have several causes. First,

higher temperatures can result in peaks in drinking water

demand, thus increasing the ratio of maximum daily water

demand to mean daily water demand. Next, heat waves are

often associated to drought and high demand coupled to

lowered supply may increase the cost of drinking water

utilities. An increase in future summer temperature related

to climate change could thus heighten variable costs of

drinking water distribution. Lastly, the coefficient could be

capturing time or regional effects not otherwise accounted

for in the cost frontier. Time dummies and the inclusion of

altitude in the regression should at least partially control for

these effects, as in Switzerland the between-utility varia-

tion in temperature is linked to altitude.13

When environmental factors are included in the variance

of the error term, only population density has a statistically

significant impact. The exogenous factors do explain some

of the variance in the inefficiency, since a likelihood ratio

test rejects the simple PL model against the heteroscedastic

one. However, as mentioned above, the heteroscedastic

model is rejected in favour of the homoscedastic version of

the model when a nested model including heterogeneity

both in the frontier and in the inefficiency is estimated.

The estimated cost frontiers should possess the eco-

nomic properties summarised in Table 4. Homogeneity in

input prices has been imposed prior to estimation. Well-

behaved cost frontiers should also be monotonically

increasing in input prices and output and concave in input

prices. The estimated cost shares are positive for all

observations in all models, implying that the condition of

the frontier being monotonically increasing in input prices

is well respected. Further, the estimated frontiers are all

monotonically increasing in output because olnCVit

olnqit
is posi-

tive for all data points. In addition, they should be concave

in input prices, meaning that the hessian matrix should be

negative semi-definite. This property is respected at a

majority—over 90 %—of all data points in all the esti-

mated models. Still, since concavity is not verified at every

data point, some caution should be taken when interpreting

the estimation results.

Table 5 summarizes the estimated inefficiency scores for

the different models. Scores of all the models including

environmental factors and their counterparts excluding them

13 The inclusion of other regional dummies (for example accounting

for statistical regions in Switzerland) also produced a significant

positive coefficient for temperature.
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are very close. Indeed, mean inefficiency scores in the var-

ious PL models vary between 38 and 44 %, while they are

virtually identical in the TRE models. In the PL specifica-

tion, accounting for observed heterogeneity reduces the

standard deviation and the maximum values of inefficiency

scores, pointing that particularly high inefficiency may be

related to unfavourable environmental conditions. Unsur-

prisingly, inefficiency scores from the TRE models, esti-

mated to be a little below 11 %, are much lower than from

the PL models. These differences result from the way

unobserved heterogeneity is treated: it is attributed to inef-

ficiency in the PL model, while Greene’s TRE captures time-

invariant unobserved heterogeneity separately. Indeed, other

than the theoretical construction of the model, empirical

applications show Greene’s TRE and ‘‘true fixed effects’’

(TFE) models to give much higher efficiencies than models

that assume all time-invariant unobserved heterogeneity to

be inefficiency. This is particularly true in network indus-

tries, where environmental conditions evolve slowly or not

at all in time. Illustrations can among others be found in the

Slovenian and Italian water sectors (Filippini et al. 2007 and

Abrate et al. 2011), Swiss multi-utilities (Farsi and Filippini

2009) or Finnish electricity distribution (Kopsakangas-

Savolainen and Svento 2008). This has two important con-

sequences for our analysis. First, estimated inefficiency is

much lower in the TRE compared to the PL model. Second,

inefficiency scores of models that include environmental

factors are quite close to those that do not when estimated

with the TRE, as four of the environmental factors, namely

population density, the percentage of pumped water and the

two altitude related dummies are constant or change very

little in time. These findings are similar to results found in

comparable studies for other sectors in the literature, for

example by Growitsch et al. (2011), who analyse the per-

formance of Norwegian electricity distribution networks

accounting for geographic and weather related factors.

One of the most important outputs of SFA is the ranking

of the utilities. This is particularly true if SFA is applied to

benchmark utilities for regulation purposes, as inefficiency

scores would be used to establish the best and worst per-

forming utilities. The rankings of drinking water utilities

resulting from models including environmental factors and

their counterparts excluding them are also close. Indeed,

Table 6 shows that Spearman rank correlations are about

0.91 between the PL model without environmental factors

and the PL model that includes heterogeneity directly in

the frontier (Model I) and are even as high as 0.98 between

the PL model without environment and its heteroscedastic

counterpart (Model II). In the TRE model, Spearman cor-

relations are also very high and rankings are thus very

similar. Close efficiency scores and high rank correlations

among scores derived from methods accounting or not for

observed heterogeneity support recent findings for Spanish

water utilities by Picazo-Tadeo et al. (2009b) who reject

the hypothesis that rankings based on initial technical

efficiency and scores adjusted for operating environment

and luck differ, even though the scores themselves change.

On the other hand, in the studies by Renzetti and Dupont

(2009) for Ontario and for the non-parametric approach by

Zschille and Walter (2012) for Germany, efficiency scores

vary substantially when accounting for exogenous factors

and importantly, correlations between efficiency scores

adjusted for the environment and those that are not are low.

These studies based on non-parametric methods offer quite

contrasting conclusions, highlighting that the impact of

exogenous factors may depend not only on estimation

techniques, but is also case- and country-specific.

On the contrary, the differences in the rankings are very

important between the PL and the TRE models. Indeed,

Table 4 Properties of the cost frontier

Percentage of observations for which the property is verified

Pitt and Lee Greene TRE

Environment (Model I) Environment (Model II) Without env. Environment Without env.

Homogeneity of degree one in input prices Imposed Imposed Imposed Imposed Imposed

Monotonically increasing in input prices (%) 100 100 100 100 100

Monotonically increasing in output (%) 100 100 100 100 100

Concave in input prices (%) 94.90 95.57 95.30 98.93 98.79

Table 5 Estimated inefficiency scores

Mean Median SD Minimum Maximum

PL with env.

(Model I)

1.378 1.355 0.254 1.011 2.295

PL with env.

(Model II)

1.444 1.355 0.319 1.010 2.418

PL without

environment

1.416 1.338 0.285 1.010 2.510

TRE with

environment

1.106 1.080 0.089 1.013 2.025

TRE without

environment

1.107 1.083 0.089 1.013 2.034
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Spearman correlations of 0.14 between the PL model and TRE

show that the choice of one model over the other does not only

influence the value of inefficiency scores, but also substan-

tially changes the efficiency ranking of utilities and could thus

have a very important impact in a regulatory context.

Figures 1 and 2 highlight these findings. Figure 1 shows

the distribution of inefficiency scores for the estimated

models, while Fig. 2 compares estimated inefficiency

scores directly. Estimated inefficiencies are similar when

the points are close to a 45� line. Both figures confirm the

two results already discussed. Firstly, estimated ineffi-

ciencies differ a lot between the models that capture time-

invariant unobserved heterogeneity in the inefficiency and

the TRE which treats it separately. In the latter case,

unsurprisingly, inefficiency is much lower. Secondly,

estimated inefficiencies and, very importantly, ranks are

slightly affected by the inclusion of the environmental

factors. The impact of including or not environmental

factors is however much lower than the one of choosing

how to treat unobserved heterogeneity.

The impact on rankings of the choice of whether or not

to include environmental factors into the estimated cost

frontier is finally illustrated by the individual utility rank-

ings in Table 7. This table reports the rankings of the top

ten ranked utilities in the PL model with environmental

factors directly in the cost frontier (Model I) for the year

2009. Rankings between models that include or not exog-

enous factors are very close in most cases. However, dif-

ferences in rankings are much more pronounced between

the PL and the TRE models. For example, the most effi-

cient utility in the PL models ranks 97th or 98th in the

TRE. These results again emphasize the importance of the

treatment of unobserved heterogeneity in analysing the

performance of water utilities as this choice can seriously

alter both estimated inefficiency scores and rankings. If

stochastic frontier models are to be used for regulation in

the Swiss water distribution industry, the most important

choice seems thus about how to account for non-observed

rather than observed heterogeneity.

5 Conclusion

This paper estimates the efficiency of Swiss drinking water

utilities using two alternative stochastic frontier estimation

techniques and accounting for exogenous factors. Results

show that the share of pumped water, population density,

altitude, maximum 30 days average temperature and heavy

precipitation events have a significant impact on variable

cost. The impact of heat waves and heavy precipitation is

particularly interesting, as both summer temperature and the

occurrence of high precipitation episodes are predicted to

increase in Switzerland due to climate change (OcCC 2008).

Further, likelihood ratio tests emphasize the importance to

include observed environmental heterogeneity in the esti-

mations. Rankings provided by models accounting for the

environment and their counterparts that do not differ a little

Table 6 Spearman rank

correlations

Statistically significant at

1 %***, 5 %** and 10 %*

PL (Model I) PL (Model II) PL no. env. TRE env. TRE no. env.

PL (Model I) 1

PL (Model II) 0.86*** 1

PL no. env. 0.91*** 0.98*** 1

TRE env. 0.14*** 0.11*** 0.12*** 1

TRE no. env. 0.13*** 0.12*** 0.13*** 0.96*** 1

Fig. 1 Density of inefficiency scores
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in the Pitt and Lee model, while rankings are similar in the

TRE model. The efficiency rank of utilities is however very

different in the Pitt and Lee vs. Greene’s TRE models.

Therefore, our results show the statistically significant

impact of environmental factors on the cost of water distri-

bution utilities, but more importantly, they highlight the

importance of paying attention to the way unobserved het-

erogeneity is treated. The Swiss drinking water distribution

utilities are very heterogeneous and operate in very different

conditions, most of which vary very little through time. Due

to data and econometric constraints, it is impossible to

include variables that would account for all these differ-

ences. This favours Greene’s TRE as the model of choice,

even though it might underestimate inefficiency. Wide dif-

ferences in ranking of the utilities show the sensitivity of

results to modelling choices and consequently emphasize

that if SFA is to be used for regulation, alternative models

should be tested and that even though econometric bench-

marking can be an effective tool, it should be complemented

by further analysis.

Fig. 2 Comparison of inefficiency scores
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