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Abstract

The human brain is a complex system able to continuously adapt. How and where brain activity is mod-

ulated by behavior can be studied with functional magnetic resonance imaging (fMRI), a non-invasive

neuroimaging technique with excellent spatial resolution and whole-brain coverage. FMRI scans of

healthy adults completing a variety of behavioral tasks have greatly contributed to our understanding of

the functional role of individual brain regions. However, by statistically analyzing each region indepen-

dently, these studies ignore that brain regions act in concert rather than in unison. Thus, many studies

since have instead examined how brain regions interact. Surprisingly, structured interactions between

distinct brain regions not only occur during behavioral tasks but also while a subject rests quietly in

the MRI scanner. Multiple groups of regions interact very strongly with each other and not only do

these groups bear a striking resemblance to the sets of regions co-activated in tasks, but many of these

interactions are also progressively disrupted in neurological diseases. This suggests that spontaneous

fluctuations in activity can provide novel insights into fundamental organizing principles of the human

brain in health and disease. Many techniques to date have segregated regions into spatially distinct

networks, which ignores that any brain region can take part in multiple networks across time. A more

natural view is to estimate dynamic brain networks that allow flexible functional interactions (or con-

nectivity) over time. The estimation and analysis of such dynamic functional interactions is the subject

of this dissertation. We take the perspective that dynamic brain networks evolve in a low-dimensional

space and can be described by a small number of characteristic spatiotemporal patterns. Our proposed

approaches are based on well-established statistical methods, such as principal component analysis

(PCA), sparse matrix decompositions, temporal clustering, as well as a multiscale analysis by novel

graph wavelet designs. We adapt and extend these methods to the analysis of dynamic brain networks.

We show that PCA and its higher-order equivalent can identify co-varying functional interactions,

which reveal disturbed dynamic properties in multiple sclerosis and which are related to the timing

of stimuli for task studies, respectively. Further we show that sparse matrix decompositions provide

a valid alternative approach to PCA and improve interpretability of the identified patterns. Finally,

assuming an even simpler low-dimensional space and the exclusive temporal expression of individual

patterns, we show that specific transient interactions of the medial prefrontal cortex are disturbed in

aging and relate to impaired memory.

Keywords: brain imaging, fMRI, resting state, functional connectivity, dynamic networks, graph

wavelets, matrix factorization, tensor decomposition, sparsity, multiple sclerosis, aging
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Résumé

Le cerveau humain est un système complexe capable de s’adapter en permanence. Comment et où

l’activité cérébrale est modulée par le comportement peut être étudié avec l’imagerie par résonance

magnétique fonctionnelle (IRMf), une technique de neuro-imagerie non invasive caractrérisrée par

une excellente résolution spatiale et qui permet d’explorer le cerveau en entier. Des études sur des

adultes sains exécutant une variété de tâches comportementales ont beaucoup contribué à notre com-

préhension de la fonction des différentes régions du cerveau. Cependant, en analysant chaque région

indépendamment, ces études négligent le fait que les régions du cerveau agissent collectivement plutôt

qu’individuellement. Aussi, de nombreuses études ont récemment examiné la façon dont les régions

du cerveau interagissent. Il s’avére que, des interactions structurées entre régions distinctes du cerveau

ne sont pas seulement évidentes quand un sujet est stimulé par une tâche comportementales, mais

aussi quand le sujet est au repos. Des sous-groupes de régions distinctes interagissent très fortement les

unes avec les autres, et ces groupes ont non seulement une ressemblance frappante avec les groupes de

régions co-activés par des tâches, mais beaucoup de ces interactions sont également progressivement

perturbées dans des maladies neurologiques. Ceci suggère que les fluctuations spontanées de l’activité

cérébrale peuvent fournir de nouveaux éclairages sur les principes d’organisation du cerveau sain et

pathologique. A ce jour, la plupart des méthodes séparént les régions dans des réseaux spatialement

distincts, mais ignorent le fait que toute région du cerveau peut faire partie de plusieurs réseaux àu

cours du temps. Une approche plus générale consiste à estimer des réseaux cérébraux dynamiques qui

permettent d’établir une connectivité fonctionnelle évolutive dans le temps. L’estimation et l’analyse

de cette connectivité fonctionnelle dynamique sont le sujet de cette thèse. Nous partons du point de

vue que les réseaux dynamiques du cerveau évoluent dans un espace de petite dimension et peuvent

être décrits par un petit nombre de modèles spatio-temporelles caractéristiques. Nous proposons

des approches basées sur des méthodes statistiques établies, telles que l’analyse en composantes

principales (ACP), les décompositions parcimonieuses, les méthodes de regroupement dans le temps

et une analyse multi-échelles originale d’ondelettes sur graphes. Nous adaptons ces méthodes à l’ana-

lyse des réseaux cérébraux dynamiques. Nous montrons que l’ACP et son analogue d’ordre supérieur

peuvent identifier des connexions fonctionnelles co-variantes, qui révèlent des propriétés dynamiques

perturbées dans la sclérose en plaques et qui sont liées à l’occurrence des stimulis dans une étude de

tâche comportementale, respectivement. De plus, nous montrons que les décompositions parcimo-

nieuses offrent une alternative valable à l’ACP et améliorent l’interprétation des modèles identifiés.

Enfin, sous l’hypothèse d’un espace de petite dimension encore plus simple et de la contribution

temporelle unique d’un seul modèle, nous montrons que des interactions transitoires spécifiques du

cortex préfrontal médial sont perturbées dans le vieillissement et sont liées à la performance mnésique.
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Zusammenfassung

Das menschliche Gehirn ist ein komplexes System, das sich kontinuierlich anpasst. Wie und wo sich

die Aktivität des Gehirns durch menschliches Verhalten ändert, kann mit der funktionellen Magnetre-

sonanztomographie (fMRT) untersucht werden, einem nichtinvasiven bildgebenden Verfahren mit

hervorragender räumlicher Auflösung, das die Aktivität im ganzen Gehirn misst. FMRT-Studien mit

gesunden Erwachsenen, die eine Vielzahl von Wahrnehmungs- und Verhaltensaufgaben ausführten,

haben wesentlich zu unserem Verständnis der Funktion der einzelnen Hirnareale beigetragen. Die

unabhängige statistische Analyse der Aktivität der einzelnen Hirnareale ignoriert jedoch, dass Hirna-

reale zusammen und nicht unabhängig voneinander arbeiten. Daher haben viele Studien in jüngerer

Zeit untersucht, wie Hirnareale funktionell interagieren. Überraschenderweise treten strukturierte

Arealinteraktionen nicht nur während Verhaltensaufgaben auf, sondern auch während die Versuchsteil-

nehmer ruhig im MRT-Scanner liegen. Mehrere Gruppen von Regionen interagieren besonders stark

miteinander und diese Gruppen haben nicht nur eine auffallende Ähnlichkeit zu den Hirnarealen,

die auch gemeinsam in einer Verhaltensaufgabe aktiv sind, sondern sie sind auch in neurologischen

Krankheiten zunehmend gestört. Dies deutet darauf hin, dass die Analyse spontaner Aktivität neue

Einblicke in die Organisationsprinzipien des menschlichen Gehirns in Gesundheit und Krankheit

bieten kann. Viele Methoden teilen Hirnareale in räumlich getrennte Netzwerke auf, was ausschliesst,

dass eine Gehirnregion über die Zeit Teil mehrerer Netzwerke ist. Eine natürlichere Betrachtungswei-

se ist jene der dynamischen Netzwerke, in welchen flexible Interaktionen erlaubt sind. Die Analyse

solcher dynamischen Interaktionen ist das Thema dieser Dissertation. Aus unserer Sicht entwickeln

sich dynamische Gehirn-Netzwerke in einem niedrig-dimensionalen Raum und können durch eine

kleine Anzahl charakteristischer Raum-Zeit-Mustern beschrieben werden Unsere vorgeschlagenen

Ansätze basieren auf etablierten statistischen Methoden, wie die Hauptkomponentenanalyse (PCA),

“sparse“-Matrix Zerlegung, zeitliche Clusteranalyse sowie eine Multiskalenanalyse für Netzwerke mit

einem neuen “Wavelet“-basierten Design. Wir passen diese Methoden an und erweitern sie für die Ana-

lyse von dynamischen Gehirn-Netzwerken. Wir zeigen, dass PCA und sein Analog für Matrizen höherer

Stufen ähnlich fluktuierende Interaktionen identifizieren können, deren dynamischen Eigenschaften

in der Multiplen Sklerose gestört sind, bzw. mit den Zeitpunkten der Verhaltensaufgaben zusammen-

hängen. Weiter zeigen wir, dass “sparseMatrix Zerlegungen eine gute Alternativen zu PCA bieten und

die Interpretierbarkeit der identifizierten Muster verbessern. Schliesslich, unter der Annahme eines

noch einfacheren niedrig-dimensionalen Raumes und der exklusiven zeitlichen Erscheinung eines ein-

zelnen Musters, zeigen wir, dass bestimmte dynamische Wechselwirkungen des medialen präfrontalen

Kortexes im hohen Alter gestört sind und mit verminderter Gedächtnisleistung zusammenhängen.
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1 Introduction

1.1 Motivation

BRAIN IMAGING METHODS produce rich and complex data on the structure and dynamics of human

brain networks. While structural brain connectivity describes the physical "wiring" of the brain and

its communication paths, functional connectivity (FC) describes how brain regions interact. FC is

estimated by calculating the statistical dependency between the activity of two brain regions over

time, such as their temporal correlation, and brain networks can then be defined by combining all

pair-wise structural links or functional interactions. Analyses of such networks have provided many

novel insights into the structural and functional organization of the human brain. In this dissertation

we focus on functional brain networks estimated from functional magnetic resonance imaging (fMRI),

a non-invasive neuroimaging technique with excellent spatial resolution and whole-brain coverage.

While FC does not indicate neuronal communication, candidate neuronal underpinnings exist

(Nir et al., 2007; He et al., 2008; Britz et al., 2010) and the underlying structural network is thought to

shape, but not limit, functional networks (Honey et al., 2007; Greicius et al., 2009; Sporns, 2013). The

relationship between structural and functional networks is, however, indirect, which suggests that FC

reflects a mix of structurally-constrained and state-dependent interactions (Buckner et al., 2013).

Traditionally, a single functional network has been estimated by correlating brain activity across the

entire duration of the scan (we will refer to this type of estimation as "average"), but recent evidence

demonstrates the flexible and dynamic nature of these networks. Variability in brain activity and con-

nectivity across time has been explored in electrophysiological recordings already earlier on (e.g. Arieli

et al., 1996; Makeig et al., 2004), but, because of its lower temporal resolution, has only more recently

been studied using fMRI. These studies have shown that both strength and topology of functional brain

networks vary either in response to changes in the external environment or spontaneously while a

subject is resting inside the scanner (that is a subject does not perform any explicit task). For example,

failure to reconfigure one’s network in a preparatory phase of an upcoming task leads to more errors

(Ekman et al., 2012). And a group of regions whose activity is – on average – strongly correlated while a

subject is resting quietly, shows pronounced desynchronization over extended periods of time (Chang

& Glover, 2010). Further, spontaneous variability of functional networks has not only been observed in

humans but also in anesthesized macaques and rats (Hutchison et al., 2013b; Majeed et al., 2011).
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Chapter 1. Introduction

Together these observations suggest that there is no "one" functional network, but, rather, transient

connections that form and dissolve. The study of brain network dynamics is only in its early days and

there are many unanswered questions. For example, how are these fluctuations best analyzed? What is

their functional significance? And what causes their apparent non-stationarity?

Many insights into the average functional organization of the human brain were made possible by

methodological progress. New techniques are now needed to characterize dynamic brain networks.

In this thesis we aim to adapt tools from signal processing, such as multivariate decompositions and

wavelets, to study network dynamics that are driven by changes in a subject’s external environment

or that occur spontaneously. Why should these tools be used? Multivariate decompositions find

characteristic spatiotemporal properties in the data, which makes them excellent tools for exploratory

data analyses. This property is especially relevant for the study of spontaneous network variability.

Wavelets can provide a view of the data from global to local spatial scales. This seems instructive

for fMRI data because brain networks have both hierarchical and modular structure: correlations

between brain systems can be further subdivided into correlations between regions within these

systems (Ferrarini et al., 2009; Meunier et al., 2009b; Doucet et al., 2011) Thus, we expect co-activations

to display different functional characteristics and interactions at different spatial scales. Of particular

interest is how classical wavelet analysis can be adapted to the complex and evolving topology of

functional brain networks. These tools will be used to gain insight into the functional relevance of

network fluctuations and to study how external and internal factors modulate functional interactions.

1.2 Organization and contributions

This dissertation is organized following a paper-based style. In introductory Chapter 2 we present an

overview of how brain function and organization can be studied with fMRI. This chapter serves as

a background for the published or submitted articles, which are reproduced in Chapters 3 to 5, and

for the unpublished manuscript of Chapter 6. In what follows we discuss the main objectives and

contributions of each chapter:

Chapter 3: Co-varying functional interactions

How can we identify recurring network configurations over time?

How does multiple sclerosis affect dynamic functional interactions?

If functional connections vary independently from each other over time, then no meaningful

temporal covariance exists. However, if some functional connections do not vary independently

from each other over time, then these connections co-vary. To identify whether there is meaningful

covariance among dynamic functional connections, and to reveal groups of co-varying connections if

they exist, we propose to employ principal components analysis (PCA). PCA analyzes the covariance of

each dynamic connection with every other connection and finds vectors (principal components) that

capture maximal covariation. Each component is a linear combination of the original data such that

strong co-variance is emphasized. The principal components span a low-dimensional space in which

high-dimensional network dynamics unfold and expose underlying structure.

We adapt the use of PCA to dynamic brain networks and validate it by analyzing dynamic brain

networks of both healthy subjects and relapse-remitting multiple sclerosis patients. We estimate both

the principal components or "FC patterns", which we interpret as basic building blocks of functional

networks, and their strengths of expression over time. While the building blocks are common to all
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subjects, their expression is subject-specific and we report altered dynamics of some of the most

important (in terms of explained covariation) building blocks in this group of patients.

Chapter 4: Interaction of FC patterns

All at once or one by one. Or: Are FC patterns jointly or exclusively expressed?

Here, we analyze how well dynamic brain networks are characterized by either the joint or exclusive

contribution of FC patterns. PCA, as proposed in Chapter 3, models the data as a linear combination of

principal components, which corresponds to a joint contribution of all FC patterns. As opposed to this,

Allen et al. (2014) identified "FC states" by temporally clustering dynamic brain networks. In clustering,

a dataset is separated into multiple distinct groups (called clusters), which corresponds to the exclusive

contribution of one FC pattern.

We address this question by formulating k-means clustering as a sparse matrix factorization, akin

to PCA, but subject to different constraints on the temporal expression of the FC patterns. Then, we

analyze simulated and experimental fMRI data. FMRI data was acquired both while subjects performed

self-driven tasks, such as silently singing a song, and while they rested quietly. During subject-driven

tasks, dynamic networks were well described by the contribution of a single FC pattern. During resting-

state, the joint expression of several FC patterns better described the data. These results suggest that

combinations of FC patterns provide a more meaningful description of dynamic brain networks during

resting-state.

Chapter 5: Multi-scale representation of brain activity

Can local and global co-activations efficiently distinguish cognitive states?

How can we identify recurring network configurations in task data?

In this chapter we study instantaneous co-activations of brain regions at multiple scales: we want a

close-up view to reveal activity of individual regions, and increasingly coarser views to reveal coherent

activity of functionally connected brain regions. We rely on graph wavelet analysis to obtain such a

network-guided multi-scale view. Classical wavelet analysis is the mathematical tool that provides

a multi-scale view on Euclidean grids (e.g. time for one-dimensional and image coordinates for

two-dimensional data), and recent advances in signal processing have generalized wavelets to more

complicated, arbitrary underlying topologies. We extend one recent proposal (Hammond et al., 2011)

to dynamic networks by relying on a tensor decomposition, which is the higher-order analogue of a

matrix decomposition. In the example of alternating cognitive states, we show its ability to identify

task-related changes in network dynamics.

As functional interactions are modulated by changes in the external environment, we hypothesized

that a wavelet adapted to a resting-state brain network would efficiently represent global co-activations

during rest but not during an experimental task. Initial results suggested that the wavelet representation

prominently highlights alternating cognitive states. However, using machine-learning techniques, the

two states were equally well predicted using either the wavelet or original representation (i.e., regional

BOLD activity). This result and alternative strategies are further discussed in the chapter.

Chapter 6: Co-activating brain regions

How do spontaneous patterns of co-activation change in healthy aging?

This chapter is dedicated to the study of age-related changes in the spontaneous variability of brain

networks. In the previous chapters we estimated dynamic networks using sliding-window correlation

analysis: Pairwise correlations between regional brain activity were estimated for multiple, possibly
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overlapping, temporal segments of the scanning session instead of across the entire scanning session.

This estimation is intrinsically variable and limits the temporal sensitivity to network changes to the

length of the temporal segment. Here, we approximate the FC patterns with rank-one matrices. This

simplifies the problem to estimating patterns of co-activations instead of patterns of correlations. We

employ temporal clustering (Liu & Duyn, 2013) to separate fMRI data into several distinct co-activation

patterns (CAPs). Each CAP describes a unique spatial pattern of frequently co-activating regions.

Healthy aging has consistently been associated with large-scale disruptions of average brain net-

works (Ferreira & Busatto, 2013). By comparing healthy young and old adults, we confirm these previous

findings. Further, to understand whether changes in dynamic properties may underlie such differ-

ences, we identify multiple distinct CAPs in elderly subjects. This reveals that elderly subjects engage a

core resting-state network less frequently than young subjects, but engage other sets of regions more

frequently. The increased occurrence of one of these CAPs in individual subjects was related to worse

performance in an episodic memory task. These results suggest that dynamic properties explain some

of the commonly observed differences between young and old adults, and the association with memory

indicates the functional relevance of dynamic network properties.

Chapter 7 concludes the thesis, integrates the results and presents suggestions for future research.

Because each journal article is followed by its own discussion and an outlook, perspectives for future

research focus mainly on Chapter 6.

So that other researchers can reuse and build upon methods proposed in this thesis, Matlab scripts

have been made available at http://miplab.epfl.ch/software.
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2 Probing the functional organization

of the human brain with fMRI

WE PERCEIVE AND INTERACT with our surroundings and other human beings, we feel sad or happy,

we remember. These are some of the most fascinating functions of the human brain. Understanding

how our brain supports these and other functions has proven both technically and conceptually

challenging. Much progress in understanding the structural and functional organization of the brain

has been made in the last one hundred and fifty years. Phrenology, developed by Franz Joseph Gall

in the 18th/19th century, proposed that (i) different areas in the brain have different functions, and

(ii) a person’s personality traits cause detectable bumps and valleys on a person’s scalp. While this

second idea has been discredited in the 20th century, the idea of functional specialization has been

highly influential. Localization of mental functions in specific brain areas was revolutionized by brain

lesion case studies. In 1861, Paul Broca described two patients who had lost their ability to produce

meaningful speech and who had pronounced brain damage in their left lateral frontal lobe, an area

known today as "Broca’s area" (Fig. 2.1). This and other case studies since have been crucial, but the

patients’ brains could only be studied post mortem in autopsies.

The development of non-invasive brain imaging techniques, such as electroencephalography (EEG),

and more recently, of positron emission tomography (PET) and fMRI, have made it possible to study a

wealth of complex brain functions, not only in patients with neurological diseases but also in healthy

human subjects. Electroencephalography (EEG) records electrical activity in the brain by placing

multiple electrodes on a subject’s scalp. EEG picks up electrical signals that are the result of neural

Figure 2.1 – Photographs of the brain of one of Broca’s patients. Reprinted from Dronkers et al. (2007) with
permission from Oxford University Press.
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Chapter 2. Probing the functional organization of the human brain with fMRI

Figure 2.2 – Comparison of temporal and spatial resolutions of imaging and brain stimulation techniques. Tech-
niques with sub-second temporal resolution measure neural activity, and those with supra-second resolution
measure delayed correlates of neural activity, such as changes in blood flow. Most techniques provide correlational
evidence by testing the association between behavior and brain activity. Trans-cranial magnetic stimulation (TMS)
and microstimulation provide causal evidence by transiently interfering with brain activity. CT, computerized
tomography; ERP, event-related potential; MEG, magnetoencephalography. Reprinted from Walsh & Cowey (2000)
with permission from Nature Publishing Group.

activity throughout the brain. EEG can measure changes in brain activity over split seconds of time,

but because it is a surface measurement information about the activity of specific regions is difficult

or impossible to obtain, especially when a large number of brain regions are simultaneously active

(Fig. 2.2). In PET, changes in cerebral blood flow or cerebral metabolism are detected by scanning a

subject after a radioactive-labeled substance, H2[ 15O] or [18F]-fluorodeoxyglucose, respectively, is

injected into the blood stream. The amount of radioactive decay measured indicates local cerebral

blood flow or glucose metabolism, respectively. The use of PET has, however, declined with the

development of fMRI. While PET has the advantage of providing an absolute measure, fMRI has better

spatial and temporal resolution and because it uses no radioactivity the same subject can be scanned

many times (Fig. 2.2).

2.1 FMRI technique and preprocessing

This section provides a brief introduction to fMRI and we refer to Huettel et al. (2004) for a compre-

hensive overview. FMRI provides an indirect measurement of neural activity because it measures

changes in cerebral blood flow and blood oxygenation level. Local neural activity is tightly linked to

local changes in blood flow and oxygenation through a phenomenon called "neurovascular coupling":

Active or firing neurons consume glucose and oxygen and (through a complex and not yet completely
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2.1. FMRI technique and preprocessing

(a) (b)

Figure 2.3 – (a) Blood vessels in the human brain. Vessels were visualized by filling them with a plastic emulsion
and then by dissolving the parenchymal tissue. Reprinted from Zlokovic & Apuzzo (1998) with permission from
Wolters Kluwer Health. (b) Model temporal response of the fMRI BOLD signal to neural activity with a sampling
time of 1 second.

understood cascade of events) cerebral blood flow increases locally to meet the increased demand.

Oxygen is supplied in an intricate and extensive web of vessels, spaced by as little as 20-40 µm in gray

matter (GM)1, and is carried by a protein in red blood cells called hemoglobin (Fig. 2.3a; Zlokovic &

Apuzzo, 1998). More oxygen is supplied than consumed, leading to an increase in the ratio of oxy- to

deoxyhemoglobin in the blood. Because oxygenated and deoxygenated hemoglobin have different

magnetic properties, changes in this ratio cause changes in the MR signal — hence the term "blood

oxygenation level-dependent" (BOLD) signal. Since a vascular change, rather than neural activity is

measured, the temporal information is delayed and spread out over time. Specifically, changes in the

BOLD signal lag neural activity by 1-2 seconds, peak at about 4-6 seconds and then slowly return to

baseline levels after another 5-10 seconds (Fig. 2.3b).

In fMRI a temporal series of three-dimensional images is acquired by sampling the BOLD signal

every couple of seconds (typically every 1-3 seconds) at tens to hundreds of thousands of locations

throughout the brain. These locations are called voxels (volumetric pixels), and typically have an edge

length of 1-5 mm and contain millions of neurons. The whole-brain coverage of fMRI is a big advantage

and its spatial resolution is excellent (Fig. 2.2). The size of the voxels is thought to approximately

correspond to the spatial extent of the vascular response to local neural activity (Pasley & Freeman,

2008). The simultaneous measurement of thousands of voxels and the small magnitude of changes in

the BOLD signal make fMRI data very challenging to analyze.

Changes in the BOLD signal cannot only be caused by neural activity, but also by other physiological

signals, such as cardiac and respiratory signals, and by non-neuronal sources, such as scanner noise

and head motion. Therefore, a number of important steps are taken first to reduce image artifacts and

prepare fMRI data for further analysis. These include alignment of functional scans to correct for head

motion, and removal of low-frequency drifts by high-pass filtering. To further reduce the impact of

non-neuronal contributions, motion parameters from the realignment step and signals from white

matter (WM) and cerebrospinal fluid (CSF), which are assumed not to reflect neural activity, can be

regressed out from the data. Only the residuals are then retained for further analysis. Alternatively, the

nuisance signals can be included as signals of no interest in the analysis (see following sections for

1GM consists of neuronal cell bodies, while white matter mostly contains axons or nerve fibers that link GM areas. The names
stem from the color of the two tissues.
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more details). Low-pass filters, e.g. with cut-off frequency at about 0.1 Hz, are also commonly applied

to data acquired in the absence of a task to reduce high-frequency noise and because low-frequency

fluctuations are coherent in characteristic patterns (see Section 2.3).

Finally, it is crucial to identify effects that are consistent across subjects. To be able to compare

results across subjects it is necessary to bring each subject’s data into a common space, a process

called "normalization". In this new space, single-subject voxel or region-wise results can be directly

compared. However, because of inter-subject variability in the brain’s anatomy (and to improve the

signal-to-noise ratio) fMRI data is also frequently spatially smoothed.

2.2 Mapping brain functions with task fMRI

Task fMRI aims to localize mental functions in specific brain areas by identifying which voxels are

engaged by a behavioral task that represents the function of interest. Thus, the experimenter first needs

to design an appropriate behavioral task and associated experimental paradigm. Because the absolute

value of the BOLD signal has no meaning, only the relative change in the signal, that is an increase

or decrease, is of interest. Thus, the experiment must be designed in a way that allows contrasting

the BOLD signal during the task with a suitable control condition. Most task fMRI studies use a block

design with alternating epochs of task and control conditions, each several scans long. For example, to

map motor functions, the subject may be asked to repeatedly move the fingers of one hand and to rest

in between. Regions with different BOLD signal during the two conditions are likely to be involved in

the brain function under study. If a resting period is used as the control condition, changes in BOLD

signal may also be related to more general effects, such as eye movement or attention. More complex

designs with cleverly devised control conditions permit to study more high-level or specialized brain

functions.

Next, the voxels whose BOLD signal is either significantly increased or decreased by the task,

need to be identified. Because of the hemodynamic lag and the influence of nuisance variables,

simply subtracting the average BOLD activity of the two conditions is not a sensitive approach. A

more powerful approach is multiple linear regression, where the dependent variable y (the BOLD

signal over time of the voxel) is assumed to be related to multiple independent variables x1,x2, ...,xN

(Friston et al., 1995). The ideal task activation is modeled by x1, and nuisance variables, such as head

motion and signals from the WM and CSF, by x1,x2, ...,xN . The general linear model (GLM) is given by

y =β0 +β1x1 +β2x2 + ...+βN xN +ε, where β0,β1, ... are the parameters, and ε models noise. In matrix

form y = Xβ+ε, where X is the design matrix containing the experimental design, a constant regressor

and nuisance variables and β contains all parameters (Fig. 2.4). The parameters are estimated so as

to minimize the residual sum of squares ||y−Xβ̂||22, where β̂ contains the parameter estimates. For

invertible XT X and under the assumption of independently and identically normal distributed noise,

the solution is given by the ordinary least squares estimator β̂= (XT X)−1XT y.

Whether a voxel is significantly more active during a task is determined with a one-sample t-test of

its β̂ parameter relative to the error of the model. This "activation" test can also be seen as testing the

significance of a simple linear combination (i.e., contrast) of the parameters: 0·β̂0+1·β̂1+0·β̂2+...+0·β̂N .

Testing for "deactivation" corresponds to the linear combination 0 · β̂0 −1 · β̂1 +0 · β̂2 + ...+0 · β̂N . Using

this perspective, more complicated questions about the data can be asked by specifying an appropriate

linear combination of the β̂ parameters.
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Figure 2.4 – Illustration of the general linear model y ≈ Xβ̂+ ε̂.

(a) (b)

Figure 2.5 – (a) Brain activity in bilateral primary motor and sensory regions is increased in response to bilateral
finger movement, overlaid on an anatomical image. (b) BOLD signal over time from the boxed voxel in (a) (TR= 3
sec). Bilateral finger movement occurred between scans 25 and 51. Adapted from Bandettini et al. (1992) with
permission from John Wiley and Sons.

The linear regression is estimated for each voxel in turn ("mass-univariate" approach). This leads

to a huge number of individual tests, which must be corrected for to avoid an increase in the number

of false positive results. Sophisticated methods based on Gaussian random field theory have been

developed, which take the spatial correlation of the data into account (Worsley et al., 1996).

One of the first task-based fMRI studies looked at changes in brain activity in response to a simple

motor task (Bandettini et al., 1992). The subjects were asked to touch their thumb with each finger in

turn, with either one or both hands. Discrete clusters of voxels in the contralateral or bilateral motor

cortex were selectively activated by finger movements with one or both hands, respectively (Fig. 2.5).

Thousands of task-based fMRI studies have since been published, which have corroborated and further

extended findings from lesion and PET studies. However, we note that fMRI cannot establish the

necessity or sufficiency of a region for a specific function. In other words, activity in this region

(necessity) and only this region (sufficiency) causes a certain behavior. If a region is necessary for a

specific function, then disrupting neural activity in this region will impair behavior. For example, a

patient with a lesion in a specific area who can no longer speak or transcranial magnetic stimulation

that disrupts speech can establish necessity. Whether the identified region is sufficient for speech

cannot be deduced from such studies. For example, while Broca’s discovery was seminal, he was wrong
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to conclude that language function is localized in a single brain region. Rather, language processing

involves a whole network of regions. Electrical stimulation of a region that elicits a certain behavior can

indicate sufficiency. In contrast to modulating brain activity and measuring behavior, fMRI manipulates

behavior and measures brain activity. Testing the association between an experimentally manipulated

behavior and brain activity provides correlational, rather than causal, evidence but can be an important

stepping stone (Fig. 2.2).

Task fMRI assumes functional specialization (or segregation) and, due to the mass-univariate

approach, provides a view of regions activated in isolation. Identifying networks of regions that respond

in concert necessitates multivariate techniques, such as multivariate pattern analysis (MVPA). MVPA

asks how spatial patterns of activity change under different conditions and informs about functional

integration. In a seminal study, Haxby et al. (2001) presented subjects with eight different image

categories (faces, cats, houses, chairs, scissors, shoes, bottles, and nonsense pictures), which each

evoked a unique pattern of activations in the ventral visual pathway. The patterns, however, also

strongly overlapped. Importantly, the patterns allowed for discrimination among all categories of

images to be made, even if voxels with maximal activation were excluded from the patterns (i.e., the

most significant voxels in a GLM analysis). Other multivariate techniques that have been used to study

interactions between different brain regions are discussed in the next section.

2.3 Mapping large-scale networks with resting-state fMRI

In task studies spontaneous fluctuations of the BOLD signal, that is fluctuations occurring during the

control resting condition, were viewed as "noise". This view was, however, called into question by

the influential observation that spontaneous brain activity in the motor cortex is highly structured:

a network of regions, including but not limited to regions that are activated by motor tasks, eliciting

strong temporal correlations during rest (Fig. 2.6b; Biswal et al., 1995). Coherent brain activity while a

subject is resting is not limited to the motor cortex: Several distributed and reproducible networks, so-

called resting-state networks (RSNs), have been revealed (Fig. 2.6c; Beckmann et al., 2005; Damoiseaux

et al., 2006).

Several techniques exist for the analysis of coherent spontaneous brain activity. A simple and widely

used technique is seed-correlation analysis. A reference time course is extracted by averaging the

signal in a region of interest (ROI, the seed region) and compared pairwise with the time course of all

other voxels in the brain by computing the temporal correlation. Alternatively, the time course of the

other voxel may be used as a regressor in a GLM together with nuisance variables. The somatomotor

network shown in Fig. 2.6b was for example estimated using seed correlation. Several other RSNs have

been identified by placing seeds in different brain regions, including visual (Lowe et al., 1998), auditory

(Cordes et al., 2000), and language networks (Cordes et al., 2000; Hampson et al., 2002) and the default

mode network (DMN; Greicius et al., 2003, Fig. 2.6c). The DMN, which has attracted most attention in

resting-state studies, comprises a set of brain regions that are deactivated during cognitively demanding

tasks but are engaged during internally-oriented cognition, such as remembering and thinking about

the future (Shulman et al., 1997; Mazoyer et al., 2001; Raichle et al., 2001; Buckner et al., 2008).

An advantage of seed-correlation analysis is its straightforward interpretation, as the obtained

voxel-wise FC maps directly show the regions most strongly connected to the seed. Seed-correlation

analysis is essentially univariate because it ignores the relationship among other voxels.
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(a)

(b) (c)

Figure 2.6 – (a) Increased brain activity in a single subject in response to bilateral finger movement, overlaid on an
anatomical image. (b) Seed correlation map of a single voxel in the left motor cortex (region b) during rest. Red
colored regions indicate r > 0.35, yellow ones r <−0.35. Reprinted from Biswal et al. (1995) with permission from
John Wiley and Sons. (c) 6 of the commonly observed seed correlation maps, which were obtained by placing the
seed in different brain regions. Reprinted from Zhang & Raichle (2010) with permission from Nature Publishing
Group.

Data-driven analyses of spontaneous brain activity, which do not require the definition of a seed

region, are another popular choice. For example, principal component analysis (PCA; Friston et al.,

1993), and, more commonly, independent component analysis (ICA; McKeown et al., 1998; Kiviniemi

et al., 2003; Beckmann et al., 2005; Damoiseaux et al., 2006). ICA factorizes a voxel × time matrix

into spatial maps and associated time courses. Statistical independence of either the spatial maps or

time courses is enforced. Spatial independence is the more common assumption for fMRI data, but

temporal independence has recently also been explored with promising results (Smith et al., 2012). In

spatial ICA, the spatial maps or independent components reveal voxels with coherent activity and are

interpreted as RSNs. Fig. 2.7c shows several RSNs that are commonly and consistently identified with

spatial ICA and compares them to "activation networks", which were estimated by applying ICA to

activation images in a large database of fMRI and PET task studies. Importantly, these networks include

the somatomotor network first reported by Biswal et al. (1995) (RSN 6), as well as the DMN (RSN 4) and

networks related to vision (RSNs 1-3), hearing (RSN 7), and higher-level cognitive processing (RSNs

8-10). An early study using ICA was key in suggesting a role of the DMN in episodic memory: Greicius

et al. (2004) showed both that the DMN includes the hippocampus and that it is preferentially affected

in Alzheimer’s, a disease that causes memory loss.

Advantages of ICA are that it is a multivariate method and that several sources of noise are factored

out. These components of no interest can for example be identified by their localization in WM or

because their time courses are related to head motion. Disadvantages of ICA are that it is an iterative

algorithm, which can get stuck in local optima, resulting in variability in repeated runs of the algorithm,
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Figure 2.7 – 10 resting-state networks (RSN) and well-matched "activation networks" (in the figure denoted with
BM for BrainMap database) estimated from a database with results from task fMRI studies. Reprinted from Smith
et al. (2009) with permission.

and the necessary model order selection, which remains somewhat arbitrary. However, for multiple,

interacting underlying brain systems it is likely that there is no single, best model order (Cole et al.,

2010). In ICA for resting-state fMRI it has become common to estimate 20 components, even though

higher-dimensional ICAs have also been used to fractionate RSNs into smaller sub-networks (Smith

et al., 2009). The higher the number of estimated components, the more difficult it can of course

become to identify the relevant ones.

Seed-correlation analysis and ICA both identify large-scale networks of voxels with coherent activity

and generally lead to similar results. However, they do not inform about between-network interactions.

For ICA, such interactions can be estimated by correlating the time courses of different components

(Jafri et al., 2008). When both within- and between-network interactions are of interest, it has been more

common to estimate functional brain networks or graphs (Fig. 2.8a). Firstly, ROIs, usually referred to

as nodes, are defined. They can be defined either functionally, e.g. with high-dimensional ICA or spatial

clustering (Craddock et al., 2012; Allen et al., 2014), or anatomically with an atlas, such as the Automated

Anatomic Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). A small number of studies have also kept

the data in voxel space. How the brain is parcellated into regions will affect the estimation of functional

interactions and must be chosen by the researcher. Secondly, a representative time series is estimated

for each region. For example, by spatially averaging the time courses of all voxels within the region or

by estimating the first eigenvariate. Thirdly, the network is estimated from the statistical dependency

between all pairs of time courses, such as their temporal correlation or mutual information (Salvador

et al., 2005). Brain networks are often visualized in brain space by placing each node at its anatomical

coordinate, as shown in Fig. 2.8a. Alternatively, brain networks have been organized circularly or by

functional similarity using low-dimensional or force-based embeddings.

The analysis of functional networks with tools from graph theory has for example shown that the

brain is a "small-world" network, which promotes both functional segregation and integration (Achard
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(a)

(b)

(c)

Figure 2.8 – (a) BOLD signal is recorded from multiple anatomically or functionally defined brain regions, and the
connections of a functional network are estimated by correlating regional brain activity. Adapted from Bullmore
& Sporns (2009) with permission from Nature Publishing Group. (b) Strongly connected voxels in young adults
(so-called hubs) show increased amyloid-β deposition in patients with Alzheimer’s disease. Adapted from Buckner
et al. (2009) with permission from Society for Neuroscience. (c) Index of discriminative connectivity alterations,
defined as the sum of the feature weights learnt by classifier, after weighing them by the strength of the connection
in the subject. Reprinted from Richiardi et al. (2012) with permission from Elsevier.

et al., 2006; Bullmore & Sporns, 2009) and that highly connected brain regions, which act as gateways

in information processing, are particularly vulnerable to amyloid-β deposition in Alzheimer’s disease

(Fig. 2.8b; Buckner et al., 2009). Several recent studies have also combined FC analysis and MVPA to

analyze how interactions between brain regions are altered by changes in cognitive states or in disease

(Craddock et al., 2009; Dosenbach et al., 2010; Richiardi et al., 2011, 2012, 2013; Shirer et al., 2012). Such

methods can identify a subnetwork comprised of multiple connections with discriminative ability in

single subjects (Fig. 2.8c).

The analysis of spontaneous brain activity with a variety of techniques can thus provide novel

insights into the functional organization of the human brain. That spontaneous brain activity is

functionally relevant is not only indicated by its non-random nature, but also by several other lines

of evidence: (i) The brain at rest consumes 20% of the body’s energy but represents only 2% of body

mass, and its demand for energy increases by less than 5% during task performance (Fox & Raichle,

2007). (ii) RSNs resemble task-induced activation patterns (Fig. 2.7; Smith et al., 2009). (iii) Brain

activity is coherent in various stages of consciousness (Boly et al., 2008; Greicius et al., 2008). (iv) The

strength and extent of functional interactions are modulated by preceding cognitive states, such as

the performance of a language or learning task and exposure to emotional stimuli (Waites et al., 2005;

Albert et al., 2009; Lewis et al., 2009; Eryilmaz et al., 2011). (v) In almost all psychiatric and neurological
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disorders, such as in Alzheimer’s as mentioned above, patterns of intrinsic activity are disrupted (for

reviews see e.g. Greicius, 2008; Fox & Greicius, 2010; Menon, 2011). (vi) Spontaneous activity accounts

for variability in task BOLD responses and human perception and behavior: For example, the extent

of lateralization of a seed correlation map of a region in the left somatomotor cortex predicts the

lateralization of the subject’s finger tapping response (De Luca et al., 2005) and spontaneous activity

contributes to inter-trial variability of brain activity in response to the same stimulus (Fox et al., 2006).

Prestimulus spontaneous activity of regions within several RSNs affects somatosensory, auditory and

visual perception (Boly et al., 2007; Hesselmann et al., 2008; Sadaghiani et al., 2009), as well as vigilance

(Thompson et al., 2013a). And networks reflecting emotional salience processing and cognitive control

correlate with prescan anxiety and executive task performance, respectively (Seeley et al., 2007).

What the purpose of spontaneous activity is, is still debated, however. Based on theoretical, com-

putational and empirical studies, several potential (non-exclusive) functions have been proposed: (i)

spontaneous activity could simply be "noise" shaped by the underlying non-random connectivity, (ii)

ongoing activity could enable quicker responses to future events, and in a similar vein, reflect predic-

tions about future use, (iii) it may serve to selectively process previous experiences and consolidate

learned information, and (iv) it may allow the exploration of possible functional interactions (Fox &

Raichle, 2007; Sadaghiani et al., 2010; Deco et al., 2013; Harmelech & Malach, 2013).
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3 Temporally co-varying functional con-

nections during rest in healthy adults

and multiple sclerosis patients

WHERE AND WHEN THE ACTIVITY OF BRAIN REGIONS is synchronous informs about a subject’s bi-

ological age (Dosenbach et al., 2010), how well a novel motor skill is mastered (Bassett et al., 2011),

whether a visual discrimination task is successfully performed (Ekman et al., 2012), or a subject’s

cognitive state (Richiardi et al., 2011; Shirer et al., 2012). Contrary to these studies, which revealed the

pronounced flexibility of brain networks in response to changing environmental conditions, networks

estimated during resting-state acquisitions have typically been considered to be constant throughout

the duration of a scan. While average or “static” FC analyses have contributed significantly to our

understanding of the human brain in terms of large-scale organization into networks, recent work has

highlighted significant, and potentially clinically relevant, deviations from static FC over time (Fig. 3.1,

e.g. Chang & Glover, 2010; Hutchison et al., 2013b). These spontaneous fluctuations in FC were previ-

ously ignored, but “dynamic FC” (dFC) has become a major new research direction in neuroimaging.

Several authors have proposed novel approaches to study the spontaneous evolution of brain networks,

which include generalizations of seed-correlation (Kang et al., 2011) and ICA, based on using short

temporal segments of the data (Sämann et al., 2011; Kiviniemi et al., 2011), detection of "typical" brain

activity through serial spatial correlations with a template or through temporal clustering (Majeed

et al., 2011; Liu & Duyn, 2013), and the analysis of windowed temporal correlations by visual inspection

and temporal clustering (Hutchison et al., 2013b; Li et al., 2014; Allen et al., 2014). The first four studies

have revealed whole-brain or seed-based patterns of co-activated voxels, and the last three studies are

based on windowed correlations and have revealed reproducible network configurations across time.

In this work we focus on dFC estimated from windowed correlations, but rather than separating

dFC into states as in Li et al. (2014) and Allen et al. (2014), our goal is to identify underlying interaction

patterns that act as basic building blocks for the evolution of dFC. To identify these patterns we make

use of principal component analysis (PCA), a workhorse of exploratory multivariate data analysis,

dimensionality reduction and data preprocessing (Jolliffe, 1986). PCA creates new, orthogonal (and

hence decorrelated) components, which are linear combinations of the original variables and most
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Figure 3.1 – Functional networks change across short time scales. Several networks are estimated in a human
subject from 1 minute of data (rows 1 and 5) and differ from a network estimated across the entire duration of
the scan. The left column shows pairwise correlation matrices between 16 brain regions, center columns show
left frontal eye field (L FEF) correlation maps on a flattened cortical surface, and the right column shows a graph
representation of the network. Reprinted from Hutchison et al. (2013b) with permission from John Wiley and Sons.

efficiently represent the variance in the data. Because high-dimensional data contains redundant

information, a majority of the variance is generally concentrated in the first few components, which

then define a new, low-dimensional space. Identifying which connections have a large contribution to

each component can reveal underlying structure as these connections likely co-vary over time. Fig. 3.2

gives a conceptual overview of our proposed analysis pipeline.

The second goal of this chapter is to track the temporal expression of the connectivity patterns in

healthy subjects and minimally-disabled relapse-remitting multiple sclerosis (RRMS) patients. Notably,

MS and many other neurodegenerative diseases are known to disrupt the (average) large-scale, resting-
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(a)

(b) (c)

Figure 3.2 – (a) dFC is estimated from sliding-window correlations of regional BOLD activity. (b) High-dimensional
dFC estimates (circles) follow a trajectory, indicated by the line, that lies in a lower-dimensional space. (c) Building
blocks of dFC are identified using PCA: The axes of the lower-dimensional space are the FC patterns and the
coordinates of dFC in this space track their temporal expression.

state networks of the human brain (e.g. Lowe et al., 2002; Greicius et al., 2004; Seeley et al., 2009; Fox

& Greicius, 2010; Richiardi et al., 2012). While MS is a heterogeneous disease, previous work by our

lab showed that individual subjects could be reliably classified as either healthy subjects or RRMS

patients based on their static FC (sensitivity 82%, specificity 86%; Richiardi et al., 2012). Here, we re-

analyze the same data set using a different perspective. Static FC, however, provides an average view of

resting-state networks and hides the fact that connectivity patterns of any single brain region may vary

over time. Important dynamic properties, potentially including dynamic compensatory adjustments,

may thus remain hidden (for a recent review see also Hutchison et al., 2013b). FC dynamics have the

potential to reveal novel insights into how resting-state networks in the human brain are targeted by

neurodegenerative diseases. In this chapter we present early evidence that dynamic properties are

altered in multiple sclerosis.
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3.1 Journal article
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Principal components of functional connectivity:
A new approach to study dynamic brain connec-
tivity during rest
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Functional connectivity (FC) as measured by correlation between fMRI BOLD time courses of dis-

tinct brain regions has revealed meaningful organization of spontaneous fluctuations in the rest-

ing brain. However, an increasing amount of evidence points to non-stationarity of FC; i.e., FC dy-

namically changes over time reflecting additional and rich information about brain organization,

but representing new challenges for analysis and interpretation. Here, we propose a data-driven

approach based on principal component analysis (PCA) to reveal hidden patterns of coherent FC

dynamics across multiple subjects. We demonstrate the feasibility and relevance of this new ap-

proach by examining the differences in dynamic FC (dFC) between 13 healthy control subjects and

15 minimally disabled relapse-remitting multiple sclerosis patients. We estimated whole-brain

dFC of regionally-averaged BOLD activity using sliding time windows. We then used PCA to iden-

tify FC patterns, termed “eigenconnectivities", that reflect meaningful patterns in FC fluctuations.

We then assessed the contributions of these patterns to the dFC at any given time point and iden-

tified a network of connections centered on the default-mode network with altered contribution

in patients. Our results complement traditional stationary analyses, and reveal novel insights into

brain connectivity dynamics and their modulation in a neurodegenerative disease.

3.1.1 Introduction

Spontaneous fluctuations of the functional MRI (fMRI) blood-oxygen-level-dependent (BOLD) signal

are not random but temporally coherent between distinct brain regions. While these fluctuations

were long considered as “noise", Biswal et al. (1995) showed that fluctuations of motor areas were

correlated even in the absence of a motor task. Several other networks of coherent BOLD activity

between remote brain regions have since been identified, including visual, auditory, language and

attention networks, and a network called the “default mode network" (DMN) which reduces its activity

during attention-demanding tasks. These networks of regions with coherent activity during rest are
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consistent across subjects and closely resemble the brain’s functional organization of evoked responses

(Damoiseaux et al., 2006; Fox & Raichle, 2007; Smith et al., 2009; Laird et al., 2011). Coherent BOLD

activity persists during sleep and in anaesthetized monkeys, suggesting that it reflects a fundamental

property of the brain’s functional organization (Larson-Prior et al., 2009; Vincent et al., 2007).

Coherent BOLD activity, known as “functional connectivity" (FC), is modulated by learning (Bassett

et al., 2011), cognitive and affective states (Richiardi et al., 2011; Eryilmaz et al., 2011; Shirer et al., 2012;

Ekman et al., 2012; Cribben et al., 2012) and also spontaneously (Chang & Glover, 2010; Britz et al., 2010;

Kitzbichler et al., 2009). Chang et al. (2010) showed that FC between the posterior cingulate cortex, a

key region of the default mode network, and various other brain regions was highly dynamic over time.

Standard stationary FC analyses assume temporal stationarity and are blind to the temporal evolution

of FC. Several recent studies have since confirmed the non-stationarity of FC (Majeed et al., 2011; Kang

et al., 2011; Kiviniemi et al., 2011; Handwerker et al., 2012; Hutchison et al., 2013b; Li et al., 2014). We

will use the terms dFC to specifically refer to fluctuating connectivity during rest, and stationary FC to

refer to connectivity estimated under the assumption of temporal stationarity. Chang et al. (2013b)

reported a link between heart rate variability and dFC in some brain regions related to arousal and

vigilance, suggesting a neural basis for these fluctuations, and Hutchison et al. (2013b) showed that

these fluctuations persist in anesthesized monkeys in the absence of conscious, cognitive processing.

When no temporal stationarity is assumed, whole-brain and multi-subject FC studies get vastly

more complex. Also, given that there is no task, dFC patterns must be learned from the data. Due

to these challenges many studies assessing FC changes have focused on individual brain regions or

networks, such as the extensively studied DMN. Allen et al. (2014) recently proposed a data-driven

approach based on k-means clustering to identify whole-brain “FC states" in the resting brain. The

authors showed that these states differed strongly from FC patterns identified in stationary analyses

and suggested that they represent departures from average FC patterns as FC between individual brain

regions appears or disappears. They also highlighted the benefit of whole-brain studies to understand

the dynamic interplay between different brain regions or networks.

Given the increasing evidence of dFC during rest and its importance for characterizing the brain’s

intrinsic functional organization, the aim of our study was to develop a data-driven technique to

reveal characteristic fluctuations of whole-brain FC. Our method exploits whole-brain FC of multiple

subjects to identify connectivity patterns with coherent dynamics and their contributions across

time. Specifically, we estimated dFC by calculating the correlations between the BOLD activity of

anatomically defined brain regions covering the whole brain using sliding time windows (Chang &

Glover, 2010). We then temporally concatenated the dFC between all pairs of brain regions across

subjects to construct a connectivity × time-subject data matrix. We then applied principal component

analysis (PCA), which finds intrinsic structure in the data that here represents patterns of coherent FC

dynamics. Using these FC patterns, termed “eigenconnectivities", the FC at any specific time can be

represented as a weighted sum. Thus, we can interpret the eigenconnectivities as building blocks of

dFC with a contribution that varies across time. In contrast to the clustering approach employed in

electroencephalography (EEG) microstate (Pascual-Marqui et al., 1995) and FC state analysis (Allen

et al., 2014), where stable EEG scalp topographies or whole-brain FC states are identified, we used PCA

to identify the most abundant building blocks that reappear across time and subjects.

PCA has previously been applied by Friston et al. (1993; 1994) to voxel-wise PET and fMRI data

to determine patterns of correlated brain activity, so-called “eigenimages". In contrast to our work,

the authors applied PCA to activity and not connectivity time courses, and to single subjects only,
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which complicates comparisons across subjects. More commonly, voxels with similar resting state

activity are identified using spatial independent component analysis (ICA), which decomposes a voxel

× time-subject data matrix into (maximally independent) spatial maps and associated time courses

(McKeown et al., 1998; Kiviniemi et al., 2003). The application of PCA and ICA in these studies, however,

implicitly assumes FC to be temporally stationary and identifies patterns of voxels with similar resting

state activity across the entire scan.

Singular value decomposition1 (SVD) has also been applied to uncover patterns of relations between

brain activity and experimental conditions, behavior or the activity of other voxels in a seed region,

in a method called Partial Least Squares (PLS) (McIntosh et al., 1996; Krishnan et al., 2011). The right

singular vectors contain patterns of voxels that are associated with e.g. reaction time or seed voxel’s

activity (i.e., functionally connected). Here, rather than finding relations between the brain activity

of different voxels across different conditions, we identify relations between brain connectivity time

courses in an unsupervised manner.

Stationary FC analysis during rest has been widely applied to understand the functional impact of

neurological and psychiatric diseases, such as Alzheimer’s disease or schizophrenia, and to search for

reliable biomarkers (Fox & Greicius, 2010). To demonstrate the feasibility and relevance of the proposed

building blocks, we are interested in early dFC changes in patients with multiple sclerosis (MS). MS is

an inflammatory disease that attacks the myelin sheeths in the central nervous system, causing brain

lesions, which are randomly distributed in periventricular white matter, but concentrated around the

frontal and occipital horns of the lateral ventricle, and at the cortico-subcortical junction (Compston

& Coles, 2008). This was also the case in our minimally disabled relapsing-remitting patients (RRMS)

group. MS is usually accompanied by sensory or motor deficits and cognitive impairment, but the

correlation between clinical disability and focal lesions visible in structural MRI is poor (Barkhof,

2002; Filippi & Agosta, 2010). This is because “hidden" damage occurs in normal appearing brain

tissue (NABT), extending well beyond focal lesions (Fu et al., 1998; Hackmack et al., 2012). Alternative

imaging methods, such as resting-state fMRI, have started to address the issue of hidden damage and

shown disrupted stationary FC. While some studies restricted their analysis to the DMN or motor

regions (Lowe et al., 2002; Rocca et al., 2010; Bonavita et al., 2011; Dogonowski et al., 2013), others

have reported changes in several large-scale resting state networks, including the sensorimotor and

executive control networks (Roosendaal et al., 2010; Hawellek et al., 2011; Richiardi et al., 2012; Rocca

et al., 2012). Together, these results are very promising for characterizing the functional pathology of

MS, but the relationship between structural damage and functional changes is still poorly understood

(Schoonheim & Filippi, 2012).

Here, we study a group of minimally disabled RRMS patients and demonstrate for the first time how

dFC is altered in these patients. Specifically, we examine whether the contribution of the identified FC

patterns is disturbed in the early stage of MS. We believe that the study of dFC can further contribute to

elucidating functional adaptation and reorganization in this pathology.

1There is a well-known relationship between SVD and PCA: for centered data X, the left singular vectors of SVD (which is
applied to X) equal the principal components of PCA (which is applied to the covariance matrix XXT ): X = UΣVT → XXT =
UΣVT (UΣVT )T = UΣVT VΣU = UΣ2UT since VT V = I. The columns of U are called left singular vectors or principal components.
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3.1.2 Methods

Subjects

Subjects and MRI data were the same as in a previous study of our group (Richiardi et al., 2012).

RRMS patients were diagnosed according to McDonald’s criteria (Polman et al., 2005) and selected

using criteria for 1) mild to moderate neurological disability with no impaired ambulation (Expanded

Disability Status Scale (EDSS) ≤ 2.5 (Kurtzke, 1983)), 2) no clinical relapse or corticosteroid therapy

during the 6 weeks before inclusion in the study, and 3) no other neurological or psychiatric illness

according to DSM-IV criteria. 22 RRMS patients (mean ± SD age 36.8±8 years, 14 females, EDSS

1.9±0.4, disease duration 4.7±3.5 years) and 14 healthy control (HC) subjects (age 38.4±6 years, 9

females) were included. The study was approved by the local institutional ethics committee and all

subjects provided informed consent.

Data acquisition

Data were acquired on a Siemens 3T TrioTIM using a 32-channel head coil. Functional imaging data

were acquired in one session using gradient-echo planar imaging (TE = 27 ms, TR = 1.1 s, flip angle = 90◦,

matrix = 64×64, 21 transverse slices, voxel size = 3.75×3.75×5.63 mm3, 450 volumes). Subjects were

instructed to lie still with their eyes closed and not to fall asleep (which was confirmed in a debriefing

after the scan).

T1 anatomical scans were collected using an MPRAGE sequence (TE = 2.98 ms, TR = 2.4 s, flip angle

= 9◦, 160 slices, voxel size = 1×1×1.2 mm3).

Data preprocessing

Anatomical and functional data were preprocessed using SPM8 (www.fil.ion.ucl.ac.uk/spm), and

a combination of in-house MATLAB scripts and scripts from the DPARSFA toolbox (Chao-Gan & Yu-

Feng, 2010). The first ten functional volumes were discarded to allow for T1 equilibration effects.

The other 440 functional volumes were spatially realigned to the mean image, detrended (linear and

quadratic trends) and bandpass filtered (0.01−0.15 Hz). To further minimise spurious changes in

connectivity related to motion, we “scrubbed" our data by removing all volumes that either 1) had

a frame-wise displacement F D = |∆x| + |∆y | + |∆z| + |∆α| + |∆β| + |∆γ| > 0.5, where the rotational

displacements α,β,γ were converted to millimetres by calculating the displacement on the surface

of a sphere of radius 50 mm (Power et al., 2012), or 2) were considered as intensity spikes, defined

as a whole-brain intensity of more than 2 standard deviations from the average intensity across the

duration of the scan. We also excluded the preceding 2 and following 4 volumes for both indices,

corresponding to a similar temporal coverage as in Power et al. (2012). Because of the sensitivity of

functional connectivity to motion and to retain sufficient data for the dynamic connectivity analysis,

we excluded 1 HC subjects and 7 RRMS patients with either maximal head motion above 3 mm or 2◦,

or more than 10 out of 440 volumes marked for scrubbing (before adding the 6 surrounding volumes).

All results thus reflect a total of 13 HC subjects and 15 RRMS patients.

The functional data were coregistered with each subject’s anatomical data. The anatomical data

were then segmented (new segmentation algorithm of SPM8, an extension of the unified segmentation

algorithm (Ashburner & Friston, 2005)) and regionally parcellated using the automated anatomical

labeling atlas, which divided the brain into 90 anatomical regions of interest (Supplementary Table A.1)
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Figure 3.3 – Diagram of the analysis pipeline: (a) dFC between 88 brain regions was computed as sliding window
correlations between the activity of all regions for each subject. (b) The upper triangular part of each 88×88
correlation matrix was unfolded and concatenated across time to form a dFC matrix Cs. The mean correlation
value across time was subtracted from all connectivity pairs (i.e., row-wise centering). (c) The dFC matrices were
concatenated across subjects to form X′ to which we applied PCA, yielding eigenconnectivities (columns of U).
Eigenconnectivities can be visualized after reshaping them into a 88×88 matrix and symmetrizing. (d) A set of
time-dependent weights Ws for each subject was calculated by projecting the centered dFC matrix onto a few
eigenconnectivities.

(Tzourio-Mazoyer et al., 2002). The segmentation step provided a deformation field, which was used

to warp the structural atlas to the subject’s native space. We estimated regional mean time series by

averaging the fMRI signal over all voxels in each brain region. The time series from the bilateral globus

pallidus were discarded due to ventral signal dropout in some subjects, leaving 88 brain regions. We

regressed out nuisance variables from the regional time series (6 head motion parameters, average

cerebrospinal fluid from ventricular masks and white matter signal from white matter masks). The

global signal was not regressed out as this step is currently debated in the literature.

dFC estimation

We estimated dFC by calculating the pairwise Pearson correlation between the residuals of all 88

brain regions using a sliding-window technique yielding a 88×88 correlation matrix for each window

(Fig. 3.3a): the sliding-window correlation between the time series x and y was given by ρx y (t) =
corr(x[t , t +∆t ], y[t , t +∆t ]), where ∆t was the window length in TRs and the window was shifted by

two TRs for each estimation. Correlations ρ were Fisher r-to-z transformed (z = at anh(ρ)) to make

them approximately normally distributed.

We constructed a dFC matrix Cs or each subject, where each column contained a vectorized

correlation matrix (Fig. 3.3b). When vectorizing the correlation matrices, we kept only the upper

triangular part due to symmetry, resulting in a (N 2 −N )/2×Ts matrix, where N = 88 was the number of

22



Jo
u

rn
al

article

3.1. Journal article

brain regions, and Ts the number of windows for subject s. We normalized each subject’s dFC matrix

by removing the global mean and dividing by its standard deviation (mean and standard deviation over

all time points and FC pairs).

The sliding-window technique has previously been used by several other groups to investigate dFC

with window lengths varying from 15 to 120 TRs (Chang & Glover, 2010; Bassett et al., 2011; Hutchison

et al., 2013b; Handwerker et al., 2012; Allen et al., 2014) and similar step sizes (Handwerker et al., 2012;

Hutchison et al., 2013b; Allen et al., 2014). We used window lengths of 30,40,60 and 120 TRs, covering

33,44,66 and 132 seconds respectively, to investigate the effect of the window length.

Eigenconnectivity estimation

To estimate characteristic connectivity patterns across time and subjects, we applied PCA to a matrix

containing the dFC matrices of all HC subjects and RRMS patients; i.e., X = [C1,C2, ...CS ]. PCA is a

statistical technique to detect unknown, yet structured patterns that explain the differences in the

collection of vectorized correlation matrices. A few patterns typically explain most of the variation

present in all of the original correlation matrices, allowing to automatically summarize the data.

Before applying PCA, the mean of each row is normally subtracted from the data: X′ = X−X, where

X is a matrix that contains the row-wise means. However, we observed that PCA was partly driven

by inter-individual differences in mean correlation levels rather than correlation fluctuations when

we subtracted the mean of the concatenated matrix (see section 3.6). Therefore, we subtracted the

row-wise means of Cs for each subject s individually before we concatenated all subjects along the

temporal dimension: X′ = [C1 −C1,C2 −C2, ...,CS −CS ] (Figs. 3.3b, c).

We then applied PCA, which finds the eigenvectors and eigenvalues of the covariance matrix of

X′ (Fig. 3.3c): X′X′T = UΛUT , where U contains orthonormal eigenvectors on its columns and Λ the

corresponding eigenvalues on its diagonal; i.e.,Λkk =λk . These eigenvectors (or equally principal com-

ponents) can be seen as features (or spatial modes) that characterize the variation across the collection

of correlation matrices. Because they capture connectivity patterns, we call them “eigenconnectivities".

The matrix U is of size (N 2 − N )/2× (N 2 − N )/2; i.e., we obtain (N 2 − N )/2 eigenconnectivities.

However, the eigenconnectivities with the largest associated eigenvalues explain most of the variation

in the collection of dFC matrices and a small number can be used to efficiently approximate the

data. Approximating the data using only the K eigenconnectivities with the K largest eigenvalues,

results in a retained variance of
∑K

k=1λk /
∑
λk . The retained variance is equal to the approximation

accuracy 1− ||X′ −X′
approx||2/||X′||2, where X′

approx = UredUT
redX′, and Ured contains only the first K

eigenconnectivities.

Time-dependent contribution of eigenconnectivities

A subject’s dFC matrix can be efficiently represented by projecting it onto a few eigenconnectivities:

Ws = UT
red(Cs −Cs ), where Ws is a matrix of size K ×Ts containing the weights of K eigenconnectivities

at all Ts windows (Fig. 3.3g). These weights are similar to the time-dependent profiles obtained for

the “eigenimages" in Friston et al. (1993), and conceptually related to the subject-dependent time

courses calculated in independent component analysis (ICA) by dual regression (Beckmann et al.,

2009). In ICA, spatial maps from group-ICA are used as regressors to estimate a time course for

each independent component and subject. Here, we use the eigenconnectivities obtained from group

analysis as regressors to estimate associated time courses for each subject: since the eigenconnectivities
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are orthonormal we can reformulate the equation above as Cs −Cs = UredWs , where Ured acts as the

regressor. Thus, for a single set of “group" eigenconnectivities, which we can interpret as building

blocks of dFC, we obtain subject-specific time-dependent weights Ws that describe their contribution

in representing dFC matrix over time. We inspected the time-dependent weights to make sure that the

eigenconnectivities contributed to dynamic connectivity in all subjects (i.e., non-zero weights for all

subjects).

Comparing HC subjects and RRMS patients

We first compared the average dFC strength Cs between HC subjects and RRMS patients using two-

sample t tests. Statistically significant differences were determined using non-parametric permutation

testing, by estimating a maximal statistic under the null hypothesis of no difference; i.e., observed

differences in the 95th percentile of the null distribution of differences between subjects randomly

assigned to the two groups were significant at the 5% level (n = 1′000 randomizations, corrected

p-value) (Nichols & Holmes, 2002).

We next assessed whether the contribution of the eigenconnectivities was different between HC

subjects and RRMS patients by comparing the percentage of time-dependent weights with positive

signs. A difference between groups would indicate that the contribution of a specific FC pattern is

biased in the RRMS patients. We compared such a summary measure since individual time points

are not consistent across subjects in RS studies. We tested for differences in the percentages using

Hotelling’s T2 multivariate test. Hotelling’s T2 test can also be seen as a maximum univariate t2 test for a

specific linear combination of the means of the two groups; i.e., the weighted sum
∑K

k=1 ak (mHC
k −mMS

k )

is maximal, where
∑10

k=1 a2
k = 1, mk is the average percentage for eigenconnectivity k across each group

of subjects and HC and MS indicate the HC and RRMS subjects, respectively. Hotelling’s T2 test

identifies group and interaction (group × eigenconnectivity) effects. For the interaction effect, the

weighted sum is modified as
∑K−1

k=1 ak
{
(mHC

k −mHC
k+1)− (mMS

k −mMS
k+1)

}
. We estimated the effect size

from the Mahalanobis distance (a multivariate generalization of Cohen’s d), which is defined as:

D =
√

T 2(1/n1 +1/n2), where T 2 = F K (n1 +n2 −2)/(n1 +n2 −K −1) and n1,n2 are the sizes of the HC

and RRMS groups and K = 10 is the number of variables (eigenconnectivities).

We calculated a summary measure of percentage positive weights according to the weights of the

Hotelling T2 test for each subject and assessed whether it was correlated with clinical disability (EDSS)

using Pearson correlation within RRMS patients.

Phase randomized data

Handwerker et al. (2012) showed that the sliding-window technique can result in spurious dFC changes

and it is thus crucial to compare the results to an appropriate null model. We phase randomized

both brain activity time courses before estimating dFC (Handwerker et al., 2012), and connectivity

time courses estimated from original activity (Allen et al., 2014) in separate simulations. Specifically,

we Fourier transformed each subject’s activity or connectivity time courses, randomized the phases

independently for each brain region or connectivity pair, and transformed back to the time domain

using the amplitude of the real data but randomized phases (Theiler et al., 1992). Phase randomizations

preserve the mean, variance and autocorrelation properties of the time courses, while randomizing

their precise timing. Fluctuations in FC estimated from phase randomized brain activity are thus

due to random activity timing. Randomized connectivity destroys its precise timing, while preserving
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inter-subject variability in the mean and variance of connectivity (i.e., we can disentangle effects of

inter-subject variability in mean FC values from FC fluctuations).

We also assessed the significance of each eigenconnectivity by comparing its eigenvalue to a null

distribution obtained using the phase randomized data. Analytic methods to estimate the dimension-

ality currently employed for activity time courses, such as Laplace PCA (Minka, 2000), overestimate the

dimensionality in the presence of correlated noise (Cordes & Nandy, 2006). Comparing the eigenvalues

to a null distribution obtained using surrogate data avoids making parametric assumption about the

noise. This approach is similar to how significant latent dimensions are estimated in PLS (McIntosh

et al., 1996; Krishnan et al., 2011) and in other fields studying time series (e.g. Bjornsson & Venegas,

1997). The intersection of the real eigenvalue spectrum and the 95th percentile of the phase random-

ized spectrum estimates the dimensionality of the data (n = 100 randomizations, maximal statistic to

correct the p-value).

Motion

As described above, we scrubbed the data and regressed out head motion parameters from the regional

time series. However, residual motion may still drive changes in dFC. We thus tested for relationships

between the time-dependent weights and four summary measures of motion using Pearson’s correla-

tion. We converted F D defined above and root mean square displacement D =
√
∆x2 +∆y2 +∆z2 to a

measure for each window by estimating the intensity (average) and fluctuation of motion (standard

deviation) in each window.

Statistically significant correlations with motion were determined using non-parametric testing,

similar to above; i.e., observed correlations in the 95th percentile of the null distribution of correlation

with phase-randomized motion time series were significant at the 5% level (n = 1′000 randomizations,

corrected p-value). Note that these phase randomizations were not the same as those used above to

obtain a null distribution of dFC.

3.1.3 Results

dFC estimation

After scrubbing, each subject had between 401 and 440 volumes left, from which we estimated dFC

matrices Cs . For a window length of 30 TRs, the multi-subject data matrix X was of size 3′828×5′554,

i.e., it contained 5′554 unfolded correlation matrices across all subjects. Each subject had an average

of T = 198±5 windows and this number did not differ between HC subjects and RRMS patients (two-

sample t test, p = 0.8). Fig. 3.4 and Supplementary Movie 1 show an example of the estimated dFC for a

HC subject. FC is visibly dynamic over the course of the scan as indicated by the change of color across

windows. For this subject, the majority of correlations were positive, but we also observed alternations

between positive and negative correlations.

Eigenconnectivities

The average dFC strength Cs across each group of subjects showed functional clusters typically observed

in stationary FC analyses (Supplementary Fig. A.1): strongly connected visual areas (bilateral calcarine,

cuneus, lingual gyri and other occipital regions), motor areas (bilateral pre- and postcentral gyri,
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Figure 3.4 – (a) Example of dFC for a HC subject (unfolded and temporally concatenated, Fisher-z transformed
correlation matrices). (b) Example FC networks, corresponding to the windows marked with red arrows in (a) and
reshaped into correlation matrices.

rolandic opercula, supplementary area, paracentral lobule), and regions of the DMN (bilateral superior

frontal gyri, cingulate gyri, angular gyri and precuneus).

We then identified dFC patterns across all HC subjects and RRMS patients by calculating the

eigenvectors of the covariance matrix of the concatenated, demeaned dFC matrices. The first ten

eigenconnectivities retained 34% of the variance or equally, approximated the data with an accuracy

of 34% (Supplementary Fig. A.2 shows all 3828 eigenvalues). The intersection of the real and phase-

randomized eigenvalue spectra estimated that the first 30 eigenconnectivities predominantly carried

signal (5% corrected significance level, Supplementary Fig. A.2). In the remainder of this manuscript

we restrict our analysis to the first 10 eigenconnectivities, which have eigenvalues well above the

significance level, and because the multivariate Hotelling’s T2 test sets an upper limit on the number of

components due to group sizes.

Fig. 3.5 shows some of the estimated “group" eigenconnectivities, which represent orthogonal

(independent) connectivity patterns with coherent fluctuations. Since the mean FC strength of each

pair has been removed for each subject, these patterns encode how dFC fluctuates around the average

connectivity strength over time. The first few eigenconnectivities, which explain most of the variance
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Figure 3.5 – Continued on next page

in the dFC matrices, represent distributed connectivity patterns. Eigenconnectivity 1 identifies an

all-positive pattern and reflects overall FC strength (“excursions" around the mean where whole-brain

dFC is globally increased or decreased; Fig. 3.5a): connections between superior frontal regions (23−26)
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Figure 3.5 – Eigenconnectivities estimated from dFC across all 28 subjects show large-scale connectivity patterns.
(a-j) Eigenconnectivities 1-10 in matrix representation (column 1), and sagittal, axial and coronal views of the 2%
strongest connections in brain space (columns 2-4). Brain regions are shown as spheres where their size represents
their degree and the color their sign (red for positive and blue for negative degrees). Connections use the same
color convention (red = positive, blue = negative). Percentage of positive weights of each eigenconnectivity
over time (column 5) and amplitude spectra of the time-dependent weights for HC subjects (black) and RRMS
patients (gray), error bars represent standard errors (column 6). (k, l) Eigenconnectivities 50 and 500, (m) linear
combination of the percentages according to the weights of Hotelling’s T2 test; combined percentage per subject
(circle), group means for HC subjects and RRMS patients, respectively (line). Ang, angular gyrus; HG, hippocampal
gyrus; orb, orbital; oper, operculum; Rect, gyrus rectus; SupMarg, supramarginal gyrus

and other regions in the brain were strong (dark red areas) while connections of limbic (38−42) and

subcortical regions (71−74) were weaker (yellow areas).

The following eigenconnectivities have both positive and negative patterns (red and blue areas in

Fig. 3.5, respectively). Windows with strong FC in red areas and weak FC in blue areas will have large

positive weights for a given eigenconnectivity. Windows with weak FC in red areas and strong FC in

blue areas on the other hand will have large negative weights. Therefore, an eigenconnectivity contrasts

windows with strong FC in red areas and weak FC in blue areas with those of the opposite character.

Also, we can interpret the connectivity patterns as representing connections that covary (i.e., within

red areas and within blue areas) or anti-covary (i.e., between red and blue areas) according to that

dimension of the representation. It should be noted that the sign (i.e., positive and negative for red and

blue, respectively) is arbitrary and should not be confounded with anti-correlation for negative signs.

Eigenconnectivity 2 contrasts a network of connections involving mostly regions of the DMN (blue)
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Figure 3.6 – Eigenconnectivities 1-4 estimated from phase-randomized dFC matrices lose all structure.

with regions involved in motion, vision, speech and hearing (red), i.e., it contrasts windows with strong

FC in DMN regions with windows with strong FC in sensori-motor regions (Fig. 3.5b): Blue areas

include connections of medial frontal (23− 26), anterior (ACC) and posterior cingulate gyri (PCC;

31,32,35,36), angular gyri (65,66) and precuneus (67,68). Red areas include connections of primary

sensori-motor areas (1,2,18−20,57,58,69,70), occipital, ventral and dorsal visual areas (43−56,59,60),

speech (17,63,64,79,80), auditory areas (77−82), and the insula (29,30). Eigenconnectivity 3 identifies a

network between regions involved in memory and higher cognitive processing (25−28,35,37−39,67,68),

the rolandic operculi (17,18) and Heschl’s gyri (77,78; red), and another network of connections of

the inferior (IFC) and middle frontal cortices (7−14), and inferior parietal cortices (IPC; 61,62; blue;

Fig. 3.5c). Eigenconnectivity 4 identifies a network of connections for thalamic basal ganglia (71−76)

and the insula (29,30; blue), and another network of regions involved in visuo-spatial processing

(43−56,59−62,83−88; red, Fig. 3.5d).

Fig. 3.5 also shows that most FC patterns contain connections of regions situated in both hemi-

spheres, with the exception of eigenconnectivity 6 where the network of blue connections lies predom-

inantly in the left hemisphere (inferior frontal areas) and red ones in the right hemisphere (parietal

areas); and eigenconnectivity 9 where most blue connections lie in the left hemisphere.

Eigenconnectivities of higher order, such as e.g. eigenconnectivity 500, resemble purely artefactual

components that do not identify meaningful functional clusters (Fig. 3.5l).

Results with phase-randomized activity or dFC resulted in eigenconnectivities with no appar-

ent structure (Fig. 3.6, Supplementary Fig. A.4e) and little explained variance (5% for the first ten

eigenconnectivities for both randomizations).

Time-dependent contribution of eigenconnectivities

Fig. 3.7a shows the time-dependent weights Ws obtained for the same example subject as in Fig. 3.4

by projecting the dFC matrix onto the first ten eigenconnectivities (see Supplementary Fig. A.3 for

all subjects). The weights varied smoothly across time but presented pronounced variability, again

indicating that FC is highly dynamic. The 5th and 95th percentiles of weights observed for phase-

randomized correlation time courses indicate that the observed weights were both within and outside

of ranges observed for the surrogate data, and for which time points there is strong evidence for a large

contribution of an eigenconnectivity.

The weights of eigenconnectivity 1 (dark blue) track the overall change in FC strength and perfectly

correlate with the mean correlation of each window (column-sum of Cs ), ρ = 1, p < 0.001 for all subjects:

at time points when whole-brain dFC is strong, or in other words above average dFC strength (red areas
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Figure 3.7 – (a) Time-dependent weights of the 10 first eigenconnectivities for the same example subject as in
Fig. 3.4. Straight lines represent the 5th and 95th percentiles of phase-randomized weights across all subjects
and eigenconnectivities. (b-d) Example FC networks of Fig. 3.4c after row-wise demeaning (first column) and the
eigenconnectivities with the four largest weights (2nd to 5th column). We flipped the sign of eigenconnectivities
with negative weights (e.g. in (c) eigenconnectivity 1 had a negative weight and thus appears as “blue"). (b), (c)
and (d) correspond to the windows marked with arrows in (a).

in Fig. 3.4a), the weight is positive, while at time points when whole-brain dFC is weak (blue areas

in Fig. 3.4a), the weight is negative. The weights of the other eigenconnectivities track more subtle

changes in dFC patterns.

Figs. 3.7b-c show which four eigenconnectivities contributed most strongly to the demeaned

example dFC networks of Fig. 3.4c. The eigenconnectivities with strongest contributions capture

different aspects at a specific window, such as the strong positive occipito-parietal FC and weak FC

between limbic regions and the rest of the brain in Fig. 3.7b.

The weights were highly variable for all subjects, which indicated that the eigenconnectivities

captured inherent structure in the fluctuations across all subjects and not just within a single subject.
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Comparing HC subjects and RRMS patients

First, we examined whether the average dFC strength Cs differed between HC subjects and RRMS

patients. Supplementary Fig. A.1 indicates a widespread reduction in FC strength in RRMS patients and

two-sample t tests revealed 22 significantly weaker connections, mainly between the left amygdala and

occipital and parietal regions; and connections of the middle and posterior cingulate gyri and bilateral

superior frontal gyri (p < 0.05, corrected, see Supplementary Table A.2 for a full list).

Next, we compared the percentage of positive weights of the ten first eigenconnectivities between

HC subjects and RRMS patients (Fig. 3.5, column 5). HC subjects and RRMS patients differed strongly

in the percentage of positive weights, indicating a bias in the contribution of some eigenconnectivities

(F(10,17) = 4.1, p = 0.005, D = 3.0 for the group effect; F(10,17) = 3.5, p = 0.01, D = 2.8 for the interaction

effect; Fig. 3.5m). The Hotelling T2 group difference was
∑K

k=1 ak (mHC
k −mMS

k ) = 6.8± 5.3%, with

a1 = 0.06, a2 = 0.13, a3 =−0.09, a4 = 0.17, a5 =−0.11, a6 =−0.72, a7 = 0.09, a8 = 0.10, a9 =−0.18, a10 =
−0.63. The most important differences thus stemmed from eigenconnectivities 6 and 10, which was

confirmed in post hoc two-sample t tests (p = 0.002,d =−1.29; p = 0.06,d =−0.74, respectively, p > 0.1

for the other 8 eigenconnectivities). For both eigenconnectivities RRMS patients had more positive

contributions than HC subjects (mean percentage > 50%), i.e., their red connections were more often

strongly connected (positive weights increase the FC of red areas, and “strongly" here means above

average) and their blue ones were more often weakly connected (positive weights reduce the FC

of blue areas). Red connections of eigenconnectivity 6 were for example concentrated in posterior

regions of the DMN (superior parietal gyrus, precuneus, angular gyri, suparmarginal gyri), while

blue connections lay mostly in anterior (IFC, gyri recti) and midtemporal regions (Fig. 3.5f). Red

connections of eigenconnectivity 10 included temporal regions (middle temporal cortex and pole,

Heschl), and the angular gyri, while blue connections spanned a network of orbito-frontal regions,

the right amygdala and motor regions (precentral gyrus, paracentral lobule; Fig. 3.5j). Fig. 3.5j also

shows that many connections in eigenconnectivity 10 were across hemispheres and ran along the

anterior-posterior axis. To explore whether the percentage positive weights was dominated by small

weights, we repeated the analysis after excluding the smallest 10% and 20% weights and obtained

similar results (F(10,17) = 4.2, p = 0.005, D = 3.1 for the group effect, post hoc tests significant for the

sixth p = 0.006 and tenth components p = 0.038; and F(10,17) = 3.8, p = 0.008, D = 2.9, post hoc tests

significant for the sixth p = 0.02, and 10th components p = 0.02, respectively). The percentage positive

weights of the first ten eigenconnectivities for phase-randomized data were not different between

HC subjects and RRMS patients (Hotelling T2, p > 0.4 for both group and interaction effects for both

randomizations). The combination of unstructured eigenconnectivities and altered dynamics suggests

real fluctuations drove the results obtained from the original data. The Hotelling T2 combination of

percentage positive weights did not correlate with EDSS.

The time-dependent weights of eigenconnectivity 10 showed a significantly increased frequency

amplitude at 0.003 Hz in RRMS patients (d =−1.5, p < 0.02, corrected, Fig. 3.5).

We then varied the window length from short (30 seconds) to long (2 minutes) and increased step

sizes from 2 to 8 TRs. Supplementary Figs. A.4a-d show that while the first eigenconnectivities estimated

from different window lengths roughly resemble each other, the estimated connectivity patterns are

not the same. Notably, the covarying FC between middle and inferior frontal regions apparent in

eigenconnectivity 3 at a window length of 30 TRs is not detected at longer windows lengths. We also

observe that eigenconnectivity 5 breaks into two patterns, 4 and 6, at a window length of 120 TRs.
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In general, the visible block structure of eigenconnectivities progressively vanishes at larger window

lengths. The Hotelling T2 test did not reveal significant differences between the average weights of HC

subjects and RRMS patients for window lengths above 30 TRs (p > 0.2).

In exploratory work, we also repeated our analysis using different band pass filters and obtained

similar results in terms of eigenconnectivities and explained variance for a high-frequency cut-off of 0.2

Hz and 0.3 Hz, but no significant group difference (p = 0.12,0.08;0.64,0.75 for group and interaction

effects and the two cut-offs respectively).

Influence of intra-individual differences

We then repeated our analysis without row-wise demeaning each subject’s dFC matrix but only sub-

tracting the average dFC across time and subjects. The first ten eigenconnectivities explained 42% of

the variance in the data. They resembled the FC patterns estimated from the subject-wise demeaned

data but were not the same (Fig. 3.8a). For example, the first eigenconnectivity shows much more

pronounced differences between limbic and subcortical connections (more yellow than in Fig. 3.5), the

blue connections of the 2nd one bear little resemblance, within frontal and within visual connections

are less pronounced for the 3rd one, and the 6th one bears little resemblance. Eigenconnectivity 6

includes connections of parietal regions (59−62), and the thalami (75,76) with the rest of the brain,

connections with visual regions (red); and the putamen (73,74) to the rest of the brain and between

motor (1,2,19,20,57,58) and frontal regions (blue).

The contribution of the first ten eigenconnectivities was significantly different between the two

groups (group effect F(10,17) = 2.7, p = 0.04, D = 2.4, interaction effect F(10,17) = 3.0, p = 0.02,D =
2.6). The Hotelling T2 group difference was

∑K
k=1 ak (mHC

k −mMS
k ) =−48±46%, with a1 =−0.76, a2 =

0.02, a3 = 0.03, a4 =−0.20, a5 = 0.04, a6 =−0.01, a7 = 0.30, a8 =−0.32, a9 = 0.43, a10 =−0.03. The largest

contributions thus came from the first and seventh to ninth eigenconnectivities. The percentage of

positive weights for the first eigenconnectivity were 66±27% for HC subjects and 29±22% for RRMS

patients (p < 0.001). As this is an all-positive pattern, this again indicates that RRMS patients had

a reduced overall FC strength. Post hoc t tests also indicated a trend for eigenconnectivity 7 (61±
32%,40±23%, p = 0.052). As we did not demean each subject’s dFC matrix, large positive percentages

can here be interpreted as reflecting stronger FC in red areas, and low percentages as reflecting stronger

FC in blue areas (positive weights increase the FC of red areas, negative weights that of blue areas).

Eigenconnectivity 7 contrasted connections centered on the right PCC and left Heschl gyrus (red), with

connections of limbic regions (hippocampi (HP), PAH, amygdala), the left thalamus and the left middle

temporal pole (blue; Fig. 3.8b). The Hotelling T2 combination of percentage positive weights did not

correlate with EDSS.

Eigenconnectivities estimated from phase-randomized dFC matrices showed structured patterns

(Fig. 3.8c), still retained a large amount of variance (23% for the first ten), and the average weights

differed significantly between the groups (F(10,17) = 3.4, p = 0.01, D = 2.7 for the group effect, F(10,17) =
2.6, p = 0.04, D = 2.4 for the interaction effect). These results indicate that average correlation values

rather than FC fluctuations drove the PCA and the group difference if no individual demeaning is

performed.

Eigenconnectivities estimated from phase-randomized activity time courses showed no struc-

ture (Supplementary Fig. A.4f), explained 5% of variance for the first ten and Hotelling’s T2 was not

significant as this simulation did not preserve the mean correlation values.
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Figure 3.8 – (a) Eigenconnectivities 1-6 estimated from the concatenated dFC matrices without subject-wise
demeaning. (b) Axial, sagittal and coronal views of the strongest connections of eigenconnectivity 7. Connections
in red were temporally overrepresented in HC subjects, and blue ones in RRMS patients. Only the 2.5% strongest
connections are shown for visualization purposes. (c) Eigenconnectivities estimated from phase-randomized dFC
matrices retain large-scale structure.

Motion

Motion parameters for each subject were small (Supplementary Table A.3). The four summary motion

measures were not significantly different between the two groups (HC subjects and RRMS patients

respectively, FD: mean 0.11,0.11; SD 0.05,0.05; D: mean 0.05,0.05, SD 0.03,0.03, p > 0.4 for all). Dy-

namic weights of the eigenconnectivities were not significantly correlated with any of the four motion

parameters, except for two HC subjects (time-dependent weights of eigenconnectivity 4 with the

standard deviation of FD, R2 = 0.64; time-dependent weights of eigenconnectivity 9 with the mean and

standard deviation of D, R2 = 0.75,0.73 respectively).

As scrubbing may affect the estimation of dFC, we repeated the analyses without scrubbing and

found highly similar results in terms of explained variance, extracted connectivity patterns and altered

contributions in MS patients.
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3.1.4 Discussion

In this study, we introduce a novel data-driven approach for extracting dFC patterns in the resting brain.

This exploratory technique applies PCA to dynamic whole-brain FC of multiple subjects during resting

state. PCA identified FC patterns, the eigenconnectivities, that capture FC pairs with similar dynamics.

We found large-scale connectivity patterns that encompassed regions from different functional clusters.

The temporal contributions of these eigenconnectivities can be obtained by projection and reveal their

importance in explaining dFC over time. On the example of MS, we identified a subset of connections

with altered dynamics in minimally-disabled RRMS patients.

Related methodological studies

Previous studies reported large-scale reorganizations of whole-brain functional brain networks during

learning (Bassett et al., 2011), task preparation (Ekman et al., 2012), or rest (Allen et al., 2014). Bassett et

al. (2011) studied dynamic community organization, Ekman et al. (2012) predicted upcoming tasks

and errors from network measures (e.g. degree), and Allen et al. (2014) employed clustering to identify

stable FC topologies. Our approach employs PCA to characterize the most abundant building blocks

of dFC and, like previous studies, identifies prominent changes in network topology. In contrast to

“fixed" FC states detected using clustering, the eigenconnectivities overlap in time and their combined

contributions give rise to varying network topologies. As such, they represent basic building blocks of

network configurations that occur over time, rather than discrete states. However, clustering could also

be applied to the time-dependent weights to identify eigenconnectivities with similar temporal profiles

(in contrast to Allen et al. (2014) who clustered windowed correlations). We here opted for another

approach and looked at summary measures of the contributions of these patterns over time.

The most prominent technique to study spontaneous brain activity and to identify voxels with

similar activity is spatial ICA. To identify connections with similar fluctuations, we used PCA, which

optimizes for explained variance and orthogonality, and gives an efficient, linear representation.

One could also consider ICA as an alternative decomposition to extract connectivity patterns from

multisubject dFC matrices. It is however not clear if the assumption of statistical independence would

lead to better components and, because of the independence assumption, ICA components have no

inherent ordering, which would complicate the determination of relevant ones. Smith et al. (2012)

recently applied a cascade of spatial and temporal ICA to fast-TR data to detect functionally (temporally)

distinct, and spatially overlapping networks. While both studies are interested in the architecture of

the brain during rest, the authors decomposed brain activity, while we studied brain connectivity. As

such, they identified networks of brain regions with similar activity, whereas we identified networks

of connections with similar fluctuations. Temporal ICA might not be appropriate to decompose dFC

because dFC fluctuates slowly due to the sliding window estimation (temporal ICA needs a large

number of time points to perform robustly) and because temporal ICA implicitly assumes temporal

stationarity, i.e., constant moments across time (see also Calhoun et al., 2012; Allen et al., 2014).

Stationary and dFC in RRMS patients

We identified eigenconnectivities 6 and 10 that contributed differently between HC subjects and RRMS

patients, indicating aberrant dFC in RRMS patients (Figs. 3.5f, j): The affected connections were

concentrated in parietal regions such as the PCC, superior parietal gyrus and angular gyrus (more
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frequently strongly connected in RRMS patients), and prefrontal regions (e.g. orbitofrontal gyrus,

gyrus rectus) and the amygdala (more frequently weakly connected). The importance of these regions

suggests that the dFC of at least part of the DMN is altered in patients. These results add to, and

complement, several studies which have reported disturbed stationary FC in different parts of the DMN

in MS patients (Bonavita et al., 2011; Hawellek et al., 2011; Richiardi et al., 2012; Rocca et al., 2012).

The distinction between posterior and anterior/temporal DMN regions seen in eigenconnectivity 6 is

similar to the DMN fragmentation observed in Allen et al. (2014) and would be missed in conventional

stationary FC analyses.

When repeating the analysis without removing each subject’s average connectivity strength, we

found distinct patterns of connections that differed between HC subjects and RRMS patients, which

were average- rather than dynamically-driven (Fig. 3.8). The identified brain regions are largely consis-

tent with those in a previous study by our group, which aimed at discriminating between HC subjects

and RRMS patients based on stationary FC (Richiardi et al., 2012); i.e., the left Heschl’s gyrus, right

rolandic operculum, and right superior parietal gyrus, were identified as being more strongly con-

nected in HC subjects in both studies. Reduced stationary FC in MS patients is indeed commonly

observed and is thought to stem from structural damage (Lowe et al., 2002; Roosendaal et al., 2010;

Bonavita et al., 2011; Richiardi et al., 2012). However, we also confirmed the bilateral parahippocampal

gyri, right amygdala, left thalamus and left midtemporal pole as more strongly connected in RRMS

patients (Richiardi et al., 2012). Such selective increased FC has been reported by several other stud-

ies as well (Roosendaal et al., 2010; Bonavita et al., 2011; Hawellek et al., 2011; Richiardi et al., 2012;

Rocca et al., 2012; Dogonowski et al., 2013) and has been interpreted as a compensatory mechanism

(Roosendaal et al., 2010; Bonavita et al., 2011) because activation studies have shown increased activity

in regions devoted to the task and the recruitment of additional regions in MS patients (Pantano

et al., 2002; Rocca et al., 2005). It is however also possible that these increases originate from a loss

of flexibility in functional interactions, rather than as a compensatory mechanism (Hawellek et al.,

2011). Interestingly, the connections in eigenconnectivity 10 obtained from the dFC analysis showed

an increased low-frequency amplitude in RRMS patients, which might support the latter hypothesis.

While we did not observe correlations between the Hotelling T2 combinations of positive per-

centages and clinical disability for the dynamically- or average-driven analysis, it should be noted

that our sample size was relatively small (15 patients), and our patients minimally disabled (EDSS

range 1.5−2.5, meaning that they can live a normal life). It would be interesting to study changes in

dFC in larger samples of MS patients, at different phases of the disease, and using additional clinical

measures. Nonetheless, given the complementary insights gained from the analysis of dFC, such as

which connections fluctuate coherently or which connections fluctuate more slowly, we believe that

studies of dFC can help in understanding the functional impact of MS. However, we note that the

choice of sliding window length and band pass filter affected our results as opposed to scrubbing or the

removal of small weights. Therefore, while our results are promising, studies in independent cohorts

are needed to further explore these effects and validate our findings.

Timescales and potential confounds of dFC

Correlations estimated from short windows have more variance due to the small number of samples

but are more sensitive to changes in FC since long windows reduce temporal variability and may miss

anticorrelations (Chang & Glover, 2010; Hutchison et al., 2013b). Some studies have reported that 30
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seconds of data suffices to discriminate between cognitive states and to estimate reliable modular

graph metrics (Shirer et al., 2012; Jones et al., 2012). We therefore chose a sliding window length of 30

TRs to capture changes in FC over time. Given the similarities between estimated eigenconnectivities at

different window lengths, it seems unlikely that it is random variability that drove FC patterns at short

window lengths. Exploratory work using different band pass cut-off frequencies also suggested that the

large-scale structure of the eigenconnectivities was largely preserved across broad frequency ranges. In

our main analysis we chose a cut-off of 0.15 Hz as sliding window correlations are estimated from a

small number of samples and a lower cut-off helps to remove noise. The chosen cut-off is similar to

what has been used in other studies on dFC (Bassett et al., 2011; Kang et al., 2011; Handwerker et al.,

2012; Allen et al., 2014; Li et al., 2014), but it would be interesting to further investigate the effects of

different frequency cut-offs on dFC when physiological data is available to reduce noise in resting-state

activity time courses. Together, these results suggest that patterns of covarying connections were largely

similar across varying window lengths, frequency cut-offs and with or without scrubbing.

We also tested for correlations between the contributions of the eigenconnectivites across time

and motion measures. Out of the 28 subjects, these contributions were only significantly correlated

for two subjects and one of the eigenconnectivities. While we cannot exclude that motion-related

or physiological noise is potentially driving the observed FC patterns, the large-scale organization of

these patterns, the importance of the precise timing of FC fluctuations as shown by the results with

phase-randomized dFC and the minimal correlations with motion parameters, suggest that these

patterns are not simply the result of noise.

Chang et al. (2013b) recently linked heart rate variability to dFC in regions associated with vigilance

and arousal, suggesting the contribution of autonomic factors to the observed nonstationarity. Chang

and colleagues also showed that alpha band power in EEG was related to FC fluctuations between the

DMN and the dorsal attention network (Chang et al., 2013a). Further concurrent EEG-fMRI studies

will be crucial in clarifying the relationship between these fluctuations and neural dynamics, as well

as how they relate to attentional states. Along those lines, the scale-free dynamics of EEG microstate

sequences have been shown to reach timescales of fMRI resting-state fluctuations (Van de Ville et al.,

2010) and the link between EEG microstates and dynamic fMRI FC is an intriguing future research

question.

Variability as a signal in its own right

Not only has interest in the variability of brain connectivity increased, but several recent studies have

also highlighted that the variability of brain activity is a signal of interest and provides information

complementary to the analysis of mean brain activity. Notably, brain activity variability has been linked

to task performance, development and disease and it has been suggested that signal variability is

not “noise" but crucial for spontaneous or stimulated reorganizations of the brain (McIntosh et al.,

2008; Garrett et al., 2010). Just as studies on brain signal variability provided novel insights into brain

function, we believe that studies on brain connectivity variability will further our understanding of

the brain’s functional organization. Calhoun et al. (2012) and Starck et al. (2012) recently reported

changes in dFC variability in patients with schizophrenia and autism. We believe that our proposed

approach can go beyond identifying changes in dFC variability and reveal patterns in FC fluctuations.

Our approach is also applicable to other neurodegenerative diseases and the temporal evolution of the

brain’s functional network at longer time scales, such as during learning or development.
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Methodological limitations and future directions

In this study we used anatomically defined regions and a simple linear estimator of dFC, but other

parcellations or more complex estimators of dFC could easily be used with the proposed approach.

A comparison between the real eigenvalues and those obtained from the phase-randomized data

suggested that the first 30 components predominantly carried signal, while the latter ones were not

statistically different from noise. As the eigenvalues were close in magnitude, it seems however reason-

able to not take this number too literally but rather as an indication of the overall range. An alternative

method to estimate the dimensionality of our data, Laplace PCA (Minka, 2000), grossly overestimated

its dimensionality (1362 dimensions). The comparison of the eigenvalues to those obtained from surro-

gate data on the other hand provided a reasonable, rough estimate to guide the choice of dimensionality.

Other dimensionality estimation approaches, such as those used in activation studies (Yourganov et al.,

2011) or ICA (Varoquaux et al., 2010), could be adapted to dFC and evaluated in future studies. The

ten first eigenconnectivities used for further analysis did not use the full “signal space" and explained

34% of the variance in dFC, but our results suggest that they captured important differences between

the groups. To identify connectivity patterns across subjects (rather than modelling subject-specific

patterns or noise), it might indeed not be necessary to explain a majority of the variance. This is also

highlighted by recent work of Li et al. (Li et al., 2014) who identified 16 FC states using a dictionary

learning approach and whose optimal model had residuals of around 50%.

It should also be noted that PCA is a linear decomposition and only sensitive to linear relations

among connectivity pairs. To identify FC patterns based on nonlinear relations, one could for example

employ kernel PCA, an extension of PCA, which has shown promising results for face recognition

(Schölkopf et al., 1998).

Finally, we also mention that other measures should be explored to exploit the full potential

of temporal dynamics of eigenconnectivity time-dependent weights, in addition to the proposed

percentage of positive weights.

In conclusion, we proposed a novel approach to estimate building blocks of dynamic brain connec-

tivity and assessed their disturbance in minimally disabled RRMS patients.
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Chapter 3. Temporal covariance of functional connections during rest

3.2 FC patterns estimated by canonical correlation analysis

In the journal article presented in this chapter we simply concatenated the data from all subjects

and then applied PCA to identify common dFC patterns across multiple subjects. Instead, we could

search for FC patterns that take commonalities across datasets, but not aspects specific to individual

subjects, into account. A classical method to identify such common patterns is canonical correlation

analysis (CCA) (Hotelling, 1936), and its generalzation (gCCA) to more than two datasets (Kettenring,

1971). gCCA searches for a low-dimensional representation that takes statistical dependencies between

datasets, as measured by their correlations, into account. If each dataset is whitened2 in a first step,

gCCA, however, simplifies to PCA. This property has for example been exploited in the analysis of

gene expression (Tripathi et al., 2008) or as a preprocessing tool to enhance the reproducibility of

ICA (Varoquaux et al., 2010). Specifically, Varoquaux et al. (2010) proposed a two-level model for

multi-subject fMRI data, which is based on a subject-level PCA that reduces both the dimensionality

of the data and subject-specific variability, that is followed by a group-level PCA (corresponding to a

gCCA) capturing the remaining variability and identifying a common subspace.

In the next section we derive the equivalence of applying gCCA or the two steps of (i) whitening

each subject’s dFC and (ii) a group-level PCA. In the section thereafter we compare PCA and gCCA by

applying it to the same dataset we used in the journal article.

3.2.1 gCCA and its relation to PCA

We first introduce CCA, which is defined for two datasets (Hotelling, 1936). For S = 2 datasets X1(C ×T1)

and X2 (C × T2), which in our case are two subject’s centered dFC matrices, CCA maximizes the

correlation between the projections X1A1 and X2A2 onto a K -dimensional common subspace, with A1

(T1 ×K ), and A2 (T2 ×K ). CCA can be solved using a generalized eigenvalue decomposition:[
0 C12

C21 0

][
A1

A2

]
=Λ

[
C11 0

0 C22

][
A1

A2

]
, (3.1)

where C11 = X1
T X1, and C22 = X2

T X2 are the auto-covariance matrices, C12 = X1
T X2 = CT

21 is the cross-

covariance matrix andΛ contains the generalized eigenvalues on its diagonal.

For S > 2 datasets we use a generalization for which the solution is again given by a generalized

eigenvalue decomposition (Kettenring, 1971; Varoquaux et al., 2010; Afshin-Pour et al., 2012):
0 C12 C13 . . . C1S

C21 0 C23 . . . C2S
...

. . .
...

CS1 . . . . . . . . . 0




A1

A2
...

AS

=Λ


C11 0 . . . 0

0 C22 . . . 0
...

. . .
...

0 . . . . . . CSS




A1

A2
...

AS

 . (3.2)

When all datasets are white, that is decorrelated and scaled to unit-variance (Xs
T Xs = I for all

2Whitening transforms a dataset X into a new dataset X̃ whose covariance is the identity matrix, that is it is decorrelated
and has unit variance. For row zero-mean data, the whitening transform can be found by solving the following eigenvalue

decomposition: XT X = VΛVT . Whitened data X̃ is then obtained as X̃ = XVΛ−1/2. Now X̃T X̃ =Λ−1/2V
T

XT XVΛ−1/2 = I. X̃ can
also be directly obtained from a SVD of X = USVT , whereΛ= S2 and X̃ = U. The dimensionality of the data can be reduced in the
same step by retaining only the first D eigenvectors of U.
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s = 1, . . . ,S), the CCA solution simplifies considerably:
0 C12 C13 . . . C1S

C21 0 C23 . . . C2S
...

. . .
...

CS1 . . . . . . . . . 0

A =ΛA, (3.3)

where A stands for the row-concatenated projection matrices As.

We now add IA to both sides of Eq. (3.3) because this allows us to express the cross-covariance

matrix as the covariance matrix of the concatenated, whitened datasets:
I C12 C13 . . . C1S

C21 I C23 . . . C2S
...

. . .
...

CS1 . . . . . . . . . I

A =


X1

T

X2
T

...

XS
T


[

X1 X2 . . . XS

]
A = (Λ+ I)A (3.4)

The addition of the identity matrix leaves the eigenvectors unchanged and increases all eigenvalues by

one. Eq. (3.4) describes a conventional PCA, completing the derivation.

In the journal article presented in this chapter, we solved X′X′T = UΛUT , while Eq. (3.4) solves

XT X = A(Λ+ I)AT (note the location of the transposes). A is therefore similar to what we previously

called “weights", and we obtain the eigenconnectivities by projecting and normalizing: U = XA(Λ+ I)−1/2.

Or, simpler, by an SVD of the whitened data: X = U
p

(Λ+ I)A
T

. The eigenconnectivities obtained from

concatenated subject principal components (instead of dFC estimates) thus correspond to a subspace

common to all subjects as obtained by gCCA.

3.2.2 gCCA eigenconnectivities

To compare PCA with gCCA, we applied a PCA to each subject’s dFC matrix and (arbitrarily) retained

the first 19±2 or 5±1 eigenvectors, corresponding to 90% and 50% of explained variance, respectively

(see Fig. 3.9b for the eigenvalue spectrum of the dFC matrix of an example subject). In Figs. 3.9c and e

we show the first 10 eigenconnectivites obtained from whitened data. The eigenconnectivities strongly

resemble those obtained without whitening (Figs. 3.9d and f), suggesting that the PCA patterns are not

driven by subject-specific noise or dFC spikes, which would either not be retained after the subject-wise

PCA or are unlikely to be shared among subjects. The eigenconnectivities are well preserved with

as little as 50% of retained variance from the subject-level PCAs. With 90% of retained variance the

eigenconnectivites are still largely similar, but less so than with 50% of retained variance, possibly

because the whitening normalizes each subject’s data to unit variance, which means that the 19th

principal component has a weight equal to the first one.

3.3 Outlook

In this chapter we presented an approach for extracting co-varying functional connections in multi-

subject dFC datasets based on PCA. PCA is a classical linear analysis technique and is easy to interpret

(because of its linearity), fast (because it is based on an eigenvalue decomposition), easy to implement
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Chapter 3. Temporal covariance of functional connections during rest

Figure 3.9 – (a) Eigenconnectivities obtained from concatenated dFC matrices, as also shown in Fig. 2.3, (b)
Eigenvalues 1 to 70 out of 205 for a subject-wise PCA of dFC, (c) eigenconnectivities obtained from a multi-subject
PCA with 90% of retained variance for each subject-wise PCA, (d) Pearson correlation r between the patterns
shown in (a) and (c), the values of correlations r > 0.4 are indicated, (e) eigenconnectivities obtained from a
multi-subject PCA with 50% of retained variance for each subject-wise PCA, (f) Pearson correlation between the
patterns shown in (a) and (e).

and many extensions are built on it. The FC patterns we identified showed marked differences to those

obtained from traditional, “average" FC analyses, and were robust to a two-level analysis, which first

employed a whitening step. Our results also suggest altered FC dynamics in RRMS, but will require

further validation in independent data sets.

Similar to our idea, Bassett et al. (2014) recently proposed to uncover sets of connections with

similar dynamics by temporally correlating dFC of single-subjects. Both approaches thus aim to

identify groups of co-varying connections. For us, the temporal covariance of dFC builds the basis

for this, and for Bassett et al. (2014) it is the temporal correlation of dFC. Most importantly, while we

apply PCA to uncover the groups, they directly study the thresholded dFC correlation matrix of size

(N 2 −N )/2× (N 2 −N )/2.

Structured covariance of dynamic networks has recently also been revealed on much faster time
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scales in human EEG data, supporting a neuronal basis for FC dynamics (Mehrkanoon et al., 2014;

Spencer et al., 2013). Both Mehrkanoon et al. (2014) and Spencer et al. (2013) derived a low-dimensional

orthogonal space of resting-state network dynamics by applying PCA to networks estimated from the

phase synchronization of neural activity. Mehrkanoon et al. (2014) identified several networks with

distinct topologies and frequency spectra and Spencer et al. (2013) accurately classified a motor task

from the temporal expression of the components.

The neurological significance of the individual components is more difficult to grasp because of the

orthogonality constraint. The eigenconnectivities span a low-dimensional space in which dFC unfolds,

yielding an efficient representation of network dynamics, but orthogonality is not a natural assumption

for the basic modes of brain function. In this work we also didn’t explore the suitability of PCA per se for

describing FC dynamics. Both of these points will be addressed in the next chapter.
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4 Disentangling the temporal composi-

tion of dynamic brain networks

IS DFC WELL CHARACTERIZED BY a mixture of FC patterns at every window? Or is it better charac-

terized by alternating states? In the previous chapter we proposed to identify recurring network

configurations using PCA, which decomposes dFC into the superposition of multiple connectivity

patterns (Fig. 4.1). Alternatively, Allen et al. (2014) proposed to cluster dFC, which then describes dFC

as a succession of separated states. Because the choice of decomposition impacts both the conceptual

understanding of dFC and the interpretation of the estimated patterns, the goal of this chapter is to

explore which temporal characterization is more appropriate.

To this aim, we apply matrix factorizations subject to variable constraints in the temporal domain

to simulated, task-based and resting-state dFC of young, healthy subjects. Specifically, we decompose

a multi-subject dFC matrix C into connectivity patterns D and associated temporal weights A: C ≈ DA.

K-means clustering allows only a single non-zero, positive weight at each time point (i.e., only one

active FC pattern), while PCA allows the weights of all FC patterns to be non-zero at the same time (i.e.,

combined expression of FC patterns). Our results suggest that dFC during subject-driven tasks is well

described by alternating FC states and that dFC during rest is better described by multiple FC patterns

that overlap at each time instance.

Figure 4.1 – dFC is decomposed into building blocks and associated temporal weights. Depending on the de-
composition, dFC is modelled as a combination of all FC patterns or as the expression of a single FC pattern.
Photograph courtesy of M. Leonardi.
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

4.1 Journal article

Submitted to: Human Brain Mapping (under revision)

Disentangling dynamic networks by sparse com-
binations of functional connectivity patterns

Nora Leonardi,1,2 William R. Shirer,3 Michael D. Greicius,3 and Dimitri Van De Ville1,2

1 Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; 2 De-

partment of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland; 3 Department of

Neurology and Neurological Sciences, Stanford University, Stanford, USA

Resting-state functional connectivity (FC) is highly variable across the duration of a scan. Groups

of co-evolving connections, or reproducible patterns of dynamic FC (dFC), have been revealed

in fluctuating FC by applying unsupervised learning techniques. Based on results from k-means

clustering and sliding-window correlations, it has recently been hypothesized that dFC may cycle

through several discrete FC states. Alternatively, it has been proposed to represent dFC as a linear

combination of multiple FC patterns using principal component analysis. As it is unclear whether

sparse or non-sparse combinations of FC patterns are most appropriate, and as this affects their

interpretation and use as markers of cognitive processing, the goal of our study was to evaluate

the impact of sparsity by performing an empirical evaluation of simulated, task-based and resting-

state dFC. To this aim, we applied matrix factorizations subject to variable constraints in the tem-

poral domain and studied both the reproducibility of ensuing representations of dFC and the dis-

tribution of time-dependent weights. During subject-driven tasks, dFC was well described by alter-

nating FC states in accordance with the nature of the data. The estimated FC patterns showed a rich

structure with combinations of known functional networks enabling accurate identification of the

three different tasks. A fourth FC state was apparent during one of the three tasks, suggesting sub-

jects did not perform the task continuously. During rest, dFC was better described by multiple FC

patterns that overlap. The executive control networks, which are critical for working memory, ap-

peared grouped alternately with externally- or internally-oriented networks. These results suggest

that combinations of FC patterns provide a meaningful way to disentangle resting-state dFC.

4.1.1 Introduction

Brain networks reconfigure over years (Dosenbach et al., 2010), days (Bassett et al., 2011) and seconds

(Chang & Glover, 2010; Eryilmaz et al., 2011; Cribben et al., 2012; Ekman et al., 2012). Fast, dynamic

reconfigurations may occur in response to a changing external environment or spontaneously while

a subject is at rest. In particular, spontaneous fluctuations in the temporal correlation of the BOLD

activity of distinct brain regions have been observed in the default mode network (DMN) (Chang &

Glover, 2010) and since been shown to also occur in many other large-scale networks (Smith et al.,

2012; Hutchison et al., 2013b; Liu & Duyn, 2013; Allen et al., 2014). Using unsupervised learning

techniques, recent work has identified reproducible groups of functional connections that evolve

in a similar manner, which we here call "functional connectivity (FC) patterns" (Eavani et al., 2013;
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Leonardi & Van De Ville, 2013b; Li et al., 2014; Allen et al., 2014). The occurrence of various FC patterns

across time challenges the assumption of unique and stable correlations during rest (Chang & Glover,

2010; Allen et al., 2014), and links between FC variability and neural activity have been reported

(Chang et al., 2013b; Allen et al., 2013). Early work also suggests that these patterns are altered in

several neuropsychological diseases (Jones et al., 2012; Leonardi & Van De Ville, 2013b; Li et al., 2014),

highlighting the potential importance of dFC to provide insights that are complementary to traditional,

static FC (see e.g. Hutchison et al., 2013a, for a recent review).

Sliding-window correlation analysis has been the most commonly used approach to study dynamic

FC (dFC) across time and Allen et al. (2014) combined it with k-means clustering to separate dFC into

several so-called "FC states". In related work, Li et al. (2014) also used k-means clustering as a first step

to identify FC patterns. Preliminary results also indicate that the application of k-means clustering

to sliding-window correlations can successfully distinguish different tasks in individual subjects for

single subjects (Gonzalez-Castillo et al., 2013). Thus, dFC is sensitive to changes in cognitive states and

provides enough information to reveal them. Based on these results it has been suggested that dFC

may cycle through multiple discrete states during rest (Hutchison et al., 2013a). We posit that clustering

inevitably models dFC as a succession of states because its aim is to find a simple representation by

approximating each windowed FC estimate by a single FC pattern. The simplicity of clustering makes

it an attractive, yet also restrictive approach, and to our knowledge there is no study evaluating the

importance of the implicit sparsity assumption.

Alternatively, it has been proposed to represent dFC as a linear combination of multiple FC patterns

by applying principal components analysis (PCA) (Leonardi et al., 2013) and a tensorial extension for

task data enabled accurate classification of two cognitive states (Leonardi & Van De Ville, 2013b). PCA is

a more flexible approach, but it can be prone to overfitting. Again, we posit that PCA inevitably models

dFC as the combination of all (orthogonal) patterns. To understand whether sparsity is relevant from a

conceptual point of view and how the FC patterns should be interpreted, we performed an empirical

study.

We evaluate the impact of sparsity by casting both k-means clustering and PCA1 as matrix factoriza-

tions, which decompose dFC into components and associated time-dependent weights: In clustering,

each dFC estimate is approximated by a single component (the cluster centroid) with a weight of one,

while in PCA each dFC estimate is approximated by a linear combination of all orthogonal components

(Fig. 4.2). Thus, clustering assumes a maximally sparse model, while PCA assumes no sparsity (but

orthogonality). Matrix factorizations subject to variable sparsity constraints can be seen as general-

izations of both k-means clustering and PCA, and have previously been shown to well describe BOLD

activity and static FC (Lee et al., 2011, 2013; Eavani et al., 2012). Here, by comparing sparse and non-

sparse linear combinations of FC patterns we explore whether dFC is better described by a succession

of separated FC states or by the joint expression of multiple FC patterns. We first simulated data to

test the feasibility of the proposed approach. Then, we decomposed dFC during three subject-driven

cognitive states, which provide a more naturalistic view of continuous, cognitive processing than

traditional task data. Importantly, because the cognitive state a subject is in was known, we could

compare the estimated FC patterns and associated weights with the known experimental paradigm.

Finally, we decomposed dFC during resting state.

1Technically, PCA decomposes a matrix only into (principal) components and it is the singular value decomposition (SVD)
that decomposes it into components and weights. For centered data, the principal components of PCA are, however, equal to the
left singular vectors of SVD. The weights can then be obtained by a projection of the data onto the components.
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

4.1.2 Methods

Participants and data acquisition

24 healthy, right-handed subjects (age range 18 - 30 years, 15 females) participated in this study. The

data have previously been used to decode subject-driven cognitive states (Shirer et al., 2012). The

study was approved by the institutional review board of Stanford University and informed consent was

obtained from each subject. Functional images were acquired on a 3.0T GE scanner (TR = 2s, TE = 30

ms, flip angle = 80◦, 1 interleave, matrix size 64 x 64, FOV = 22 cm). A high-resolution structural scan was

acquired using an axial 3D fast spoiled gradient recalled echo sequence (FSPGR; 162 slices, 0.86-mm2

in-plane and 1-mm through-plane resolution, TR = 5.9 ms, TE = 2 ms, flip angle = 15◦, FOV = 22 cm).

Participants were scanned for 10 minutes each while resting and completing three subject-driven tasks:

counting backwards from 5000 in steps of 3 (subtraction task), recalling the events of their day (episodic

memory task), and silently singing a song (music task). No stimulus was presented and the investigator

only marked the start and end of each 10-min scan. Subjects were instructed to keep their eyes closed.

A debriefing confirmed that all subjects stayed awake and were able to perform the tasks throughout

the scan.

Preprocessing

Data were preprocessed and analyzed using FMRIBs Software Library (FSL version 4.1). The first

six volumes were discarded to allow the MR signal to equilibrate. Data were corrected for motion,

normalized to the MNI template, and smoothed with a 6-mm Gaussian kernel. Subject’s heart rate

and respiration rate were monitored during the scan and regressed out from the fMRI data, together

with motion parameters, cerebrospinal fluid and white matter signals, and a brain-averaged signal.

Finally, data were high-pass filtered (>0.01 Hz). BOLD activity was averaged within 78 functional

ROIs, which were previously defined from thresholded independent components estimated from 14 of

the 24 subjects and one other subject (http://findlab.stanford.edu/functional_ROIs.html,

cerebellar ROIs were excluded; Shirer et al., 2012).

Dynamic functional connectivity analysis

dFC estimation

We estimated dFC between all N=78 ROIs using sliding-window correlations (Chang and Glover, 2010).

We used a window size of 30 TRs (60 s) and shifted the window by 5 TRs (10 s) for each estimation,

resulting in W = 53 windows for each subject. These choices are similar to values reported in the

literature (Handwerker et al., 2012; Hutchison et al., 2013b; Leonardi & Van De Ville, 2013b; Allen et al.,

2014) and Shirer et al. (2012) reported that different cognitive states were well distinguished with 60s of

data.

We concatenated the vectorized, upper triangular parts of all 53 correlation matrices to build a

connections × windows matrix Cs ∈RE×W , where E = N (N −1)/2 (Fig. 4.2a). Finally, we subtracted the

mean from each row of Cs and concatenated the centered Cs across subjects to form the connections

× (windows × subjects) matrix C ∈ RE×T . We centered each connection to exclude any bias from

inter-subject variability in average FC (Leonardi & Van De Ville, 2013b), and this step improved the

correct identification of the three cognitive states in task-based dFC (adjusted rand index without

centering = 0.27 and with centering = 0.74, where a value of 0 corresponds to a random labelling and a
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Figure 4.2 – (a) dFC is temporally concatenated across multiple subjects to form matrix C. (b) k-means clustering
separates the data into K clusters, thereby approximating C by a succession of the cluster centroids, e.g. the
first dFC estimate is approximated by centroid 1, the second and third by centroid 2, .... This can be seen as
decomposing the dFC matrix C into K FC patterns (D) and associated sparse weights (A), where only one FC
pattern may have a non-zero weight at each instance in time (||a:t ||0 = 1). (c) PCA or SVD decomposes the dFC
matrix into K FC patterns and associated non-sparse, orthogonal weights (||a:t ||0 = K ).

value of 1 to perfect labelling).

DFC matrix factorization

To compare k-means clustering and PCA/SVD we formulate both as matrix factorizations: C ≈ DA. That

is, the dFC matrix C is represented as the multiplication of K FC patterns, stored as the columns of the

matrix D = [d:1,d:2, . . .d:K] ∈RE×K , and their associated time-dependent weights (i.e. their importance

in representing dFC at each window) in A = [a:1,a:2, . . .a:T] ∈RK×T , where the index :1 refers to the first

column vector of a matrix. The problem of jointly learning D and A can be formulated as

argmin
D,A

||C−DA||2F (4.1)

where argmin indicates that D and A are chosen such as to minimize the approximation error ||C−DA||2F ,

and ||X||2F =∑
i j x2

i j is the Frobenius norm, which is defined as the sum of all entries squared (matrix

`2-norm). K-means clustering and truncated SVD represent two special cases of the more general

Eq. (4.1).

K-means clustering finds exclusive and exhaustive cluster assignments M that minimize the

within-cluster distances. For example, for a squared Euclidean distance, it solves
∑K

k=1

∑
ct∈Mk

||ct −
mk ||2, where ct ∈Mk indexes all networks assigned to cluster k, and mk is the associated cluster center
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

that equals the average of all networks assigned to that cluster. We can write
∑K

k=1

∑
ct∈Mk

||ct −mk ||2
as a matrix factorization analogue to Eq. (4.1), but subject to constraints on A (Fig. 4.2b):

argmin
D,A

||C−DA||2F , s.t . ||a:t ||0 = 1, akt = {0,1} (4.2)

The constraint ||a:t ||0 = 1 implies that each dFC network is approximated by a single FC pattern d:k

(the `0–norm counts the number of nonzero entries), and akt = {0,1} that the associated weights are

binary. Other distance functions, such as one minus the correlation or one minus the cosine, are less

restrictive and allow akt to vary positively. We use k-means clustering with one minus the correlation

distance as this is insensitive to offsets and changes in scaling, but sensitive to changes in topology.

Truncated SVD corresponds to other constraints on A (Fig. 4.2c):

argmin
D,A

||C−DA||2F , s.t . ||a:t ||0 = K ,AT A = I, (4.3)

where I is the identity matrix, i.e., A is orthogonal, and D = CAT are the first few eigenvectors of the

connection-wise covariance matrix. ||at ||0 = K indicates that each dFC network is approximated as a

combination of all FC patterns. This constraint does not need to be imposed, but we include it for the

sake of comparison between the two approaches.

K-means clustering and truncated SVD can be generalized by k-SVD (Aharon et al., 2006):

argmin
D,A

||C−DA||2F , s.t . ||a:t ||0 ≤ S, (4.4)

where the case S = 1 generalizes k-means clustering (without constraining the values to be binary or

positive) and the case S = K generalizes PCA (without enforcing orthogonality, which, however, still

leads to a solution that spans the same subspace: i.e., one can be represented as a linear combination

of the other). Using this formulation only the sparsity of the weights separates the two approaches. We

used a fast implementation of the optimization toolbox SPAMS for solving Eq. (4.4) (SPArse Modeling

Software, http://spams-devel.gforge.inria.fr/; Mairal et al., 2010).

Simulated and null data

We generated data under a spatiotemporal separability assumption by multiplying K = 3 FC patterns

with random time courses that corresponded either to the case of separated or joint expression. Specif-

ically, for each subject s = 1,2, . . . ,24, we multiplied subject-specific FC patterns Ds with randomly

generated time courses As : Cs = DsAs, where Cs is the connection-by-window subject-specific simu-

lated data, Ds contained the K = 3 FC patterns on its columns, and akt ∼ |N (0,1)|. The subject-specific

FC patterns Ds were estimated from average FC during the three subject-driven cognitive states subtrac-

tion, memory and music (Supplementary Fig. B.1). This incorporated a large amount of inter-subject

variability as can be expected in real fMRI data. To simulate the expression of separated patterns, we

randomly set two entries of As per column to zero (S = 1) (Supplementary Fig. B.1). Finally, we added

zero-mean Gaussian noise with σ= 0.02 to each subject’s data matrix Cs.

To model the case of static FC across time, we multiplied single, subject-specific FC patterns with

random time courses and added noise. Fluctuations in FC in this data set would thus merely reflect

varying strengths of the same underlying network topology.
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4.1. Journal article

Figure 4.3 – (a) K-means clustering assigns each dFC network to one of three clusters. (b) This assignment is
guided by the similarity of each dFC network to all three FC patterns. We interpret the similarity of each dFC
network to all FC patterns as a non-sparse weight matrix A∗. (c) The histogram of A∗ distinguishes separated (left)
and joint (right) expression of FC patterns.

Evaluation of matrix factorizations

Comparison of algorithms. We compared k-means clustering, truncated SVD and k-SVD (with S = 1

and S = K ) by assessing how well they recovered the true, underlying FC patterns used for the simula-

tions with K set to the true number of 3 (we study how to estimate K from the data below). Because

Ds differed slightly between subjects, we used Ds averaged across all subjects as the true FC patterns

we would like to recover. We quantified recovery by estimating the correlation between the true and

the estimated FC patterns. For k-SVD, we retained the absolute values of the correlation coefficients

because the sign of the FC patterns is arbitrary. For PCA, we estimated only K −1 = 2 FC patterns

because the components represent axes in a lower-dimensional space and two components can de-

scribe three, correlated FC patterns. The recovery of the third FC pattern was assessed by looking at

negative correlations (i.e., one estimated FC pattern recovered two true FC patterns, one of which with a

flipped sign). Given the cross-correlation matrices, we matched the true FC patterns with the estimated

ones using the Hungarian algorithm (Kuhn, 1955; Munkres, 1957). The Hungarian algorithm finds the

matching that maximizes the sum of similarity measures (here correlation coefficients) between all

corresponding pairs. We report the average correlation coefficient of the matched pairs across 100

simulations. Because k-means clustering performed best overall in recovering the true FC patterns we

retained only k-means clustering for the following steps.

Number of FC patterns K . We chose the number of FC patterns (or clusters) K by evaluating the

reproducibility of the FC patterns in split-half resamplings. The subjects’ dFC networks were randomly

split into two, independent data sets of 12 subjects each. K-means clustering was applied separately to

each data set, the cross-correlation between the FC patterns of the two data sets estimated, and the

best matching estimated using the Hungarian algorithm. We define the reproducibility as the smallest

correlation coefficient between all corresponding pairs (least reproducible FC pattern). We repeated all

steps for 24 random splits.

Separated versus joint expression of FC patterns. K-means clustering assigns each dFC network

to a single FC pattern by picking the one it is most similar to. That is, k-means clustering "sees" how
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

Figure 4.4 – (a) Average correlation coefficient of true FC patterns with those estimated using k-means clustering
(K=3), sparse matrix factorizations (K=3), and PCA (K=2) for both separated and joint expression of FC patterns.
Errorbars represent standard deviation across simulations. (b) Split-half reproducibility for K = 1,2, . . . ,8 for
simulations (separated, joint and null), subject-driven task-based and resting-state dFC. Errorbars represent
standard deviation across splits. (c) Skewness of time-dependent weights A∗ for simulations and subject-driven
task-based and resting-state dFC.

well each dFC network is approximated by all FC patterns, but then binarizes this information by

retaining only the one with maximal similarity. We calculated the correlation of each dFC network

to all K FC patterns to generate a non-sparse weight matrix A∗, and assessed the asymmetry of the

histogram of all correlation coefficients by calculating its skewness (Fig. 4.3). The skewness of normally

distributed data is zero, and non-zero skewness indicates asymmetry.

4.1.3 Results

Simulated dFC

First, we compared how well k-means clustering, PCA and k-SVD (S=1 ≈ k-means clustering, and

S=K ≈ PCA) recovered the true, underlying FC patterns in simulations. For the separated expression

of FC patterns (favoring the sparsity of k-means), k-means clustering clearly outperformed all other

algorithms (average correlation coefficient 0.95, versus < 0.8 for all other algorithms; Fig. 4.4a). For

the joint expression (favoring the overlap of truncated SVD), all algorithms performed comparably

(average correlation coefficients 0.74−0.79; Fig. 4.4a). Because (i) k-means clustering performed best

for the separated expression and comparably for the joint expression, (ii) it avoids the ambiguity of the

sign of the FC patterns (in k-SVD and truncated SVD the sign of the FC patterns is arbitrary), and (iii) it

avoids the choice of the parameter S necessary for k-SVD, we estimated all further FC patterns with

k-means clustering.

The split-half reproducibility for different numbers K of FC patterns showed a clear drop once

K exceeded the number of underlying FC patterns for both the separated and joint expression of FC

patterns (i.e., K ≥ 4; Fig. 4.4b). In the null data, only K = 2 FC patterns were reproducible, corresponding

to the trivial cases of above and below average FC.

The histogram of the weights A∗ was highly asymmetric for the case of separated expression
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(large, positive skewness; Fig. 4.3c and Fig. 4.4c). That is, each dFC network resembled only one FC

pattern strongly at each time point and thus many correlations were close to zero. The histogram of

the weights A∗ was only weakly asymmetric for the simulations of joint expression (small, positive

skewness; Fig. 4.3d and Fig. 4.4c). Because each dFC network resembled all FC patterns to some extent,

correlations were more evenly distributed.

The split-half reproducibility of the FC patterns and the shape of the histogram of the time-

dependent correlations with the FC patterns A∗ could thus provide information on the underlying type

of data generation.

Subject-driven task-based dFC

Fig. 4.5a shows average dFC for each subject-driven task: The subtraction task was characterized by

strong FC in the visuospatial network, the episodic memory task by strong FC in the vDMN (retrosple-

nial cortex/medial temporal lobe network), and the music task by strong FC in the language network

and the dDMN. These results are in line with those of Shirer et al. (2012).

Fig. 4.4b shows the split-half reproducibility for task-based dFC, which starts to drop at K=3, and

is small after K=4. This suggests 3 or 4 FC patterns best describe the data. The asymmetry of the

histogram of the weights A∗ was close to that for simulated separated expression, correctly suggesting

that a separated expression of the FC patterns well describes the data (Fig. 4.4c).

In Fig. 4.5b we illustrate the FC patterns estimated for K=3 and their associated time-dependent

weights A∗. The three patterns strongly ressembled the average dFC of each subject-driven task

(Pearson correlation coefficients r = 0.99,0.98, and 0.97) and the weights separated the three cognitive

states well (adjusted rand index of k-means labelling = 0.74).

The fourth FC pattern showed two large groups of co-evolving connections: one centered on

externally-oriented networks (salience, visuospatial (VS) and primary sensory networks) and one

centered on internally-oriented networks (default mode network, DMN; Fig. 4.5c). The fourth FC

pattern was specific to the music condition: it correlated with average FC during the music task and its

weights indicated that it was predominantly – and consistently across subjects – expressed during this

task.

Resting-state dFC

For resting-state dFC, split-half reproducibility dropped after K = 3 and the asymmetry of the histogram

of the weights A∗ overlapped with the simulated joint expression. This suggests that three FC patterns

that are jointly expressed best describe resting-state dFC (Figs. 4.4b and c).

The estimated FC patterns showed distinct, large-scale network topologies. FC pattern 1 revealed

two groups of co-evolving connections: a first group composed of the primary sensory (auditory, motor

and visual), salience and VS (or dorsal attention network) networks, and a second group of bilateral

executive control networks (ECN) and the DMN. FC pattern 2 showed a topology opposite to the one

of FC pattern 1. We note again that each dFC time series was centered, which means that these FC

patterns reflect excursions around average FC. Thus, FC pattern 2 does not indicate positive correlation

between externally- and internally-oriented networks, but rather reduces the extent of their separation

into distinct groups when added to average FC (and combined with the other FC patterns). FC pattern

3 highlighted a salience-VS-RECN group. A second group of connections in FC pattern 3 showed visual

and language ROIs connected to the DMN.
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

Figure 4.5 – (a) Average dFC of the three subject-driven tasks: subtraction, memory and music. (b) Estimated FC
patterns (K=3), correlation coefficient with average FC of each task, and correlation coefficients of dFC networks
with all 3 FC patterns across time and subjects (coloring as boxes around FC patterns). The x axis is arranged by
task, rather than by subject. (c) Same as b for K=4 (only the two music-related FC patterns are shown as the other
two do not change).

4.1.4 Discussion

We revisited k-means clustering and PCA, two recently proposed approaches to identify reproducible

network configurations from windowed FC, to study the importance of temporal sparsity for the
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Figure 4.6 – FC patterns estimated during resting-state (top) and FC averaged across all windows and subjects
(bottom).

representation and interpretation of dFC. To compare k-means clustering to PCA, we formulated it

as a sparse matrix factorization. For data simulated according to both separated and joint expression

of FC patterns, k-means clustering showed the best recovery of the underlying FC patterns overall.

We then evaluated split-half reproducibility to identify the number of FC patterns from the data, and

the asymmetry of the histogram of the time-dependent weights to assess whether the FC patterns

occurred exclusively or jointly over time. Our results indicate that separated FC patterns are a good

representation of subject-driven task-based dFC, and that a joint expression of FC patterns is better

suited for resting-state dFC.

Subject-driven task-based FC patterns

We first analyzed dFC during three free-streaming, subject-driven cognitive states. Shirer et al. (2012)

previously showed that these states could be distinguished with high accuracy using supervised learning

(i.e., training a classifier on data with known cognitive states) and Gonzalez-Castillo et al. (2013) recently

reported that four different tasks could be identified from dFC alone by clustering windowed FC in

individual subjects. We extend these findings by showing that subject-driven cognitive states can

be successfully identified from dFC of multiple subjects using unsupervised learning. The correct

identification of the three states from multi-subject dFC was greatly improved by first centering each

subject’s dFC time series so that fluctuations reflected deviations around the overall mean (or average

FC). We were further able to identify the model parameters, such as number of FC patterns and their

temporal expression, in a data-driven way. This indicated that task-based dFC was well modelled

using separated FC patterns. The fact that FC fluctuations can be related to changes in subject-driven

cognitive states is highly encouraging.

A fourth FC pattern was also reproducible across independent split-half datasets and this FC pattern

occurred preferentially during the music state. Interestingly, the music state was the most difficult

state to classify in the original study by Shirer et al. (2012; 60% versus > 80% accuracy for the other

states). The occurrence of this FC pattern might suggest that subjects did not continuously perform the

assigned task. The FC pattern itself shows a certain resemblance to the first resting-state FC pattern,
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Chapter 4. Disentangling the temporal composition of dynamic brain networks

with, however, stronger contributions of the DMN and salience network.

Resting-state FC patterns

We next analyzed dFC during unconstrained resting-state and based on our findings we suggest that

a joint expression of multiple FC patterns is a better adapted and more flexible view of dFC than a

succession of k-means centroids.

Based on split-half reproducibility, we estimated three FC patterns that had a rich structure and

showed distinct network configurations. For example, a fragmentation between salience and VS

connections on one hand and DMN connections on the other hand in FC pattern 1. FC pattern 2,

which encodes the opposite contrast, indicates that the separation between these two groups is less

pronounced at other instances in time (average FC was removed before clustering the data so "positive

correlation" in these FC patterns is not the same as in a standard correlation matrix). In FC pattern 3 the

DMN was connected to the visual and language networks, but not the RECN, which was here connected

to the salience and VS networks, suggesting different modes of inter-network interaction. Both Allen

et al. (2014) and Liu & Duyn (2013) also observed correlations and co-activations, respectively, of DMN

and visual regions. The ECN is critical for working memory and appeared grouped both with networks

that scan the environment (salience and VS in pattern 3) and networks that ruminate over recent events

or episodic memories (DMN, pattern 1). This suggests that flexible interactions between the ECN and

externally- and internally- oriented networks are critical for monitoring, maintaining and manipulating

recent information. Previous work has also suggested interactions between the ECN and VS (e.g. LaBar

et al., 1999) and between the ECN and the DMN (e.g. Spreng et al., 2010).

We here observed only three FC patterns that were reproducible across independent data sets.

Different, but generally larger, values have been reported in the literature for related studies. Several

factors – apart from the decomposition approach – are likely to play a role. First, the way K is chosen.

We used reproducibility, while in Leonardi & Van De Ville (2013b) and Allen et al. (2014) the choice of K

was guided by accuracy (or approximation error) instead. Second, the number of included subjects.

For example, Allen et al. (2014) clustered dFC of over 400 subjects into 7 states in initial work, and

into 5 states in a follow-up study presented at OHBM with 23 subjects (Allen et al., 2013). Third, the

parameters of the acquisition (such as the TR and scan duration), the choice of ROIs and the window

length, might all play roles. All studies mentioned above used (different) ROIs to reduce the spatial

dimensionality of the data. As is the case for studies of static FC, different atlases hamper an easy

comparison of results across studies. We hope that future work will help to clarify some of these

issues. Lastly, because the correlation structure is averaged across the full window duration, changes in

network topology that occur on faster time scales are unlikely to be picked up. In exploratory analyses

we shortened the window length to 45s but did not see an indication for a larger number of reproducible

FC patterns. We did not decrease the window length further as the identification of the cognitive states

for the subject-driven task data deteriorated for 30s-long windows (adjusted rand index 0.33 for 30s,

0.63 for 45s, and 0.74 for 60s). Alternative techniques that circumvent sliding-window correlations

might be better able to reveal faster network reorganizations (e.g. Smith et al., 2012; Eavani et al., 2013;

Liu & Duyn, 2013).
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4.1.5 Conclusion

dFC is a promising new measure of brain activity that can be extracted from fMRI data and has the

potential to provide new insights into brain function. In this work, we investigated whether dynamic

functional network configurations were better described as a succession of separated FC states or

rather as a combination of multiple FC patterns. We presented a systematic and data-driven analysis

in terms of split-half reproducibility and distribution of time-dependent weights for simulated and

experimental fMRI data from subject-driven cognitive states and resting-state. These results showed

that a small number of superposed FC patterns provided the best decomposition of resting-state

dFC data. The meaning of decomposing resting-state dFC remains to be further validated and is an

exploratory technique, as also pointed out by Hutchison et al. (2013a). The fact that different cognitive

states could be identified from dFC alone is encouraging but generative and computational models are

needed to understand how dFC emerges and is best analyzed. One promising avenue to improve the

interpretation of dFC is to combine approaches as the ones presented here with concurrent EEG or

other physiological, behavioral or clinical measures (Allen et al., 2013; Chang et al., 2013b; Preti et al.,

2014).
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4.2 Conclusions and outlook

In this chapter we studied how well sparse (i.e., segregated) and non-sparse (i.e., overlapping) decom-

positions characterize the temporal organization of dFC. Our results suggest that k-means clustering

reliably identifies FC patterns, both if they are separately and jointly expressed over time. The fact that

k-means clustering can identify distinct clusters does not imply that they are successively expressed in

time. Rather, by studying the similarity of each windowed FC matrix to all FC patterns, we showed that

they are likely jointly expressed during resting-state. Approximating dFC by a single FC pattern thus

appears too restrictive.

In our simulations, k-SVD performed less well than k-means clustering even though the former

corresponds to a more flexible model. One reason for the poorer performance of k-SVD might be that

the positivity constraint on the weights A is dropped. Unfortunately, we are not aware of any algorithms

that can impose constraints on both the `0-norm and non-negativity. Alternatively, one could replace

the `0 norm with an `1 norm (||a:t ||1 =∑
k |akt |), which is the convexified form of the `0 norm and can

be combined with a positivity constraint: argmin
D,A

||C−DA||2F , s.t . ||a:t ||1 ≤λ, ak,t ≥ 0. In exploratory

analyses (without extensive tuning of the parameter λ), this alternative decomposition did, however,

also not perform better than k-means clustering.

PCA performed well in the simulations of jointly expressed FC patterns, but the interpretation of

the estimated FC patterns is harder than for k-SVD or k-means because of the orthogonality constraint.

Because of this constraint, the FC patterns are axes in a low-dimensional space and 2 FC patterns

sufficed to model 3 underlying (correlated) FC patterns. In resting-state data, where we do not have

a ground truth for either the FC patterns or their temporal expression, they can therefore be hard to

interpret. In the next chapter we explore dFC in task data, where the experimental paradigm together

with the time-dependent weights of each FC pattern can help guide our interpretation.

In the previous chapter we noted that the eigenvalue spectrum of the PCA decayed slowly and

that a large number of FC patterns would be necessary to explain a majority of the variance in the

data. Based on our results and those of Li et al. (2014), we suggested that it might not be necessary to

retain a large portion of the variance to study dFC and to identify relevant differences between different

populations. The subject-specific PCA introduced in Section 3.2 and the task-based dFC studied in this

chapter provide some further insights into the tradeoff between accuracy and reproducibility. First, a

relatively small number of components explained a majority of the variance of single-subject dFC, but

many components were necessary for multi-subject dFC. Second, the out-of-sample approximation

was poor for both task-based and resting-state dFC (> 90% approximation error with 3 FC patterns

during subject-driven tasks and > 94% during rest), but, despite this large approximation error, the

three subject-driven tasks were well discriminated. This suggests that a small number of FC patterns is

common across subjects and carries relevant information, while a large number of FC patterns captures

subject-specific variability and noise. One explanation for this might be the intrinsic variability of

sliding-window correlation analysis (Smith et al., 2012; Handwerker et al., 2012).

When estimating dFC using sliding-window correlation we have to choose a fixed window length.

The length of the window is typically chosen based on a trade-off between the accuracy of the correla-

tion estimate (not too short) and the sensitivity to changes in the network (not too long), and lengths

between 30 and 60 seconds are common. We further discuss the influence of the window length on the

appearance of spurious and real variability of sliding-window correlations in Appendix C.
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Because each dynamic network is estimated from a temporal segment as long as the window,

network reorganizations that occur on a faster time scale than the window duration cannot be detected.

In Chapter 6 we explore an alternative approach to track brain network dynamics that has a better

temporal resolution.

A consequence of the proposed matrix decompositions is that the identified FC patterns have

global extent. This favors a description of global or overall features over one of local features (subsets of

connections). As an alternative, we propose to analyze brain activity using localized FC patterns via a

graph wavelet transform in the next chapter.
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5 From global to local network analysis:

the graph wavelet transform

PCA AND SPARSE MATRIX DECOMPOSITIONS can uncover connectivity patterns that reveal informa-

tion about co-varying connections in the human brain. However, these patterns do not respect the

underlying topology of the network because the correlation matrices are vectorized, and they have

a global support covering all brain regions. In this chapter we propose to address these challenges

by introducing a graph wavelet transform for dynamic brain networks. We extend the graph wavelet

transform proposed by Hammond et al. (2010), which is based on a graph Fourier transform (Chung,

1997). The graph Fourier transform addresses the first challenge in that it respects the underlying graph

topology, but its basis functions continue to be global in support (Figs. ??a-c and f). In analogy to

classical Fourier analysis such a basis is powerful for a global analysis but transient or local features in

the data and structure at multiple scales are not easily revealed. The graph wavelet transform addresses

these challenges through the use of graph-adapted basis functions at multiple scales and locations

(Figs. ??d and g). Again in analogy to classical wavelet analysis, graph wavelets act like a mathematical

microscope and allow an efficient multiscale analysis. Classical wavelet analysis has in the past been

successfully exploited for spatial and temporal analysis of fMRI data (Van De Ville et al., 2004; Bullmore

et al., 2004; Breakspear et al., 2006; Achard et al., 2006).

The graph wavelet transform by Hammond et al. (2010) is defined for a single network only. We

propose to generalize the transform to dynamic networks by identifying network components, which

capture relevant aspects of the changing network architecture. To this aim, we first represent the set of

dynamic networks as a third-order array, or tensor (Kolda & Bader, 2009; Dunlavy et al., 2011). This

representation gives us access to a wealth of methods from multilinear algebra. Then, we apply a

tensor decomposition that generalizes SVD/PCA to higher orders to identify patterns in the underlying

variable graph topology. New networks are finally constructed from these patterns for which we design

graph wavelets.

Graph wavelets are well positioned to reveal local characteristics of the network itself or of data

defined on the network. In the previous chapters we focused on the network structure but in this

chapter we aim to exploit the multiscale property of the graph wavelets to study the co-activation of

brain areas. The key idea here is that if the graph edges are defined from FC, rather than e.g. physical

distance, we can expect neighboring brain areas (with respect to the underlying graph) to be activated

at the same time. Because of the multiscale decomposition, we can analyze co-activations both at a

fine scale, which reveals local co-activations (microscope with large magnification), and at a coarse
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(a)

(b) (c) (d)

(e)

(f )

(g)

Figure 5.1 – (a) A cycle graph with 16 nodes, corresponding to a conventional, discrete grid with periodic boundary
conditions. (b) The Laplacian matrix, a matrix representation of the graph. The diagonal contains (normalized)
degrees of each network node and off-diagonal entries indicate connections between nodes. (c) Eigenvectors of
the Laplacian matrix. These eigenvectors are the basis vectors of the discrete Fourier transform. (d) Two graph
wavelets at multiple scales, centered at nodes 3 and 10. (e) Minnesota road graph and its matrix representations,
the adjacency and Laplacian matrix (2640 nodes; Hammond et al., 2010). (f) The eigenvectors of the Laplacian
matrix are adapted to the irregular topology of the graph. (g) The graph wavelets dilate along the connections of
the network. Left to right from coarse to fine scale, wavelet centered at an arbitrary node.
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(a)

(b)

Figure 5.2 – Brain graph wavelets centered in the left cuneus (a) and left PCC (b) from coarse (left) to fine scales
(right). Each sphere represents a brain region of the AAL atlas and colors indicate the value of the wavelet coefficient.
The 25 strongest connections of the center node are shown at the coarsest scale. Note how the wavelets dilate to
regions, which are part of the same "resting-state network", i.e., to regions of the visual cortex and default mode
network, respectively. The labeled regions in the left hemisphere are: a, lingual gyrus; b, calcarine; c, superior
occipital cortex (OC); d, middle OC; e, inferior OC; f, fusiform gyrus; g, PCC, h; precuneus; i, angular gyrus; j, medial
prefrontal cortex.

scale, which reveals more global co-activations (low magnification). Fig. 5.2 shows how brain graph

wavelets centered in the primary visual cortex and PCC, respectively, are well localized at fine scales,

and dilate to functionally connected regions at coarse scales, that is to other visual regions for the

wavelet centered in the cuneus; and to the angular gyri and medial prefrontal cortex for the wavelet

centered in the PCC. Thus, we expect a basis that is adapted to the brain’s functional wiring to be

sensitive to the co-activation of functionally connected regions.

To explore this idea we analyze fMRI data acquired during alternating epochs of movies and rest,

which robustly reorganizes average functional brain networks (Eryilmaz et al., 2011; Richiardi et al.,

2011). We hypothesized that brain areas will co-activate at coarse scales during the movies condition

when analyzed with graph wavelets defined for the movie network, but not for the resting state network

(because the edges are not between brain areas that co-activate). In other words, we expect a signal that

is smooth with respect to the movie network to not be smooth with respect to the resting-state network,

and vice versa. By constructing graph wavelets adapted to either condition we hope to efficiently

capture changes in the subject’s cognitive states.
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5.1 Journal article

Published in: IEEE Transactions on Signal Processing, 2013; 61(13):3357-3367.

Tight Wavelet Frames on Multislice Graphs

Nora Leonardi,1,2 and Dimitri Van De Ville1,2

1 Medical Image Processing Lab, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland; 2 Medical Image Processing Lab, Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland

We present a framework for the design of wavelet transforms tailored to data defined on multi-

slice graphs (i.e., multiplex or dynamic graphs). Graphs with multiple types of interactions are

ubiquitous in real life, motivating the extension of wavelets to these complex domains. Our frame-

work generalizes the recently proposed spectral graph wavelet transform (SGWT) (Hammond et al.,

2010), which is designed in the spectral (frequency) domain of an arbitrary finite weighted graph.

We extend the SGWT to form a tight frame, which conserves energy in the wavelet domain, and de-

fine the relationship between conventional and spectral graph wavelets. We then propose a design

for multislice graphs that is based on the higher-order singular value decomposition (HOSVD), a

powerful tool from multilinear algebra. In particular, the multiple adjacency matrices are stacked

to form a tensor and the HOSVD decomposition provides information about its third-order struc-

ture, analogous to that provided by matrix factorizations. We obtain a set of “eigennetworks” and

from these graph wavelets, which exploit the variability across the graphs. We demonstrate the

feasibility of our method (1) by capturing different orientations of a gray-scale image and (2) by de-

composing brain signals from functional magnetic resonance imaging. We show its effectiveness

to identify variability across graph edges and provide meaningful decompositions.

5.1.1 Introduction

Brain networks, human society or the internet are only some examples of systems that can be modelled

as networks. Even though many networks have multiple types of interactions or interactions that

change over time, emphasis has traditionally been put on the study of simple or static networks. Recent

work has however illustrated the advantages of exploiting the rich information of multislice networks:

dynamic changes in modular organization of the human brain during learning are linked to the mastery

of a novel skill (Mucha et al., 2010; Bassett et al., 2011); the multiple types of relations in human society

help to understand the different roles humans play in different networks (Szell et al., 2010); broad

degree distributions enhance the vulnerability to failure of interdependent networks, in contrast to

simple networks (Buldyrev et al., 2010); and community detection in datasets with multiple types of

similarities can be improved (Dong et al., 2012).

Often, we want to study a signal on the network, not only the network itself. Wavelets are powerful

tools in signal processing since they can localize signal contents in both space and frequency, and

provide compact and multiscale representations of piecewise smooth signals. However, they are

designed for signals defined on regular Euclidean spaces. Since real signals are often defined on
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irregular domains multiple extensions to signals defined on graphs and manifolds have recently been

proposed (Jansen et al., 2009; Ram et al., 2011; Hammond et al., 2010; Coifman & Maggioni, 2006;

Narang & Ortega, 2012). (We will use the terms network and graph interchangeably in this article.)

These proposals can be split into spatial and spectral (frequency) designs. The former group includes

Jansen et al. (2009) who based their method on lifting schemes, and Ram et al. (2011) who constructed

wavelets for hierarchical trees. Hammond et al. (2010), Coifman & Maggioni (2006) and Narang &

Ortega (2012) used spectral graph theory to construct spectral graph wavelets, “diffusion wavelets",

and two-channel filter-banks for bipartite graphs, respectively. Importantly, graph wavelet transforms

are adapted to the topology of the graph. Our proposed framework generalizes the spectral graph

wavelet transform (SGWT) introduced in Hammond et al. (2010): a redundant wavelet transform for

arbitrary weighted graphs that is based on the eigenspace of the graph Laplacian matrix and that can

be efficiently applied to graphs with a large number of nodes by expressing the wavelets as iterates of

the graph Laplacian operator.

Motivated by the promising results from multislice networks and the power of wavelets to analyze

non-stationary signals, we sought to extend wavelets to multislice graphs. We expect multislice graph

wavelets, which can adapt to the variable underlying graph topology, to be better suited to analyze

signals defined on multislice graphs than “single slice" graph wavelets, constructed either separately

for each slice or after simply averaging across them as is commonly done.

Our contributions in this paper are (1) to introduce a tight frame design for the SGWT, which

is desirable because it preserves energy in the transformed domain and is self-reversible, which

leads to a more efficient reconstruction scheme than in Hammond et al. (2010), (2) to make the

connection between conventional and spectral graph wavelets explicit, and (3) to generalize the

SGWT to multislice graphs. A multislice network, which consists of a set of networks, can be naturally

represented with tensors (multi-way arrays). To reveal “hidden" structure in the variable graph topology,

we propose to use tensor decompositions. Tensor decompositions are higher-order analogues of

matrix factorizations, which are powerful tools, for, e.g. feature selection, but which are limited to

two-dimensional data. To study data with three or more dimensions, tensor decompositions have

been used in a wide variety of applications, such as chemometrics (Bro, 1997), psychoactivemetrics

(Appellof & Davidson, 1981), face recognition (Vasilescu & Terzopoulos, 2002) and neuroscience (for

a review see Kolda & Bader (2009)). The two most commonly used decompositions are the higher

order singular value decomposition (HOSVD) and CANDECOMP/PARAFAC (CP), both of which are

often considered as higher-order generalizations of the matrix singular value decomposition (SVD)

and principal component analysis (PCA; Tucker, 1966; De Lathauwer et al., 2000a; Carroll & Chang,

1970; Harshman, 1970). Each decomposition extends a different property of the SVD: The HOSVD

decomposes a third-order tensor into three orthonormal subspaces associated with the different

dimensions of a tensor, and CP decomposes it into a linear combination of rank-1 terms. We propose

to use the HOSVD to learn “eigennetworks" from which we obtain novel networks by combining them

in different ways. These networks and the resulting graph wavelets capitalize on the variability across a

collection of networks.

In related work, Dong et al. (2012) introduced spectral clustering methods for multislice networks.

The authors suggested that their methods may also be used to generalize other methods that are based

on the eigenspace of the Laplacian matrix, but no applications other than clustering were shown. Their

method differs from ours in that they derive one joint eigenspace for the multislice graph, whereas we

derive multiple eigenspaces that capture the variability across the slices. We are not aware of any other
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Chapter 5. From global to local network analysis: the graph wavelet transform

proposals to generalize wavelets to multislice graphs.

We apply the proposed method to different types of regular grid graphs and functional magnetic

resonance imaging (fMRI) data to demonstrate that it can be a useful tool for analyzing signals defined

on arbitrary weighted graphs with multiple types of interactions.

The paper is organized as follows. In Section 5.1.2, we briefly review the SGWT on which our frame-

work is based. In Section 5.1.3 we introduce the construction of tight graph wavelet frames, rational

dilation factors and the relationship between conventional and spectral graph wavelets. In Section

5.1.4, we propose a framework to design wavelets on multislice graphs and we present experimental

results in Section 5.1.5.

Notations

Scalars are denoted by lowercase letters (e.g., a), vectors by boldface lowercase letters (e.g., a), matrices

by boldface capital letters (e.g., A), and tensors by Euler script letters (e.g., A).

The order of a tensor is its number of dimensions, also known as modes. For third-order tensors,

slices are two-dimensional subarrays obtained by fixing one index: Ai ::, A: j : and A::k for a horizontal,

vertical and frontal slice, respectively.

The multiplication of a tensor with a matrix in mode n is denoted by A×n B. For a third-order

tensor A ∈ RI×J×K , its mode-1 product with the matrix B ∈ RM×I is a tensor of size (M × J ×K ) with

entries

(A×1 B)m j k =
I∑

i=1
ai j k bmi . (5.1)

Using the n-mode product notation, the matrix product G = U ·F ·VT can be rewritten as G =
F×1 U×2 V.

A tensor can be converted to a matrix by unfolding it along any mode. The mode-1 matricization

or unfolding of a third-order tensor A is the I × JK matrix A(1) with entries (A(1))i m = li j k where

m = ( j −1)K +k, i.e., A(1) is a reordered concatenation of the frontal slices of the tensor.

5.1.2 Review of spectral graph wavelets

We start with a short overview of the construction of the SGWT and refer to (Hammond et al., 2010) for

details and proofs.

Classical one-dimensional wavelets

To solve the problem of how to define shifting and scaling of wavelets on irregular domains, Hammond

et al. appealed to the Fourier domain. The one-dimensional continuous wavelet ψs,a(x) = 1
sψ( x−a

s ), at

scale s and location a, can be defined in the Fourier domain as

ψs,a(x) = 1

2π

∫ ∞

−∞
ψ̂(sω)e− jωae jωx dω. (5.2)

For ease of understanding of the SGWT design that will follow, we highlight several properties of

Eq. (5.2):
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• the wavelet is represented on complex exponentials, which are eigenfunctions of the one-

dimensional Laplacian operator; i.e., d 2

d x2 e jωx =−ω2e jωx ;

• shifting the wavelet to location a corresponds to a multiplication by e− jωa ;

• the wavelet can be interpreted as scaled bandpass filter and scaling ψ by 1/s corresponds to

scaling ψ̂ with s.

Shifting and scaling of the classical wavelet can thus be defined in the Fourier domain. To generalize

wavelets to graph, we will need the analogue of the Fourier domain for graphs.

Weighted graphs

Let G = (V ,E ,W ) be an undirected graph consisting of |V | = N nodes that are connected by the set of

edges E with nonnegative weights W . The N ×N adjacency matrix A for a graph without loops is then

given by the non-diagonal entries

ai j =
w(i , j ), if (i , j ) ∈ E ,

0, otherwise.
(5.3)

The diagonal degree matrix D is given by di i = ∑
j ai j and the Laplacian matrix L by L = D−A. The

normalized version of the Laplacian matrix L is defined as L̃ = D− 1
2 LD− 1

2 .

The eigenspaces of the Laplacian matrices form the graph analogue of the Fourier domain. L

and L̃ are symmetric, positive semi-definite matrices and can thus be decomposed into non-negative

eigenvalues and eigenvectors. For L the decomposition is given by

L = XΛXT , (5.4)

where X = [χ1|χ2|...|χN ] is an orthonormal matrix containing N eigenvectors andΛ is a diagonal matrix

whose entries equal the associated eigenvalues λ1 = 0 ≤λ1 ≤ ... ≤λN (Chung, 1997). For L̃, λ` ∈ [0,2]

with `= 1,2, ...N , and the eigenvectors are different from those of L (except if L̃ = L, of course).

Spectral graph wavelets

In analogy to the classical wavelet of 5.1.2, we can now define the spectral graph wavelet ψt ,n(m), at

scale t and node n, in the eigenspace of the graph Laplacian matrix L or L̃:

ψt ,n(m) =
N−1∑
`=0

g (tλ`)χ∗`(n)χ`(m), (5.5)

where g is the wavelet generating function defined in the spectral graph domain. We now compare

Eq. (5.2) and Eq. (5.5):

• the wavelet is represented on the eigenvectors χ`(m) of the Laplacian matrix, replacing e iωx ;

• shifting the wavelet to node n corresponds to a multiplication by χ∗
`

(n), replacing e−iωa ;

• g behaves as a scaled bandpass filter, replacing ψ̂;

• the role of the frequency ω is played by the eigenvalue λ`.
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Chapter 5. From global to local network analysis: the graph wavelet transform

Note that in practice the continuous scaling parameter t will be sampled to a finite number of scales;

i.e., we have {t j }J
j=1 for J scales.

We also need to define the scaling function φn(m) to capture the residual “low-pass” components:

φn(m) =
N−1∑
l=0

h(t Jλ`)χ∗`(n)χ`(m), (5.6)

where h is the scaling function generator. An example of exact specification of g (·) and h(·) was given

in Hammond et al. (2010).

As in the one-dimensional setting, the wavelet and scaling coefficients are given by the inner

product of the graph signal f with the wavelets ψt ,n and the scaling function φn , respectively:

W f (t ,n) = 〈ψt ,n , f 〉 =
N∑

m=1
ψ∗

t ,n(m) f (m), (5.7)

S f (n) = 〈φn , f 〉 =
N∑

m=1
φ∗

n(m) f (m). (5.8)

Because it is infeasible to explicitly compute the eigenspace of the Laplacian matrix for large graphs,

the authors proposed a fast method to compute the forward transform. The method is based on

approximating the kernels g and h with a low-dimensional Chebyshev polynomial:

g (t j x) = 1

2
c j ,0 +

M j∑
k=1

c j ,k T k
a (x), (5.9)

where c j ,k denotes the Chebyshev coefficients, M j the order of the polynomial approximation, and

T k
a (x) the shifted Chebyshev polynomials T k

a (x) = T k ( x−a
a ) of order k. The fast approximate spectral

graph wavelet forward transform is given by

W̃ f (t j ,n) = 1

2
c j ,0 f +

M j∑
k=1

c j ,k T k
a (L) f , (5.10)

S̃ f (t j ,n) = 1

2
c0,0 f +

M0∑
k=1

c0,k T k
a (L) f . (5.11)

To recover a graph signal f from a given set of wavelet coefficients c = W̃ f , where c includes

the wavelet and scaling coefficients W̃ f and S̃ f , and W̃ : RN → RN (J+1) represents the approximate

SGWT, we use a left-inverse M s.t. MW f = f . Since the SGWT is a redundant transform, there is an

infinite number of possible inverses. Hammond et al. (2010) chose to use the pseudoinverse that

solves (W̃ ∗W̃ ) f = W̃ ∗c, where W̃ ∗ is the adjoint operator. For large graphs, the pseudoinverse can be

calculated by an iterative conjugate gradient method.

66



Jo
u

rn
al

article
Jo

u
rn

al
article

Jo
u

rn
al

article

5.1. Journal article

5.1.3 Tight frame graph wavelets

Tight frame design

Hammond et al. (2010) highlighted the need to optimize the design of the wavelet generating function

g (·) and scaling function h(·) for specific applications. Here, we are interested in constructions that

lead to tight (or Parseval) wavelet frames because of their important property of energy conservation

between the original and transformed domain and the easy signal reconstruction (Benedetto & Fickus,

2003).

Definition 1 A family of wavelets {ψt ,n}t∈J ,n∈N forms a frame of `2(V ), if there exist frame bounds

A,B > 0 such that

∀ f ∈ `2(V ), A|| f ||2 ≤∑
t

∑
n
|〈 f ,ψt ,n

〉 |2 ≤ B || f ||2. (5.12)

If A = B = 1, the family {ψt ,n} forms a Parseval frame and preserves energy:

∀ f ∈ `2(V ), || f ||2 =∑
t

∑
n
|〈 f ,ψt ,n

〉 |2. (5.13)

A Parseval frame is the normalized version of a tight frame (A = B). Notably, Parseval frames have a

simple reconstruction formula where the analysis functions are used at the synthesis side:

∀ f ∈ `2(V ), f =∑
t

∑
n
〈 f ,ψt ,n〉ψt ,n (5.14)

Thus, the fast approximate SGWT can be used for both the analysis and synthesis steps, avoiding

the iterative computation of the pseudoinverse. Note that the proposed analysis/synthesis scheme

uses an approximation for both steps, whereas the pseudoinverse proposed in Hammond et al. (2010)

compensates for approximation errors made in the analysis step. Therefore, the polynomial order M j

needs to be chosen high enough in the former case to ensure perfect reconstruction.

We propose to generate Parseval graph wavelet frames by designing the wavelet generating kernel g

and scaling function h in the spectral graph domain in analogy to classical definitions in the Fourier

frequency domain (Table 5.1, Fig. 5.3b). The J dyadic spatial scales are defined as t j = a
λmax

2 j for

j = 1, . . . , J and the factor a
λmax

is chosen to ensure full spectral coverage of the kernels.

All of these constructions are bandlimited functions, and the union of the functions |g (t jλ)|2 and

|h(t jλ)|2 forms a partition of unity:
∑J

j=1 |g (t jλ)|2 +|h(t Jλ)|2 = 1.

Rational dilation factors

The eigenvalues λ` can be unevenly distributed depending on the nature of the graph (see Fig. 5.3a for

an example). For increased flexibility in defining the wavelet subbands, we also provide rational frame

designs. Extensions to the rational case of Meyer and Shannon constructions for classical wavelets

were originally proposed by Auscher (1992) and have further been generalized by Baussard et al. (2004).

The rational wavelet generating kernel g (·) and scaling function h(·) with rational dilation factor
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Figure 5.3 – (a) Eigenvalues of the Swiss Roll graph from Hammond et al. (2010) with N = 50 nodes, and σ= 0.3.
Scaling function h, wavelet generating kernels g , and sum of squares (dotted line) of a Meyer-like rational wavelet
frame with M = 2 (b), 3

2 (c) and 4
3 (d) and ε= (1+M)−1.

(a)
(b) (c)

Figure 5.4 – (a) Schematic of a cycle graph that corresponds to an equispaced sampling grid of a one-dimensional
signal; (b) the spectral graph wavelet for the Meyer generating window g (λ`) does not equal the Meyer wavelet, (c)
but it does for the generating window g (ω(λ`)) with ω= arccos(1−λ`/2).

M = q+1
q , q ∈Z are defined as follows for a Meyer-like wavelet frame:

g (λ) =


sin

(
π
2ν

(
q

(
λ
a −1

)))
∀λ ∈]a, M a]

cos
(
π
2ν

(
q

(
λ

M a −1
)))

∀λ ∈]M a, M 2a]

0 elsewhere

(5.15)

h(λ) =


1 ∀λ ∈ [0, a]

cos
(
π
2ν

(
q

(
λ
a −1

)))
∀λ ∈]a, M a]

0 elsewhere

(5.16)

where a = (q −ε)b, ε=]0, (1+M)−1] and a,b ∈R+. Clearly, the classical dyadic dilation corresponds to

M = 2. The J wavelet scales are defined as t j = a
λmax

M j for j = 1, . . . , J . Figs. c and (d) show the spectra

of two Meyer-like rational wavelets.

Conventional and spectral graph wavelets

As stated in 5.1.2, the eigenvalues λ` of the graph Laplacian play the role of frequencies ω. However,

the exact relation between spectral and conventional Fourier frequencies was not further deepened
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Table 5.1 – Specification of wavelet and scaling generating functions that lead to Parseval wavelet frames (a ∈R+)

Wavelet type Spectral frequency response

Meyer (Meyer, 1986) g (λ) =


sin

(
π
2ν

(
λ
a −1

))
∀λ ∈]a,2a]

cos
(
π
2ν

(
λ

2a −1
))

∀λ ∈]2a,4a]

0 elsewhere

h(λ) =


1 ∀λ ∈ [0, a]

cos
(
π
2ν

(
λ
a −1

))
∀λ ∈]a,2a]

0 elsewhere

ν(x) = x4(35−84x +70x2 −20x3)

Simoncelli (Portilla & Simoncelli, 2000) g (λ) =
{

cos
(
π
2 log2

(
λ

2a

))
∀λ ∈]a,4a]

0 elsewhere

h(λ) =


1 ∀λ ∈ [0, a]

cos
(
π
2 log2

(
λ
a

))
∀λ ∈]a,2a]

0 elsewhere

Shannon g (λ) =
{

1 ∀λ ∈]a,2a]

0 elsewhere

h(λ) =
{

1 ∀λ ∈ [0, a]

0 elsewhere

Papadakis (Romero et al., 2009) g (λ) =



√
1+sin

(
3πλ
2a

)
2 ∀λ ∈]a, 5

3 a]

1 ∀λ ∈] 5
3 a,2a]√

1−sin
(

3πλ
4a

)
2 ∀λ ∈]2a, 10

3 a]

0 elsewhere

h(λ) =


1 ∀λ ∈ [0, a]√

1−sin
(

3πλ
2a

)
2 ∀λ ∈]a, 5

3 a]

0 elsewhere

Held (Held et al., 2010) g (λ) =


cos

(
2πµ

(
λ

8a

))
∀λ ∈]a,2a]

sin
(
2πµ

(
λ

16a

))
∀λ ∈]2a,4a]

0 elsewhere

h(λ) =


1 ∀λ ∈ [0, a]

sin
(
2πµ

(
λ

8a

))
∀λ ∈]a,2a]

0 elsewhere

µ(x) =−1+24x −144x2 +256x3

in Hammond et al. (2010). Here, we want to find this relation. As we have introduced wavelet generating

functions from previously proposed wavelet bases, we want to define the mapping w :λ`→ω` that

leads to the classical Meyer wavelet when using the Meyer generating function and a Cartesian grid. We

use a cycle graph because it corresponds to an equispaced sampling grid of a one-dimensional signal

with periodic boundary conditions, and the eigenvectors of its Laplacian matrix are the basis vectors of

the discrete Fourier transform (Fig. 5.4a; Strang, 1999). Without any mapping w , the spectral graph
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wavelet does not yield the classical Meyer wavelet (Fig. 5.4b). Intuitively, one would expect a mapping

λ` = ω2
`

since the Laplacian corresponds to a second-order derivative operator ( d 2e jωx

d x2 = −ω2e jωx ),

but the relation is slightly more subtle. To understand it, we consider the eigenvalues of the cycle

graph (Chung, 1997):

λ` = 2(1−cos(2π`/N )) ∈ [0,4] (5.17)

with `= 0,1, ..., N −1; N the number of nodes, 2 the degree of the nodes and 2π`/N =ω` the conven-

tional Fourier frequency. Inversion of Eq. (5.17) leads to the mapping w :λ`→ω`

ω` = arccos(1−λ`/2) ∈ [0,π], (5.18)

which we incorporate in the wavelet generating function as g (w(·)). This mapping linearizes the

eigenvalues and the spectral graph wavelet yields the classical Meyer wavelet (Fig. 5.4(c)). Note that the

behavior of arccos around the origin is quadratic, as expected, but that the eigenvalues at the upper

part of the Laplacian spectrum are saturated.

Because the spectrum of any graph Laplacian matrix L or L̃ is contained in [0,2dmax], we will

incorporate the mapping

ω` = arccos(1−λ`/dmax) (5.19)

in the wavelet generating function g and scaling function generator h.

Interestingly, the same relation between spectral and conventional Fourier frequencies has been

reported when considering the wave equation on graphs. For the interested reader, we further discuss

this result in the appendix.

5.1.4 Wavelets on multislice graphs

We propose to construct wavelets on multislice graphs by first estimating eigennetworks of a mul-

tislice graph, which capture the variability across slices (5.1.4), and then, within this eigennetwork

construction, apply the SGWT (5.1.4).

Eigenspace of multislice gaphs

Dynamic networks or networks connected by different types of edges can be represented by a multislice

network, where each slice corresponds to one time point or type of interaction (Fig. 5.5). A multislice

graph with N nodes and K different types of edges is described by a third-order adjacency tensor

A ∈ RN×N×K with the individual adjacency matrices Ak ∈ RN×N as its frontal slices: A::k = Ak , for

k = 1, ...,K .

Here, we use tools from multilinear algebra, the HOSVD in particular, to extract orthonormal

subspaces from the adjacency tensor, from which “novel" graphs can be constructed that capture the

variability across the edge measures.

Proposition 1 The HOSVD of a tensor A ∈ RN×N×K with symmetric frontal slices (Ak = AT
k for all k =
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AK 

A1

= U U

N × N N × N

K × K
V

N × N × K N × N × K 

1

K

.

.

.

= S’1S’::1 + S’1S’::K+. . .

v:1 v:K

A’1L’1

N × N × K 

Figure 5.5 – An adjacency tensor A is constructed from a stack of K adjacency matrices Ak . The HOSVD decom-
poses A into a core tensor S with symmetric frontal slices and orthonormal matrices U and V. The decomposition
can also be interpreted as a weighted sum of eigennetworks S′::k = US::k UT . New adjacency matrices A′

m are built
from linear combinations of the eigennetworks, which each reflect different properties of the underlying network.
The adjacency matrices are then converted to Laplacian matrices L′

m to apply the SGWT.

1, ...,K ) yields the decomposition

A= S×1 U×2 U×3 V (5.20)

where S ∈RN×N×K is called the core tensor and U ∈RN×N and V ∈RK×K are orthonormal mode matrices

(Fig. 5.5). The 1-mode singular values are defined by σ(1)
i =p〈S1::,S1::〉 for i = 1, .., N , and are ordered

σ(1)
1 ≥σ(1)

2 ≥ ... ≥σ(1)
N . The singular values for the other two modes are analogous.

The core tensor S governs the interactions between the factors represented in the mode matrices;

i.e., between the nodes and various edge measures, and the mode matrix U spans a joint subspace of

all adjacency matrices.

Definition 2 The core tensor S can be transformed into an “eigennetwork" tensor S′ by the joint subspace

U:

S′ = S×1 U×2 U (5.21)

with S′ ∈RN×N×K . The individual eigennetworks S′
::k are given by

S′
::k = S::k ×1 U×2 U = US::k UT (5.22)

with k = 1, ...,K and using the slice-wise representation of Harshman & Hong (2002). The eigennetworks

are orthogonal in the sense of the scalar product 〈S′
::i ,S′

:: j 〉 = 0, for i 6= j , and symmetric since S shares

the symmetry of A (De Lathauwer et al., 2000a): S′
::k

T = (
US::k UT

)T = US::k
T UT = US::k UT = S′

::k .

The first eigennetwork S′
::1 is the average over all networks and the additional K −1 eigennetworks

S′
::k capture the variability across them. The idea of extracting eigennetworks from a tensor using
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Chapter 5. From global to local network analysis: the graph wavelet transform

HOSVD is similar to work from Vasilescu & Terzopoulos (2002) who proposed “TensorFaces", a facial

image recognition technique.

The adjacency tensor A= S′×3 V can now also be interpreted as a weighted sum of eigennetworks,

as illustrated in Fig. 5.5 (Eldén, 2007):

A::k =
T∑
t

vkt S′
::t . (5.23)

For a graph with a large number of nodes N , it is infeasible to compute the eigennetworks S′
::k .

However, noting that S′ =A×3 VT , since (S′×3 V)×3 VT = S′×3 (VVT ) = S′ (De Lathauwer et al., 2000a),

we can efficiently compute them in an indirect way if K << N :

S′
::k =

T∑
t

vtk A::t , (5.24)

which is a weighted sum of the frontal slices of A. V can be directly computed as the left singular matrix

of the mode-3 matrix unfolding of A: A(3) = VΣWT . For large graphs it is more efficient to compute V by

decomposing A(3)AT
(3) = VΣ2V

T
.

Graph wavelet design

In many real-world cases, most of the variability in the edge measures can be reasonably assumed to be

captured by the first few eigennetworks with the largest singular values. We can thus learn a multilinear

subspace of our original adjacency tensor by keeping only the eigennetworks with the largest singular

values. Note that the tensor Â obtained by discarding the smallest 3-mode singular values is in general

not the optimal rank-N , N ,κ (κ < K ) approximation of a tensor A, because in HOSVD the mode

matrices are optimized for each mode separately, neglecting interactions among them. However, the

truncated HOSVD is a good approximation with the error bounded by ||A− Â||2 ≤∑K
i=κ+1(σ(3)

i )2 and is

much faster than the otherwise required iterative algorithm (De Lathauwer et al., 2000b).

We propose to design adjacency matrices A′
m , m = 1, ..., M , that capture different properties of the

underlying networks by combining the eigennetworks:

A′
m =

κ∑
k=1

α(m)
k S′

::k s.t. A′
m ≥ 0 (5.25)

whereα(m)
k ∈R. The SGWT is only defined for graphs with nonnegative weights and the set ofα(m)

k must

therefore be chosen such that A′
m ≥ 0. Since S′

::1 is the average graph, or “backbone" of the multislice

graph, and only all-postiive or all-negative eigennetwork, α(m)
1 must be 6= 0.

The weightsα(m)
k can also be obtained by a constrained least-squares fitting problem, which exploits

the weights in V associated with each eigennetwork k:

min
α(m)

k

∥∥∥∥∥ κ∑
k=1

α(m)
k v:k −g

∥∥∥∥∥
2

s.t. A′
m ≥ 0 (5.26)

where g is a pre-defined variation between the slices of the network that we like A′
m to capture. This

strategy will not be further explored here.
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5.1. Journal article

(a) (b) (c) (d)

Figure 5.6 – Neighborhoods of 4 different grid graphs. Dashed lines indicate edge weights that were penalized by
a factor 1/2 so as to enhance one direction: (a) horizontal, (b) vertical, (c) diagonal top left to bottom right, (d)
diagonal bottom left to top right.

After calculating L′
m , we can then use the SGWT or its approximation for large graphs to construct

wavelets.

5.1.5 Experimental results and discussion

Graph wavelets on multiplex graphs

An image can be interpreted as a grid graph where each pixel is a node that can be connected to

neighboring pixels/nodes according to chosen properties. To illustrate the potential of our design

to extract meaningful information from multislice graphs, we constructed a tensor from 4 different

grid graphs. Each node was connected to at most 6 neighbors along different directions; i.e., two

neighboring nodes were disconnected if their intensity values in the image differed by more than

40. The image was pre-smoothed prior to estimating the adjacency matrix to better approximate the

gradient operator (Gaussian kernel, σ= 1; Di Zenzo, 1986). The slices of the adjacency tensor A were

ordered as shown in Fig. 5.6.

We obtained 4 eigennetworks and associated weights V from the HOSVD of A. The columns of V

capture the variability across mode 3 of A (i.e., the direction of the edges):
−0.47 0.73 0 0.50

−0.49 −0.69 0 0.54

−0.52 −0.01 0.71 −0.47

−0.52 −0.01 −0.71 −0.49


with associated singular values σ(3)

1 = 97,σ(3)
2 = 48,σ(3)

3 = 31,σ(3)
4 = 18. We observe that the first column

is the average of all slices, the second one contrasts the horizontal and vertical edges (large values in

row 1 and 2), the third one the diagonal ones, and the last one rectangular and diagonal ones.

In Fig. 5.7 we show 5 “directional" graph wavelets that were implemented by combining the eigennet-

works in different ways. Whereas wavelets constructed using the average graph diffuse homogeneously

(i.e. there is no directional information, Fig. 5.7b), they diffuse preferentially along a certain direction

when the average graph is combined with one of the other 3 eigennetworks, making them sensitive to

different types of orientations in an image (Figs. 5.7c-f). Since neighboring nodes were only connected

if their intensity values were sufficiently close, the wavelets diffuse along underlying boundaries, such

as the coat.

Fig. 5.8 shows two graph wavelet decompositions of the cameraman image of size 128×128, where

the SGWT was built from “horizontal" A′
2 and “vertical" A′

3 (wavelets shown in Figs. 5.7c and d). The

energy of the wavelet coefficients is high for different types of features of the image: At the finest scale,
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Chapter 5. From global to local network analysis: the graph wavelet transform

(a) (b) (c) (d) (e) (f )

Figure 5.7 – Graph wavelets constructed from various combinations of eigennetworks diffuse along different
directions: (a) location of the wavelet on the smoothed cameraman image, (b) A′

1 =−S′::1: isotropic for the average
graph, (c) A′

2 =−0.5S′::1 +0.7S′::2: horizontal, (d) A′
3 =−0.5S′::1 −0.7S′::2: vertical, (e) A′

4 =−0.5S′::1 +0.8S′::3:
diagonal, (f) A′

5 =−0.5S′::1−0.8S′::3: diagonal. The first frontal slice S′::1 was multiplied by −0.5 = 1/
∑

i vi 1, which
turns it into the average graph. Wavelets are shown at a coarse scale.

(a)

(b)

Figure 5.8 – Wavelet coefficients of the cameraman image (128×128 pixels), where the graph wavelet transforms
were built from (a) A′

2, (b) A′
3. J = 4 scales, Simoncelli-like design, and scaling and coarse to fine scale wavelet

coefficients from left to right.

which detects edges not expected by the underlying graph topology, the energy for the “horizontal"

transform is high around vertical edges, such as the tripod, and for the “vertical" transform around

horizontal edges, such as the camera.

For a graph corresponding to a Cartesian grid and when using the mapping introduced in 5.1.3,

we know that the spectral graph wavelets are equivalent to classical wavelets. The advantage of using

graph wavelets, however, is that they are not restricted to Cartesian grids. Weighted graphs provide

a flexible model to describe irregular data domains and the wavelets can thus be adapted to many

different applications. Here, we have used this flexibility to incorporate knowledge about directionality

and underlying boundaries. With the proposed approach for multislice graphs, we also not only have

access to an average graph (S′
::1), which corresponds to the common way of handling multislice graphs,

but several eigennetworks that capture the variability across the direction of the edges.

Graph wavelets on dynamic graphs

Cognitive function and dynamic adaptation emerge through the integrated activity of many brain

regions. Using functional magnetic resonance imaging (fMRI), functionally connected brain regions
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5.1. Journal article

(a) (b)

(c) (d)

Figure 5.9 – fMRI analysis pipeline: (a) raw fMRI data; (b) parcellation of the brain into regions (network nodes),
and estimation of their regional spatially-averaged activity; (c) to estimate changes in network architecture over
time, we computed the temporal correlation between the regional activity, averaged across subjects, of all pairs of
regions using a sliding window approach (weighted network edges); (d) and obtained K = 125 functional brain
networks.

are identified as those exhibiting temporal dependence in their activity patterns. Studies representing

the brain as a static, functionally connected network have already led to unique insights into the

organization of the brain, but understanding how the architecture of the brain varies with cognitive

function or across subjects is a crucial frontier (Sporns, 2010; Bassett & Gazzaniga, 2011). Chang &

Glover (2010) were among the first to highlight that functional connectivity is not stationary throughout

an fMRI scanning session (with a focus on one brain region), and Bassett et al. (2011) recently studied

dynamic reconfigurations in the modular organization of brain networks during learning.

We explored the potential of our proposed framework to capture dynamic changes of the human

brain network in a previously studied dataset (Eryilmaz et al., 2011; Richiardi et al., 2011). It was shown

that average functional connectivity differs between a “resting" and “movie watching" cognitive state

and enough so that a subject’s cognitive state could be predicted using a classifier algorithm (Richiardi

et al., 2011).

The fMRI data was acquired from 15 healthy subjects during a simple block design, which consisted

of alternating cycles of watching a short movie excerpt (40-60 sec), followed by a period where subjects

were instructed to rest with eyes closed and let their mind freely wander (90 sec) and ending with a

beep sound that instructed the subject to answer a short question about the content of their thoughts

(Eryilmaz et al., 2011).1 The fMRI data was realigned using SPM8 and parcellated into N = 90 regions

corresponding to the Automated Anatomic Labeling atlas (Fig. 5.9; Tzourio-Mazoyer et al., 2002). Two

regions were excluded because of signal dropout, leaving 88 regions. We estimated regional mean

activity by averaging voxel time series in each brain region, and averaged across all subjects. We

1Data was acquired on a Siemens 3T Trio TIM in two scanning runs, TR/TE/FA = 1.1 s/27 ms/90◦, matrix = 64×64, voxel size =
3.75×3.75×4.2 mm3, 21 contiguous transverse slices, 1.05 mm gap, 2598 volumes.
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Chapter 5. From global to local network analysis: the graph wavelet transform
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Figure 5.10 – Eigennetworks S′::k for k = 1, ...,4,100. The top plots show the corresponding column v:k overlaid
on the stimulus paradigm (gray-shaded areas indicate the movie condition). The eigennetworks show the edge
weights between 88 brain regions, ordered by lobe (frontal, limbic, occipital, parietal, subcortical, temporal) and
with homologous regions adjacent to each other (e.g., left precentral cortex followed by right precentral cortex).
The colorbars are symmetric around zero, i.e. red colors indicate positive edge weights, blue colors negative ones.

(a) (b) (c) (d) (e)

(f ) (g) (h) (i) (j)

Figure 5.11 – (a) Adjacency matrix of the 88 × 88 brain graph built from the first and second eigennetwork,
A′

1 = −0.1S′::1 + 0.2S′::2; (b) visualization of the graph in brain space, with nodes colored according to their
anatomical location (light blue = frontal lobe, dark blue = limbic, red = occipital, yellow = parietal, orange =
subcortical, green = temporal); (c-e) the energy of scaling and wavelet coefficients from coarse to fine scale, J = 2
scales and a Simoncelli-like design; (f) adjacency matrix of the graph built from A′

2 =−0.1S′::1 −0.3S′::2; (g-j) as
(b-e) and −0.1 = 1/

∑
i vi 1.

constructed dynamic whole-brain functional networks by estimating temporal correlations between all

pairs of brain regions using a sliding window approach with a window length of 30 scans. The absolute

values of the correlation measures for each pair of regions were used as edge weights to construct

K = 125 weighted graphs.

In this example, mode 3 captures the variability of the edges across time and the eigennetworks

hence contain information on network dynamics. Fig. 5.10 shows eigennetworks S′
::k for k = 1, ..,4,100

and their associated weights v:k . We observe well-known functional clusters in the average brain

network S′
::1 (Fig. a), such as the interconnected visual and auditory processing systems (nodes 43−56

and 79−86), the frontal attention network (nodes 7,8,29−34), somato-motor cortex network (nodes
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Figure 5.12 – Difference of the energy of the wavelet coefficients of the fMRI data decomposed with the SGWTs
built from A′

1 (resting condition) and A′
2 (transitions of movie condition), J = 2 scales and a Simoncelli-like frame

design. Difference of the energy for the scaling (red), and finest scale (blue dashed), where a positive value indicates
a higher energy in the “resting" SGWT. A moving average with equal window length as for calculating the dynamic
connectivity (i.e., 30) was applied, and gray-shaded areas indicate the movie condition.

1,2,19,20,57,58) and language-related areas (nodes 11−14).

The other eigennetworks represent directions of variation from the average network across time.

The second and third eigennetworks capture variability associated with the experimental paradigm,

as can be seen form comparing v:2 and v:3 to the paradigm (Figs. b and c). Since the sign of v:2 is

positive during the resting condition, edges with red color have larger weights during the resting

condition, and those with blue color have larger weights during the transitions of the movies condition.

For example, connectivity in the visual cortex is stronger during the resting condition, as previously

observed (Richiardi et al., 2011), and in frontal regions during the transitions of the movies condition.

As is the case when applying PCA or independent component analysis to noisy data, some of

these components will represent noise (e.g., Fig. e depicting component 100). Discarding some of the

eigennetworks could thus also help to reduce noise in a multislice graph.

To explore the multislice SGWT, we added and subtracted S′
::2 from S′

::1 to obtain the adjacency

matrices A′
1 and A′

2, respectively (Figs. a,(b),(f),(g)). From v:2 we know that A′
1 enhances edges typical

for the resting condition, and A′
2 for the transitions of the movies condition. A′

1 has strongly connected

visual and auditory cortices and a wavelet localized in the primary visual cortex diffuses to visual and

auditory regions at coarser scales, as shown in Figs. c-(e). In contrast, as expected from the reduced

connectivity within the visual cortex in A′
2, the wavelet diffuses only within the primary visual cortex at

coarser scales (nodes 43−48), but not to extrastriate areas (nodes 49−56), as shown in Figs. h-(j).

Instead of adding and subtracting S′
::2 from S′

::1, we could also have explored the strategy proposed

in Eq. (5.26) with g equal to the stimulus paradigm to find the combination of eigennetwork weights

that best approximates the stimulus paradigm.

We then implemented two SGWTs built from A′
1 (resting) and A′

2 (movies), respectively, and

applied them to the normalized regional brain activity. We calculated the total energy of the wavelet

coefficients at each scale and for each decomposition by summing over all brain regions. Due to energy

conservation of the tight frame design, the `2-norm of the wavelet coefficients across all scales sums

up to 1.

Fig. 5.12 shows the difference of the energy of the scaling (red line) and wavelet coefficients (blue

dashed line), where a positive value indicates that the energy is higher for the resting than for the

movies transform. We observe that at the finest scale, the energy is increased during the condition

not well represented by the graph, i.e. the energy of the resting transform is larger than the movies
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Chapter 5. From global to local network analysis: the graph wavelet transform

transform during the movies conditions (the blue line goes up). In previous work we estimated two

separate brain networks for each condition (though not in a data-driven manner) and also observed an

increase of energy when the SGWT was not adapted to the data (Leonardi & Van De Ville, 2011). For the

scaling coefficients the picture is reversed, i.e. the energy of the resting transform is smaller than the

movies transform during the movies condition (red line goes down).

Our results suggest that the variability identified by the HOSVD and illustrated with the eigennet-

works, corresponds to relevant changes in network architecture across cognitive states. The column

vectors of V give additional information regarding the importance of these networks across time, and

the proposed multislice SGWT provides a meaningful decomposition of fMRI data.

5.1.6 Conclusion

We have extended the previously proposed SGWT to a tight frame, shown the link between classical

and spectral graph wavelets, and presented a novel framework for the design of wavelets on multislice

graphs based on the HOSVD. The proposed approach proceeds in two steps, by first estimating eigen-

networks from an adjacency tensor and then building adjacency matrices that exploit the variability

across slices of the network. Only then are these adjacency matrices converted to Laplacian matrices

to apply the SGWT. The proposed framework of estimating eigennetworks and their combination is

therefore not limited to the SGWT, but can be applied to other graph wavelet transforms (Coifman

& Maggioni, 2006) or discrete signal processing frameworks (Sandryhaila & Moura, 2013) that are

based on the adjacency matrix. Our results suggest that eigennetworks obtained from the HOSVD of a

collection of adjacency matrices capture relevant variability across graph edges and that they provide

meaningful graph wavelet transforms. In contrast to the common method of averaging or summing

across multiple slices of a graph, the proposed framework allows to exploit the variability across them.

5.1.7 Appendix

Wave equation on graphs

The relation ω` = arccos(1−λ`) between conventional Fourier frequencies and eigenvalues of the

normalized Laplacian L̃ (i.e., dmax = 1) has also been found when considering the wave equation on

complete and binary graphs (Von Below, 1985; Cattaneo, 1997; Friedman & Tillich, 2004):

∂2u

∂t 2 =−∆u, (5.27)

where ∆ is a so-called edge-based Laplacian that acts as an operator on functions on the edges (in

contrast to the conventional graph Laplacian that acts on signals defined on the nodes). The edge-

based wave equation has a physical interpretation, where the edges are taut strings that are fused

together at the nodes. While the node-based wave equation has infinite wave propagation speed, the

edge-based wave equation has unit propagation speed (Friedman & Tillich, 2004).

From a purely signal-processing point-of-view, we can consider the wave equation Eq. (5.27) with

the normalized graph Laplacian and discretized time. After applying the discrete temporal Fourier

transform to Eq. (5.27), we retrieve the left-hand side as (cos(ω)− 1)u. The equivalence with the

eigendecomposition ∆u =λu of the right-hand side then leads to 1−cos(ω) =λ with all eigenvalues

contained in [0,2].
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5.2 HOSVD for multi-subject task-based dFC

In the journal article presented in this chapter we averaged the regional brain activity across all subjects.

In Leonardi & Van De Ville (2013b), published in the proceedings of the IEEE International Workshop

on Pattern Recognition in Neuroimaging (PRNI), we avoided the averaging step by adding a subject

dimension to the adjacency tensor. The addition of a subject mode, as opposed to the temporal

concatenation proposed in Chapter 3 is advantageous for task data because it exploits the temporal

similarity across subjects, similar to tensor ICA (Beckmann & Smith, 2004). In this work we did,

however, not exploit the graph wavelet transform. Instead, we studied how the eigennetworks were

related to the experimental paradigm by regression of the associated time courses. Additionally, using

leave-one-subject-out cross-validation, we investigated whether the eigennetworks generalized to

unseen subjects and whether the experimental paradigm could be predicted from the strength of their

expression.

5.2.1 Methods

Because the HOSVD is calculated from SVDs of matrix unfoldings of the tensor and modes 1 and 2

contain the same information, we can reduce the fourth-order region × region × time × subjects tensor

to a third-order connections × time × subjects tensor. We derive this result for the third-order region

× region × time tensor A = S×1 U×2 U×3 V studied in the journal article and the reduction of the

fourth-order tensor follows analogously. First, we recall that the mode-3 matrix V is computed as the

left singular matrix of the mode-3 matrix unfolding of A: A(3) = VΣWT , where A(3) ∈ RK×N 2
, i.e. each

row is a vectorized adjacency matrix. Next, we rewrite Eq. (5.20) with the eigennetwork core tensor S′

as A= S′×3 V and unfold also this equation along mode 3: A(3) = VS′
(3) (De Lathauwer et al., 2000a).

Finally, equating both matrix equations yields A(3) = VΣWT = VS(3), which shows that the rows of ΣWT

are the vectorized eigennetworks. Thus, the third-order tensor can be reduced to a time × connections

matrix without any loss of generality and, additionally, because of the symmetry of the adjacency

matrices, it is sufficient to retain only a vectorized version of their upper triangular entries.

As in the journal article we then decompose the connections × time × subjects tensor A into

connectivity, time and subject-dependent loadings and a core tensor using a HOSVD (Fig. 5.13a):

A= S×1 Uconn ×2 Utime ×3 Usubjects, (5.28)

where Uconn ∈ RC×C , Utime ∈ RT×T and Usubjects ∈ RS×S are the orthonormal mode matrices, C is the

number of connectivity pairs, T the number of windows and S the number subjects. Similar to before,

the multiplication of the core tensor S with Uconn transforms its columns into eigennetworks, and we

define S′ = S×1 Uconn.

Next, we remove the subject mode matrix on the right hand side by multiplying both sides with

UT
subjects. We use the associativity of the tensor-mode multiplication (De Lathauwer et al., 2000a),

i.e., (S′×2 Utime ×3 Usubjects)×3 UT
subjects = S′×2 Utime ×3 (UsubjectsUT

subjects), and the orthogonality of the

mode matrices to obtain

A×3 UT
subjects = S′×2 Utime, (5.29)

The left-hand side now contains weighted dFC matrices and the right-hand side eigennetworks with
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(a) (b)

Figure 5.13 – (a) Multi-subject dFC modeled as a third-order connections × time × subjects tensor. HOSVD
decomposes the tensor into a core tensor and connectivity, time and subject loadings. (b) The first frontal slice of
A′ =A×3 UT

subjects and S′ =S×1 Uconn contains average dFC and group eigennetworks, respectively.

associated time courses. We are interested in the first frontal slice of A′ =A×3 UT
subjects and S′ because

they contain dFC averaged across all subjects and group eigennetworks, respectively (Fig. 5.13b):

A′
::1 = S′

::1UT
time. (5.30)

We may write Eq. (5.29) in such a “slice-wise" notation using simple linear algebra. First, the matrix

unfolding of Eq. (5.29) is A′
(2) = UtimeS′

(2), where A′
(2) = [(A′

::1)T | . . . |(A′
::S )T ], and S′

(2) = [(S′
::1)T | . . . |(S′

::S )T ]

(De Lathauwer et al., 2000a). Second, this equation subsumes (A′
::1)T = Utime(S′

::1)T . Thus, A′
::1 =

S′
::1UT

time.

The left-hand side of Eq. (5.30) contains average dFC: A′
::1 =∑S

s=1 usubjects
s1 A::s is a weighted average

across all subject’s dFC matrices A::s and all usubjects
s1 > 0 because it is the first column of Usubjects.

In contrast to simple averaging, the weights usubjects
s1 are learnt from the data. Because S′

::1UT
time

equals A′
::1, we interpret the columns of S′

::1 as group eigennetworks. Here, because of the additional

dimension, only the time courses but not the eigennetworks are orthogonal.

To determine which eigennetworks were related to the task we regressed their time courses:

g = Utimeααα+εεε, (5.31)

where g ∈ RT was a demeaned moving average of the experimental paradigm (0 = rest, 1 = movies),

ααα ∈RT the coefficients of interest and εεε a noise term (similar to the idea proposed in Eq. (5.26)). The

solution to the ordinary least-squares problem isααα= UT
timeg.

Finally, we wanted to examine how well the group eigennetworks and their combination as deter-

mined by Eq. (5.31) could predict the paradigm for an unseen subject. To answer this question, we

applied the HOSVD within a leave-one-subject-out cross-validation loop. For all subjects s = 1, ...,S, we

repeated the following three steps:

1. Solve Eq. (5.29) and Eq. (5.31), excluding dFC from subject s.

2. Project dFC of unseen subject onto the group eigennetworks estimated in step 1: X = (S′
::1)−1A::s .

This equation solves for the time courses of the eigennetworks. Note that this problem corre-

sponds to the inverse of Eq. (5.30): UT
time = (S′

::1)−1A′
::1.

3. Predict the experimental paradigm g̃ = XTααα for subject s, whereααα are the coefficients learnt from

all other subjects in step 1. We incrementally increased the number of included time courses, i.e.
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5.2. HOSVD for multi-subject task-based dFC

the first prediction used only the time course of the first eigennetwork.

We compared the eigennetwork-based prediction against a FC-based one. In the competing

approach we directly estimated the coefficientsααα from the dFC time courses (averaged across mode

3 of A after excluding dFC from subject s), and X was simply equal to A::s . Here we incrementally

increased the number of included pair-wise dFC time courses after ranking them by the absolute value

of their coefficientsααα.

5.2.2 Results and discussion

Figs. 5.14a-d show the first few eigennetworks and their associated time courses. The time courses

of the second and third eigennetworks strongly resemble the paradigm and more so than in Fig. 5.10,

highlighting the advantage of including an additional subject dimension in the data structure.

The phase-randomization of dFC destroyed temporal similarity across subjects and the HOSVD

estimated random eigennetworks and sinusoidal time courses (Figs. 5.14e-h). To investigate how these

sinusoidal time courses arose, we generated three further types of surrogate datasets: 1) dFC estimated

from phase-randomized regional time courses (preserving mean, variance and auto-regressive prop-

erties) yielded sinusoidal Utime, but 2) dFC estimated from random, temporally uncorrelated noise

(preserving mean and variance only) also resulted in sinusoidal Utime. 3) adding random, temporally

uncorrelated noise to mean dFC (preserving mean and variance of dFC but not its auto-regressive

properties) yielded Utime with no readily visible structure. These results suggest that the sinusoidal

fluctuations are a result of the autocorrelation in dFC that originates by the dFC estimation process

itself (i.e., the sliding window operation).

The time-courses of the eigennetworks estimated from real dFC are not sinusoidal, however,

because of the similarity of dFC across both time and subjects. Together, these results suggest that the

HOSVD can efficiently and accurately extract changes in functional network configurations that are

related to the experimental condition.

The group of connections identified in eigennetwork 2 is largely consistent with those shown in

Fig. 5.10b. Notably, the red connections of the second eigennetwork, which are stronger during resting

periods, are centered on higher visual regions (e.g. superior occipital cortex and fusiform gyrus with

cuneus and lingual gyri). This indicates that while activity in visual regions was increased during movies

as compared to the resting periods (Eryilmaz et al., 2011), FC between visual regions was decreased

during movies. The reduced FC of visual regions during movies is consistent with results of Richiardi

et al. (2011) who studied static FC after concatenating all temporal segments corresponding to the

same condition (Richiardi et al., 2011). No knowledge of the experimental condition is required for the

tensor representation of dFC and its decomposition. The blue connections, stronger during movies,

were centered on the thalamus and frontal regions. Thus, for the thalamus, FC and activity were both

increased during movies compared to resting periods (Eryilmaz et al., 2011).

Interestingly, eigennetwork 4 showed the most striking similarity to the difference between average

dFC during the two conditions (Fig. 5.14d and Fig. 5.14j). Its associated time course, however, suggests

that this FC pattern may be driven by outliers and it did not contribute to out-of-subject predictions of

the experimental paradigm (see also below).

The group eigennetworks generalized well to unseen subjects, as we could predict the paradigm

for novel subjects after learning eigennetworks and regression coefficients from all other subjects

(Fig. 5.14l). The folds-averaged correlation (± std) between the predicted time course and the paradigm
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k)

(l) (m)

Figure 5.14 – (a-d) group eigennetworks S′:i 1 with i = 1,2,3,4,8 and associated time courses (black) overlaid on a
moving average of the experimental paradigm (gray shading); (e-h) the first four eigennetworks estimated from
phase-randomized data; (i) average dFC across all windows and subjects, (j) difference between average dFC during
movies and resting state. (k) Average linear combination of first 8 eigennetworks using weightsααα; (l) Predicted
experimental paradigm using 8 eigennetworks for two “good" subjects (green and red lines) and one “bad" subject
(blue line), and average prediction across all subjects (black line), overlaid on the true experimental paradigm
(gray); (m) Coefficientsααα averaged across all folds (absolute value because of sign invariance of HOSVD), error
bars indicate standard error across folds and inset shows a zoom on the coefficients of the first 20 eigennetworks.
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flattened at ρ = 0.53±0.13 for 8 components. This was mostly a result of including the second eigennet-

work (ρ = 0±0.22 with the time course of the first eigennetwork and ρ = 0.42±0.12 with the first two).

The second eigennetwork also had the largest weight across all folds, followed by eigennetworks 3 and

8 (Fig. 5.14m). The prediction was significantly worse when regressing the paradigm on all pair-wise

connections, even for up to 100 included connections (ρ = 0.18±0.20). This demonstrates the benefit

of dimensionality and noise reduction achieved by the HOSVD. The result that the HOSVD outperforms

a prediction based on individual connections also indicates that a large-scale network, rather than a

few individual connections, is reorganized during alternating movie and resting periods.

Finally, we estimated a difference network between movies and resting periods by calculating a

weighted sum of the eigennetworks, with the weightsααα determined from the regression of the time

courses (Fig. 5.14k).The focus on FC of visual regions is now even more prominent. For example, FC

between lower visual regions and, separately, between higher visual regions was high during movies

(red connections), but FC between lower and higher visual regions was reduced, suggesting functional

segregation during movies (blue connections).

5.3 Graph signal versus graph topology

In the journal article we showed a proof of concept that data-adapted and -unadapted graph wavelet

transforms could succinctly reveal changes in cognitive states (Fig. 5.12). Co-activations of connected

brain regions were most evident at coarse scales. At the finest scale, the energy of the wavelet coef-

ficients was high if the graph was poorly adapted to the signal — i.e., the graph signal was picked

up as isolated "high-frequency” noise. Based on this promising result, we explored whether graph

wavelets could improve the scan-by-scan decoding of the two cognitive states by training classifiers,

such as support vector machines, on graph wavelet coefficients from adapted and unadapted graphs

(see Appendix D for more information). We, however, obtained similar prediction accuracies as when

training classifiers on brain activity directly at the cost of a vastly more complex analysis pipeline (due

to the estimation of functional networks and their wavelet transforms).

The underlying graph topology also influenced the signal representation in other ways than ex-

pected. The proposed analysis of BOLD co-activations was based on the idea that the graph wavelets

act as zooms at different scales and locations. The underlying graph should therefore only serve the

purpose of defining distance and thus what is considered close and far. However, for graphs with

heterogeneous degree distributions, such as functional brain networks, both the eigenvalue spectrum

and the coverage of the eigenvectors are unbalanced. To address the first issue, it worked well em-

pirically to linearize the spectrum and Shuman et al. (2013) recently proposed a more elegant way

to adapt the filter kernels to the distribution of the eigenvalue spectrum. This, however, destroys the

direct mapping of eigenvalues to Fourier frequencies, but as the order of the eigenvectors remains

unchanged, a conceptual link remains. The second issue led to an unequal coverage of brain activity.

For example, activity of hubs tended to show up at fine scales and that of weakly connected brain

regions at coarser scales. This made it difficult to separate the effects of graph topology and signal,

and the link between the scale of analysis and the local/global extent of fMRI BOLD co-activation is

obscured. This constituted a major drawback for the interpretation of the wavelet coefficients. For

fMRI data, we therefore propose to focus the analysis either on the graph or on the graph signal.

In the former case, the eigenvectors of the Laplacian or the graph wavelets can directly be exploited
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(a) (b)

(c) (d)

Figure 5.15 – (a) Simulated data before the addition of noise, (b) SPM contrast showing enhanced activity, (c)
WSPM contrast, (d) graph WSPM contrast.

as features. Examples of this are the work presented in section 5.2, multi-scale community mining (Shen

et al., 2012; Tremblay & Borgnat, 2013), graph classification based on its first few Fourier coefficients

(Hu et al., 2013), and a diffusion model of the progression of Alzheimer’s disease (Raj et al., 2012).

In the latter case, we may define a fixed graph with a more regular geometry to obtain a more

unbiased, multiscale view of the signal, while still benefitting from the ability of the graph wavelets to

adapt to irregular geometries. This idea was exploited by Hamid Behjat, who completed his MSc thesis

in our group and who extended wavelet-based statistical parametric mapping (WSPM) by replacing

the classical wavelets with graph wavelets that dilate along gray matter and take boundaries into

account (Van De Ville et al., 2004; Behjat et al., 2013). WSPM uses a spatial wavelet transform, which

can efficiently represent clusters of activated voxels with only a few coefficients. Noise, on the other

hand, will be evenly represented, so that a coefficient-wise t test can provide higher sensitivity than a

voxel-wise test. Testing and thresholding in the wavelet domain also circumvents the need to heavily

smooth the data as required in a traditional SPM analysis because of how multiple testing is corrected

for. However, the wavelets WSPM is based on assume brain activity evolves on a regular Euclidean grid,

hence the interest in incorporating better adapted wavelets.

For simulated data, graph WSPM detected many fewer false positives than SPM and its sensitivity

was superior to that of conventional WSPM (Fig. 5.15). For single-subject auditory fMRI data, graph

WSPM detected more finely structured activations in the auditory cortex than either of the other two

approaches (Fig. 5.16). We also observed that adding coarser scales to the graph wavelet decomposition

was more beneficial in terms of sensitivity than for conventional wavelets (Van De Ville et al., 2007).

Ongoing work by Hamid Behjat focuses on an extension to multi-subject studies. Another example

of this idea is the recent work by Kim et al. (2014) who defined a cortical surface mesh and analyzed

cortical thickness (the graph signal) to identify atrophied regions in Alzheimer’s Disease patients.
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(a) (b)

(c) (d)

Figure 5.16 – (a) SPM contrast showing enhanced activity during auditory compared to resting periods, (b) WSPM
contrast, (c) WSPM contrast with detections outside of GM boundaries removed, (d) graph WSPM contrast.

5.4 Outlook

In this chapter we introduced a tensor decomposition for the estimation of connectivity patterns from

dFC and a graph wavelet transform for the multi-resolution analysis of brain activity. When there is no

temporal similarity across subjects as during rest, the tensor decomposition can be simplified to an

SVD, as explored in chapter 3. However, for task-based dFC, we can capitalize on this similarity to find

network configurations that are consistent across subjects, while at the same time ignoring variability

that is inconsistent and thus subject-specific.

Because the proposed tensor decomposition is invariant to any temporal reordering of the adja-

cency matrices, it implicitly assumes that all nodes are connected to themselves in all other layers.

Because we were interested in recurring FC patterns, no matter when they occurred, the temporal

ordering of the slices could be safely neglected in this work. As an alternative, if one wishes to keep this

information, more complicated higher-dimensional tensors can be defined, which allow only certain

inter-slice connections (De Domenico et al., 2013). For example, for temporally ordered matrices, each

node would only be connected to itself in the previous and following layers. As another alternative,

"supra-adjacency" matrices have been proposed (Mucha et al., 2010; Gómez et al., 2013), where a new

block-diagonal matrix of size N K ×N K is built from all individual matrices. Off-diagonal entries can

then represent links between layers. However, a graph with N nodes essentially becomes a graph with

N K nodes and any results must be mapped back to the original N nodes. Kivelä et al. (2013) provide an

excellent overview of multilayer networks and recent research.

Lastly, the proposed tensor decomposition identifies orthonormal mode matrices. This can be

an unreasonable assumption for fMRI data, and in Chapter 4 we showed that the orthogonality con-

straint of PCA altered the topology of the FC patterns. For the construction of the graph wavelets the

orthogonality constraint was beneficial, but if the estimated patterns are of main interest alternative
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tensor decompositions provide interesting avenues for future work. Tensorial ICA is an obvious direc-

tion, while it would still impose statistical independence. Like tensorial ICA, CANDECOMP/PARAFAC

computes a rank-1 decomposition but allows overlap between components. It has been successfully

applied for facial recognition and the analysis of publication data (Vasilescu, 2011; Dunlavy et al., 2011).

For these alternative decompositions the strong spatial and temporal correlations of dFC are, however,

potential issues. To reduce these correlations, the HOSVD could be applied in a first step, similar to the

use of PCA before ICA in the matrix case.
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6 Dynamic network reorganizations in

healthy aging

IN THE PREVIOUS CHAPTERS we estimated dFC with sliding-window correlations. While it is a simple

and intuitive way to study dynamic brain networks, it has several inherent limitations: (i) One needs to

choose a fixed window length, which limits the sensitivity to network changes. For example, with a

window duration of 60 seconds changes on a faster time scale can not be resolved. (ii) Sliding-window

correlations are inherently variable, that is it can fluctuate even for two signals with stationary or no

correlation. (iii) We face a dimensionality problem: For a well-conditioned N ×N correlation matrix,

we need at least N time points. However, given usual TRs, choosing T = N would drastically limit our

ability to observe any changes in whole-brain dFC over time. For example, for N = 80 regions and a

TR of 2 seconds, the window would cover almost 3 minutes. Thus, typically T < N and the correlation

matrix is rank-deficient.

Because the dFC estimates are noisy and have rank < N , it may be beneficial to constrain the

patterns to simpler topologies. One way to simplify the patterns is to make them low-rank. The optimal

low-rank approximation (in terms of explained variance) of a symmetric matrix X is computed from

its eigenvalue decomposition X = VΛVT , where V = [v1|v2|...|vN ] ∈ RN×N contains the eigenvectors

andΛ ∈RN×N is a diagonal matrix whose entries equal the associated eigenvalues λ1,λ1, . . . ,λN . The

eigenvectors with the smallest eigenvalues are discarded and the matrix is approximated by the re-

maining L eigenvectors (rank-L approximation): X =∑L
l=1λl vl ⊗vl , where λl is a scaling factor and ⊗

denotes the outer product (Fig. 6.1a). The most drastic simplification is a rank-1 approximation, that is

X =λ1v1⊗v1. Figs. 6.1b and c show real FC patterns and their rank-1 approximations. While not perfect,

the approximations are surprisingly good. This visual impression is confirmed by high pair-wise spatial

Pearson correlations (r ∈ [0.70−0.87]). The goodness-of-fit of low-rank approximations indicates that

there is a lot of redundancy in the high-dimensional dFC space and resonates with results by Richiardi

et al. (2010) who showed that low-rank approximations of static FC matrices are competitive with

original FC matrices in terms of correctly predicting one of two cognitive states.

Importantly, in the case of rank-one FC patterns we no longer need to estimate N (N −1)/2 pair-

wise correlations because each pattern is defined by only N values. This means we can directly

identify patterns of brain activity from the region × time matrix and the window length is effectively

reduced to 1 TR. We have essentially reverted back to the problem of identifying coherent fluctuations

from spontaneous brain activity, which is typically solved using spatial ICA. However, because of
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(a)

(b)

(c)

Figure 6.1 – (a) Approximating a matrix by a sum of L rank-one vectors; (b) FC patterns estimated from dFC of
healthy, young subjects during rest, and (c) their rank-one approximations.

the constraint in space, the estimation of components is driven by spatial independence, which,

as discussed earlier, provides an average view of RSNs. Instead, because a single brain region may

participate in multiple networks over time, we desire a model that allows spatial overlap. Smith

et al. (2012) reasoned that functionally distinct networks should also be largely temporally distinct

and proposed temporal ICA to identify temporally independent, but potentially overlapping, RSNs.

Overall, the identified independent components differed notably from traditional RSNs. An important

consideration when applying temporal ICA is the TR of the data as the robustness of the algorithm

is greatly increased by more time points, and the data used by Smith et al. (2012) had a short TR of

0.8 seconds. Also, spatial ICA was applied first to reduce the spatial dimensionality of the data to

142 regions. As both the authors and Calhoun et al. (2012) noted, independence in time may still be

suboptimal for fMRI data and further relaxations of the time constraint may be needed.

An alternative proposal assumes temporal sparsity, or the exclusive occurrence of a single "co-

activation pattern" (CAP) at any given scan (Liu & Duyn, 2013). To identify distinct CAPs Liu & Duyn

(2013) temporally clustered the fMRI data into several groups using the k-means algorithm. Each CAP,

or cluster centre, was then simply the average of all scans assigned to it. In k-means clustering, the

clusters are estimated such that within-cluster distances are minimal, where within-cluster distances

are defined as the distances of all data points to their cluster centre. Different distance functions can

be employed but in this work the authors used 1 minus the Pearson correlation coefficient. Using

the correlation will find scans with similar patterns of activity, while the Euclidean distance would be
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(a)

(b)

Figure 6.2 – (a) The DMN (in red), reprinted from Buckner et al. (2008) with permission from John Wiley and
Sons; and (b) regions activated during successful memory retrieval, reprinted from Rugg & Vilberg (2013) with
permission from Elsevier.

influenced by amplitude differences in the BOLD signal over time. In the original proposal, based on

prior work by Tagliazucchi et al. (2012), Liu & Duyn (2013) proposed to retain only those scans where

the BOLD signal in a region of interest was above a threshold. This can be seen as a variant of seed

correlation analysis. In later work they extended the analysis to include all fMRI scans (Liu et al., 2013).

Finally, we note that temporal clustering of fMRI data has already been proposed many years ago (e.g.

Scarth et al., 1995; Baumgartner et al., 1997; Baune et al., 1999) and growing interest in the temporal

variability of patterns of brain activity has now brought these methods back to the foreground.

In this chapter we study transient CAPs in aging. Structural and average functional brain networks

undergo prominent changes in both early and late stages of life. For example, Dosenbach et al. (2010)

predicted the age of subjects aged 7 to 30 years from their FC and noted reduced strength of short-range

FC between major RSNs with increasing age. At the other end of the age spectrum, Andrews-Hanna

et al. (2007) reported reduced anterior-posterior FC in the DMN and Damoiseaux et al. (2008) reduced

activity of two independent components, which they identified as anterior and posterior DMN. Also,

both the efficiency (a measure of how densely connected the network is) and the modularity (the

presence of strongly connected groups of regions) of functional networks are strongly affected by aging

(Achard & Bullmore, 2007; Meunier et al., 2009a). In accordance with the two studies cited above,

frontal regions were more isolated in elderly subjects (Meunier et al., 2009a).

Advanced aging is also associated with a decline in cognitive abilities, including memory loss.

Because the DMN is thought to support episodic memory processing (Fig. 6.2; Greicius et al., 2004;

Buckner et al., 2008; Spreng et al., 2010; Rugg & Vilberg, 2013), the involvement of this network is

of particular interest. While advanced aging has been consistently associated with a disruption of

the DMN along an anterior-posterior axis (see also Ferreira & Busatto, 2013, for a recent review),
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the relationship between FC and performance in neuropsychological tests (performed outside of the

scanner) is less well understood. Several studies have reported associations of the integrity of the DMN

with episodic memory (Andrews-Hanna et al., 2007; Wang et al., 2010; He et al., 2012; Mevel et al., 2013)

and executive function (Damoiseaux et al., 2008). All major regions of the DMN have been implicated,

including the medial prefrontal cortex (mPFC), PCC, AG and hippocampus.

Additionally, slow-wave sleep is disrupted in older subjects (Van Cauter et al., 2000). Slow-wave

sleep is thought to be important for memory consolidation and stimulation of the PFC during sleep

boosts memory performance (Marshall et al., 2006; Diekelmann & Born, 2010). Recently, slow-wave

activity in the mPFC during sleep, has been linked to both regional GM atrophy and memory retention

(Mander et al., 2013).

In this chapter we focus on co-activation patterns of the medial prefrontal cortex (mPFC) because

of its important role in the DMN and its prominent structural and functional changes in advanced

aging. We study the impact of normal aging on both average and transient patterns of coherent activity

of the mPFC during rest and its influence on memory. In 24 younger and 33 older adults we first

estimate average co-activation with the mPFC across the entire scan. While both groups showed robust

co-activation of the default mode network (DMN), in the older subjects the mPFC significantly less

often co-activated with posterior DMN regions, such as the medial temporal lobe, parahippocampus

and retrosplenial cortex, in accordance with previous studies. Next, we studied transitory changes

in mPFC CAPs in older subjects using temporal clustering. We observed 5 reproducible CAPs: the

two most frequent CAPs strongly resembled the DMN, with differences in limbic regions, while the

additional 3 CAPs showed co-activation of the mPFC with bilateral insulae, extensive frontal regions

PCC and AG only, and visual and motor regions, respectively. In young subjects, the mPFC co-activated

with other regions of the DMN most of the time. The occurrence rate of the frontal/insular CAP in

elderly subjects negatively correlated with memory retention, and the association remained after

correcting for age, head motion and gray matter volume in the mPFC. Our results highlight flexible,

transitory interactions between the mPFC and large-scale brain systems and suggest their functional

relevance in healthy aging.
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6.1 Introduction

Cognitive functions, such as memory, attention and task-switching, decline in healthy aging. Neu-

roimaging studies have been crucial to better understand brain mechanisms that underlie such changes

by identifying the location of structural and functional changes. Structural imaging has revealed strong

gray matter (GM) atrophy, particularly in frontal and parietal areas, as well as reduced prefrontal white

matter integrity (Good et al., 2001; O’Sullivan et al., 2001; Sowell et al., 2003; Gunning-Dixon et al.,

2009; Giorgio et al., 2010). Functional imaging has indicated that older adults engage frontal areas

more strongly than younger adults over a range of tasks, but dis-engage a set of regions known as

the "default mode network" (DMN) less strongly (Grady et al., 1994; Lustig et al., 2003; Spreng et al.,

2010). The DMN comprises a group of regions that show increased and coherent activity (functional

connectivity, FC) while a subject is at rest (Raichle et al., 2001; Greicius et al., 2003), and is thought to

be implicated in self-referential and episodic memory processing (Greicius et al., 2004; Buckner et al.,

2008). The strength of coherent spontaneous fluctuations in the DMN gradually declines with age

(Andrews-Hanna et al., 2007; Damoiseaux et al., 2008; Meunier et al., 2009a; Mevel et al., 2013). This

disruption appears to preferentially occur along an anterior-posterior axis, involving the major hubs of

the DMN: the posterior cingulate cortex (PCC) and medial prefrontal cortex (mPFC; Andrews-Hanna

et al., 2010). While it is less clear how age differences relate to cognitive performance, a few studies have

reported positive relationships between the FC among DMN regions and memory (Andrews-Hanna

et al., 2007; Wang et al., 2010; He et al., 2012; Mevel et al., 2013) and executive function (Damoiseaux

et al., 2008).

In addition, slow-wave sleep, which is important for memory consolidation, is reduced in older

adults (Van Cauter et al., 2000; Diekelmann & Born, 2010). Enhancing slow oscillations (< 1H z) during

sleep by electrically stimulating the PFC boosts memory performance in young adults (Marshall et al.,

2006) and reduced prefrontal slow-wave activity in older adults is related to impaired memory retention

(Mander et al., 2013).

Previous studies on resting-state FC implicitly assumed stable functional interactions across time.

Functional interactions are, however, highly dynamic (Chang & Glover, 2010; Hutchison et al., 2013b),

and the estimation of a single network across time provides only an average view of these interactions.

To reveal patterns of transient functional interactions several alternative techniques have recently been

proposed (Kiviniemi et al., 2011; Smith et al., 2012; Liu & Duyn, 2013; Leonardi et al., 2013; Eavani

et al., 2013; Allen et al., 2014). These results suggest that many regions are part of multiple networks

across time (at least as resolved by fMRI). The relationship of transient interactions with behavior are,

however, even less well understood than for average interactions. A few studies have shown that the

network topography just prior to a task is predictive of errors (Eichele et al., 2008; Ekman et al., 2012)

and reaction time (Thompson et al., 2013b). That transient network organizations during rest have

functional relevance is suggested by recent work with clinical populations (see e.g. Hutchison et al.,

2013a, for an overview). For example, we observed changes of transient FC in parietal and prefrontal

regions in patients with multiple sclerosis (Leonardi & Van De Ville, 2013b), and Jones et al. (2012)

reported altered occurrences of DMN subnetwork configurations in Alzheimer’s patients. Estimating

only average interactions may thus ignore important temporal variability and differences in transient

interactions may in fact explain changes observed in average FC.

The goal of this study was to determine whether changes in transient network configurations

underlie age-related changes commonly observed in average networks. Given the prominent role of
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mPFC in MRI and sleep studies on healthy aging and memory, we focus our analysis on its co-activation

patterns (CAPs). Each CAP describes a unique spatial pattern of frequently co-activating regions and is

identified by temporally clustering the fMRI data (Liu & Duyn, 2013). FMRI scans are assigned to the

CAP they are most similar to, a simple and intuitive approach. Temporal clustering of fMRI data has

already been proposed much earlier for task-based fMRI data (e.g. Scarth et al., 1995; Baumgartner

et al., 1997; Baune et al., 1999), but is especially relevant today in light of the evidence of temporal

network variability. Because still little is known about the behavioral significance of changes in transient

interactions, we also examined whether their occurrence was associated with individual differences in

episodic memory in older adults.

6.2 Methods

Participants

Study participants included 24 young adults and 34 older adults recruited from the students and

community of Stanford University. Written, informed consent was obtained from all participants

and the Stanford University Institutional Review Board approved the study protocol. Data of the

young adults was previously analyzed using traditional FC fMRI analyses (Shirer et al., 2012). Memory

retention in the older adults was assessed with percentage retention of the Hopkins Verbal Learning

Test Revised (HVLT-R PR, Brandt, 1991; Benedict et al., 1998). Subjects were asked to recall words from

a list of 12 words, both immediately and after a 20-minute delay. HVLT-R PR is calculated as the ratio

of delayed to immediate memory. Data from 1 older adult was excluded because of excessive motion

during fMRI (mean displacement exceeded 1 mm). All participants had mean frame-wise displacement

(FD; Power et al., 2012) < 0.5 mm. Table 6.1 shows demographics of the 24 young and 33 older adults

included in this study.

Data acquisition

A structural and resting-state scan were acquired during the scanning session. For the young partici-

pants, only 13 received a structural scan. Functional images were acquired on a 3.0T GE scanner (TR =

2s, TE = 30 ms, flip angle = 80◦, 1 interleave, matrix size 64 x 64, FOV = 22 cm). Heart and respiration

rates were monitored during the scan. A high-resolution structural scan was acquired using an axial

3D fast spoiled gradient recalled echo sequence (FSPGR; 162 slices, 0.86-mm2 in-plane and 1-mm

through-plane resolution, TR = 5.9 ms, TE = 2 ms, flip angle = 15◦, FOV = 22 cm).

Young adults were scanned for 10 minutes and older adults for 8 minutes while resting with their

eyes closed. Data from young adults was shortened to 8 minutes for all analyses. A debriefing confirmed

that all subjects stayed awake throughout the scan.

Structural MRI analysis

To control for the possible effect of GM atrophy on resting-state co-activations, we used gray matter

(GM) volume in the seed region of interest (defined below) as a covariate in our analyses. We measured

GM volume using FSL’s voxel-based morphometry. After removal of non-brain structures, the high-

resolution structural scans were segmented into GM, WM, and CSF. Because our study included more

elderly than young participants (of which only 13 had a structural scan), we selected a subset of 13
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Table 6.1 – Participant information.

older adults to create a study-specific template. The demographics of this subset of subjects were

similar to those of all subjects (5/8 m/f, mean ± SD age 65.7±10.6 years, education 16.3±1.8 years,

MMSE 29.8±0.4, compare to Table 1). The GM images of the 26 subjects were transformed into MNI152

standard space using a non-linear registration and a study-specific template was created. Native GM

images of all subjects were then nonlinearly registered to the template, modulated and smoothed with

a 7-mm Gaussian kernel. Finally, we averaged GM density in the region of interest (see below).

Preprocessing of resting state data

Data were preprocessed using the following steps with FMRIB’s Software Library (FSL version 4.1):

Removal of the first 6 scans to allow the MR signal to equilibrate; physiological noise reduction using

RETROICOR and RVHRCOR (Glover et al., 2000; Chang & Glover, 2009); rigid head motion correction;

normalization to the MNI152 standard space at 3x3x3-mm resolution; spatial smoothing with a 6-

mm FWHM Gaussian kernel; removal of the linear trend to correct for drift and regression of the 6

head motion parameters, mean cerebrospinal fluid (CSF) and white matter (WM) signals; band-pass

filtering (0.01-0.1 Hz); and despiking of each voxel’s time course by removing outliers greater than 3

standard deviations from the voxel’s mean to further reduce the impact of head motion (similar to

AFNI’s 3dDespike). Finally, the signal of each voxel was z-scored so that the data could be compared

across subjects.

Co-activation pattern analysis

We used a region of interest in the ACC/mPFC, centered at [-3 47 16] similar to the mPFC seed location in

Andrews-Hanna et al. (2007) (Fig. 6.3). The seed region was defined by spatially clustering resting-state

fMRI data of an independent dataset (Ng, unpublished).

The estimation of average and transient CAPs follows the steps described in Liu & Duyn (2013) and

is shown schematically in Fig. 6.3. First, we extracted fMRI scans with supra-threshold signal (z > 1) in

the mPFC seed region. Liu et al.’s idea to reduce the fMRI data to a few select scans, which retain enough

spatiotemporal information to recapitulate (average) resting-state networks, was largely inspired by

previous work of Tagliazucchi et al. (2012). As opposed to Liu & Duyn (2013) we also retained scans with
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Figure 6.3 – Illustration of analysis pipeline: scans where BOLD activity of the mPFC/ACC seed region exceeds 1
standard deviation are extracted. The sign of all sub-threshold scans (z<-1) is flipped to convert deactivations to
activations. Average and transitory mPFC-coactivation patterns are estimated by averaging across all extracted
scans and temporally clustering them, respectively.

sub-threshold signal (z <−1) but flipped their signs to convert deactivations to activations (otherwise

k-means clustering would assign these scans to separate clusters even if the pattern of co-activation is

the same).

Second, to estimate average CAPs we simply averaged the extracted scans for each subject. We

compared average CAPs of young and older subjects by applying voxel-wise nonparametric permu-

tation testing (FSL’s randomize using threshold-free cluster enhancement with p<0.05 family-wise

error corrected). Because older subjects moved significantly more inside the scanner (see Table 1), we

included mean FD as a nuisance regressor.

Third, in older subjects only, we concatenated the extracted scans across time and clustered them

into several distinct co-activation patterns using k-means (correlation distance function). We only

included elderly subjects in this analysis because of unequal group sizes and to specifically focus on

transitory changes in mPFC coactivations in older age that may underlie changes in average CAPs.

The k CAPs were obtained by averaging all scans assigned to the same cluster. The number of clusters

was determined using reproducibility resamplings. Specifically, the 33 subjects were randomly split

into two groups of 16 and 17 subjects each, and for each group the extracted scans were temporally

concatenated and repeatedly clustered with k = 2,3, . . . ,12. Reproducibility was quantified by spatially

correlating the CAPs from the two independent datasets. We performed 100 split-halves and for each

split retained the Pearson r of the least reproducible CAP (worst "best match") as a measure of minimal

reproducibility. We compared the reproducibility at each value of k to a surrogate dataset, which
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was generated under the stationarity assumption (i.e., a single CAP occurs over time). The surrogate

dataset was created by adding white noise with the same variance as the real data to a subject-specific

stationary CAP, which was randomly scaled over time. Because each subject’s fMRI data has zero

temporal mean, the stationary CAP was estimated from the first eigenvector of its spatial covariance

matrix. The outer product of the first eigenvector is a rank-one, and thus stationary, approximation of

the covariance matrix. We estimated the reproducibility of k=2 (i.e., one too many) clusters for 1000

surrogate datasets. We retained CAPs whose average reproducibility was above the 95th percentile of

the reproducibility in surrogate data.

The percentage occurrence of each CAP was obtained by dividing the number of scans assigned

to each cluster by the total number of extracted scans, and the within-cluster similarity was obtained

by estimating the spatial correlation of each individual scan with its CAP and then averaging the

correlations for each CAP. Next, we quantified the fractional occurrence of each reproducible CAP in

each subject by dividing the number of scans assigned to each cluster by the subject’s total number

of extracted scans. We also estimated occurrence of these CAPs in young subjects by assigning each

extracted scan (|z| > 1) to the closest CAP estimated from the elderly subjects. Scans whose distance to

the closest cluster was larger than the 95th percentile of within-cluster distances in elderly subjects

were assigned to a separate cluster. We compared the occurrence of CAPs between young and old

healthy subjects using 2-sample t tests. Significance was assessed with permutation-based nonpara-

metric testing (1000 random assignments to two groups of 24 and 33 subjects, corrected for multiple

comparisons by retaining the maximum t statistic). Additionally, to validate this assignment, we also

temporally clustered the retained scans retained of the young subjects.

To assess whether there was a relation with performance on the memory task, we estimated the

correlation between the HVLT-R PR score and the fractional occurrence of each CAP, controlling for age,

mean FD and GM volume of the mPFC seed region.

6.3 Results

Correspondence of co-activation and seed correlation maps

Fig. 6.4 shows the mPFC seed correlation map (a) and average CAPs estimated from all scans where

signal in the mPFC seed region was supra threshold (b), sub threshold (after flipping the sign, c),

and either supra or sub threshold (d) for a representative young subject. The average in (b) was

calculated from only 35/234 (15%) scans and in (c) from 27/234 (12%) scans. Not only the average of

above threshold scans closely replicates the seed-correlation map, in accordance with Tagliazucchi

et al. (2012) and Liu & Duyn (2013), but also the average of sub threshold scans. The spatial Pearson

correlation coefficient r was 0.89 or higher for all pair-wise comparisons (p < 10−10 corrected, Fig. 6.4e).

Correspondence between all four maps was excellent across all subjects (Fig. 6.4f). While the supra and

sub threshold CAPs were least similar, their correlation was still high (r = 0.72±0.1), and the combined

supra and sub threshold scans almost perfectly replicated the seed correlation map (r = 0.98±0.01, all

p < 10−10 corrected).

On average across subjects, BOLD signal in the mPFC was supra or sub threshold in 11% of scans

(Fig. 6.4g; mean ± SD, z > 1,11.4±1.7%;11.5±1.5%; z < −1,11.1±1.7%,12.2±1.5%, for young and

old subjects, respectively). There were no significant differences between young and elderly subjects

(p > 0.05). Using both supra and sub threshold scans, thus approximately doubled the number of
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Figure 6.4 – (a) mPFC seed-correlation map. Average of (b) supra threshold scans (z > 1), (c) sub threshold scans
(z < −1), and (d) combined supra and sub threshold scans (|z| > 1) for an example subject. The sign of sub
threshold scans was flipped before all calculations. The color maps were adjusted by dividing by the maximum
value for the purpose of comparison. Slices at z = [-26 -14 -2 10 22 34 46]. (e) Spatial correlation coefficient between
the maps shown in a-d. (f) Average correlation coefficient across all subjects. (g) Percentage of scans with supra
and sub threshold signal in the mPFC in young and old subjects, errorbars are standard deviations across subjects.

retained scans and improved the correspondence with seed correlation maps.

Average CAPs of young and elderly subjects

The average CAP in young subjects showed prominent co-activation of DMN regions: PCC, retrosple-

nial cortex (Rsp), bilateral angular gyri (AG), thalamus, medial temporal lobe (MTL), temporal pole,

parahippocampal cortices (PHC) and hippocampal formation (HF) (Fig. 6.5a).

The average CAP in elderly subjects was similar overall (Fig. 6.5b), but showed significantly reduced

co-activation of inferior parietal and temporal regions, notably the bilateral AG, medial temporal pole,

PHC and HF (Fig. 6.5c).

Transient CAPs in elderly subjects

To reveal transitory mPFC co-activation patterns, which may remain hidden in average analyses, we

temporally clustered all extracted scans of elderly subjects into several CAPs. Based on a comparison of

the reproducibility of the CAPs to a surrogate dataset under the stationarity assumption, we identified
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Figure 6.5 – Average mPFC-CAP in (a) young and (b) older subjects. (c) Significantly more co-activated voxels in
younger subjects (FWE-corrected p-value <0.05). There were no significantly less co-activated voxels in younger
subjects. Slices at z = [-26 -14 -2 10 22 34 46].

Figure 6.6 – (a-e) 5 reproducible CAPs were observed in older subjects: (a) and (b) strongly resemble the DMN, (c)
includes orbitofrontal cortex and frontal pole, (d) superior regions of the DMN, and (e) primary motor and visual
areas. The percentages of occurrences are indicated in the upper left corner. Slices at z = [-26 -14 -2 10 22 34 46],
CAPs are ordered by percentage occurrence, indicated next to the colorbar. Within-cluster similarity is indicated
below the percentage occurrence.

5 reproducible CAPs. The transient CAPs showed striking differences (Fig. 6.6, sorted by decreasing

occurrence): The first two CAPs strongly resembled the DMN. Specifically, they both showed co-
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Figure 6.7 – Occurrence rate of the CAPs in elderly and young subjects. CAP 6 contains scans, which were too far
from any CAP identified in old subjects. Errorbars indicate standard deviation, p values are corrected for multiple
comparisons and after controlling for mean FD. The dashed line indicates equal occurrence of all CAPs (20%).

activation of posterior midline, inferior parietal, medial temporal and parahippocampal regions. In

addition CAP 1 included the thalamus, caudate and orbitofrontal cortex (OFC); and CAP 2 the Rsp,

HF and PHC. Both CAPs also showed weak deactivations covering the postcentral gyrus and occipital

cortex. The remaining CAPs differed markedly. CAP 3 covered extensive frontal areas, including the

middle (MFG) and superior frontal gyrus (SFG), frontal pole and anterior insula, and extending into

the middle cingulate cortex. This CAP was largely devoid of temporal areas. CAP 4 included posterior

midline and parietal but not temporal DMN regions, as well as the mPFC and MFG. The strongest

contributions in CAP 5 were from visual and motor cortices.

Next, we estimated the occurrence of these CAPs in the young subjects by assigning their scans

to the closest CAP (7.5% of the scans remained unassigned because they were too far from any CAP).

Percentages of occurrence for each CAP are shown in Fig. 6.7. The mPFC co-activated with other DMN

regions a majority of the time in young subjects (CAPs 1 and 2 together occurred 52% of the time) and

the occurrence of CAP 2 was significantly increased in young subjects (mean ± SD occurrence 39.0±
13.8%,23.5±14.8% in young and old subjects, respectively, Cohen’s d = 0.73, p = 0.02). In contrast, the

occurrences of CAPs 3 and 4 were significantly reduced in young subjects (CAP 3: 8.9±6.8%,21.1±11.0%,

Cohen’s d =−0.90, p = 0.001; CAP 4: 5.9±4.0%,17.5±13.3%, Cohen’s d =−0.75, p = 0.001). Additional

results obtained by temporally clustering the extracted scans of the young subjects confirmed that

the CAPs of young subjects strongly resembled the DMN, that the motor-visual CAP was preserved,

and that the two frontal CAPs had poor correspondence (Fig. E.1). While CAP 4 in young subjects also

showed co-activation of the insula and prefrontal areas, it additionally included posterior regions of

the DMN.

Finally, we assessed whether there was a relationship between the occurrence rate of the different

CAPs in individual subjects and memory. The percentage occurrence of CAP 3 was significantly

negatively correlated with memory retention (r =−0.50, p = 0.0027, survives Bonferroni correction for

multiple comparisons, Fig. 6.8). The number of extracted scans and the occurrence of the other 4 CAPs

did not correlate with memory.
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Figure 6.8 – (a) Percentage occurrence of CAP 3 plotted against memory and regression slopes for the correlation.
(b) Same as (a) after controlling for age, mean FD and GM density in the seed. r is Pearson correlation coefficient
and p value is indicated between brackets.

6.4 Discussion

Our study revealed that transient CAPs of the mPFC are linked to age and episodic memory. First, the

occurrence of CAP 2 was decreased in older adults. This pattern resembled the DMN and included

the HF and PHC, which are important in episodic memory processing. Second, the occurrence of two

patterns, which were rarely observed in younger adults and notably devoid of temporal regions of the

DMN, was increased. Third, the occurrence of a CAP with prominent contribution of prefrontal areas in

individual subjects significantly predicted worse performance in a memory task. Our findings suggest a

selective and detrimental decline in spontaneous activation of DMN regions with the mPFC in healthy

aging and provide new evidence on the functional relevance of dynamic interactions in the human

brain.

Average and transient functional interactions of the mPFC in older adults

Average CAPs reliably identified the DMN: PCC, AG, MTL and PHF all co-activated with the mPFC.

Hippocampal and more extensive parahippocampal contributions were apparent in young adults.

Multiple distinct patterns of brain activity contributed to this "canonical" DMN, as revealed by temporal

clustering. Two out of five CAPs still strongly resembled the DMN but they differed in the involvement

of limbic structures. Notably (i) the thalamus and caudate, and (ii) HC and PHF appeared in CAPs 1

and 2, respectively. This split is consistent with previous results from large groups of young healthy

subjects (Liu & Duyn, 2013; Liu et al., 2013). In the first study, the authors focused on the PCC, the other

major DMN hub. Among 8 CAPs, the first two were most similar to the DMN and differed by the same

regions as in our study. In the second study, the authors temporally clustered all scans instead of only

those with supra threshold signal in a seed region. Among 30 CAPs, four resembled the DMN, which

again differed by the involvement of the HC, PHF and caudate. In both studies, there were CAPs with a

stronger involvement of either the HC or PHF, a subdivision we did not observe in either young or older

adults. This difference could be related to the smaller number of subjects, the choice of seed, or the

smaller number of CAPs we estimated. CAP 4 exclusively included superior regions of the DMN (PCC

and AG) and was accompanied by a more general increase in prefrontal activity.

The other two CAPs revealed transient interactions with motor and visual cortices (CAP 5) and

bilateral insulae and prefrontal areas (CAP 3). Liu & Duyn (2013) also observed co-activation of the PCC

with motor and visual areas (in distinct CAPs), but, interestingly, such transient interactions were not
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apparent in the exploratory whole-brain study (Liu et al., 2013). Thus, our results are largely consistent

with previous findings and confirm that different DMN-related CAPs occur and that, at least when

using the seed-based approach, transient interactions of the DMN with other brain systems are also

identified.

Age effects on functional interactions

In our study, age differences in the average CAP were mainly located in the temporal lobe (HF, PHC,

MTL, temporal pole), midline parietal (Rsp) and inferior parietal cortex. This is largely consistent with

previous studies, although we did not see an age effect in the posterior cingulate cortex (Andrews-

Hanna et al., 2007; Ferreira & Busatto, 2013).

Reduced functional interactions within the DMN have been interpreted as a disruption of the DMN

in healthy aging, but our analysis of transient functional interactions suggests a different interpretation:

The DMN is intact, as it can be fully recovered by temporal clustering of the fMRI data, but older

adults engage one of two DMN-related CAPs less frequently than young adults. This CAP had strong

contributions of regions that showed significant average effects of age (compare Figs. 6.5c and 6.6b).

Two other patterns of interactions with a heavy bias for prefrontal areas were significantly overexpressed

in older adults. Differences in the percentage occurrence of these three CAPs persisted after correcting

for GM density and head movement during the scan. Thus, these results suggest that the disruption of

average functional interactions of the DMN is – at least partly – explained by reduced and increased

occurrences of different transient functional interactions.

Functional relevance of transient interactions

What is the functional significance of transient interactions of the mPFC? The mPFC is a core region of

the DMN, which is thought to be involved in internally oriented cognition, such as mental simulation

and self-relevant decisions (Buckner et al., 2008; Andrews-Hanna et al., 2010), and it is also part of

a network of regions engaged in episodic memory retrieval, which includes the HC, Rsp, PCC, and

AG (Vincent et al., 2006; Kim, 2010; Rugg & Vilberg, 2013). The main role of the mPFC is thought to

be in self-referential processes and context learning (Cabeza & St Jacques, 2007; Euston et al., 2012;

Rugg & Vilberg, 2013). How sensory, motor and emotional systems contribute information to these

processes is not yet understood, but Buckner et al. (2008) suggested that transient interactions of

DMN regions could serve just that purpose. Notably, in accordance with this hypothesis, the mPFC

transiently interacted with both sensory and motor regions (CAP 5 in older and CAPs 3 and 5 in young

adults, where we refer to Fig. E.1 for the number of the CAPs of young adults) and regions involved

in salience processing (CAP 3 in older and CAPs 4 and 6 in young adults). Puzzlingly, and as already

mentioned above, the PCC also transiently interacts with these systems, but whole-brain exploratory

analyses did not reveal them (Liu & Duyn, 2013; Liu et al., 2013).

While these transient interactions with other brain systems persist across age, their topology is

modulated, as evidenced for example by the reduced co-activation of posterior DMN regions (compare

CAP 3 of older and CAP 4 of young adults), and their temporal occurrence is disturbed with some

transient interactions losing in importance and others gaining (as discussed above). The percentage

occurrence of the frontal/insular CAP not only showed a significant effect of age, but it also significantly

negatively correlated with performance in an episodic memory task in older adults. These findings
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suggest a link between age-effects on dynamic network interactions and memory decline in healthy

aging.

What could the functional significance of the increased occurrence of the insular/frontal CAP be?

One explanation could be that the over-expression of these interactions is a trace of maladaptive over-

recruitment of prefrontal areas during tasks. Over-recruitment of brain areas is commonly interpreted

as a compensatory mechanism, but when not accompanied by better performance on a task, it may

indicate inefficient use of neural resources or "dedifferentiation" of functional specialization (Grady,

2012). For example, increased prefrontal activity during memory encoding and retrieval correlated

with worse memory performance in two recent studies (de Chastelaine et al., 2011; Persson et al., 2011).

Alternatively, increased spontaneous activity of this CAP could interfere with (hippocampal-dependent)

learning of associations between novel input and context in the mPFC. The neocortex is generally

thought to play an important role in memory only after longer delays, but Euston et al. (2012) for

example recently suggested an early role for the mPFC in representing context and guiding behavior.

Given the available data, these explanations remain speculative.

Methodological considerations

Tagliazucchi et al. (2012) and Liu & Duyn (2013) only selected scans with above-threshold BOLD

signal in their region of interest and Liu et al. (2013) suggested that above and below threshold signal

fluctuations contained different information. In the present study we combined the information

from above- and below-threshold signal fluctuations because the average CAPs of above- and below-

threshold signal were very similar and because this allowed us to approximately double the number

of scans available for the clustering step. Because we focused our analysis on the CAPs of a region of

interest, we could flip the sign of the scans where its BOLD signal was below threshold. This would

not be possible in the whole-brain exploration of CAPs (Liu et al., 2013) as all scans are retained for

the clustering step. The advantage of the whole-brain analysis is that no seed region must be defined

a priori. Here, based on extensive previous reports of a preferential anterior-posterior age-effect on

the DMN and the importance of the mPFC in memory, we chose to focus our analysis on its CAPs.

However, we already noted similarities between our results and the whole-brain analysis of Liu et al.

(2013) above.

While Liu & Duyn (2013); Liu et al. (2013) chose the number of CAPs based on a visual comparison

of results obtained with different numbers of clusters, we tackled this issue by estimating the repro-

ducibility of the CAPs in repeated 2-fold cross-validations and by comparing it to surrogate data. This

data-driven selection identified 5 reproducible CAPs and provided a more principled way to choose k.

We also note that 5 appears to be a reasonable number given the available data. Of each subject’s 234

scans, on average 55 were retained for temporal clustering, of which on average 13 were assigned to the

most frequently occurring CAP and 8 to the least frequent one. If the number of CAPs were much larger,

then even fewer scans or even zero scans for some subjects would be used for the estimation of the

CAPs. Thus, the proposed cross-validation procedure appears to provide a reasonable estimate of the

number of CAPs.

A further concern in the analysis of functional interactions, and even more so in the analysis of

transient interactions, is head movement. While the young and old adults included in this study did

not differ in root-mean-square displacement, they did differ in frame-wise displacement. To address

this confound, we excluded all subjects with excessive head motion (mean displacement > 1 mm,
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maximum translation or rotation > 3 mm or 3◦, respectively, or mean FD > 0.5 mm); and corrected for

mean FD in all analyses. Similarly, we controlled for differences in GM density in the mPFC. As our

results were robust to correction for mean FD and GM, we argue that it is unlikely that our results can

be explained by differences in head movement or GM volume.

Lastly, we note that we cannot exclude that some older adults suffered from preclinical Alzheimer’s

disease as no PiB-PET scans were available.
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FUNCTIONAL BRAIN NETWORKS estimated from fMRI data are increasingly viewed as dynamic and

flexible networks, where regions take part in multiple subnetworks across time. Instead of a unique

functional role, a brain region may thus have multiple functions depending on its instantaneous pattern

of interactions. In this dissertation we explored multiple approaches aimed at revealing underlying

structure of dynamic brain networks and understanding the functional relevance of these dynamic

interactions. We summarize our main findings and mention potential future research directions.

7.1 Summary

FC pattern extraction via matrix factorizations. We have proposed to identify groups of co-varying

connections by combining sliding-window correlation analysis with PCA and gCCA of a connections ×
windows matrix. First, by comparing PCA of dFC during rest to that of surrogate data with random-

ized fluctuations, we showed that groups of co-varying connections exist. The identified FC patterns

revealed meaningful functional clusters of connections and their altered expression in patients with

multiple sclerosis suggested a functional relevance. Second, we showed that gCCA, which emphasizes

similarity across subjects, extracts similar information as PCA. Next, we compared matrix decomposi-

tions under various constraints in the temporal domain to understand whether dynamic networks are

better characterized by the sole expression of a single FC pattern (temporal clustering) or the combined

expression of several FC patterns (PCA). Our results from a group of young, healthy adults suggested

that temporal clustering reliably identifies FC patterns, but that their joint, rather than exclusive expres-

sion, better represented dynamic networks during rest. We used 1-minute-long sliding windows for the

estimation of dynamic networks and identified three different FC patterns that reliably occurred across

independent split-half data sets. Our results indicated that networks involved in cognitive control

contributed to changes in FC over time.

Graph wavelet transform and task-related network changes. We developed a new framework

based on a tensor decomposition to define wavelets on dynamic networks. Graph wavelets respect

the underlying topology of the network and are localized to a subset of the network as opposed to

matrix decompositions. We showed that the tensor decomposition successfully uncovered network

correlates of cognitive states in young, healthy subjects who alternated between resting and watching

short movie excerpts. However, while brain graph wavelets revealed co-activations at multiple spatial
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scales, this representation did not improve the detection of task-rest transitions. We have already

discussed potential future research directions at the end of Chapter 5, including multi-scale analyses of

brain networks (instead of brain activity) and alternative brain network definitions.

Estimation of rank-one FC patterns via temporal clustering. Because of limitations inherent to

the sliding-window correlation analysis, such as a minimum window lengths of 30-60 seconds and

noisy correlation estimates, we simplified the estimation of FC patterns by approximating them by

rank-one matrices. This makes it possible to directly estimate these patterns from BOLD activity, which

avoids the calculation of sliding-window correlations. Several authors recently proposed techniques

to identify patterns of brain activity, driven by constraints in the temporal rather than spatial domain.

Given the availability of promising methods, we here applied a minimally tweaked version of Liu et

al.’s (2013) simple and easy to interpret method. We estimated CAPs by temporally clustering brain

activity into distinct patterns and assessed age-related changes. Our results suggest an alternative

interpretation of previous reports of disrupted functional interactions between regions of the DMN.

Specifically, we demonstrated that healthy older adults have an intact DMN, but that it is engaged less

frequently than in young adults. Furthermore, two CAPs occurred more frequently in older adults and

one of them was associated with impaired memory.

7.2 Outlook

Alternatives to temporal clustering. K-means clustering of brain activity is attractively simple and

performed very well for dFC. We here did not explore the temporal expression of the CAPs in depth,

but a gradual, instead of an on-off, expression, would seem intuitive, too. Instead of "debinarizing"

the weights obtained from k-means clustering as we did in Chapter 4, the non-exclusive, time-varying

and non-negative expression of CAPs could also be explored by using generalizations of k-means

clustering that "soft" instead of "hard" assign each data point to a cluster. Soft (or fuzzy) clustering and

Gaussian Mixture Models (GMMs) assign each fMRI scan to a cluster with a strength (or probability)

between 0 and 1 and each scan thus belongs to all clusters with some strength. GMM is a more

formalized approach than soft clustering and (as the name suggests) models the data as a mixture of

multivariate Gaussian components, which are each defined by their mean µk ∈ RN and covariance

matrix Σk ∈RN×N . In k-means clustering µk is estimated by averaging all scans assigned to cluster k.

In the "soft" approaches, µk and Σk (GMM only) are estimated after weighting each scan by its strength

of belonging to component k. Note, however, that the "distance function" in GMM, one minus the

probability p(ct |k) = 1p
(2π)N det(Σk )

exp
(− 1

2 (ct −µk )TΣ−1
k (ct −µk )

)
, where det stands for determinant,

resembles the Euclidean distance more than one minus the correlation, coming with the caveats

mentioned in Chapter 6. Soft clustering and GMMs, while having a weighted assignment, will still favor

sparse solutions because their aim is to partition the data into several groups.

Having multiple CAPs contributing at each instant in time can also be understood as approximating

FC patterns by low-rank matrices instead of rank-one matrices. Thus, more complex patterns of

interactions could be modelled. These, more complex interaction patterns, are directly modelled in

a GMM in Σk . (K-means and soft clustering model the covariance matrices of all clusters identically,

that is Σk = σ2I, where I is the identity matrix. Even if, as an alternative, we interpreted µk ⊗µk as

rank-one approximations of network patterns in Chapter 6.) The challenge here, however, is the low

temporal but high spatial resolution of fMRI. As a workaround, Eavani et al. (2013) parcellated the
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brain into 160 regions and imposed a low-rank structure on the covariance matrices. Specifically,

they modelled Σk as a weighted sum of a few (L) rank-one matrices: Σk ≈ ∑L
l=1 wkl dl ⊗dl , where

wkl is a positive weight, and dl a vector (a CAP). The final goal was to identify K network states with

distinct covariance structure and to achieve that they integrated the (constrained) estimation of Σk

in a Hidden Markov Model (HMM). A HMM estimates "hidden states" (the Gaussian components)

and additionally models temporal dependence (i.e., given the current state, some states are likelier to

occur next than others). A network state sequence was obtained by hard assigning each fMRI scan

to one state. The authors further imposed spatial sparsity on dl and assumed that L = K rank-one

matrices serve as a basis for K unique network states. Each network state k was then defined by a

unique combination (wk1, wk2, . . . , wkL) of the shared rank-one matrices. A HMM with a low-rank

approximation of Σk is related to approximating each fMRI scan by several CAPs but is more restrictive

and complex. Additionally, if we assume that multiple CAPs contribute with varying strengths over

time, no explicit network states may exist (which would be in accordance with our resting-state results

from Chapter 4).

Alternatively, temporal ICA has been proposed to identify groups of regions with similar temporal

dynamics (Smith et al., 2012). Temporal ICA, however, needs data acquired with short sampling rates

and imposes temporal statistical independence, which lacks a biological foundation and may be too

restrictive if there are temporal relationships among several groups of regions. Smith et al. (2012)

suggested that relaxations of temporal independence may prove interesting, but, because they saw

no evidence of sparsity in the time courses, they suggested that temporal sparsity (such as imposed

by clustering or k-SVD) may not be a practical constraint. However, two observations contradict

this idea. First, we and Liu & Duyn (2013) identified meaningful functional patterns with k-means

clustering. Second, our simulations in Chapter 4 showed that the time courses did not directly indicate

the underlying sparsity of the data because sparse data generations also led to non-sparse time courses.

When modelling dFC the positivity constraint of k-means clustering was potentially beneficial as it

differentiates between FC strengths above and below average FC. When analyzing brain activity though,

excursions above and below average can represent identical co-activation patterns. This is implicitly

assumed by ICA and also motivated our choice to flip the signs of scans with mPFC deactivations in

Chapter 6. It may thus be possible that matrix factorizations that do not constrain the time-dependent

weights to be positive, or k-means clustering with one minus absolute correlation as a distance function,

lead to interesting solutions when analyzing transient patterns of functional interactions in fMRI BOLD

data.

Thus, new models that avoid the complexity and constraints of a GMM/HMM or temporal ICA,

but that can explicitly and robustly model joint expression of multiple CAPs would be valuable future

contributions.

Network-based alternatives. The methods discussed in the previous section impose a constraint

in the time domain. Here, we discuss two alternatives that impose constraints in space, but allow

more overlap than spatial ICA. The first one is "network component analysis" (Liao et al., 2003). This

method aims to exploit information on the network structure when solving C ≈ DA, instead of imposing

purely statistical constraints, such as orthogonality or independence. The algorithm starts from an

approximate a priori network structure D0, which is further modified during the joint estimation of D

and A. As the study dynamic patterns of brain activity is only in its early days, we may however not

yet be able to specify appropriate networks a priori. Structural networks and variants thereof may be

interesting in this regard though, because they are thought to shape functional interactions.
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Chapter 7. Conclusion and perspectives

The second approach is a variant of community detection. Communities in networks are commonly

defined as groups of nodes that are particularly strongly connected to each other, but not with nodes

of different communities. Such a separation into distinct groups of nodes excludes overlap. To allow

overlap, Ahn et al. (2010) proposed to define communities as groups of connections, instead of groups

of nodes. The method is based on a simple similarity measure between connections and hierarchical

clustering. Schaefer et al. (2014) explored this approach and identified multi-network hubs, whose dFC

revealed variable integration into these networks over time.

Denoising and deconvolution. FMRI data is noisy, which poses a significant challenge for all

unsupervised learning methods, such as PCA, ICA or temporal clustering. Recently proposed methods

that denoise the data and "undo" the hemodynamic blur to identify underlying transient events are

interesting preprocessing strategies (Petridou et al., 2013; Karahanoğlu et al., 2013; Wu et al., 2013) with

initial promising results (Karahanoğlu & Van De Ville, 2014).

Subject-specific CAPs. If atk was not binary, it might also be possible to estimate subject-specific

CAPs, similar to dual regression commonly employed with ICA (Beckmann et al., 2009). The estimation

of subject-specific spatial maps in ICA made it possible to localize changes in space by comparing

the maps of different subject populations. While we could in principle also do this with binary atk ,

every scan would contribute to only a single CAP. Thus, every subject-specific CAP would be estimated

from very few scans and the results likely very noisy. Therefore, we instead compared the temporal

occurrence of each CAP, which narrows changes down to whole-brain CAPs, but not further.

7.3 Functional relevance of flexible functional interactions

Much of what we know about the significance of spontaneous activity and average functional inter-

actions stems from examining their cognitive consequences, as reviewed in introductory Chapter 2.

From a general point of view transient patterns of interactions fit well with the view of a dynamic,

continuously adapting brain. The influence of prestimulus brain activity on human behavior, as for

example demonstrated by Hesselmann et al. (2008) and Sadaghiani et al. (2009), already pointed to the

functional relevance of instantaneous functional interactions. The study of spontaneous fluctuations

in functional interactions per se was kicked off by the observation of strong spontaneous variability of

FC within the DMN over time by Chang & Glover (2010), a finding that has since been replicated and

extended to other networks. Are these fluctuations real and how do they relate to human behavior?

Two lines of evidence indicate that experimentally observed network dynamics are real and not

simply a result of scanner or physiological noise or, even worse, of the analysis pipeline. First, transient

interactions track experimental manipulations, as demonstrated by Gonzalez-Castillo et al. (2013) and

in Chapters 4 and 5. Importantly, as the timing of changes in a subject’s cognitive states are known to

the experimenter, fluctuations in interactions can be compared to it and these studies indicate that

real fluctuations can be picked up. Second, several authors have compared dynamic interactions to

simultaneous physiological and electrophysiological recordings, such as the heart rate or neural activity

(Chang et al., 2013b,a; Allen et al., 2013; Preti et al., 2014). Specifically, Chang et al. (2013b) reported

a relationship between heart rate variability and dFC of several brain regions related to arousal and

vigilance. Given the enhanced concerns about noise and motion contributions for dynamic analyses,

these studies provide important validations. Current results are preliminary but suggest that, at least

for some dynamic interactions, physiological and neural underpinnings exist.
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7.4. Le mot de la fin

To better understand the functional relevance of network dynamics, several studies have aimed

to assess their relationship with individual differences in human behavior. Accumulating evidence

suggests that transient functional interactions are sensitive measures and can provide novel insights

into psychiatric and neurological disorders and aging, as studied in Chapters 3 and 6 and reviewed

in Hutchison et al. (2013a). Notably, altered dynamic properties may explain some of the differences

observed between healthy subjects and patients in traditional, average analyses. Liu & Duyn (2013)

reported that transient interactions differ between males and females and we showed in Chapter 6 that

they predict individual differences in memory. Unfortunately, no dynamic behavioral correlates are

currently available to which fluctuations during rest could be compared.

The purpose of spontaneous activity itself is still debated and so is that of spontaneous network

reorganizations. The occurrence of dynamic interactions in anesthesized rats and monkeys (Majeed

et al., 2011; Hutchison et al., 2013b) suggests that network dynamics are not purely a result of conscious,

cognitive processing and it would be interesting to know how networks dynamics are altered in sleep or

unconsciousness in humans. Sporns (2013) proposed that network dynamics are an intrinsic property

of the brain, which serves to explore possible functional interactions.

7.4 Le mot de la fin

Dynamic brain networks are a relatively new topic of research. Early evidence from us and other groups

suggests that dynamic analyses can provide insights into the brain’s organization and its reorganization

across the lifespan and in disease, which are invisible in traditional analyses. The view of the brain as a

continuously changing network, rather than as a static one, is also intuitive. Much work remains to be

done, however, in particular about the cognitive consequences of specific dynamic interactions and

how average and dynamic analyses are best combined to complement each other. Methodological

concerns persist (Handwerker et al., 2012; Smith et al., 2012; Hutchison et al., 2013a, and see also our

discussion in Appendix C). While spatial ICA and seed correlation analysis have become standard tools

to study average brain networks during rest, there is currently a bewildering wealth of approaches to

study network changes during rest (e.g. Kiviniemi et al., 2011; Kang et al., 2011; Majeed et al., 2011;

Hutchison et al., 2013b; Liu & Duyn, 2013; Li et al., 2014; Leonardi et al., 2013; Eavani et al., 2013; Allen

et al., 2014). Based on the findings in this thesis, we conclude that sliding-window correlations are

a simple tool – that kicked off the field – and that can highlight whole-brain changes in FC. If data

can be acquired with a short TR or if slow changes in network topology are of main interest, they can

provide rich information that can be exploited with the help of multivariate statistics. If faster network

reconfigurations are of interest, low-rank approximations that work directly in "activity" instead of

in "connectivity" space may be more interesting, even if they constrain the network structures to be

simpler. Finally, the development of standard analysis pipelines will be key to identify consistent results

across different datasets and research groups.
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A Supplementary material for Chapter 3

Figure A.1 – Average dynamic FC strength across time and separated for (a) HC subjects, (b) RRMS patients.

Figure A.2 – Plot of the eigenvalues λ1,λ2, ...,λ3828 (blue), cumulative explained variance (green), 95th percentile
of maximum eigenvalue in phase-randomized data (n = 100, corresponding to a corrected significance level of
5%), and selected cut-off based on sample size (black).
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Appendix A. Supplementary material for Chapter 3

Number (L - R) Region name Lobe

1-2 Precentral gyrus (PreC) Central
3-4 Superior frontal gyrus (SFG) Frontal
5-6 Superior frontal gyrus (SFGorb), orbital Frontal
7-8 Middle frontal gyrus (MFG) Frontal
9-10 Middle frontal gyrus (MFGorb), orbital part Frontal
11-12 Inferior frontal gyrus (IFGoper), opercular part Frontal
13-14 Inferior frontal gyrus (IFGtri), triangular part Frontal
15-16 Inferior frontal gyrus (IFGorb), orbital part Frontal
17-18 Rolandic operculum (RolOp) Central
19-20 Supplementary motor area (SMA) Frontal
21-22 Olfactory cortex Frontal
23-24 Superior frontal gyrus (SFG), medial Frontal
25-26 Superior frontal gyrus (SFG), dorsolateral Frontal
27-28 Gyrus rectus (Rect) Frontal
29-30 Insula
31-32 Anterior cingulate gyrus (ACC) Limbic
33-34 Middle cingulate gyrus (MCC) Limbic
35-36 Posterior cingulate gyrus (PCC) Limbic
37-38 Hippocampus (HG) Limbic
39-40 Parahippocampal gyrus (PAG) Limbic
41-42 Amygdala Limbic
43-44 Calcarine cortex Occipital
45-46 Cuneus Occipital
47-48 Lingual gyrus Occipital
49-50 Superior occipital gyrus (SOG) Occipital
51-52 Middle occipital gyrus (MOG) Occipital
53-54 Inferior occipital gyrus (IFG) Occipital
55-56 Fusiform gyrus Occipital
57-58 Postcentral gyrus Central
59-60 Superior parietal gyrus (SPG) Parietal
61-62 Inferior parietal gyrus (IPG) Parietal
63-64 Supramarginal gyrus (SupMarg) Parietal
65-66 Angular gyrus (Ang) Parietal
67-68 Precuneus (PreC) Parietal
69-70 Paracentral lobule (ParaCen) Frontal
71-72 Caudate Subcortical
73-74 Putamen Subcortical
75-76 Thalamus (Thal) Subcortical
77-78 Heschl’s gyrus Temporal
79-80 Superior temporal gyrus (STG) Temporal
81-82 Superior temporal pole (STP) Temporal
83-84 Middle temporal gyrus (MTG) Temporal
85-86 Middle temporal pole (MTP) Temporal
87-88 Inferior temporal gyrus (ITG) Temporal

Table A.1 – Region number (left - right), name (abbreviation) and lobe defined in the AAL atlas
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Connection between ... and ... Cohen’s d (corrected p value)

R precentral gyrus (2) R IFG (54) 2.1 (0.01)
L mid frontal (7) R MTP (86) 2.0 (0.02)
R IFG, triangular part (14) L insula (29) 2.0 (0.03)
R medial SFG (24) R rolandic operculum (18) 2.1 (0.01)

L rectus gyrus (27) 2.0 (0.02)
L dorsolateral SFG (25) R cuneus (46) 2.2 (0.01)
R dorsolateral SFG (26) R MFG, orbital part (10) 1.9 (0.04)

R SFG, medial (24) 2.4 (0.003)
R thalamus (76) 2.6 (0.002)

L MCC (33) R cuneus (46) 2.0 (0.04)
L SOG (49) 2.0 (0.04)

R MCC (34) L IFG, opercular part (11) 1.9 (0.04)
R PCC (36) L IFG, orbital part (15) 2.0 (0.04)
L amygdala (region 41) inferior occipital (53,54) 2.1 (0.02),2.8 (< 0.001)

fusiform gyrus (55,56) 2.4 (0.004),2.0 (0.02)
postcentral gyri (57,58) 2.4 (0.005),2.1 (0.02)
L supramarginal gyrus (63) 2.2 (0.01)
L angular gyrus (65) 2.0 (0.03)
R STP (82) 2.0 (0.03)

Table A.2 – Connections with different average FC strength between HC subjects and RRMS patients

Subject Max head motion [◦/mm] Mean FD [mm] Mean D [mm]

1 0.70◦ 0.13 0.03
2 1.30 mm 0.15 0.04
3 0.89◦ 0.17 0.08
4 1.30 mm 0.16 0.06
5 0.77 mm 0.19 0.08
6 0.77 mm 0.11 0.04
7 0.73 mm 0.22 0.07
8 0.32 mm 0.13 0.04
9 0.57◦ 0.19 0.07
10 0.68 mm 0.13 0.03
11 0.28 mm 0.13 0.04
12 1.1 mm 0.16 0.05
13 1.4◦ 0.15 0.05
14 0.58◦ 0.14 0.04
15 0.66◦ 0.16 0.05
16 0.46 mm 0.11 0.04
17 0.56 mm 0.10 0.03
18 0.68 mm 0.12 0.03
19 0.28 mm 0.20 0.04
20 0.50◦ 0.16 0.06
21 0.74 mm 0.12 0.05
22 0.36 mm 0.24 0.07
23 0.58◦ 0.13 0.03
24 0.24 mm 0.14 0.02
25 1.50 mm 0.22 0.09
26 0.87 mm 0.23 0.09
27 0.77 mm 0.10 0.04
28 0.42◦ 0.12 0.06

Table A.3 – Summary of subject motion. The second column lists the largest head motion parameter among the 6
parameters. Note that the first column lists absolute displacement while columns 2 and 3 list relative displacement
between adjacent volumes.
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Appendix A. Supplementary material for Chapter 3

Figure A.3 – Time-dependent weights of eigenconnectivities 2−10 for all subjects. Weights of eigenconnectivity 1
are not shown because it has a larger range than the others. Subject 6 is the one shown in the main manuscript,
subjects 1-13 are HC subjects, 14-28 RRMS patients (separated by dashed line).
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Figure A.4 – (a-d) Eigenconnectivities estimated using different window lengths. Note that the sign is essentially
arbitrary, i.e., similar connectivity patterns that change from red to blue color for different window lengths encode
similar information. (e-f) Eigenconnectivities estimated from phase randomized activity time courses with (e) and
without (f) row-wise demeaning of each subject’s dynamic FC matrix. Data matrix concatenated across time- and
subject as for the original data. Colorbars are symmetric around zero
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B Supplementary material for Chapter 4

Figure B.1 – (a) FC patterns used to generate the simulated data, averaged across subjects and for a "good" and
"bad" subject. (b) Time courses with sparsity parameters S = 1 or S = 3 for an example subject. Final data for
each subject was generated by multiplying the vectorized patterns with their associated time courses and adding
Gaussian noise.
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C Spurious and real fluctuations in

sliding-window correlations
C.1 Journal article

Submitted to: NeuroImage

On spurious and real fluctuations of dynamic func-
tional connectivity during rest

Nora Leonardi,1,2 and Dimitri Van De Ville1,2

1 Medical Image Processing Lab, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL),

Lausanne, Switzerland; 2 Medical Image Processing Lab, Department of Radiology and Medical Informatics,

University of Geneva, Geneva, Switzerland

Functional brain networks reconfigure spontaneously during rest. Such network dynamics can be

studied by dynamic functional connectivity (dynFC); i.e., sliding-window correlations between re-

gional brain activity. Key parameters—such as window length and cut-off frequencies for filtering—

are not yet systematically studied. In this letter we provide the fundamental theory from signal

processing to address these parameter choices when estimating and interpreting dynFC. We guide

the reader through several illustrative cases, both simple analytical models and experimental fMRI

BOLD data. First, we show how spurious fluctuations in dynFC can arise due to the estimation

method when the window length is shorter than the largest wavelength present in both signals,

even for deterministic signals with a fixed relationship. Second, we study how real fluctuations

of dynFC can be explained using a frequency-based view, which is particularly instructive for sig-

nals with multiple frequency components such as fMRI BOLD, demonstrates that fluctuations in

sliding-window correlation emerge by interaction between frequency components similar to the

phenomenon of beat frequencies. We conclude with practical guidelines for the choice and impact

of the window length.

Introduction

Functional magnetic resonance imaging (fMRI) has become a key tool to probe the large-scale or-

ganization of the brain. Functional connectivity (FC), which is estimated by correlation of BOLD
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Appendix C. Spurious and real fluctuations in sliding-window correlations

activity, identifies coherent brain activity in distributed and reproducible networks. FC has revealed

reorganization of brain networks during cognitive tasks (Lewis et al., 2009; Richiardi et al., 2011; Shirer

et al., 2012; Ekman et al., 2012), but also at rest (Chang & Glover, 2010; Majeed et al., 2011; Kang et al.,

2011; Allen et al., 2014; Smith et al., 2012; Hutchison et al., 2013b; Leonardi & Van De Ville, 2013b). To

study changes in FC over time sliding-window correlation analysis, where the correlation is estimated

for brain activity during multiple, possibly overlapping temporal segments (typically 30-60 seconds),

has been widely deployed (Chang & Glover, 2010; Allen et al., 2014; Hutchison et al., 2013a). A caveat of

analyzing dynamic FC (dFC) by sliding-window correlation is that the small number of time points

renders the estimates unreliable and might lead to spurious variability of dFC (Smith et al., 2012;

Hutchison et al., 2013a). However, there is no systematic account that perspeciously indicates the

trade-off that is made by choosing the window length, and its implications for filtering of BOLD activity

time series and dFC itself.

We first break sliding-window correlation into several components to facilitate its study. Then,

we present a simple yet instructive analytical model to study the emergence of spurious variability

of dFC in stationary signals. In particular, we investigate the influence of various parameters such as

frequency, phase lag, and window length. Next, we introduce a small change to our analytical model to

study how real variability of dynFC due to non-stationarity might arise. To provide the best possible

insights for signals with many frequency components, we present a frequency-based view on dynFC.

This provides an elegant explanation of how fluctuations of dynFC emerge through the interaction

between different frequency components. Finally, we illustrate dynFC between two main regions of the

default-mode network with experimental fMRI data.

Breaking down sliding-window correlations

We start by reformulating sliding-window correlation into simpler terms. In particular, we first look at

sliding-window covariance, which for two time series x and y with sampling period TR is defined as

follows at scan n:

cx y [n] = cov(x[n −∆,n +∆], y[n −∆,n +∆]) = TR

w

n+∆∑
i=n−∆

(xi − x̄n)(yi − ȳn), (C.1)

where w = (2∆+1)TR is the odd window length in seconds, i sums only over the scans inside the

window, and

x̄n = TR

w

n+∆∑
i=n−∆

xi

is the local average inside the window at position n. This calculation is then repeated for all values of n

(“sliding" the window across time). After some elementary manipulations, we arrive at the following

equality:

cx y [n] = TR

w

n+∆∑
i=n−∆

(xi − x̄n)(yi − ȳn) = TR

w

n+∆∑
i=n−∆

xi (yi − ȳn)−TR
x̄

w

n+∆∑
i=n−∆

(yi − ȳn)

(a)= TR

w

n+∆∑
i=n−∆

xi (yi − ȳn) = TR

w

n+∆∑
i=n−∆

xi yi − ȳn
TR

w

n+∆∑
i=n−∆

xi

= TR

w

n+∆∑
i=n−∆

xi yi︸ ︷︷ ︸
I

− ȳn x̄n︸ ︷︷ ︸
II

, (C.2)
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where (a) simplifies as the second term equals zero. Thus, cx y [n] can be separated into two terms,

which are the local average of the cross-product x y (I) minus the product of the local averages of x and

y (II).

The sliding-window correlation is then obtained by normalizing at each window by the local

variances:

ρx y [n] = cx y [n]√
cxx [n]cy y [n]

. (C.3)

Having identified the components that constitute sliding-window correlation, we can now analyze and

understand dFC more easily.

Spurious fluctuations in dFC

Effect of the window length

We want to understand how spurious fluctuations of dynFC might arise even for deterministic signals

with a fixed relationship; i.e., we consider two pure sinusoidal signals that are phase-locked. Specifically,

we take

xi =
p

2cos(2π f i TR), yi =
p

2cos(2π f i TR+θ), (C.4)

where the factor
p

2 normalizes both signals for variance equal to one per time unit. This normal-

ization makes the sliding-window covariance comparable to sliding-window correlation as a first

approximation; i.e., we have the asymptotic equivalence limw→∞ρx y [n] = cx y [n].

To investigate the influence of the key parameters frequency f , phase lag θ, and window length

w , we derive the analytical form of cx y [n] for the signals of Eq. (C.4). First, we approximate ȳn by

integration as follows:

ȳn = TR

w

n+∆∑
i=n−∆

p
2cos(2π f i TR+θ)

≈
p

2

w

∫ (n+∆)TR

(n−∆)TR
cos(2π f t +θ)d t

=
p

2

w

[
1

2π f
sin(2π f t +θ)

](n+∆)TR

(n−∆)TR

=
p

2

w2π f

(
sin(2π f (n +∆)TR+θ)−

sin(2π f (n −∆)TR+θ)
)

=
p

2

wπ f
cos(2π f nTR+θ)sin(2π f ∆TR).

On similar grounds, we also find x̄n =
p

2
wπ f cos(2π f nTR)sin(2π f ∆TR). Therefore, the second term

x̄n ȳn of Eq. (C.2) reverts to

x̄n ȳn = 2

w2π2 f 2 cos(2π f nTR)cos(2π f nTR+θ)sin2(2π f ∆TR).
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Appendix C. Spurious and real fluctuations in sliding-window correlations

To estimate the first term of Eq. (C.2), we use the product-to-sum trigonometric identity

2cos(2π f i TR)cos(2π f i TR+θ) = cos(4π f i TR+θ)+cos(θ),

which, after integration, leads to

cos(θ)+ 1

wπ f
cos(2π f nTR+θ)sin(2π f ∆TR).

By combining both terms, we retrieve the expression

cx y [n] = cos(θ)+ 1

wπ f
cos(2π f nTR+θ)sin(2π f ∆TR)−

2

w2π2 f 2 cos(2π f nTR)cos(2π f nTR+θ)sin2(2π f ∆TR). (C.5)

As a sanity check, we see that in the limit of stationary covariance (i.e., infinite window length), we

have

lim
w→+∞cx y [n] = cos(θ).

We now use this expression to efficiently trace cx y [n] as function of frequency f , phase lag θ,

window length w , and window position n. In Fig. C.1a, cx y [n] is plotted for f = 0.025Hz and zero phase

lag, as a function of window length w . The dashed lines are for different window positions n, and the

thick line corresponds to the mean c̄x y = E [cx y [n]]. We observe considerable fluctuations of cx y [n] for

short window lengths, and crossings with the true value (i.e., 1) exactly for multiples of the window

length because the term sin(2π f ∆TR) in Eq. (C.5) vanishes for 2∆TR = 1/ f . Importantly, only when

the window length is larger than the first crossing, which corresponds to the wavelength 1/ f = 40s,

fluctuations of cx y [n] diminish and converge to the true value of cos(θ).

The same observations can be made from Figs. C.1b and C.1c, where we plot c̄x y for various fre-

quencies, and the difference between maximal and minimal cx y [n] in Fig.C.1d. Spurious fluctuations

of cx y [n] occur when the window length is too short with respect to the underlying frequency compo-

nent. We propose the following rule of thumb for minimal window length when observing underlying

frequencies of fmin or higher:

w ≥ 1

fmin
.

Therefore, high-pass filtering that removes frequency components below 1/w can be recommended;

see also Smith et al. (2012) and Hutchison et al. (2013a) for similar recommendations. The cut-off

frequency fmin is indicated in Fig. C.1. It should be noted that these plots only depend on the window

length in seconds, not in TRs.

Sliding-window correlation ρx y (and its fluctuations) can be obtained by normalizing cx y [n] accord-

ing to Eq. (C.3). In the ideal case with zero phase lag, sliding-window correlation clamps to 1, however,

even a small phase lag is sufficient to introduce the same spurious fluctuations as we observed for

sliding-window covariance. In Fig. C.2, we plot sliding-window correlation and its extrema for phase

lags of θ = π/16 and θ = π/4 respectively. The variability of sliding-window correlation is decreased

compared to sliding-window covariance and the true correlation of cos(θ) is recovered for window

lengths above wmin, in accordance with the previous rule of thumb.
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Figure C.1 – Sliding-window covariance cx y [n] for two pure sinusoids without phase lag; i.e., the true covariance
is always 1. (a) For frequency f = 0.025Hz as a function of window length. Thick line indicates the mean c̄x y
over all shifts n of the window position. Dashed lines indicate cx y [n] for different n. (b) For different frequencies
f = 0.01,0.025,0.05,0.10Hz as a function of window length. Thick line indicates c̄x y , dashed lines minn cx y [n] and
maxn cx y [n], and vertical lines the minimal window lengths w = 1/ fmin. (c) Landscape of c̄x y as a function of
frequency and window length. The dashed line indicates w = 1/ fmin. (d) Landscape of maximum – minimum of
cx y [n] as a function of frequency and window length.

Effect of sampling and noise

Up to now, we did not take into account the effect of sampling or noise contributions. For the estimation

of sliding-window correlation, we can use the 5% confidence interval for the standard test of significant

non-zero correlation:

ρ∗ = tp
w/TR−2+ t 2

,

where t follows Student’s t-distribution with w/TR−2 degrees of freedom. The confidence intervals for

several TRs are shown in Fig. C.2b and we list ρ∗ for common choices of w and TR in the Appendix.

Clearly, the number of scans included inside the window is an important factor for the estimator and

thus depends on the TR for fixed window length (in seconds). Alternatively, phase randomization of

the original timecourses could serve as a non-parametric approach to derive surrogate data with the

same autocorrelation properties (Handwerker et al., 2012).

In sum, we have shown that spurious fluctuations of dynFC can arise by analyzing components
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Appendix C. Spurious and real fluctuations in sliding-window correlations
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Figure C.2 – (a) Sliding-window correlation ρx y [n] for two pure sinusoids with phase lag π/16. (b) Sliding-window
correlation ρx y [n] for phase lag π/4. The gray shaded area indicates the 5% confidence interval of significant
correlation for different TRs=1,2,3s.

with wavelengths larger than the window length, and that the limited number of data points inflates

the influence of noise on the correlation estimates. The latter effect has also been referred to as “poor

sampling of correlation” (Smith et al., 2012).

Real fluctuations in dFC due to non-stationarity

Effect of modulatory component

We now first make a slight modification to the analytical model to introduce non-stationary relationship

between both signals and thus true variability in dynFC. Specifically, we modify y by multiplying it with

a low-frequency component ( f0 << f ),

yi =
p

2cos(2π f i TR)cos(2π f0i TR).

Then, dFC between x and y will vary between +1 and −1 depending on the phase with respect to the

low-frequency component. We note that the signal y is equivalent to

yi =
p

2

2

(
cos(2π( f + f0)i TR)+cos(2π( f − f0)i TR)

)
,

which shows that low-frequency modulation is equivalent to introducing more frequency components.

Repeating the analytical derivation of the previous section is possible, but the formulas rapidly become

involved due to the interaction of many sinusoids. Instead, we revisit the sliding-window covariance

of Eq. (C.2) and provide a Fourier interpretation that shows more easily how interactions between

frequency components can contribute to dFC. Such a frequency-based view of dFC is particularly

helpful for real fMRI data with broad spectra.

The repeated calculation of local averages by shifting the window can be written as the convolution

with a rectangular window h

cx y = (x y)∗h − (x ∗h)(y ∗h), (C.6)
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where ∗ denotes convolution and h is defined as

h[n] = TR

w
rect

(
nTR

w

)
=

{
TR
w , for |n| ≤∆,

0, otherwise.

For a tapered window, the local sums become weighted sums.

Using the convolution theorem1, the discrete Fourier transform (DFT) of Eq. (C.6) can be obtained

as

Cx y = (X ∗Y )H − (X H)∗ (Y H) , (C.7)

where capital letters denote the discrete Fourier transform (DFT) of the signals, in particular:

X [k] =F {x[n]} =
N−1∑
n=0

x[n]exp

(
− j 2π

kn

N

)
, k = 0,1, . . . , N −1,

where N is the full length of the signal. For a signal sampled with period TR, the corresponding

frequencies in Hz are given by fk = k/(N TR).

The DFT of the rectangular window h is well-known to be the Dirichlet kernel

H [k] = TR

w

sin(πkw/(N TR))

sin(πk/(N TR))
,

which can be seen as the discrete version of the common sinc-function. Fig. C.3a shows the window

function and Fig. C.3b its spectrum, where the width of the main lobe is 1/w [Hz]. The convolution of

x, y , and x y with h can thus be seen as low-pass filtering operations.

The DFT of our signals x and y can be obtained as2

X [k] =
p

2

2

(
δ f N TR[k]+δ− f N TR[k]

)
,

Y [k] =
p

2

4

(
δ( f + f0)N TR[k]+δ−( f + f0)N TR[k]+δ( f − f0)N TR[k]+δ−( f − f0)N TR[k]

)
,

where δ is the Kronecker-delta function (i.e., δ0[k] = 1 for k = 0, and 0 otherwise). Exemplary signals x

and y and their frequency spectra are shown in Figs. C.3c and d. Since we deal with real-valued signals,

all amplitude spectra are Hermitian symmetric and we only depict positive frequencies in the plots.

The convolution X ∗Y then redistributes the delta functions as

(X ∗Y )[k] = 1

2

(
δ f0N TR[k]+δ− f0N TR[k]

)+ 1

4

(
δ(2 f − f0)N TR[k]+δ(2 f + f0)N TR[k]+

δ(−2 f − f0)N TR[k]+δ(−2 f + f0)N TR[k]
)

,

which is illustrated in Fig. C.3f. Assuming that the window length has been chosen according to the

rule of thumb (i.e., we have w > 1/ fmin and thus also f > fmin), frequency components at ±2 f ± f0 are

well suppressed by the filtering operation (X ∗Y )H , as well as those at ± f and ± f ± f0 in X H and Y H ,

respectively. Consequently, the second term of Eq. (C.7) vanishes and the first term simplifies, leading

1Convolution in the time domain corresponds to multiplication in the frequency domain and vice versa.
2Without any loss of generality, we have assumed here that f N TR corresponds to an integer number.
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Appendix C. Spurious and real fluctuations in sliding-window correlations

(a) (b)

(c) (d)

(e) (f )

Figure C.3 – Window h in time (a) and its frequency spectrum (b). The frequency selection of the filter is governed
by 1/w . Two cosines x and y , where y is modulated by a low-frequency cosine at f0, in time (b) and in frequency
domain (c). The modulation of y corresponds to two slightly shifted peaks in Y at f − f0 and f + f0. The peaks
at f − f0, f and f + f0 will be filtered out by H as they beyond the main side lobe of the filter H . The point-wise
product x y and sliding-window covariance cx y in time (e) and frequency (f). Three new peaks appear in the
convolution X ∗Y from the interaction of the frequency components: f0, 2 f − f0,2 f + f0. Only the peak at f0 is
retained by the sliding-window covariance.

to

Cx y [k] = TR

w

sin(π f0w)

sin(π f0)

(
δ f0N TR[k]+δ− f0N TR[k]

2

)
,

where only k = f0N TR survives. The remaining frequency component at f0 is also illustrated in Fig. C.3d.

Cx y can be identified as the DFT of

cx y [n] = TR

w

sin(π f0w)

sin(π f0)
cos(2π f0nTR),

shown in Fig. C.3e. Because fluctuations in x y are low-pass filtered by the convolution with h with

cut-off frequency 1/w = fmin, the slow modulation term—which in this case is a true fluctuation of

dynFC—is recovered as long as f0 < fmin and f − f0 ≈ f > fmin. The influence of the window length on

its low-pass filtering effect has previously been noted by Handwerker et al. (2012) and less variable

dFC with longer windows is a well documented empirical observation (e.g., Chang & Glover, 2010;
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(a) (b)

(c) (d)

Figure C.4 – (a-b) PCC and left AG time series and their frequency spectra. (c-d) Illustration of sliding-window
covariance and correlation estimation in time and frequency. x y is the point-wise multiplication of the two time
series, cx y the sliding-window covariance and ρx y the sliding-window correlation. Note that the Fourier spectra of
cx y and ρx y are similar. ρ̄x y is the average of dFC across time, corresponding to a static FC estimate.

Hutchison et al., 2013b; Leonardi & Van De Ville, 2013b). The spectral selectivity of the windowing

operation can be improved by using tapering; e.g., Hamming filter (Handwerker et al., 2012), Gaussian

filter (Allen et al., 2014), or other windows with smooth roll-off at the edges (Smith et al., 2012). In

such case, the window length should be replaced by the equivalent window length that corresponds

to the cut-off frequency of the tapered window. It is essential to note that the frequency component

f0 emerges by “interaction” between both spectra and is not present as such in the original spectra.

Mathematically, the beat frequency is recovered by multiplication in the time-domain, or, equivalently,

convolution in the Fourier domain.

Example of experimental fMRI data

The frequency-based view is particularly instructive for experimental BOLD data because they have

broad spectra that are not easily understood in terms of single frequency components. We illustrate

dFC between two key regions of the default-mode network: the posterior cingulate cortex (PCC) and left

angular gyrus (AG). Changes of FC over time between these regions have been previously demonstrated

(e.g. Chang & Glover, 2010). Two regionally-averaged time series were extracted from a 10-minute long

resting-state fMRI scan (data acquisition and preprocessing as in Shirer et al., 2012). We choose the

window length to be w = 50 sec, or 25 scans. Consequently, we high-pass filtered the time series with a

cut-off frequency of 1/w = 0.02 Hz, see Figs. C.4a and b. Next, the point-wise multiplication of both

time series and cx y (∼ low-pass filtered x y) are computed, shown in Fig. C.4c. Clearly, these time series

are similar during a majority of the scan, but their similarity is strongly diminished during two periods

in time (around 90 and 270 sec) and another small dip is visible at 420 sec. In the Fourier domain,

shown in Fig. C.4d, this variability is apparent from new low-frequency components, notably a peak

at 0.006 Hz, which appears to be approximately the wavelength of the interaction cycles. Because of
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Appendix C. Spurious and real fluctuations in sliding-window correlations

the broad spectra of X and Y multiple frequency components contribute to these new low-frequency

components.

In Figs. C.4c and d, we also show sliding-window correlation ρx y in time and frequency. While

the normalization reduces some fluctuations, its main characteristics are the same as for cx y and are

determined by (X ∗Y )H .

Finally, it is important to note that while fluctuations of dFC might be due to true nonstationar-

ities and interactions of the time series, the origin of these signals could be both neurological and

non-neurological. Therefore, future research that validates fluctuations of dFC using concurrent

measurements, such as electroencephalography (EEG), will likely provide further insights.

Conclusion

Taking advantage of an analytical model, we have derived some important properties of dynFC that

explain the emergence of spurious fluctuations due to a mismatch between the choice of the window

length and high-pass filtering of the original timecourses, as well as how potentially real fluctuations

can arise due to modulatory components. We conclude that the window length w , specified in seconds,

is the key parameter that needs to be chosen carefully as it sets following trade-offs:

1. Spurious fluctuations of dynFC due to the nature of the estimation method are limited by high-

pass filtering of the original time series with cut-off frequency 1/w .

2. Remaining fluctuations of dynFC are low-pass filtered with cut-off frequency 1/w .

3. Variability due to the influence of noise on the estimator increases with smaller window lengths

or longer TR.

These different criteria should be balanced well. For example, windows as short as 20s would require

the removal of low frequency components up to 0.05 Hz, which are typically of interest in resting-state

studies, and the confidence interval for significant correlations would be very high (ρ > 0.63 for a TR

of 2 seconds). Given these considerations typical choices of window lengths (30-60 seconds) appear

reasonable and these lengths have also been backed up by empirical studies that discriminated between

cognitive states (Shirer et al., 2012; Gonzalez-Castillo et al., 2013). When interpreting dFC spectra, we

suggest to focus on the frequency interval [0−1/w] Hz because of the low-pass filtering effect of the

window on dFC, which means that the modulatory effects that can be observed are relatively slow; e.g.,

up to 0.16 Hz for a 60 sec window length.

One promising future avenue to overcome the choice of a fixed window length, is the use of the

wavelet transform, which would allow to conveniently focus on particular frequencies (scales). In

particular, the wavelet transform coherence (WTC) has been suggested as one alternative to estimate

instantaneous "correlation coefficients" at different frequency bands, with a window length adjusted to

the frequency content of the signal (Torrence & Webster, 1999; Chang & Glover, 2010; Hutchison et al.,

2013a). In particular, the signal at each wavelet scale has been band-pass filtered with a high-pass cut-

off according to the rule of the thumb, and, consequently, temporal variations in the scale-dependent

correlations are limited to the same frequency. While this gives access to a rich amount of information,

one remaining issue is how to combine scales into a concise and meaningful summarizing measure.

Finally, it is important to note that while fluctuations of dynFC might be driven by true non-

stationarities and interactions of the time series, the origin of these signals could be both neurological
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and non-neurological. Ongoing and future research should further validate to what extend these

origins can be disentangled (Chang et al., 2013a); e.g., using concurrent measurements such as elec-

troencephalography (EEG) and non-neurophysiological signals.

Appendix

TR
Window length 1s 2s 3s
20s 0.44 0.63 0.75
30s 0.36 0.51 0.63
40s 0.31 0.44 0.55
50s 0.28 0.40 0.48
60s 0.25 0.36 0.44
120s 0.18 0.25 0.31

Table C.1 – ρ∗ for typical window lengths and TRs (w/TR was rounded to the nearest integer).
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D Connectivity-based decoding of cogni-

tive states

We reproduce the poster presented at the 2012 Annual Meeting of the Organization for Human Brain

Mapping (OHBM), where we compared activity- and connectivity-based approaches for the classifi-

cation of individual fMRI scans into one of two cognitive states:

1. Activity-based: We use regional brain activity as our feature to predict the cognitive state (referred

to as baseline on the poster),

2. Connectivity-based (global): We use the projection of brain activity onto the eigenvectors of the

graph Laplacian matrix of each cognitive state as our feature (Fourier),

3. Connectivity-based (local and multi-scale): We use the analysis of brain activity with graph

wavelets adapted to the FC of each state as our feature (wavelets).

Additional information on methods

To compare the various approaches, we used both simulated and experimental fMRI data. For the

simulations, we generated 3 synthetic datasets where (i) only activity levels changed between the two

conditions (x ∼N (µi ,I), where I is the identity matrix and i = 1,2), (ii) only the covariance changed

(x ∼N (0,Σi )), and (iii) both changed (x ∼N (µi ,Σi )). We used an approach similar to the one described

in Ng et al. (2011) to simulate the data. The experimental fMRI data and preprocessing steps are as

described in the journal article reproduced in Chapter 5.

We assessed the performance of 4 different two-class classifiers: a support vector machine with a

quadratic and a linear kernel (SVM2, SVM), C4.5 decision tree (DT), and Naïve Bayes (NB). To evaluate

each classifier and the different approaches, we performed 9 leave-one-block-out cross-validations for

each subject (see figures in Materials and methods section). For each cross-validation the training data

contained 8 out of 9 task-rest blocks and the testing data the remaining block. For the connectivity-

based approaches, FC during the rest and movies conditions were estimated from the training data

only.

For all classifiers and approaches, we assessed whether each scan in the held-out test data was

correctly classified (1 =correct, 0 =wrong), and concatenated the results across all folds.

We compared the performances of two classifiers across all subjects using McNemar’s test (paired

binary outcomes), and report the percentage of correctly classified scans across folds and subjects.

Additional discussion

Using simulated data showed that connectivity-based approaches were most beneficial for the deci-
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sion tree and Naïve Bayes classifiers (see Results - simulations section). Linear and quadratic SVMs

performed best overall, however, and gained less from the connectivity-based approach. As a side note

we remark that even small differences in accuracy were significant because of the large number of

samples: We compared the performances using scan-wise outcomes concatenated across subjects and

thus small differences became significant.

Using experimental fMRI data we observed similar accuracy across all approaches and classifiers

(see Results - fMRI dataset section). For each classifier, it is possible to compute a weight map repre-

senting which features (i.e., regions) have most discriminative power in separating the two cognitive

states. Such a mapping for an example subject subject shows that with the activity-based approach in-

formation is concentrated in visual (calcarine, fusiform), emotional (amygdala) and prefrontal regions

(ACC, orbitofrontal). The wavelet approach indicates scale-dependent importance of brain regions:

For example, higher visual regions (fusiform, inferior and superior occipital cortex) are more important

at coarse scales and the primary visual cortex (calcarine, lingual gyrus) at fine scales.

Conclusion

Incorporating connectivity information did not boost classification performance. While the multi-scale

mapping of discriminative regions can provide insights not accessible with an activity-based approach,

it also requires a much more complex analysis pipeline.
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E Supplementary material for Chapter 6

Figure E.1 – (a-f) 6 reproducible CAPs were identified in young subjects. (g) Spatial correlation coefficient between
the 5 CAPs estimated in old subjects and the 6 CAPs estimated in young subjects. Pearson r value is indicated
if above the reproducibility threshold in older subjects. The 2 DMN-related CAPs (CAPs 1 and 2 in old subjects)
and visual-motion-CAP (CAP 5) appear in both groups, while the prefrontal and superior-DMN CAPs show low
correlation. 4 of the 6 CAPs in young subjects correlate with the 2 DMN-related CAPs of old subjects. These findings
confirm the differences observed in Fig. 6.8.
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