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Abstract

The research of this thesis belongs to the representation theory of groups.
One purpose in representation theory is to try to describe representations of
a finite group via information about those of a subgroup of order as small as
possible. A way to do so is to use stabilizing bisets. Indeed, let £ be a field,
G a finite group, U a (G, G)-biset and L a kG-module. Then U is said to sta-
bilize L if U(L) := kU Q¢ L is isomorphic to L. If we suppose that L is inde-
composable, then one can show that U is of the form Indinf§ /5 1804 Defres& /D
for some subgroups and an isomorphism ¢ : C'/D — A/B. In particular, this
means that L can be constructed from a representation of A/B. Given an
indecomposable module it is not easy in general to find explicitly a proper
stabilizing biset. In [3] it is proved that a good example of stabilizing bisets
arises from expansive subgroups.

Indeed, for a finite group G, it is shown that if V' is a simple kG-module
then there exist a genetic subgroup 7" of G and a faithful simple k(N (T)/T)-
module M such that V 2 Indinf¢ o(ry,r(M) and V' is stabilized by the biset

U = Indinf$, ()T Defres%G (ry/r- However, it is possible that T is trivial. As
Na(T)/T is Roquette, T' could only be trivial if G is Roquette.

This raises the question of proving the existence, or non-existence, of
stabilizing bisets for Roquette groups. To do so, one will use two approaches.
The first one is to improve the theorem and find some genetic subgroups in
Roquette groups. The second one is to find stabilizing bisets for Roquette
groups without the use of genetic subgroups.

The purpose of this thesis is to investigate these two directions, also to
try to generalize the theory of stabilizing bisets to n-stabilizing bisets, i.e.
bisets U such that U(L) = nL.

Key words: stabilizing biset, indecomposable module, Roquette group,
genetic and expansive subgroup.



Résumé

Cette thése s’inscrit dans la théorie des représentations de groupes finis.
L’un des buts de cette théorie est de décrire les représentations d’un groupe
donné G par celles de sous-groupes d’ordres aussi petits que possible. Une des
maniéres de le faire est d’utiliser les bi-ensembles stabilisants. En effet, soient
k un corps, U un (G, G)-bi-ensemble et L un kG-module indécomposable.
Alors U stabilise L si U(L) := kU ®ye L est isomorphe & L. On peut
montrer que dans ce cas U est de la forme Indinf§ /B 1804 Defres& /p et donc
L provient d’une représentation de A/B. Dans article [3], il est montré que
des exemples d’une telle situation proviennent de sous-groupes expansifs.

En effet, il est montré que si V' est un kG-module simple, alors il ex-
iste un sous-groupe génétique 7' tel que Indinf; «(T)/T Defres§, ()7 Stabilise
L. Toutefois, T' peut étre trivial et donc le bi-ensemble réduit a l'identité.
Comme Ng(T)/T doit étre Roquette cela n’est possible que lorsque G est
Roquette. Pour contrer ce probléme nous avons deux solutions. La pre-
miére est d’améliorer ce théoréme pour les groupes de Roquette et montrer
Iexistence d’un tel T non-trivial. La deuxiéme est de trouver un bi-ensemble
stabilisant L en utilisant d’autres types de sous-groupes que les sous-groupes
génétiques.

Le but de cette these est tout d’abord d’examiner ces deux options et dans
un deuxiéme temps d’étudier le cas des n-stabilisations, c¢’est-a-dire lorsque
U(L) =nL.

Mots clés: bi-ensemble stabilisant, module indécomposable, groupe de
Roquette, sous-groupe génétique et expansif.



Quant a parler a des non-spécialistes de mes recherches ou de toute autre
recherche mathématique, autant vaudrait, il me semble, expliquer une
symphonie a un sourd. Cela peut se faire; on emploie des images, on parle
de themes qui se poursuivent, qui s’entrelacent, qui se marient ou divorcent;
d’harmonies tristes ou de dissonances triomphantes: mais qu’a-t-on fait
quand on a

fini? Des phrases, ou tout au plus un poéme, bon ou mauvais, sans rapport
avec ce qu’il prétendait décrire. La mathématique de ce point de vue n’est
pas autre chose qu’un art, une espece de sculpture dans une matiéere
extrémement dure et résistante.

André Weil (1906-1998), France.






Acknowledgments

I wish to extend my deepest thanks to Professor Jacques Thévenaz for
allowing me to undertake this PhD thesis under his supervision. The last
four years have been truly amazing and one of the main factors was the fine
and accurate guidance provided to me by Jacques Thévenaz.

I am grateful for the choice of the subject, his advice, his help and his
constant optimism during the last four years and without forgetting the time
he spent reading this dissertation.

I would like to thank the jury members: Prof. Marc Troyanov, Prof.
Donna Testerman, Prof. Serge Bouc and Dr. Radu Stancu for their precious
time reading my thesis and for their constructive comments.

Four years on the same project is quite a long time. More than a thesis
on a specific subject it is a journey on which people embark. I could not
mention all of them in this brief section but their impact as well as my
acknowledgment to them is undoubted.

Finally this thesis, as well as me, would not have seen the light of the
day without my parents and their unswerving support. To you and my little
twin brother, I dedicate this thesis.

v






Contents

List of Notation

Introduction

1

Basics

1.1 Background of group theory . . . . . . ... ... ... ....
1.2 Symplectic Groups . . . . . . . ... Lo
1.3 Alittle bit of bisets . . . . . . . .. ..o

n-Stabilizing Bisets

2.1 Some elementary properties . . . . ... ... ... ... ...
2.2 n-stabilizing bisets and strong minimality . . . . . . . . . . ..
2.3 n-idempotent bisets . . . . . .. ...
2.4 m-expansivity ... ..o oL

Stabilizing Bisets
3.1 Stabilizing bisets . . . . ... ..o oo
3.2 Stabilizing bisets and minimality . . . . . . .. ... ... ..

On Roquette Groups

Expansivity and Roquette Groups

5.1 Roquette p-groups . . . . . ...
5.2 Some simple groups . . . . . ...
5.3 Expansive subgroups in a group with cyclic Fitting subgroup .
5.4 p-hyper-elementary groups . . . . . . . .. ...

vi

viii

19
22
25

29
29
32

37

41
42
43
43



CONTENTS

5.5 Groups with extraspecial groups in the Fitting subgroup . . . 51
5.5.1 Qs xSLa(2) . o o o 51

552 EXSp(E/Z) . ... 52

553 (EoCu)xSL(P/Z) . . ... ... ... ... ..... 62

5.5.4 EXSL(E/Z) ... .. 70

555 (B, xSL(E,/Z,)) x (Eg x SL(E,/Zy)) « . .« . .. .. 73

6 Stabilizing Bisets and Roquette Groups 85
6.1 Roquette p-groups . . . . . . . . . ... ... 85
6.2 Some simple groups . . . . . . ... 90
6.2.1 As . .. 90

6.2.2 Ag . ... 91

6.2.3 A7 .. 92

6.2.4 PSLy(Fi1) . . .o oo 93

6.3 Groups with cyclic Fitting subgroup . . . . . . .. . ... .. 94
6.4 p-hyper-elementary groups . . . . . . . .. ... 100
6.5 Groups with extraspecial subgroups in the Fitting subgroup. . 103
6.5.1 Qg X Sg .......................... 103

6.5.2 EXSp(E/Z) .. . .. . 103

6.5.3 EXSL(E/Z) .. ... 109

6.5.4 EXCphyr - . oo 113
Bibliography 116
Index 119

vii



List of Notation

Throughout this report, we will try to use as much as possible some
standard notation. Even if the term "standard" has not really a definition.
In our case it will mean that we follow the notations of our references.

Let k be a field. The symbol Sp(V') denotes the symplectic group on the
k-vector space V' of dimension 2n. Formally, one should write Sp,, (k) when
a basis of the vector space is chosen. But for a better understanding, we will,
by abuse of notation, continue to write Sp(V).

Finally, we shall use this notation:

Gl o) Gg
Xy

V*
H<(G
Z(@Q)
G|

9s
K\G/H]
Sa
Irr(Q)
At

The central product of the groups GG; and Gb.
The character associated to the module V.

The dual of the module V.

H is a subgroup of G.

The center of a group G.

The order of G.

The element gsg—!.

A set of representatives of (K, H)-double cosets.
The symmetric group of order d!.

The set of isomorphism classes of irreducible CG-modules.
The transpose of the matrix A.

Viil






Introduction

The research of this thesis belongs to the general framework of group
theory. It lies between the theory of representations, with the study of sta-
bilizing bisets and pure group theory with the study of expansive subgroups
in a Roquette group. The notion of stabilizing bisets is introduced in the
article of Serge Bouc and Jacques Thévenaz "Stabilizing bisets" referred as
[3] in the bibliography. Let k& be a field. A (G, G)-biset U is said to stabilize
a kG-module L if U(L) := kU ®y¢ L is isomorphic to L. One can actually
reduce the study to bisets U of the form Indinf§ /5 1504 Defres&, /p for some
subgroups of G and an isomorphism ¢ : C/D — A/B. The first goal is to find
a way to construct examples of such a situation. The first method developed
in [3] is the use of idempotents bisets, which are bisets such that U? = U.
Therefore if L := U(V) for any kG-module V then U(L) = L. These bisets
are completely classified in [3]. They correspond to idempotents in the double
Burnside ring. The only problem with this method is that one cannot assure
the indecomposability of L. The second method consists in using expansive
and genetic subgroups. We first recall the definition of such subgroups.

(i) A subgroup T of a finite group G is called expansive in G if, for every
g & Ng(T), the Ng(T)-core of the subgroup (' N Ng(T))T contains
properly T.

(ii) A finite group H is said to be a Roquette group if all its normal abelian
subgroups are cyclic.

(iii) A subgroup T of a finite group G is called a genetic subgroup if 7" is an
expansive subgroup of G and Ng(T')/T is a Roquette group.



INTRODUCTION

It is proved in [3] that if 7" is an expansive subgroup of G and M is a faithful
simple k[Ng(T')/T]-module, then L := Indinf%G(T) s7(M) is indecomposable
and U = Indinfgg(T) /T Defreng(T) sr stabilizes L. This time, one has the
indecomposability of L but in general, as one can see from the definition, it
is not easy to find expansive subgroups.

The second goal is to find a theorem of existence of stabilizing bisets. In
[3] it is shown that if V' is a simple kG-module then there exist a genetic
subgroup 7' of G and a faithful simple k[Ng(T")/T]-module M such that
V = Indinf§ o(my,r(M) and V' is stabilized by the biset

U= Indinf%G(T)/T DefreSgG(T)/T :

The only issue is that if ' = 1 we obtain a trivial biset. This situation can
only arise if G is Roquette as Ng(T')/T is Roquette by assumption. The
main purpose of this thesis is to investigate the existence of stabilizing bisets
for Roquette groups. Also, discuss the minimality of the stabilizing bisets
and the generalization to the theory of n-stabilizing bisets, i.e. bisets U such
that U(L) = nL.

Our willingness in the order of the presentation of the results is to go
form the general to the particular. The reason is to present the general
results before some more specialized ones that are only relevant to particular
situations. This is why, after a first introducing chapter on basic notions, one
starts and introduces the notion of n-stabilizing bisets. This generalizes the
notion of stabilizing bisets introduced in [3|. One develops the first general
properties, following the results of [3] which are in the case n = 1. One also
study in depth the notion of minimality and n-idempotents bisets. Finally,
one introduces the notion of n-expansive subgroups in order to recover the
existing link between stabilizing bisets and expansive subgroups for n greater
than one.

As we did not generalize all the results of stabilizing bisets to n-stabilizing
bisets we state these results in the third chapter, especially as some of these
additional results are needed in order to treat the examples in the last two
chapters. Indeed, the fifth chapter is devoted finding expansive subgroups in
certain Roquette groups such as Roquette p-groups, simple groups, groups
with Fitting subgroups containing cyclic or extraspecial groups. Finally the
last chapter is the study of the existence of n-stabilizing bisets in the same
examples as chapter five.

x1



Chapter 1

Basics

This first chapter is dedicated to a brief review of a few of the most fun-
damental properties of group theory, representation theory and biset theory
which are going to be used in the following chapters.

1.1 Background of group theory

In this section, one recalls some elementary results in group theory and
representation theory that one uses in this thesis. We refer to the wide
literature for the proofs.

Theorem 1.1. Schur-Zassenhaus Theorem
Let G be a finite group, and N be a normal subgroup whose order is

coprime to the order of the quotient group G/N, then N has a complement
n G.

Proposition 1.2. Lemma 1.1 page 353, [12/

Let G and Gg be two groups. Let S be a subgroup of Gy x Gy. For
i = 1,2, define k;(S) := SN G; and let p;(S) be the projection of S on
G;. Then S is determined by a subquotient pi(S)/ki(S) of G1, a subquotient
p2(S)/ko(S) of Gy and an isomorphism ¢ : pi(S)/ki1(S) — p2(S)/ko(S).
Specifically, S is the inverse image m*(Ay), where Ay is the graph of ¢ and
7 p1(S) X pa(S) = p1(S)/k1(S) X pa(S)/k2(S) is the quotient map.

Proposition 1.3. Let q be a prime number. Let A be a ¢’ -group of automor-

1



CHAPTER 1. BASICS

phisms of the abelian q-group Q. Then we have

Q = Co(A4) x @, A].
Proof. See Theorem 2.3 of [5] on page 177. O

Proposition 1.4. Let A be a group of automorphisms of the cyclic group C
such that (|A],|C|) = 1. Then we have

C = Ce(A) x [C, Al

Proof. Write C' as the product of cyclic groups, C = C} X --- x (. where
C; is a g;-group, for a prime number ¢;. By Proposition 1.3 we have, for all
integers ¢,

C; = Cq,(A) x [C;, A].
Using the definition of the commutator it’s easy to check that [C; x C;, A] =

(Ci, Al x [C}, A] via [(z,y),a] — ([z,al,[y,a]). Moreover, by definition, one
has Cg,xc; (A) = Cg,(A) x Cg,;(A). This shows that

C = Hc = [ (Ce.(A)x[C;, A)) = Cnici(AMH Ci, Al = Ce(A)x[C, Al.

]

Theorem 1.5. Krull-Schmidt Theorem

Let k be a field, G a finite group and M a kG-module. Then M is express-
ible as a finite direct sum of indecomposable submodules. Furthermore, the
decomposition is unique up to isomorphism. In other words if M = ®]_, M,
and M = @&;_1N; are two decompositions then r = s and there is a permu-
tation o in S, such that M; = Ny for every integer 1 <i <.

Theorem 1.6. Clifford’s Theorem
Let k be a field, N be a normal subgroup of a finite group G and M a
simple kG-module. Then one has the following decomposition

Res§ (M) = @ m*,
geG/I

where V is an irreducible kN-module, I := {h € G| "™V =V} and m divides
|I: N|.



1.2 SYMPLECTIC GROUPS

Proposition 1.7. Mackey Decomposition Formula
Let k be a field, H and K be subgroups of a finite group G and L be a

kH-module. Then, there exists an isomorphism of kK-modules
Resf Ind§(L) = €D  Ind%yx Resifi (L)
z€[K\G/H]

Theorem 1.8. Green’s Indecomposability Theorem

Let k be an algebraically closed field of characteristic p. Let N be a nor-
mal subgroup of a finite group G. Suppose G/N is a p-group. If M is an
indecomposable kN -module, then the kG-module Tnd$, (M) is indecomposable.

1.2 Symplectic Groups

In the last two chapters one will work with symplectic groups thus we
need to present the usual facts concerning these groups.

Definitions 1.9.

(i) Let k be a field and b be a bilinear form on a k-vector space V. The form
bis skew symmetric if b(z,y) = —b(y, z) for all z,y in V. Moreover, the
form is said to be symplectic if b is nondegenerate and skew symmetric,
and in addition when char(k) = 2 we must have b(z,z) = 0 for all z in
V.

(ii) Given a symplectic form b on V| we define the symplectic group Sp(V)
as the elements of GL(V') which preserve b, in other words

Sp(V) :={T € GL(V) | b(Tz,Ty) = b(x,y) for all x,y € V'}.

Remark 1.10. Let v; € V' be non-zero and w; such that b(vy,w;) = 1. Since
b|(v;,wy) 18 nOndegenerate we know that

V = (vi,w;) ® <Ul>wl>L

Similarly, if we consider the space (vy, wl)L of dimension dim (V') —2 equipped
with the symplectic form b‘<v1 w)t We obtain vy, wy in (v, wl)L such that

V = (v, w1) ® (v2, wa) D (va, w2>L

3



CHAPTER 1. BASICS

Continuing in this fashion, we obtain a basis {vy, wy,ve, we, ..., Up, Wy},
called a symplectic basis. The matrix of b in the basis is

0 1
-1 0
0 1
-1 0
Furthermore, the matrix of b in the basis {v1,vs, ... U, w1, Wa, ..., Wy} is
0 id,,
—id,, 0 /°
Finally, the matrix of b in the basis {v1, v, ... Up, Wy, Wi—1, - .., w1 } 18
" 0
0
(—K 0) where K = )
1 0

In term of matrices,
Sp(V):={A e GL(V) | '"AJA = J},

where J denotes the matrix of the symplectic form. The shape of an element
A of Sp(V') depends on J. In this thesis one always equips the vector space V
with a symplectic basis. Nevertheless, one rearranges the order of the vectors
in the basis depending on the situation and thus the shape of A could vary.

1.3 A little bit of bisets

In this section one gives a short introduction to the theory of bisets and
in particular to their actions on modules.

Definitions 1.11.

(i) A section of a group G is a pair (A, B) of subgroups of G such that B
is a normal subgroup of A.



1.3 A LITTLE BIT OF BISETS

(ii) Two sections (A, B) and (C, D) of a group G are linked if

(ANC)B=A,(ANC)D=C and AND =CnNB.

Remark 1.12. If (A, B) and (C, D) are linked then A/B = C/D, indeed,
using the second isomorphism theorem, one has

A/B = ((ANC)B)/B=(ANC)/(BNC)=(ANC)/(AND)
~ ((AnC)D)/D =C/D.

This isomorphism between A/B and C/D is called the isomorphism induced
by the linking.

Definition 1.13. Let G and H denote two finite groups. A (G, H)-biset U
is a set which is both left G-set and right H-set such that

(gu)h = g(uh), for all g € G,h € H and u € U.

Let k be a field, then kU denotes the k-vector space with basis U. It’s also
a (kG, kH)-bimodule.

Examples 1.14. We give a list of basic bisets which play an essential role in
this thesis. Let (A, B) be a section of a finite group G. The action on each
of the following bisets is just the group multiplication.

(i) The inflation is a (A, A/B)-biset defined as Infﬁ/B = A/B.
(ii) The induction is a (G, A)-biset defined as Ind§ := G.
(iii) The deflation is a (A/B, A)-biset defined as Deff‘/B = A\B.
(iv) The restriction is a (A, G)-biset defined as Res§ := A.

(v) Given an isomorphism ¢ : H — G, the isomorphism is a (G, H)-biset
defined as Isogs := H with left action of G via ¢~

(vi) An element g € G induces an isomorphism ¢, : G — G defined by
cg(x) = grg™' and Conj, := Iso., denotes the corresponding (G, G)-
biset.
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Definition 1.15. Let G, H, K be finite groups, U a (G, H)-biset and U’ a
(H, K)-biset. Then the product U x iz U’ denotes the (G, K)-biset defined by

UxyU :=UxV)/~,

where ~ is the equivalence relation defined by (uh,v) ~ (u, hv) for all u €
U,v €V and h € H. The left action of G on U xy U’ is induced by the left
action of G on U and the right action of K is induced by the right action of
K on U'. We write simply UU’ instead of U x4 U".

Examples 1.16. We use the previous examples. Let (A, B) be a section of
a finite group G.

(i) The (G, A/B)-biset Indinf(j/B is defined as Ind§ Infﬁ/B =G x4 A/B.
(ii) The (A/B,G)-biset Defresf/B is defined as Defﬁ/B Res§ = A/B x4 G.

Proposition 1.17. Relations 1.1.3 page 2, [2]

Let (A, B) and (C, D) be two sections of a finite group G. Let N and K
be normal subgroups of G and H a finite group. Let ¢ : G — H be a group
1somorphism, then

(4)

Isoy Res§ = Resg( 1) 180

12

Isoy Ind§ Indf( 1) 180y

where ¢' : A — ¢(A) is the restriction of ¢ to A.
(i)
ISO¢// Defg/N = Defg/(z)(N) ISO¢

ISO¢ Infg/N Inff[/¢(N) ISO¢N

where ¢" : G/N — H/¢(H) is the isomorphism induced by ¢.

(iii)

a G~ 71.¢G/N G/K
Defg)y Infg = Inf ) v et v -
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()

Def§y Ind§ = Indy/y\ Isoy Deffs iy
Res Infg/N = Infg/mw Isoy-1 Res[G(/NA;N,

where ¢ : K/K NN — KN/N is the isomorphism given by the second
1somorphism theorem.

(v) Suppose N < K then

Resf(//jj\\f, Defg/N = Defﬁ/N Res%

Ind§ Inffl,y = Infg,y Indyy .

Lemma 1.18. Lemma 2.1 page 1613, [3]
Let U be a transitive (G, H)-biset. Then there exist a section (A, B) of
G, a section (C, D) of H and an isomorphism ¢ : C/D — A/B such that

U = Indinf§ /1804 Defres&, /D -

Moreover, the triple ((A, B),(C, D), gb) 1S unique up to conjugation.

Lemma 1.19. Zassenhaus. Lemma 2.3 page 1614, [3]

Let G be a finite group and let (A, B) and (C, D) be two sections of G.
Then the subsection ((ANC)B, (AND)B) of (A, B) is linked to the subsection
(AN C)D,(BNC)D) of (C,D). The isomorphism corresponding to the
linking s the composite

(ANC)D/(BNC)D - (AnC)/(BNC)AND)— (AnC)B/(AND)B.

Definition 1.20. Let (A, B) and (C, D) be two sections of a group G. The
butterfly associated to (A, B) and (C, D) is the (A/B, C/D)-biset defined as

follows
11 cA/B c/D
Btf(A, B,C, D) = Indmf(AmC)B/(AﬂD)B Isoy, Defres(AﬂC)D/(BmD)D,
where 9 is the isomorphism of the Zassenhaus Lemma (see Lemma 1.19).

Remark 1.21. The Butterfly is reduced to an isomorphism if and only if
the sections are linked.
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Proposition 1.22. Generalized Mackey Formula. Lemma 2.5 page 1615,

13/
Let (A, B) and (C, D) be two sections of a finite group G. Then there is

the following decomposition as a disjoint union of bisets

|J Bt(C, D, "A, "B) Conj, .

2€[C\G/A]

>~

Defres& /D Indinf§ /B

Definition 1.23. Let k be a field. Let U be a (G, H)-biset and L be a left

kH-module. Then U acts on L as follows
U(L) :== kU Qg L.

This is a kG-module. We say that U is applied to L.

Remark 1.24.
(i) If U is one of the inflation, induction, restriction, deflation or isomor-

phism bisets, then U(L) is obtained from L by applying the correspond-
ing operation with the same name.

(ii) If U is the disjoint union of two (G, H)-bisets U; and U, then
U(L) 2 Uy (L) ® Us(L).

(iii) If U"is a (K, G)-biset, U is a (G, H)-biset, and M is a kH-module, then
U(UM)) = kU &ke (kU @k M) = (kU @ue kU) @y M
k[U’ Xa U] RrH M = (U/ Xa U)(M)



Chapter 2

n-Stabilizing Bisets

In the previous chapter one has seen how a biset can act on a module. In
this chapter one introduces the notion of stabilizing bisets and more generally
n-stabilizing bisets.

In the first section one finds some properties and characterisations of this
situation. In the second section, one looks at n-stabilizing bisets and strong
minimality. Then one looks at means of obtaining n-stabilizing bisets. One
discusses one way with the help of n-idempotent bisets. Finally, in the last
section one generalises section 6 of [3] by introducing a notion of n-expansive
subgroups. This is another way to construct examples of n-stabilization.

2.1 Some elementary properties

In this section, one generalizes section 3 of [3]. Indeed, Theorem 2.12
is a generalization of Corollary 3.4 of [3] from the stabilization case to the
n-stabilization.

Definition 2.1. Let k be a field. Let U be a (G, G)-biset, let n be an integer
and let L be a kG-module for a field k. Then U is said to n-stabilize L if
U(L) = nL. In the case n = 1, U is said to stabilize L.

Example 2.2. One refers to the last section of [3] for examples with n =
1. Here are examples with n > 1. Let k be an algebraically closed field
of characteristic p, let P be a p-group. Let (A, B) be a normal section
of P. Define L as Ind’(k). By Green’s indecomposability theorem L is

9



CHAPTER 2. N-STABILIZING BISETS

indecomposable and then it’s easy to see that U(L) = |P : A|L for U :=
Indinf;, ; Defres’y ;. Indeed, (A, B) = (“A, B) for all g in P because both
A and B are normal therefore using the generalized Mackey formula one has

U(L) = U(Indj(k)) = &5 Indinf} ;Btf(A, B, ‘A, B)(k)
gElA\P/A]

= P Wdinf] k) =|P: AL
g€[A\P/A]

For example one can apply this to an extraspecial group P with B := Z(P)
and A := Np((x)) where x a non-central element of order p or also to P
the dihedral group Dg of order 8 with A = (r) and B = (r?) where 7 is the
rotation by an angle of 7/2.

Remark 2.3.

e We will focus our interest on indecomposable modules. If U = U;_,U;
is a decomposition of U as disjoint union of transitive bisets and if U
n-stabilizes an indecomposable module L then

nL = U(L) @ Ui(L).

Therefore by Krull-Schmidt Theorem one has for every 1 <1 < r that
Ui(L) = k;L

for an integer k;. For this reason, we shall assume that the biset U is
transitive, hence of the form

U = Indinf§ /5 1504 Defresg, /D -

e Suppose U(L) = nL withU = Indinfg/D Defresg/D. Set M := Defresg/D(L).

Then, the first thing to note is that by adjunction properties of induc-
tion and inflation, we have

Homyg (L, nL)

Homy(L, Indinfg, ,(M))

Homy e/ p (Defresg/D(L), M)

Homk[C/D} (M, M)

1%

nHomyg (L, L)

e 11

12
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2.1 SOME ELEMENTARY PROPERTIES

as k-vector spaces. As a result one can see that for £ = C, the module
M is decomposable, except when n = 1 and L is indecomposable.
Moreover if M = ®]_,a;M; with M, indecomposable non-isomorphic
modules, then

Homyc/p)(M, M) = @Hom(aiMi, a;M;) = @Hom(aiMi, a; M;).

i i=1

As L is indecomposable only if dim Homye(L, L) = 1 this happens

only if >>7  a? = n. In the case r = n this implies that a; = 1 for all

1< <.

Proposition 2.4. Let U := Indinfi/B Iso, Defresg/D be an n-stabilizing biset

for a module L. Let M := Defresg/D(L). Then n equals %. In
particular, n is smaller than the order of G.

Proof. By taking the dimension of U(L) = nL one has

ndim L = |G : A| dim Defresg/D(L).

Therefore one has n = W. As dim M is smaller than dim L, the
integer n is smaller than |G : A| and in particuler smaller than |G|. O

Definition 2.5. Let U = Indinfi/B Isog Defresg/D be a biset n-stabilizing a
kG-module L.

(i) The biset U is said to be minimal if, for any transitive biset U’ =
Indinfi,/B, Isog Defresg,/D, n-stabilizing L, we have |C'/D| < |C"/D'|.

(ii) The biset U is said to be strongly minimal if, for any transitive biset
U’ = Indinf9, /B 1804 Defresg, /o m-stabilizing L, for some integer m >
1, we have |C/D| < |C"/D|.

Remark 2.6. Note that in the second definition the integer m could be
different from or equal to n. Therefore, the strong minimality of a biset U
implies its minimality.

Lemma 2.7. Let U := Indinfﬁ/B Isoy Defresg/D be an n-stabilizing biset for
a non-trivial simple module L. If |A/B| = p, where p is the smallest prime
dividing |G|, then U is strongly minimal.

11



CHAPTER 2. N-STABILIZING BISETS

Proof. Suppose U is not strongly minimal. Let
U’ = Indinf§, 5 Isoy Defresgi

be an m-stabilizing biset such that |A’/B’| < |A/B| = p. Then one has 1 =
|A’/B'| = |C"/D'| and so U can be written as Ind$, Inf{, Iso, DefS" ResS,.
The module Inf‘lA,/ Isoy Def?l Res% (L) is isomorphic to copies of the trivial
module k thus nL = vInd$, (k) for an integer v > 1. But the trivial kG-
module is always a submodule of Ind§, (k) which contradicts the assumption
that L is not the trivial module. Therefore such U’ cannot exist and U is
strongly minimal. O]

Example 2.8. In chapter 6 one will find examples of minimal but not
strongly minimal bisets. Indeed, for G = Aj, Ag, PSLy(Fq;) the only sta-
bilizing bisets U = Indinf§ /81804 Defres& /p for these groups are reduced to
an isomorphism and therefore minimal with (4, B) = (C,D) = (G, 1) and
|A/B| = |G|. Nevertheless, one can find examples of 2-stabilizing bisets
U’ := Indinf§, 5 Isoy Defres¢, ,, with [A'/B'| < |G| = |A/B|.

Theorem 2.9. Consider two transitive (G, G)-bisets
U= Indinff/B Isog Defresg/D and U' = Indinfﬁ,/B, Isoy Defresg,/D, .

Let L be an indecomposable kG-module such that U(L) = nL and U'(L) =
mL forn,m € N. Let M = Defresg/D(L) and suppose U is strongly minimal.
Let g be an element of G. Then only two cases are possible.

o The module Btf(C’, D', 9A, 9B) Conj, Isog(M) is zero and the section
(9A, 9B) is not linked to ((C" N 9A)D', (C" N 9B)D").

e The biset Btf(C’, D', 9A, 9B) is reduced to Indinf(c(;{r?;A)D,/(C,mgB)D, Isoa(g),
where 5(g) is the isomorphism corresponding to the linking between the
sections (9A, 9B) and ((C' N 9A)D’, (C' N 9B)D").

Proof. Applying successively U and U’ one obtains

UWU(L) = @ Indinfg,/B/ Isog Btf(C, D', 9A, “B) Conj, Isoy (M)
ge[C\G/A]
mnL.

~
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2.1 SOME ELEMENTARY PROPERTIES

Therefore, by Krull-Schmidt theorem, one has, for all g € [C"\G/A],
Indinf§, 5 Isoy Btf(C', D', 9A, “B) Conj, Isos(M) = kL.

In other words, one has a k,-stabilizing biset for L, for a certain k, € N. If &,
is not zero and because U is strongly minimal, the biset Btf(C”, D', 9A, 9B)
must be reduced to Indinf(cclfr? ; A)D' /(0" 9B) D 1508(g), Where (g) is the isomor-
phism corresponding to the linking between the sections (94, 9B) and ((C'N
JA)D', (C"N 9B)D"). Indeed, otherwise Btf(C’, D', 9A, 9B) would go through
a subsection of (A, B) which is a contradiction with the fact that U is strongly
minimal. If &, is zero then the module Btf(C’, D', 9A, 9B) Conj, Isog(M) is
zero as the operation Indinf9, /i 1804 cannot annihilate a module. For such
g, the section (YA, 9B) is not linked to ((C'NY9A)D’, (C'N9B)D’) as otherwise
the biset Btf(C’, D', 9A, 9B) would have been reduced to

- pC'/D'
Indlnf(c/m gA)D//(C/m 9B)D’ ISOﬁ(g) .

But the latter does not annihilate Conj, Isog(M). O

Remark 2.10. Let M’ be the module Defres, /pr(L). Using the same nota-
tions, observe that one has

nM' = Defresg,/D,(nL) %Defresg,/D, Indinfi/B Iso, Defresg/D(L)
~ B Btf(C', D', %A, *B) Conj, Isos(M)
ge[C\G/A]
. C'/D :
@ Indmf((/m oAD' J(Cnap) pr 1808(g) Conjg Isog(M).

g€[C\G/A]
kg#0

2

Theorem 2.11. Consider two transitive (G, G)-bisets
U= Indinfg/B Isog Defresg/D and U’ = Indinfﬁ,/B, Isoy Defresg,/D,.

Let L be an indecomposable kG-module such that U(L) = nL and U'(L) =
mL for n,m € N. Let M = Defresg/D(L) and M' = Defresg,/D,(L) and
suppose U and U’ are strongly minimal. Let g be an element of G.

1. Only two cases are possible.
e The module Btf(C', D', 9A, 9B) Conj, Isog (M) is zero and the sec-
tion (9A, 9B) is not linked to ((C' N 9A)D’', (C" N 9B)D").

13
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o The biset Btf(C, D, 9A, 9B) is reduced to Isog,, where [(g) is
the 1somorphism corresponding to the linking between the sections

(9A, 9B) and (C",D").

Let A be the set of elements of [C'\G /A] such that we are in the second
case above and let d be the cardinal of A .

2. There exists an isomorphism between nM" and €, Isop(g) Conj, Isos(M).

3. One has the following equality nm = dd’', where d' is the number of
double cosets ChA" such that

Indinf{, ; Isos Btf(C, D, "A’, "B') Conj, Isoy (M) # {0}.

Proof. One uses the same argument as in the proof of Theorem 2.9. Suppose
now that U’ is strongly minimal. Applying successively U and U’ one obtains
again that

U'WU(L) = EB Indinfg,/B/ Isog Btf(C, D', YA, “B) Conj, Isoy (M)
9e[C\G/A]
mnL.

Again, for all g € [C"\G/A], one obtains that
Indinf§, /g Isog Btf(C”, D', YA, “B) Conj, Isog Defres$ /D

is a kg-stabilizing biset for L, for a certain k, € N. With the same argument
as in Theorem 2.9, one deduces that Btf(C’, D', 94, 9B) is reduced to an
isomorphism if k, is not zero, because U and U’ are strongly minimal. This
means that, if k, is not zero,

Indinfi,/B, Isog Isog(y) Conj, Isog(M) = kL.

In particular if k, is not zero, the dimension on the right hand side does not
depend on g, because on the left of the isomorphism it does not. Therefore
all non-zero k, are equal. The previous isomorphism becomes

mnL = U (U(L)) = @ Indinfg,/B, Isog Isog(y) Conj, Isog(M).

g€[C\G/A]
kg#0
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By looking at the dimension in this equality, one obtains that
mndim L = dk, dim L

where d is the number of double cosets C’gA such that k, # 0.

Exchanging the roles of U and U’ in the previous argument one has mn =
k;d" where d' is the number of double cosets ChA’ such that kj # 0 and kj, is
such that Indinf§, ; Iso, Btf(C, D, "4, "B') Conj, Isoy (M’) is isomorphic to
kL.

Furthermore, using Remark 2.10, one has

nM' = @ Isop(g) Conj, Isoy (M).
<0G/
By looking at the dimension one obtains that ndim M’ = ddim M. Ex-
changing the roles of U and U’ in the previous argument one has m dim M =
d'dim M’. Finally, using these two equations, one obtains that mn = dd’
and that k, = d’ and kj, = d whenever k, and kj, are non-zero. O

Theorem 2.12. Let U = Indinfg/B Iso, Defresg/D be a strongly minimal n-

stabilizing biset for an indecomposable kG-module L. Let M = Defresg/D(L).
Then, there exist n double cosets C'gA such that

1. Btf(C, D, 9A, IB) Conj, Isogs (M) # {0},
2. the sections (C, D) and (9A, 9B) are linked,

3. the module M is invariant under B(g)cy¢ where 5(g) is the isomorphism
corresponding to the linking between the sections (C, D) and (YA, 9B),

4. if h € G does not belong to one of these cosets, the section ("A, "B) is
not linked to (C, D).

Proof. Using the part 3 of Theorem 2.11 with U' = U, m = n and d' = d,
one obtains that n = d. Therefore by the first part, there exist exactly n
double cosets CgA such that Btf(C, D, 94, 9B) Conj, Isog(M) # {0}. For
these double cosets one knows that Btf(C, D, 94, 9B) is reduced to Isogy),
where ((g) is the isomorphism corresponding to the linking between the
sections (94, 9B) and (C, D). In particular, the sections (C, D) and (94, 9B)
are linked. If h € G does not belong to one of these cosets, the section

15
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("A, "B) cannot be linked to (C, D). Otherwise we would have another non-
zero module of the form Btf(C, D, "A, "B) Conj), Isos(M).
Finally one proves 3. By Krull-Schmidt Theorem write M as

ar (M @ - @& Mipa)) @ -+ @ ap(Mp1 © - - - & Myg),

where the M, ’s are indecomposable and pairwise non-isomorphic, f(j) is
an integer depending on j and a; < a4 for all j. Using the second part of
Theorem 2.11 and the fact that n = d = |.#|, one has

nM = @ Isog(g) Conj, Isoy (M) = @ ISO,@(gi)cgiqb(ML
geM i=1

for some g1, ...¢g, in 4. Using the decomposition of M one obtains
nM = na (M @ ® Miga)) © - ©nag(Mp © - ® Myp)
P 150s(6.)e,, 6 (M)

i=1

1505(91)0g1¢ (a1<M11 S le(l)) ©---D ak(Mkl ©---D Mkf(’ﬂ)))
D ISOB(g2)092¢ (al(M11 D P le(l)) DD ak(Mkl @D Mkf(k)))

12

I

D 1508(g,)cone (a1(Miy @ -+ @ Myp)) @ -+ ® ap(Miy @ - - D Mygiry)).-

Note that M), appears in the decomposition of Isog(g,)e, (M) for all i =
1,...,n. Indeed, Isog(g)c,, ¢ sends an indecomposable module to an indecom-
posable module and if 10 (g,)c,, ¢ (Mjyr;, ) = 1508(g)e, 6(Miyry, ) then My, =
M;,,;, by applying 1S0(5(gi)c,,¢)-1 O both sides. As the M}, are all pairwise
non-isomorphic this means that there is the same number of indecomposable
modules in M than in Isog(g,)e, ¢ (M) and that the indecomposable modules
in the decomposition are the same. Denote by m; the multiplicity of M;; in
Isoﬁ(gi)cgiqﬁ(M), then m; > a; for all i = 1,...,n as for all ¢ the module M,
corresponds to Is0g(g,)c,. ¢ (Mj;r,) for some M, which appears a;, > a; for
all 7. Moreover, looking at the two decompositions of nM one has

n
E m; = nay
=1

16
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and so m; = ay for all 7. Applying this argument to all the modules M,
one obtains that, for all 7,

1508(g:)¢4,6 (01 (M1 @ - -+ ® Myyry)) = ar(Myy @ -+ © M),
Using this result, the same argument proves that
1503(g:)c, (a2(M21 -0 M2f(1))) = ay(May @ -+ - @ May(y)).

Finally, continuing like this, one has, for all ¢
[505(0.)c0,0(M) = 1505(g:)c,,0 (al(Mu @@ M) @

"'@ak(Mkl @"'@Mkf(k)>>
1508 (g:)co,0 (01 (M11 @ -+ @ Myyr))) @ ...

- @ I80g(g)0,0 (a6 (Mpy @ - ® Mygary)
ar(Mi @ - & Mipa) @+ @ (M @ - & Myg))
M.

12

1%

O

Corollary 2.13. Let U = Indinfﬁ/B Isog Defresg/D be a strongly minimal
n-stabilizing biset for an indecomposable kG-module L. Then there exists a
section (A, B) linked to (C, D) by o such that L is n-stabilized by

U := Indinf¢

A5 1500 Defresg/D :

Proof. Let M = Defresg/ p(L) and let CgA be one of the n double cosets
as given by Theorem 2.12. Let (A, B) = (YA, B) and o the linking isomor-
phism. One knows, by the third part of Theorem 2.12, that M is invariant
under o~ '¢,¢, therefore one has

U(L) = Indinfg/é Iso, (M) = Indinfg/é Is0s 18014 (M)
Indinf§, o Is0c,4 (M) = Indinf$, 5 Isog (M) = U(L) = nL.

I

]

Remark 2.14. If n = 1, it is sufficient to suppose in the above Corollary
that U is minimal. See Corollary 3.5 of [3].
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Proposition 2.15. Let U = Indinfﬁ/B Isoy Defresg/D be a minimal biset

n-stabilizing a module L and let M := Defresg/D(L). Then M is a faithful
module.

Proof. Let N/D be the kernel of the action of C'/D on M. Then

~ C/D C/D
M = Infg)) Defg!, (M)

and therefore L is n-stabilized by

Indinf§ /B 1804 Infgjﬁ Defg?]]\j, Defresg /D= Indinf¢ Tso, Defres% N -

By minimality of U, one must have |C'/D| = |C/N| and so N = D. O

Proposition 2.16. Let U = Indinfi/B Iso, Defresg/D be a (G,G)-biset n-
stabilizing a simple kG-module L and let M = Iso, Defresg/D(L). If M is
the trivial k[A/B]-module then n = 1, the kG-module L is trivial and A = G.

Proof. If M is the trivial module then nL = Ind§ (k). Since the trivial kG-
module is always a submodule of Ind§(k), this module can only be the sum
of n copies of a simple module if it is a trivial module. Indeed, nL does not
have a trivial submodule except if it is trivial. But then L is a trivial module
too. As IndS (k) is isomorphic to &[G /A], this module is trivial only if A = G
and this implies that n = 1 as Ind§ (k) = k. O

Definition 2.17. Let GG be a group and B a subgroup of G. The G-core of B
is the largest normal subgroup of G contained in B, that is, the intersection
of all the G-conjugates of B.

Proposition 2.18. Let G be a group and L a faithful k[G]-module such that
L is n-stabilized by Indinfi/B Isoy Defresg/D. Then the G-core of B is trivial.

Proof. Let M be the module Iso, Defresg/D(L), sonL is Indinfg/B(M), which
has the following kernel Nyeq 9Ker(Inf /p(M)). Obviously B is contained in

Ker(Infﬁ/B(M)) and so Ngeg 9B is contained in Ngeg gKer(Infﬁ/B(M)). As
nL is faithful, the latter is trivial and so is the G-core of B. n

Proposition 2.19. Let G be a group and L a faithful simple k[G]-module
such that L is n-stabilized by Indinfi/B Iso, Defresg/D. Then the G-core of D
is trivial.

18
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Proof. Let N be the G-core of D. It is a normal subgroup of G contained in
D. One has
Defresg% Defg/N(L) = Defresg/D(L) # 0

and thus Defg/N(L) # 0. But Defg/N(L) is a quotient of L and N acts
trivially on it. Since L is simple and faithful one must have N = 1. ]

Proposition 2.20. Let k be a field and let U = Indinfi/B Isog Defresg/D be
a biset n-stabilizing a simple kG-module L. Then n|A| > |Ng(D)| and in
particular n|A| > |C].

Proof. By definition of the deflation map we have a surjective homomorphism

W : Res§_ p) (L) — Defres§_ p)/p(L),

where Defres%G(D)/D(L) is viewed as a module for Ng(D) by inflation. It
follows that there is a non-zero homomorphism of £G-modules

w L — IndgG(D) (DefreSgG(D)/D(L))
This is injective by simplicity of L and so

dim L < |G : Ng(D)|dim Defres%G(D)/D(L).

By Lemma 2.4, one has ndimL = |G : A\dimDefresg/D(L). Moreover,

dim Defres, w(py/p(L) is equal to dim Defresg/D(L) as it only depends on
the action of D on L. Therefore

|G : Al dim Defres%G(D)/D(L)

n

< |G : Ng(D)| dimDefres%G(D)/D(L)

and the result follows.
O

2.2 n-stabilizing bisets and strong minimality

In this section one treats the question of strong minimality and existence
of strongly minimal n-stabilizing bisets. We treat the case n = 1 in the next
chapter.
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Proposition 2.21. Let G be a finite group, U be a ny-stabilizing biset of
the form Indinfg/BVIs% Defresg/D for a kG-module L and V a strongly

minimal ny -stabilizing biset for M = Isog Defresg/D(L). Moreover suppose
that M is indecomposable. Then U is strongly minimal.

Proof. Set V' := Indinfg//i Iso, Defresg//f and let W be a ny -stabilizing biset

for L. Set W := Indinfﬁ//B, Isoy Defresg,/D,. We have to show that |H/J| <
|A’/B'|. Using these settings, one has

Isoy Defresg/D W Indinfﬁ/B V(M) = Iso, Defresg/D W(nyL)

nynw Isog, Defresg/D (L)

12

I

nynw M.
Using generalized Mackey formula, the left hand side becomes
Bg,n Isog Btf(C, D, 9A', 9B") Conj, Isoy Btf(C’, D', "H, "J) Conjj, Iso, Defresg//f(M),

where the sum is taken over g € [C\G/A'] and h € [C'\G/H]. Because M
is indecomposable, this implies that for each summand there exists a certain
kg 5 such that

Isog Btf(C, D, 94, 9B') Conj, Isog Btf(C', D', "H, .J) Conj, Tso, Defresg/ (M) 2 kg, M.

Note that &, is not equal to zero for at least one pair (g, ). The biset V'
is strongly minimal therefore the biset Btf(C’, D', "H, "J) has to be reduced
to .

Iint( g b iy v 1500,
when k, ,, # 0, which means that ("H, "J) is linked to a subsection of (C", D).
In particular |H/J| < |C"/D’| = |A’/B’| which proves the strong minimality
of U. ]

Proposition 2.22. Let G be a finite group, U := Indinfi/B V Isoy Defresg/D
a strongly minimal ny-stabilizing biset for an indecomposable kG-module L
where V' ny -stabilizes M := Isoy Defresg/D(L). Then V' is strongly minimal.

Proof. Set V' := Indinfg//i Iso, Defresg//f and let W be a ny -stabilizing biset

for M. Set W .= Indinff]{ﬁ], Iso, Defresg,/ /B;,, then
Indinf§, 5 VW Isog Defres¢ (L) = Indinf§,, VIW(M)
= ny Indinff/B V(M)

~

nwnyL.
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Using Mackey formula, the first term on the left becomes

By Indinfg/J Iso, Btf(S, T, “H', %J") Conj, Iso Defres’;,/B

/70 1806 Defresg/D (L) 2 nynwL.

Because L is indecomposable, this implies that for each summand there exists
a certain £, such that

Indinfg/J Iso, Btf(S, T, ?H', 2J") Conj, Iso, Defresg,//i, Isog Defresg/D (L) = k,L,

and k, is not zero for at least one g. By strongly minimality of U the biset
Btf(S, T, 9H', 9J") must, at least, be reduced to Isoy, Defres(gé{mf,lgi}],)gj,/(m or1") 0"
which means that (S,7") is linked to a subsection of (?H’, %J'). In particular

|H/J|=1|S/T| < |H'/J'| which proves the strongly minimality of V. O

Proposition 2.23. Let G be a finite group, U := Indinfﬁ/B Isoy Defresg/D

and L a kG-module ny-stabilized by U. Suppose M := Isoy Defresg/D(L)
15 1ndecomposable. Then there exists a biset V', ny-stabilizing M, such that
W = Indinff/B V Isoy Defresg/D is strongly minimal for L. Moreover V is
strongly minimal for M.

Proof. One proves this by induction on |G|. If G is of order 1 then the trivial
biset is strongly minimal. Now suppose the statement is true for groups of
order less than |G|. If U is strongly minimal then V' = Id. Suppose U is not
strongly minimal. Moreover suppose |A/B| < |G| and apply the induction
on the indecomposable module M with the identity as stabilizing biset. So
one obtains a strongly minimal biset V := Indinf?/? Iso, Defres?/? such that
V(M) = ny M. By Proposition 2.21 the biset

W= Indinfg/B V Isog Defresg/D

is strongly minimal for L.

One needs to treat the case |A/B| = |G|. This implies that U = Iso, but
U is not strongly minimal by assumption, therefore there exists a proper biset
V1, i.e. not reduced to an isomorphism, such that V;(L) = ny, L. Replacing
U by Vi in the argument of the first case, one obtains a strongly minimal
ny-stabilizing biset V' for the module L and therefore W = V Iso,, is strongly
minimal for L. ]

Remark 2.24. Note that W is a nyny-stabilizing biset for L and not simply
a ny-stabilizing biset.
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2.3 n-idempotent bisets

This generalizes section 5 of [3] on idempotent bisets to n-idempotent
bisets for n > 1. It gives also examples of idempotents in the double Burnside
ring QB(G, G). One gives here a complete classification of such bisets.

Definition 2.25. Let U be a (G, G)-biset, then U is an n-idempotent biset
if U2 > nU.

Theorem 2.26. Let U = Indinfi/B Isog Defresg/D be a (G,G)-biset. Then
U? = nU if and only if the following three conditions hold:

1. There are n (C, A)-double cosets.
2. The sections (C, D) and (YA, 9B) are linked for all g.

3. For every g € G, there exist v € Ng(9A, 9B) and y € Ng(C, D) such
that

¢B(g)~" Conj, ¢ = Conj, ¢ Conj, ",
where 5(g) : C/D — 9A/ 9B is the isomorphism induced by the linking.

Proof. By Mackey formula, one has

U? = |_| Indinfg/B Iso, Btf(C, D, YA, B) Conj, Isog Defresg/D )
ge[C\G/A]

[a¥)

Suppose U? = nU. Because on both sides it is the union of disjoint
transitive bisets, one must have the same number of transitive bisets as one
transitive biset goes to another via an isomorphism. So there are n (C, A)-
double cosets. Moreover, for every g € GG, we have

U= Indinfg/B Isoy, Btf(C, D, YA, ‘B) Conj, Isog Defresg/D .

Now the argument used in the proof of Proposition 5.1 of [3] works. Indeed,
the butterfly factorizes through a subsection of (C, D), which is a contra-
diction with the isomorphism with U unless the subsection is the whole of
(C, D). Indeed, U can be uniquely written, up to conjugation, see Lemma
1.18. Therefore the sections have to be linked. We are left with

U= Indinfi/B Isog Isog(g)-1 Conj, Isog Defresg/D .
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Again this is exactly the same situation as in Proposition 5.1 of [3]. Since two
transitive bisets are isomorphic if and only if the corresponding stabilizers in
G x G are conjugate, this isomorphism implies the existence of (z,y) € Gx G
conjugating one stabilizer into the other. Here, x must normalize A and
B and y must normalize C' and D, while the isomorphism ¢3(g)~! Conj Y
must differ from ¢ by the two conjugations Conj, and Conj, . So the third
condition follows.

Conversely, assume 1),2),3) hold and compute U? with these three con-
ditions. One has

U? I_l Indinfif/B Isoy Btf(C, D, YA, ‘B) Conj, Isog Defresg/D
ge[C\G/A]

1

I_l Indinfi/B Isog Isog(gy-1 Conj, Isog Defresg/D
ge[C\G/A]

I_I Indinf§ /B 180C0nj,  Conj; 1 Defres& /D
9e(C\G/A]

|_| Conj, Indinf§ /5 1804 Defres$ /p Conj, !
9E[C\G/A]

I_l Indinfi/B Isog Defresg/D =nU
9elC\G/A]

12

12

12

where the second isomorphism holds because of 2), the third by 3) and the
last one by 1). O

Proposition 2.27. Let U be an n-idempotent (G,G)-biset. For any kG-
module L', the kG-module L := U(L') is n-stabilized by U.

Remark 2.28. Note that in general L need not be indecomposable.

Examples 2.29.

e An example can be found in As;. Let U be Indinf[A)“jO e Defres‘é‘j0 ICs
where Dy denotes ((1,2,3,4,5),(2,5)(3,4)) and C5 = ((1,2,3,4,5)).
An easy calculation, which can be made by GAP, see [4], gives 2 dou-
ble (D1, D1g)-cosets in A5 and the section (Djg, C5) is linked via the
conjugation to its conjugate. By taking x = 1 and y = 1 in the last
conditions of Theorem 2.26 one can see that U is a 2-idempotent biset.
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e If A and B are normal subgroups of G and U := Indinf§ /B Defres§ /B
then U is |G : Al-idempotent. Indeed, one has |G : A| (A, A)-double
cosets. By normality the sections are trivially linked and by taking
x = y = 1 the third condition is also fulfilled. This is the case, in
particular, of Example 2.2.

Proposition 2.30. Let G be a group. Let U := Indinfg/B Isog Defresg/D be
a minimal n-stabilizing biset for an indecomposable module L. Then, for all
ge@G,

dim Indinfi/B Isoy, Btf(C, D, YA, B) Conj, Isos Defresg/D(L) =ndim L
if and only if the following two conditions are fulfilled

1. there are n (C, A)-double cosets,

2. the sections (C, D) and (9A, 9B) are linked for all g.

Proof. Suppose first that the dimensions are equal. Then because U(L) = nL
one has U?(L) = n?L. In other words

@ Indinfg/B Isoy Btf(C, D, YA, 9B) Conj, Isog Defresg/D(L) >~ n’L
ge[C\G/A]

and therefore, looking at the dimensions, the number of summands must be
equal to n. Therefore there are n (C, A)-double cosets. Moreover, looking
again at the hypothesis on the dimensions and using Krull-Schmidt Theorem,
one concludes that

Indinfg/B Isog, Btf(C, D, YA, ‘B) Conj, Isog Defresg/D(L) ~nl.

By minimality of U, the bisets Btf(C, D, 9A, 9B) have to be reduced to iso-
morphisms, which means that the sections are linked.
Conversely suppose 1) and 2). Then, because for all g in G the sections
are linked via 3(g), one has
Indinfi/B Iso, Btf(C, D, YA, ‘B) Conj, Isos Defresg/D(L)
=~ Indinff/B Isoy Isog(g) Conj, Isog Defresg/D(L)
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which means that all these modules have the same dimension as these di-
mensions do not depend on g. But

n’l =~ @ Indinfi/B Isoy Btf(C, D, YA, /B) Conj,, Iso, Defresg/D(L)
ge[C\G/A]

@ Indinfﬁ/B Isog Isog(g) Conj, Isog Defresg/D(L)
ge[C\G/A]

I

and therefore looking at the dimensions one has, for all g € G,
dim Indinfi/B Isoy Btf(C, D, YA, 'B) Conj,, Isog Defresg/D(L) = ndim L.

]

Remark 2.31. Suppose that the linking between (C, D) and (94, 9B) is just
the composition of the conjugation map by g and the linking between (C, D)
and (A, B), then conditions 1) and 2) are equivalent to saying that U? = nU
as a biset, as one can take x = 1 and y = 1 in Theorem 2.26 to fulfil the
third condition.

2.4 n-expansivity

In this section one introduces a type of subgroup called n-expansive. It
will be a useful notion to find n-stabilizing bisets.

Definition 2.32. Let n be an integer. A subgroup 7T of a group G is called
(S, n)-expansive relatively to (A, B) if

(i) The pairs (A, B) and (S, T) are sections of G.
(ii) The sections (A, B) and (S,T') are linked via ¢.
(iii) The composition of ¢ with the conjugation map, ¢oc,, links the sections
(A9, BY9) and (S, T) for exactly n elements g in [A\G/S]. For the other

elements g in [A\G/S] the S-core of the subgroup (B? N S)T contains
T properly.
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Remark 2.33.

e One will mainly use this notion with S = Ng(T') and (A, B) = (S, 7).
In this case the subgroup T is simply called n-expansive. If moreover
n = 1 one says that T" is expansive as defined in Chapter 6 of [3].

e By assumption (A, B) is linked to (S,7) and therefore the first part
of the condition (iv) is fulfilled at least for g =1 in [A\G/S].

Lemma 2.34. Let (A, B) be a section of a finite group G. Let M be a faithful
simple k[A/B]-module. Then Defﬁﬁ,(M) = {0} for any non-trivial normal
subgroup N/B of A/B.

Proof. Since M is simple and faithful, the largest quotient of M with trivial
action of N/B must be zero and therefore Defﬁ?ﬁ(M ) = {0}. O

Proposition 2.35. Let T be (S,n)-expansive relatively to (A, B). Let ¢
be the link between (A, B) and (S,T). Suppose that M is a faithful simple
k[A/B]-module. Let L = Indinfg/T Isos(M). Then,

(7) Defresﬁ/B(L) = nhl.
(i) The biset U := Indinfg/T Isog Defres§ /p n-stabilizes L.

(i) If n = 1 and (S,T) = (A, B), the module L is indecomposable. In
particular, if k is a field of characteristic prime to |G|, then L is simple
if and only of M is simple.

Proof. Let’s decompose Defresi / 5(L) using generalized Mackey formula, see
Proposition 1.22,

Defres§ (L) = Defres§ /B Indinfg/T Iso, (M)

& Btf(A, B, "S, °T) Conj, Isoy(M)
z€[A\G/S]
~ P Conj,Btf(A", B",S,T)Isos(M).
z€[A\G/S]

1%

Now one looks closely at Btf(A®, B*,S,T)Isos(M). By definition one has

Tz pT _ . AT/B” S/T
Btf(A*, B*,S,T) = Indmf(Ams)Bz/(AmT)Bz Isoy Defres(AmS)T/(BmS)T )
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Since T is (S, n)-expansive the S-core N, of the subgroup (B*N.S)T contains
T properly, except for exactly n elements z in [A\G/S]. In other words,
except for these n elements, N, /T is a non-trivial subgroup of S/T contained
n (B*NS)T. As

= Defres S/Na DefS/ T

S/T
Defres (A*NS)T/(B*NS)T Azms)T/(Bzms S/Na

one has, by Lemma 2.34 applied to Iso,(M), that

Defres AzmS)T/(Bzms rIsog(M) = {0}

for all x except n elements. Theses n elements have the property that the
composition of ¢ with the conjugation map links the sections (A%, B*) and
(S,T), which implies that

Conj, Btf(A*, B*, S, T)Isos(M) = M.
As this occurs exactly n times, one concludes that
Defresg/B(L) = nM.

The second point follows from the first and the definition of L. Finally the
last point has been proved in Proposition 6.2 of [3] on page 1624. ]

Examples 2.36. Here is an example of n-expansivity in Sg.

e First, consider T := ((1,2,3)) x ((4,5,6),(5,6)) which is isomorphic
to C5 x S3. Its normalizer S is T' x ((2,3)(4,6)). There are four
(S,S)-double cosets in Sg. Here is a list of representatives:

{id, (3,4), (2,4)(3,5), (1,4)(2,5)(3,6)}.

The first two elements satisfy the first part of (iv) in definition 2.32
and the last two elements satisfy the second part of the definition.
Therefore T' is an example of a 2-expansive subgroup in Sg. Setting
M to be the sign representation of S/T one obtains an example of a
2-stabilizing biset. However the module L := Indmfg‘;T(M ) is not an
indecomposable module for Sg over C.
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e Now consider T := ((5,6)) x ((1,2)(3,4), (1,3)(2,4), (2, 3,4)) which is
isomorphic to Cy x Ay. Its normalizer S is 7' x ((3,4)). There are
three (S, .5)-double cosets in Sg. Here is a list of representatives:

{id, (4,5), (3,5)(4,6)}.

The second one satisfies the second part of definition 2.32 and the two
others the first part. Therefore T is another example of a 2-expansive
subgroup in Sg. Again, setting M to be the sign representation of
S/T one obtains an example of a 2-stabilizing biset but the module
L:= Indinfng(M ) is not indecomposable over C.

Remark 2.37. This definition of n-expansivity only involves conditions on
subgroups but rises to examples of n-stabilizing bisets. However, one could
not assure that the module L given in Proposition 2.35 is indecomposable
except for n = 1. Another way to define the notion is the following. Let
n be an integer. Let M be a faithful indecomposable k[A/B]-module and
L= Indinfg/T Isos(M). The conditions on the pairs (S,7") and (A, B) would
be that

(i) The pairs (A, B) and (S,T') are sections of G.
(ii) The sections (A, B) and (S,T) are linked via ¢.

(iii) The sections (A9, BY) are linked via §(g) with (S,T) for exactly n el-
ements g in [A\G/S]. Moreover Is0g(g)oc,06(M) is not isomorphic to
Iso, M but Indinfg/T Iso, (M) is isomorphic to Indinfg/T I50¢,03(g)00 (M)
for all of these g. For the other elements g in [A\G/S] the S-core of
the subgroup (BY N S)T contains T properly.

With this definition, we would not have the property that Defres§ (L) =

nM but U = Indinfg/T Isog Defres§ /g would be a n-stabilizing biset for L.
The module L would be indecomposable under certain additional assump-
tions, for example if £ = C, (A, B) = (C, D) and ¢ = id as noticed in Remark
2.3. Nevertheless this is not a definition involving only group properties. In
our approach, we try to generalize the group theory notion of expansivity,
that was introduced in [3| to obtain examples of stabilizing bisets, to a group
theory notion of n-expansivity to obtain n-stabilizing bisets.
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Chapter

Stabilizing Bisets

In the previous chapter, one has seen general theorems about n-stabilization.
In this chapter one focus on the case n = 1. Therefore, as Theorem 3.3 shows,
one can obtain sometimes the same results but with weaker hypothesis. One
also has results that are not yet generalized as for example Theorem 3.5. One
ends this chapter with a study of the minimality for stabilizing bisets. But
first, one starts this chapter with some useful definitions.

Definitions 3.1.

(i) A finite group G is called a Roquette group if all its normal abelian
subgroups are cyclic. In other words, for any prime p, any normal
elementary abelian p-subgroup of GG has order 1 or p.

(ii) A subgroup T of a finite group G is called a genetic subgroup if T' is an
expansive subgroup of G and Ng(T')/T is a Roquette group.

Remark 3.2. Note that definition 2.32 introduced the notion of expansive
subgroup in a more general setting. Recall a subgroup T of G is called
expansiwe in G if, for every g & Ng(T), the Ng(T')-core of the subgroup
("N Ng(T'))T contains T' properly.

3.1 Stabilizing bisets

In this section one highlights the important results of [3]. One refers to
this article for the proofs.
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Theorem 3.3. Theorem 3.3 page 1616, [3]
Consider two transitive (G, G)-bisets

U = Indinf§ /5 1804 Defres& p and U’ = Indinf§, /B IS0y Defres, /D -

Let L be an indecomposable kG-module such that U(L) = L and U'(L) = L.
Let M = Defresg/D(L) and M' = Defresg,/D/(L).

1. Then, there exists a unique double coset CgA such that

Btf(C’, D', YA, “B) Conj, Isog(M) # {0}.

2. Suppose that U is minimal. Let g belong to the unique double coset of
part (1). Then

(i) the subsection ((C' N Y9A)D', (C' N 9B)D') is linked to the section
(9A, 9B).
(i) The biset Btf(C, D, 9A, 9B) is reduced to

.. cC'/D!
Indlnf(c/m 9A)D’ /(C'N9B) D! ISOg(g) )

where 5(g) is the isomorphism corresponding to the linking of (i).
-~ . /D' .
(i) M' = Indmf(c,/m oAD' /(9B D 1508 () Conjy Isog (M).
(iv) If h € G does not belong to one of these cosets, the section
("A, "B) is not linked to a subsection of (C', D").

3. Suppose that U and U’ are both minimal bisets. Let g belong to the
unique double coset of part (1). Then:
(i) the section (YA, 9B) is linked to (C', D’).

(11) The biset Btf(C, D, 9A, 9B) is reduced to Isogy, where B(g) is
the isomorphism corresponding to the linking between the sections
(9A, 9B) and (C",D’).

(iii) M = ISOﬁ(g)cg(z,(M).

(i) If h € G does not belong to one of these cosets, the section
("A, "B) is not linked to (C', D").
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Corollary 3.4. Corollary 3.4 page 1619, [3]

Let U = Indinfﬁ/B Isog Defresg/D be a minimal stabilizing biset for an
indecomposable kG-module L. Let M = Defresg/D(L). Then, there exists a
unique double coset C'gA such that

1. Btf(C, D, 9A, IB) Conj, Isogs (M) # {0},
2. the sections (C, D) and (9A, 9B) are linked,

3. the module M is invariant under B(g)cy¢ where 5(g) is the isomorphism
corresponding to the linking between the sections (C, D) and (A, 9B),

4. if h € G does not belong to the same double coset as g, the section
("A, "B) is not linked to (C, D).

Theorem 3.5. Theorem 7.3 page 1626, [3/

Let k be a field and let G be a finite group. If L is a simple kG-module,
then there exist a genetic subgroup T' of G and a faithful simple k[Ng(T')/T]-
module M such that

L = Indinff 7y 7 (M).

One also has M = DefreS%G(T)/T(L), so that L is stabilized by the biset
U - IndlnfﬁG (T)/T Defresgc (T)/T .

Moreover Endyg(L) = Endyngr)m(M) as k-algebras.

Remark 3.6. This theorem proves the existence of stabilizing bisets for sim-
ple modules. It is possible that this biset is trivial, i.e. it is reduced to an
isomorphism. This could only be the case if G is Roquette as one should have
(G,1) = (Ng(T),T) and Ng(T')/T is Roquette by assumption. Therefore the
only case to treat is the case of Roquette groups.

This raises the question of proving the existence, or non-existence, of
non-trivial stabilizing bisets for Roquette groups. To do so, one will use
two approaches. The first one is to improve the theorem and find some
genetic subgroups in Roquette groups, and then investigate whether it gives
us non-trivial stabilizing bisets. The second one is to find stabilizing bisets
for Roquette groups without the use of genetic subgroups. The first approach
will be presented for certain types of Roquette groups in Chapter 5. Then the
second will be presented for certain types of Roquette groups in Chapter 6.
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Finally, remark that if L is not faithful then L = Inf% Jker L Def& Jxer (L)
and so one can find non-trivial stabilizing bisets also if G is Roquette. This is
the reason why our focus will be on stabilizing bisets for faithful modules and
thus, by Proposition 2.18, on the study of expansive subgroups with trivial
G-core.

Corollary 3.7. Let G be a finite group. Suppose there exists a faithful simple
module but G 1s without non-trivial expansive subgroups with trivial G-core,
then G is Roquette.

Proof. This is equivalent to proving that a non-Roquette group has non-
trivial expansive subgroups with trivial G-core, by Theorem 3.5 this is the
case as there exists a faitful simple module for G. O]

Corollary 3.8. Corollary 7.8 page 1630, [3/
Let U = Indinfi/B Iso, Defresg/D be a minimal (G, G)-biset stabilizing a
simple kG-module L. Then C/D is a Roquette group.

Proposition 3.9. Proposition 8.4 page 1632, [3/

Let k be a field and let U = Indinfi/B Isoy Defresg/D be a minimal biset
stabilizing a simple kG-module L. If B is a normal subgroup of G, then
A =G. In other words, A is the normalizer of B in G.

Theorem 3.10. Theorem 9.2 page 1633, [3/

Let P be a Roquette p-group, where p is a prime number. Let k be a
field and L be a simple faithful kP-module. If L is stabilized by a biset
U= Indinfi/B Iso, Defresg/D, then (A, B) = (C,D) = (P, 1).

Remark 3.11. This theorem indicates us that one may not be able to find
stabilizing bisets for Roquette groups. In other words, we will be more
tempted to prove the non-existence than the existence of stabilizing bisets
for Roquette groups.

3.2 Stabilizing bisets and minimality

In this section one treats the question of minimality and existence of
minimal stabilizing bisets. These are the analogue results as in section 2.2
for the case n = 1, except the assumptions are weaker. Indeed, we only need
minimality and not strong minimality.
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Moreover, Proposition 3.14 completes a missing argument in the early
version of the proof of Theorem 9.3 of [3].

Proposition 3.12. Let G be a finite group, U := Indinfi/B V 1soy Defresg/D
a stabilizing biset for the indecomposable kG-module L and V a minimal
stabilizing biset for M := Iso, Defresg/D(L), then U s minimal.

Proof. Set V := Indinfg//? Iso, Defresg//f and let U’ be a stabilizing biset for

L. Set U’ := Indinf9, /1804 Defres, /p then

Isog Defresgp, U' Indinf§, 5 V(M) = Iso, Defresgi, U’ Indinf§ 5 (M)
= TIsoy Defresg/D U'(L)
= Iso, Defresg/D (L)
= M.
Because L is indecomposable, M is indecomposable. Using this fact and

Mackey formula, the first biset becomes, for some g € [C\G/A'] and some
h e [C'\G/H]

Isog Btf(C, D, YA’, ?B') Conj, Isoy Btf(C’, D', "H, "J) Conj,, Iso, Defres’;//ﬁ .

As a stabilizing biset for M one has, by minimality of V', that the biset
Btf(C’, D', "H, "J) has to be reduced to
. CI/D/
Indmf(c/m WE) DY /(O DY Isoy,
which means that ("H, "J) is linked to a subsection of (C’, D’). In particular
|H/J| <|C"/D'| = |A’/B’| which proves the minimality of U. O

Proposition 3.13. Let G be a finite group, U := Indinffj/B V Iso, Defresg/D
a minimal stabilizing biset for the indecomposable kG-module L where V
stabilizes M = Iso, Defresg/D(L). Then V' is minimal.

Proof. LetV = Indinfg//? Iso, Defresgl//f and V' := Indinfﬁ{fj, Iso, Defres?/ /E;,
be a stabilizing biset for M. Then

Indinf$, 5 V'V’ Isog Defresg (L) Indinf§, , VV'(M)
Indinf§,, V(M)

L.

12

1
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Using this fact and generalized Mackey formula, one has for some g €

[S\G/H'],
Indinfg/J Iso, Btf(S, T, ?H’, %J') Conj, Iso, Defresg//?, Isog Defresg/D(L) ~ .

By minimality of U the biset Btf(S, T, 9H’, 9J') must, at least, be reduced to
Isoy, Defres(ggm/géj,)g ' /(T SH?) 577 which means that (S, T) is linked to a subsec-
tion of (YH’, 9J'). In particular |H/J| = |S/T| < |H'/J’| which proves the

minimality of V. [l

Proposition 3.14. Let G be a finite group, U := Indinfg/B Isoy Defresg/D
and L an indecomposable kG-module stabilized by U. Then there exists a biset
V' such that U := Indinfﬁ/B V Isoy Defresg/D is minimal for L. Moreover V

is minimal for M := Isoy Defresg/D(L).

Proof. One proves this by induction on |G|. If G is of order 1 then the trivial
biset is minimal. Now suppose the statement is true for groups of order
less than |G|. If U is minimal then V' = Id. Suppose U is not minimal.
Moreover suppose |A/B| < |G| and apply induction to the indecomposable
module M with the identity as stabilizing biset. So one obtains a minimal
biset V := Indinf?/? Iso, Defres/? such that V(M) = M. By Proposition
3.12 the biset
U= Indinfﬁ/B V' Iso, Defresg/D

is minimal for L.

Finally, one needs to treat the case |A/B| = |G|. This implies that
U = Iso, but U is not minimal by assumption, therefore there exists a
proper biset V; such that Vi(L) = L. Replacing U by Vj in the argument
of the first case, one obtains a minimal stabilizing biset V' for the module L
and therefore U’ = V Iso, is minimal for L. O

Proposition 3.15. Let L be a faithful simple k[G]-module. Suppose that
whenever U(L) = L for U a minimal biset then U is reduced to an isomor-
phism. Then, for an arbitrary biset Indinfi/B Isoy Defresg/D stabilizing L

one has (A,B) = (C,D) = (G, 1).

Proof. By proposition 3.14 there exist subgroups H and J with J a normal
subgroup of H and with B < H < A and B < J < A such that

A/B
H/J

A/B

Indinfﬁ /B Indinf /T

Isos Defres . Isog Defresg /D = Indinf% /7 18004 Defresg,l( S/T)
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is minimal for L. As a minimal stabilizing bisets one has, by hypothesis,
that J =1 and H = G and so in particular B =1 and A = G. ]
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Chapter 4

On Roquette Groups

As seen in the previous chapter, we are going to concentrate our attention
on stabilizing bisets for Roquette groups. For this reason, one gives a brief
description of Roquette groups. One finishes this chapter with a useful way
to obtain Roquette groups as extension of known groups.

Definition 4.1.

(i) For a prime p, the p-core of a finite group G, denoted O,(G) , is defined
to be its largest normal p-subgroup.

(ii) The Fitting subgroup of G, denoted F(G), is the product of the normal
subgroups O,(G) for all primes p.

(iii) The generalized Fitting subgroup of G, denoted F*(G), is the product
of F(G) and all quasisimple subnormal subgroups of G.

Definition 4.2. Let G be a group and (G;,1 < i < m) a family of subgroups
of GG for some integer m. Then G is said to be a central product of the groups
G, if

(i) G=(G;|1<i<m),

(ii) [Gi, G4l =1 fori # j.

In this case, we will write G =G 0---0G,,.
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Remarks 4.3.

e This definition implies in fact that all GG; are normal subgroups of G.
Indeed, let x € G, and y € GG. By the first and the second conditions
Yy =Y ...Ym with y; € G; for all ¢+ and by the second one we have
[z, y] = [z,91...Ym] = [z,yx] € Gi. Therefore we have shown that
(G, G] < G}, which is equivalent to the statement.

e Moreover, we have G; N G; C Z(G) for i # j. Effectively, let = be an
element of G; NG; and y = y1 ...y, an arbitrary element of G as in
the first point. Then [x,y] = [z,v1...ym] = [z, y:] because z € G,
but z is also in G; so [z,y;] = 1, which shows that G; N G; C Z(G).

e Let Gy and Gy be groups and let Z(G), respectively Z(G3), be the
center of Gy, respectively Go. Suppose that the two subgroups Z(G1)
and Z(G3) are isomorphic. Given an isomorphism 6 : Z(G1) — Z(Gs)
we construct a central product G10Gs := (G1 X Gy) /N, where N is the
normal subgroup generated by the elements {(z,0(z71)) |z € Z(G,)}.

Let G be a Roquette group and denote by F'(G) the Fitting subgroup of
G, which is the product of the normal subgroups O,(G) for all prime numbers
p dividing the order of G. As G is Roquette each O,(G) does not contain a
characteristic abelian subgroup which is not cyclic. By theorem 4.9 of [5] on
page 198, such groups are known. More precisely, each subgroup O,(G) is the
central product of an extraspecial group (possibly trivial) with a Roquette
p-group. Such a group is called quasi-Roquette. This description helps us to
give a characterization of those groups.

Proposition 4.4. A finite group G is Roquette if and only if the Fitting
subgroup s the direct product of quasi-Roquette groups and the action of
G on F(G) does not fix an elementary abelian normal subgroup of rank at
least 2.

Proof. 1f G is Roquette, then it is straightforward that the Fitting subgroup
is the direct product of quasi-Roquette groups and the action of G on F(G)
does not fix an elementary abelian normal subgroup of rank at least 2.
Suppose the Fitting subgroup is the direct product of quasi-Roquette
groups and the action of G on F(G) does not fix an elementary abelian
normal subgroup of rank at least 2. Let N be a normal elementary abelian
p-subgroup of GG. One has to prove that N is actually cyclic. Remark that
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N is contained in O,(G) and so N = N N O,(G) < NN F(G) < F(Q).
Therefore N is a normal subgroup of F(G) fixed by the action of G, as N is
a normal subgroup of G. By assumption N has to be cyclic. ]

One also presents a way to have Roquette groups as an extension of known
groups. As one has described a Roquette group with its Fitting subgroup,
one continues in this fashion.

Suppose G is solvable. It is a well known fact that in this case Cq(F(G)) <
F(G). Therefore G/F(G) injects into Out(F(G)). Indeed consider the map
¢ : G — Out(F(G)) sending an element g to the class of the conjugation map
cg. Then ker¢ = {g € G | ¢, € Inn(F(G))} which means that if g € ker ¢
there exists h € F/(G) such that ¢; = ¢;. This is equivalent to saying that
Wl = g for all z € F(G), in other words h~'g belongs to Cg(F(G)) and
therefore g to F(G)Cq(F(G)) = F(G). This shows that ker ¢ < F(G) and
the other inclusion is trivial. So one has the following exact sequence

1—— F(G)——G——S——1

where S is a subgroup of Out(F(G)).

In the case where G is not solvable one has to replace F'(G) by the gen-
eralized Fitting group F*(G) to have Cq(F*(G)) < F*(G) and therefore
G/F*(G) injects into Out(F*(G)).
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Chapter

Expansivity and Roquette Groups

This chapter is motivated by Remark 3.6. Indeed in the previous chapters
we saw that we have to focus our interest on stabilizing bisets for Roquette
groups. As one way to obtain stabilizing bisets uses expansive subgroups,
see Proposition 2.35, one looks at expansive subgroups in Roquette groups.

One separates our study, motivated by Chapter 4, in four types of Roquette
groups.

Roquette p-groups.

Some simple groups.
e Groups with cyclic Fitting subgroup.
e Groups with extraspecial groups in the Fitting subgroup.

Recall that a subgroup T of G is called expansive in G if, for every
g € Ng(T), the Ng(T)-core of the subgroup (' N Ng(T))T contains T
properly. Motivated by the result of Theorem 3.10, the general idea is to
prove that for the majority of these groups G there is no non-trivial expansive
subgroup with trivial G-core. To do so, for an arbitrary subgroup 7T of G
with trivial G-core one finds a specific element ¢ in G which is not in Ng(7T)
such that (9" N Ng(T')) is contained in T. Thus, the Ng(T')-core of the
subgroup (9I'N Ng(T))T is T and so T' is not expansive. Remark also that
this is equivalent to proving that 7' is not expansive or "I is not expansive
fora h € G.

We also discuss, if possible, the case of n-expansivity for n > 1.
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Note that expansive subgroups and more precisely genetic subgroups ap-
pear in the study of biset functors given in [2]. They are used to define
rational biset functors. This kind of biset functors has a wide variety of ap-
plications such as units of Burnside Rings, the Dade Group and the kernel
of the linearization morphism. Although there is a classification of Roquette
p-groups (see Chapter 5, Section 4 of [5]), there are not many results on
the existence of expansive or genetic subgroups. Therefore this chapter has
interest beyond the scope of this thesis.

5.1 Roquette p-groups

In this section one looks at expansive subgroups in Roquette p-groups for
p a prime number. Let P be such a group. One knows from 3.10 that if U is
a stabilizing biset for a faithful simple kP-module, then U has to be reduced
to an isomorphism. Therefore there is no hope to use expansive subgroups to
find a stabilizing biset. Nevertheless, as mentioned above we have an interest
in understanding this notion. In this first case, an important ingredient is
the classification of all Roquette p-groups, which we first recall.

Lemma 5.1. Let p be a prime and let P be a Roquette p-group of order p™.
1. If p is odd, then P 1is cyclic.

2. If p =2, then P is cyclic, generalized quaternion (withn > 3), dihedral
(with n > 4), or semi-dihedral (with n > 4).

3. If P is cyclic or generalized quaternion, there is a unique subgroup Z
of order p. Any non-trivial subgroup contains Z.

4. If P is dihedral and Z = Z(P), then any non-trivial subgroup contains
7, except for two conjugacy classes of non-central subgroups of order
2. If T is a non-central subgroup of order 2, then S = Np(T) =TZ is
a Klein 4-group and Np(S) is a (dihedral) group of order 8.

5. If P is semi-dihedral and Z = Z(P), then any non-trivial subgroup
contains Z, except for one conjugacy class of non-central subgroups of
order 2. If T is a non-central subgroup of order 2, then S = Np(T) =
TZ is a Klein 4-group and Np(S) is a (dihedral) group of order 8.

Proof. See Chapter 5, Section 4, in [5]. ]
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Using this classification we are able to prove the non-existence of expan-
sive subgroups with trivial P-core in a Roquette p-group.

Theorem 5.2. Let p be a prime number and let P be a Roquette p-group.
Then P has no non-trivial expansive subgroup with trivial P-core.

Proof. Let T be a non-trivial subgroup with trivial P-core. Then T'N Z(P)
has to be trivial, otherwise T'N Z(P) would be contained in the P-core of
T. It follows from Lemma 5.1 that T is trivial, except possibly if p = 2, P
is dihedral or semi-dihedral, and 7" is a non-central subgroup of order 2. To
prove that such 7" is not expansive one wants to look at 9" N Np(T') for a
suitable element g where g &€ Np(T).

In both cases S = Np(T) is a Klein group. Moreover, since Np(S5) is
(dihedral) of order 8 and P has order at least 16, we can choose g & Np(95).
Using such g one has 9'N Np(T) = 9I'NTZ = 1 which proves that T is
not expansive as the Np(T')-core of the subgroup (9" N Np(T'))T is exactly
T and so does not contain 1" properly. ]

5.2 Some simple groups

In [3], it is shown that no non-trivial expansive subgroup exists in the
simple groups As, Ag, A7 and PSLy(Fy;). Even so genetic subgroups appear
in Ag, My, and PSLy(F;). Using GAP one can see that there is no non-trivial
n-expansive subgroup in As, Ag and PSLy(IFq;) but there is a 3-expansive
subgroup in A;. Indeed, let T = ((5,6,7)) x Ay and S = Ny, (T) =T %
((2,4)(6,7)). There are four (S, S)-double cosets in A;. One of them satisfies
the second part of (iv) in definition 2.32 and the three others the first part.

5.3 Expansive subgroups in a group with cyclic
Fitting subgroup

In this section one wants to investigate groups G such that the Fitting
subgroup F(G) is cyclic of order n. One wants to know if expansive subgroups
with trivial G-core exist in such groups. In this section, one assumes that G
is solvable. One will prove that such a group G has no non-trivial expansive
subgroup with trivial G-core. First note that, by Chapter 4, one has the
following exact sequence
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1 Ch G S 1

where S is a subgroup of Out(C,,) = Aut(C,). The map ¢ : C,, — G is the
inclusion map. The map 7 : G — S sends an element g to the conjugation
map ¢,. One says that G is an extension of S by C,. Note that this is not
enough to ensure that GG is Roquette at this stage. One discusses this issue
later on, see Theorem 5.9.

Suppose n = p]f ...pkm for some primes p; and integers k;, so C, =
I, Cri- 1t's a well- known result that Aut(C,) = [T~ Aut(C .). Recall
also that Aut(Cor) = Cy x Cor—2 and for an odd prime p; one has Aut(C’p ) =
Cp,—1 % C’ r-1. Let g, be a generator of C’ k; in C, and define oy, an element
of Aut(C, ) by

ki—1
1+p,*

“ 9p; 77 Gps

and ay,(gp,) = gp, if J # 1. The map «, is an element of order p; if k; > 1,
otherwise it is the identity map.

Lemma 5.3. Let p be a prime number dividing n, then

1 ] 1 if p is odd or p =2 and k > 2,
" (<0‘p>’cn)_{ Cy ifp=2andk=2.

Proof. Decompose n as n = p* - n/p* such that p does not divide n/p* and
let g be a generator of Cp in C),. Note that

H'({ap),C) = H' ({0), Cpr) x H ({ap), Crypr)

p

but H*({ey,) , C,,/pr ) is trivial because the order of (a;,) and the order of C,,

are coprime. Therefore H 1( (ap) ,C’n) is equal to H 1( (o) ,Cpk). Moreover,

recall that in the cyclic case H'((a,),Cp) = Ker(t)/Im(ey, - v), where

t=T11"2 o, v € Aut(Cpe) sends g to g~ and (ap - v)(g) == ap(g)v(g). Let’s
start to descrlbe the action of ¢ on Cp.
p—1 p—1
: 3 H k—1\i i 1
tg') = Hap(g)J =[[s" Hg”J e

1=0

-1 k—1p(p—1)
_ Hgﬁrﬂp pJ+Jp B
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The equality between the first and the second line holds because the power of
p for the rest of the terms is bigger than k. If p is odd the last term is equal

to g”. Therefore t sends g to ¢?, its kernel is <gpk71>. But the image of a,-v

is also <gpk71> as (a,-v)(g) = g"*7" g7t = g?" ' If p = 2, the map ¢ sends

¢ to g/ The kernel is again <gpk71> if k> 2 and <gpk72> if k = 2.
As the kernel is a subgroup of the cyclic group Cy: it’s easy to check it by

k—1

hand. The image of «, - v is also <gpk71> as (o - 0)(g) = gttP" gl = gP

This leads us to the conclusion. ]
Lemma 5.4. Let p be a prime number dividing n, then

9 1 if pis odd or p =2 and k > 2,
H (<ap>’0">_{ Cy ifp=2andk=2.

Proof. Again, decompose n as n = pF - n/p® such that p does not divide
n/pk and let g be a generator of Cpe in Cy,. Using the same argument, one
has H?((a,),Cy) = H?({y),Cp). In the cyclic case H?( (o), Cp) =
Ccpk(<ap>)/lm(t), where ¢ = [];a;. First, note that Ccpk(<ap>) = (g").
Indeed, it is easy to check that Cg ,((ap)) > (¢”) but (¢”) is a maximal
subgroup of (g) and g is not stabilized by «,, therefore the other inclusion
follows. Secondly, using the description of the action of ¢ in Lemma 5.3, one
has also that Im(t) = (¢”) if p is odd or p = 2 and k > 2 and therefore
H?( (o), Cy) is trivial for these cases. Nevertheless if p =2 and k = 2 then
Im(t) = 1 and so H*((ay),C,) = Cb. O

Corollary 5.5. Let p be an odd prime or p =2 and k > 2. Suppose () is
a subgroup of S. Then there exists a subgroup D of G such that 7(D) = (a,)
and DN C, =1.

Proof. By Lemma 5.4, there exists only one class of extensions of (a,) by
C,,. Therefore the extension 7*((a,)) is the semi-direct product of C,, by a
cyclic group of order p, which is the subgroup D that we are looking for. [J

Lemma 5.6. Let G be an extension of S by C,, as above. Let D be a subgroup
of G such that DN C,, =1, then N¢, (D) = Ce, (D) = C¢, (7(D)).

Proof. For the first equality, let  be an element of N¢, (D). Then, for all
d € D one has zdr~' € D. But zdr~' = 2 %~'d which belongs to D if, and
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only if, #%~! = 1 which means that x = % . This implies that = is an
element of C¢, (D). The other inclusion is trivial.

For the second equality, note that the action of D on C,, is the same as
the action of m(D) on C,, by definition of the map . O

Lemma 5.7. Let H be a subgroup of S and H; the i™-projection of H on
Aut(C,). Then

Co,(H) =[] Co ., (H)).
i=1 ¢
Proof. Recall that C, =[]\~ sz;i. Now this is just a calculation :

Co,(H) = {c=(c1,...,cpn) €Cp| "ce=cforall h € H}
= {c=(c1,...,¢m) € Cy| "c; = ¢; for all i and for all h € H}

m
=1

m
i=1

- H Ccpki (Hl)
i=1 ¢

he. = ¢; for all 4 and for all h € H }

Mie; = ¢; for all i and for all h; € H;}

]

Lemma 5.8. Let G be the group Cor x Cy with k > 2, where Cy is generated
by either 81 : g — g or By : g — g T2 where g is a generator of Cox.
Let b be an element of Cy. If the element g%~ belongs to CCQk<02> then the
only possibility is that b = 1.

Proof. Note that in both cases C¢, (Ca) = {c € Cy | ¢> = 1}. Suppose now
that g% ! belongs to Cac,, (Cy), where b is an element of Cy. So actually,
except being the identity, b could only be ; or By depending in which case
we are. One shows that it must imply b = 1 anyway. Indeed, remark that
gBi(g~") = ¢* is not an element of C¢,, (C2) because k > 2. Similary for

9B2(g) = ¢**?""". Therefore in both cases one must have b = 1. O

Theorem 5.9. Let G be a group such that there is an exact sequence
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1 Ch G S 1

where S is a subgroup of Aut(C,,), the map ¢ : C,, — G is the inclusion
map, the map m : G — S sends an element g to the conjugation map c, and
the power of the prime 2 in the decomposition of n is different from 2. Then

1. if G is a Roquette group then S does not contain any subgroup () for
a prime p dividing n.

2. If S, does not contain a subgroup <apj> for all prime p; dividing n then
G has no non-trivial expansive subgroup with trivial G-core, where Sy,
denotes the j"-projection of S on Aut(C,,).

3. If G has no non-trivial expansive subgroup with trivial G-core then G
15 Roquette.

Proof. One proves 1 by proving the converse. Suppose there exists a prime p
such that (a,) is a subgroup of S. Decompose n as n = p¥ - n/p* such that p
does not divide n/p* and let g, be a generator of Cj in C,,. By Corollary 5.5,
let D be a subgroup of G such that 7(D) = () and DNC,, = 1. By Lemma
5.6 and a quick calculation, one has N¢, (D) = C¢, ({ay,)) = ((9p)?) X C,pr-
Indeed, it is easy to check that Cc, ({(ap)) > ((gp)7) X Cy e but ((g,)?) is
a maximal subgroup of ((g,)) and g, is not stabilized by «, therefore the

“> « D, which
is an elementary abelian p-group. One shows that E is a normal subgroup
of G. Indeed, let h be an element of G, then "E = h<(gp)pk71> x "D =

other inclusion follows. Define the subgroup E := <(gp)p

<(gp)pk71> x "D as C,, is a normal subgroup of G. Moreover, by Lemma

5.3, one has "D = “D for some c € Cyr, because "D is a complement of
Cn in €, ¥ D and the elements of D act trivially on C, /. Indeed one
has "DNC, = DN "'C,) = DNC,) =1and "D C 7 '7("D) =
1 ("Wr(D)) = 77} (7(D)) = C, x D. As q, acts trivially on C, ,x so does
D and thus one can restrict the conjugation to an element ¢ € Cr instead
of C,. Now one looks at °D. Let = be an element of °D, then z = c%~'d

for a d in D. Write c as g;; and 7(d) as a%. Recall that the action of D on

d

C,, is the same as (o). Therefore ¢%! = ¢! = (g,)~"" " which implies

that D is included in <(gp)pk_1> x D and so E is normal. Therefore G is
not Roquette. This proves 1.
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For 2, as before one has n = p’fl ...pkm and moreover to simplify the
notation suppose here that plfl = 2% Suppose that Sp; does not contain a
subgroup <apj> for all prime p; dividing n and prove G has no non-trivial
expansive subgroup with trivial G-core. Let A be a non-trivial subgroup of
G with trivial G-core. Then ANC,, = 1 otherwise AN C,, would be included
in the G-core of A. So 7 induces an isomorphism between A and a subgroup
H of S.

The subgroup H is included in [[;", H; where H; is the i*"-projection
of H on Aut(C,,). As A is not trivial, so is H and therefore there exists
an integer j such that H; is not trivial. Now one looks at the expansivity
condition. Let e be an element in C, = [[, Cx; but not in C¢, (H) and

write e as [[I", e,, where e,, € C’p;‘ci. More precisely, if p; is odd, then take

ep, in Cg, (H) and only e, not in ZCCn (H). If p; = 2 take the element e; to
be the generator ¢g of Cyr and again e,, in C¢, (H) if p; is not equal to p;.
Note that if p; = 2, then k > 2 as k = 2 is excluded by assumption and k =1
forces Hy to be trivial. As N¢, (A) = C¢, (H) by Lemma 5.6, the element e
is not in Ng(A). Let b be an element of A. Then % = e%~'b is an element of
Ng(A) if and only if e %! is an element of Ng(A)NC,, = C¢, (H), by Lemma
5.6. Our purpose is to show that e%~! = 1 and therefore AN Ng(4) < A.
Write b = [], b; such that m(b;) belongs to H;. This is possible because 7
induces an isomorphism between A and H. Then, using Lemma 5.7, one
has that ee™ = [] e, Y, ! € Co,(H) =[], Cc,’.fi(Hi)> which means that

pi
for all 7 one has e, bie;i = Ca,, (H;). But by definition, for all 4, one has
ep Ve, € [C i, H;] and therefore e, Yie,t € [Copy, Hi) N C i, (H). I pj s

Pi pkis
different from p; then %e,, = e,,, as the element e,, belongs to Cc, (H).
By proposition 1.4, [Cp@j,Hj] N Copj (H;) is trivial if p; is different from 2.

The reason is that H; has order prime to p; because S, does not contain a
subgroup <apj>. For the case p = 2 one uses Lemma 5.8 for £ > 2. Indeed,
in this case one has shown that if ¢ *2g~' belongs to Cc,, (Cy) then by = 1. To
sum up one has shown that Ye,, = e,, for all i. This implies that if % belongs
to Ng(A) then b = e%~1b = b. Finally one concludes that AN Ng(A4) < A
and therefore A is not expansive. As A was an arbitrary non-trivial subgroup
of G with trivial G-core, this concludes the proof.

The third fact is a general result, see Corollary 3.7. One has just to
prove the existence of a faithful simple module. Let L be Ind$ (¢) where &
is a primitive nth root of unity. This module is irreducible as the conjugate
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representations of £ by the action of G/C,, are not isomorphic as it acts
by automorphism on C,,. Moreover, the condition of primitivity on the root
ensures the faithfulness of the induced module so L is the wanted module. [

Corollary 5.10. Let G be a solvable group with F(G) = C,. Then G is
Roquette and of the form of Theorem 5.9 and so S does not contain a subgroup
(ay,) for a prime p dividing n.

Proof. If F(G) = C,, then G is Roquette by Proposition 4.4, as F(G) does
not contain an elementary abelian subgroup of rank at least 2. The group
G is also of the form of Theorem 5.9 by the last argument in Chapter 4.
Therefore Theorem 5.9 gives the result. ]

Remark 5.11.

e To ensure the non-existence of expansive subgroups with trivial G-
core in such groups one needs, not only that S does not contain a
subgroup (a,) for a prime p dividing n but also that S,, does not
contain a subgroup <ap > for the primes p; dividing n. Which means
that we do not want a diagonal subgroup of []", Aut(C’ k) in S, see

Proposition 1.2. However note that, depending on G, for example if
there is no prime p; dividing p;—1, the two conditions can be equivalent.

e Using GAP, one can find examples of n-expansive subgroups for n > 1.
For example in G := Cyg5 X Aut(Cios), the subgroup T := Ciy x Cy
in Aut(Chos) = Cig is 6-expansive with a number of (Ng(T), N¢(T))-
double cosets of 8.

5.4 p-hyper-elementary groups

Let p be a prime number. Let G be C), x P where P is a p-group and C), is
a cyclic group of order prime to p. There is an action map ¥ : P — Aut(C,,).
Such a group is called a p-hyper-elementary group. Let B be a subgroup of
G with trivial core. So BN C,, = 1 otherwise B N C,, would be contained in
the core of B. In particular, up to conjugation, B is a subgroup of P as p is
prime to n.
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Theorem 5.12. If p is odd then a p-hyper-elementary group is Roquette if
and only if the kernel of ¥ is cyclic. If p =2, then G is Roquette if and only
if the kernel of 1 is cyclic, quaternionic, semidihedral or dihedral.

Proof. See Theorem 3.A.6 of [6]. O

Remark 5.13. If G is a Roquette p-hyper-elementary group, with p an odd
prime, then we are again in the situation of a cyclic Fitting subgroup.

Lemma 5.14. Let G be C,, x P, a p-hyper-elementary group. Then Z(G) =
Ce,(P)(Kery N Z(P)).

Proof. Let x be an element of Z(G). Write x as em where e belongs to C,
and m to P. Then x(ch)x=! = ch for all ¢ in C,, and h in P, which means
that ec ""e~' ™h = ch. Identifying the elements of C,, and P one has ™h = h
for all A in P and so m € Z(P), moreover one has ¢ = e™c "e™t = e™mche™!,
Since this must be true for all h € P one can take h = 1 and so ¢ = "¢ for
all ¢ € C,, which means that m € Kert and so m € Kerv) N Z(P). Finally
one has e = "e for all h € P and so e € Cg, (P).

This proves that Z(G) < C¢, (P)(Ker¢ N Z(P)). The other inclusion is

trivial. [

Lemma 5.15. Let G be C,, x P, a p-hyper-elementary group and B a sub-
group of P. Then Ng(B) = Cg, (B) X Np(B).

Proof. Let x be an element of Ng(B). Write x as em where e belongs to C,,
and m to P. Then zha~! € B for all hin B, which means that e "¢~ "h € B.
Identifying the elements of C,, and P one has ™h € B for all A in B and so

m € Np(B), moreover e "¢l =150 e = ""e for all h in B and therefore

e c Ccn<B)
This proves that Ng(B) < C¢,(B) x Np(B). The other inclusion is
trivial. O

Lemma 5.16. Let G be C,, x P, a p-hyper-elementary Roquette group for p
an odd prime and B be a subgroup of G with trivial core. If B is not trivial

then Ce, (B) S C.

Proof. Let B be such a non-trivial subgroup. As noticed B can be chosen, up
to conjugation by an element of C,, to be a subgroup of P. As the conjugation
does not change C¢, (B) one can suppose that B is a subgroup of P. Suppose
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Ce, (B) = C,,, which means that B is a subgroup of ker . But, by Theorem
5.12, ker v is cyclic and so B is a normal subgroup of P. But because B has
trivial G-core one has BNZ(G) = 1 andso 1 = BN(KeryNZ(P)) = BNZ(P)
which is a contradiction with the normality of B in a p-group. O

Theorem 5.17. Let G be C,, X P, a p-hyper-elementary group for p an odd
prime. Suppose G is a Roquette group. Then G has no non-trivial expansive
subgroup with trivial G-core.

Proof. Let B be such a non-trivial subgroup. As noticed B can be chosen
to be a subgroup of P. Let e be an element of C;, not contained in C¢, (B).
Such an element exists by Lemma 5.16. Let % be an element of ‘BN Ng(B)
where b belongs to B. Then % = e% b which is an element of Ng(B) if and
only if e%™! € C¢,(B) by Lemma 5.15. But e% ! is an element of [C,,, B]
and so e € [C,, B] N Cg,(B). By Proposition 1.4, [C,, B] N C¢, (B) is
trivial so % = e . Therefore % = b and °B N Ng(B) < B which proves that
B is not expansive. O]

5.5 Groups with extraspecial groups in the Fit-
ting subgroup

In this section one wants to investigate groups G such that the Fitting
subgroup F(G) contains an extraspecial subgroup. The goal is to determine
if expansive subgroups with trivial G-core exist in such groups. We were not
able to completely treat this case as in the previous section with F/(G) = C,,.
So, one looks at particular examples. One starts with a 2-extraspecial Qg
contained in F(G) with G := Qg x SLs(2). Then one establishes partial
results for G := E x Sp(E/Z) with E an extraspecial group of order p'*2"
for an odd prime p. For n = 1, one could prove that such a group G has no
non-trivial expansive subgroup with trivial G-core. One finishes this section
with a discussion and partial results on the case G := (E, x SL(E,/Z,)) %
(Eq X SL(Eq/Zq)).

5.5.1 Qg X SLQ(Z)

We start with the group Qg x S3. It is a Roquette group. The Fitting
subgroup is g, an extraspecial 2-group. In [3] it is shown that S5 is an
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expansive subgroup. With GAP, one can see that the subgroups of order 2
in S5 are examples of 6-expansive subgroups, with a number of double classes

of 7.

5.5.2 E x Sp(E/Z)

Let E be an extraspecial group of order p and exponent p for an odd
prime p. In this section Z refers to the center Z(F) of E. It is also the center
of G:= ExSp(E/Z). A general result about extraspecial groups states that
E is the central product of r non-abelian subgroups of order p3. If T} is a
non-central p-subgroup of E of order p such that T} is contained in an E;, for
some choice of decomposition of E as the central product of n extraspecial
groups E; of order p* then T¢ denotes a choice of a complement of order p of
T; in E;. That is to say that (T;,7F) = E; and T, N T¢ = 1.

One introduces this notation for a fluidity in the reading, but remark
that even if one writes 77, the subgroup is not unique. One has to make an
arbitrary choice of complement but it will not affect the arguments where
the notation intervenes. For this reason, one allows this abusive notation.

Now regard Z as the field of integers modulo p and F/Z as a vector space
over Z and define 8 : E/Z x E/Z — Z by B(Z,y) = [z, y]. It is a well-known
result that f is a symplectic form on £//Z. This implies an action of Sp(£/Z)
on E/Z. But one needs to define the action of Sp(£/Z) on E. To do so,
define the following subgroup of Sp,,, ,»(p) equipped with the symplectic form

1+2n

0 1
0 K
J—(_K 0>WhereK— _
1 0
1
L= Sp2n(p)
1
and U the set of matrices of the form
1 v z
0 Idgn w
0 0 1
where v = (ay,...,a2,), w = Y{JW) = (a,...an11,—an,...,—ay) for a; €

F, and z € F,. It’s easy to see that L = Sp(E/Z) and U = E and that L acts

(@)
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by conjugation on U. A short calculation, shows that L acts by conjugation
on U/Z(U) as the natural action of Sp(E/Z) on E/Z. So one can define the
action of Sp(F/Z) on E as the action by conjugation of L on U.

Lemma 5.18. Let s be an element of Sp(E/Z) and e an element of E. If s
acts trivially on € in E/Z then e = e.

1 v =z
Proof. Let uw € U be |0 Idy, w | and suppose an element A of L acts
0 0 1
trivially on @ in U/Z(U), which means that there exists ¢t € F,, such that
1 v t 1 1 v =z 1
0 Idy, w = A 0 Idy, w At
0 0 1 1 0 0 1 1
1 vA Y 2
= 0 Idgn Aw
0 0 1

Therefore Aw = w and vA~! = v and then ¢t = z. Using this, one has

1 1 v oz 1 1 vA b 2
M = A 0 Idy, w At = (0 Idy Aw
1 0 O 1 1 0 0 1
1 v z
= 0 Idy, w] =uwu.
0 O 1

O
Note that given a subgroup H of Econtaining Z, there exists a decompo-
sition of £ such that H can be written as

k
[17 x Eiyr0---0E,

=1

for T; non-central p-subgroups of I of order p such that each T; is contained
in a different E; for a choice of decomposition of F. Indeed, let H be H/Z and

let {vy,..., v} be a basis of HNH" and complete it with a symplectic basis
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{Vhi1, Whity -+ Upy w0, } of H/ (Fﬂﬁl) to obtain a basis of H. This is possible
because the restriction of the symplectic form on H/ (FHEL) is nondegener-
ate. Let {wy,...,wy} be elements of E/Z such that {vq,... vk, w1, ..., wg}
is part of a symplectic basis with [v;,w;] = 1 for 1 < ¢ < k. Denote by
E; = {(v;,w;) the subspace of dimension 2. By definition of the symplectic
basis all F; and E; are orthogonal for i # j. Let Ey,..., E, be preimages of
E,...E.in E. Then E,, ..., E, are non-abelian groups of order p?, such that
[E;, E;] = 1if i # j, which gives by definition the central product Ejo---0E,.
Now the preimage of H/Z, which has basis {v1, ..., Vg, Ups1, Wei1, - - -, Up, Wy
in this central product is Hle T; X Eyyq0- - -oF, for T; non-central p-subgroups
of E; of order p if r is not equal to 0, otherwise it is Z X Hle T;. Remark
also that Cp(H) = [[\_, Ty X Eyy10---0 B, as Cg(H)/Z corresponds, by the
definition of the symplectic form (3, to the orthogonal of H/Z in E/Z.

Lemma 5.19. Let H be a subgroup of Sp(E/Z), e in E and G := E %
Sp(E/Z). Then H acts trivially on e if and only if e belongs to Ng(H).

Proof. Let h be an element of H. We have ehe™ = e”e~'h so by the unique-
ness of the decomposition in elements of £ and Sp(E/Z) the element ehe ™!
belongs to H if and only if e"e~! = 1 which means that h acts trivially on e.
This must be satisfied for all A in H and the result follows. m

Corollary 5.20. Let G := E x Sp(E/Z) and S be a subgroup of G of the
following form:

S ={p(h)h|h€ H} where p: H— E

with p(hk) = p(h)"p(k) for all h,k € H and H 1is a non-trivial subgroup of
Sp(E/Z). Then E is not contained in Ng(S).

Proof. Suppose E < N¢(S) then E normalizes S and S normalizes E. Be-

cause SN E = 1 one can see that E centralizes S which means that ses™! = ¢

forall s € S and e € E. Now write s as ¢(h)h for h in Sp(E/Z). Then, using
the equality above, we have e = ¢ e = ¢z for some z in Z and therefore
h(é) = e in E/Z. By Lemma 5.18 this would imply that h acts trivially on

FE for all A in H which is a contradiction. O]

Lemma 5.21. Let G := E x Sp(E/Z), © := em with e in E and m in
Sp(E/Z) and S be a subgroup of the following form:

{o(h)h|h € H} where o : H— E
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with o(hk) = @(h)"o(k) for all h,k € H and H < Sp(E/Z). Then x belongs
to Ng(S) if and only if m € Nsppyz)(H) and e™p(h) "e™ = (™) for all
heH.

Proof. This is a straightforward calculation. Let s be an element of S, s =
@(h)h for some h in H. We have

emg em(g@(h)h) — em90<h) emp, em90<h)€ "Lhe—l my em(p(h) mhe—l my,

If em € Ng(S) then s = ¢(hg)hs for some hy in H. The unique decompo-
sition in elements of E and Sp(E/Z) implies that e "p(h) "e~! = p(hy) and
"h = hs. This holds for all h € H.

Conversely, if m € Ngpp/z)(H) and e™p(h) ""e™ = ¢(™h) for all h € H
then s = o(™h)™h € S and this holds for all s € S. O

Lemma 5.22. Let G := E x Sp(E/Z) and H be a subgroup of Sp(F/Z),
then
Ng(H) = NE(H) X NSp(E/Z)(H)

Proof. Let x := em be an element of Ng(H) with e in F and m in Sp(E/Z).
The same calculation as above, with ¢(h) = 1 for all h in H, shows that
m belongs to Ngym/z)(H). Thus “"H = °H. But this must be equal to
H by hypothesis and so e belongs to Ng(H). Hence, Ng(H) < Ng(H) x
Nsp(e/z)(H) and the other inclusion is obvious. O

Lemma 5.23. Let G := E x Sp(E/Z) and S be a subgroup of the following
form:

{o(h)h|h € H} where o : H— E
with o(hk) = @(h)"o(k) for all h,k € H and H < Sp(E/Z). Then

Ng(S) = Cp(S5) < Cp(H) = Np(H).

Proof. First one proves that Ng(S) = Cg(S). Let e be an element of Ng(.5).
As above one has, for all h € H,

s = (o(h)h) = (h)h = %(h)e"e ' h = ep(h)"e'h.
The unique decomposition in elements of E and Sp(F/Z) implies that
ep(h)"e™ = p(h).
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This equality implies that h(€) = € in E/Z, because E/Z is abelian, and
so by Lemma 5.18 e = e, for all h € H, and thus e belongs to Cg(H).
Using this in the equality above one has %(h) = @(h). This shows that
Ng(S) < Cg(S). The other inclusion is trivial and thus Ng(S) = Cg(5).
The same argument with ¢ = 1 shows that Cg(H) = Ng(H).

Finally, one proves that Cg(.S) is a subgroup of Cg(H). Indeed let e be
an element of Cg(S) = Ng(S). By the argument above e belongs to Cg(H)
and the result follows. O

Notation 5.24. Let T := [[I_, T; and let {1, ..., v} be a basis of (T'x Z)/Z
and {wy, ..., wg} the corresponding elements in order to obtain a symplec-
tic basis, see Remark 1.10. One completes with {vgi1,...,0p, Wy ... W1}
in order to obtain a symplectic basis of E/Z. One refers to the basis
{V1, .o Uy Ukt1y « ooy Upy Wy« o . W1, W1, . .., Wi} as & T-basis of E/Z. In this
basis the symplectic form has the following matrix

Id 0 1

~ 0 K
WhereK:(_K 0) and K =

00
J = 0 K 0 )
—Id 0 O 1 0

d

Lemma 5.25. Let G := E x Sp(E/Z) and T = [[\_, T; for T; non-central
p-subgroups of E of order p such that each T; is contained in a different E;,
for some choice of decomposition of E as the central product of n extraspecial
groups E; of order p3, and k is smaller than or equal to n. Then we have

NG(T) = NE(T) X NSp(E/Z)(T) = (Ek—H O:++-0 En X T) X NSp(E/Z)<T)
Moreover, one has

A *

Newep@ <{| B | A€ GLi(p) and B € Spy, 5 (p) .
0 At

Proof. Obviously Ng(T') X Nspg/z)(T) < Ne(T) and if x := em € Ng(T)
with e € F and m € SL(E/Z) then em € Ng(Z xT) som € e *Ng(Z x T).
As E < Ng(Z x T) one has e ' Ng(Z x T) = Ng(Z x T') which means that
m belongs to Ng(Z x T) NSp(E/Z) which is exactly Ngpg/z)(T"). Therefore
we can conclude with the fact that e = zm™! € Ng(T) N E = Ng(T).
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Finally, let M be an element of Ng,(g/7)(T'). Let {vy, ..., vy} be a basis of
T and {wy, ..., wy} the corresponding elements in order to obtain a symplec-
tic basis, see Remark 1.10. Let {vgy1,...,Un, Wy ... wrs1} be a symplectic
basis of Ey,q0---0 E,, then M has the form

C *
D
0 E
in the basis {v1, ..., Vg, Vg1, oy Uny Wy .. Wiy1, W1, . . ., Wy} because M nor-

malizes (Fyxi1 0 -0 FE, xT) and T. In this basis the symplectic form has
the following matrix

Id 0 1

Wheref(:( 0 K) and K =

0

K
-K

0 0

0 .
—1Id 0 1 0
The matrix M is symplectic if ‘M JM = .J. This calculation implies in
particular that £ = C~* and D is a symplectic matrix and so the result

follows. O

We return to the question of the existence of expansive subgroups in
E xSp(E/Z). 1f S is an expansive subgroup of G with trivial G-core, one
must have S N Z = 1, otherwise Z would be contained in the G-core of S.
So only two cases are possible:

1. SNE=1or

2. SNE = Hle T; for T; non-central p-subgroups of E of order p such that
each T; is contained in a different E;, for some choice of decomposition
of F as the central product of n extraspecial groups E; of order p?, and
k is smaller than or equal to n.

In the first case, one can check that S is a subgroup of the following form:
{o(h)h|h € H} where ¢ : H — E,

with p(hk) = o(h)"p(k) for all b,k € H and H < Sp(E/Z). The next

proposition is the special case where ¢ = 1.

27



CHAPTER 5. EXPANSIVITY AND ROQUETTE GROUPS

Proposition 5.26. Let G be E X Sp(E/Z) and S be a subgroup of Sp(E/Z).
Then S is not expansive.

Proof. There exists a decomposition of E such that one can write Ng(S) as
Eio---0FE,. X Hle T; for T; non-central p-subgroups of E of order p such
that each T; is contained in a different F;. One knows, by Lemma 5.22; that
N¢(S) = Ng(S) % Nepg/z)(S), so Ng(S) is invariant by Nspg/z)(S) and
so is Cg(Ng(S)), as the latter corresponds to the orthogonal complement of
Ng(S) in the quotient E/Z. Therefore Z x [[t_, T; = Cx(Ng(S)) N Ng(S) is
also invariant by Ngp(g/z)(S). This implies that the image of Z x Hle T, in
E/Z is a totally isotropic subspace of dimension % invariant by Ngy(z/z)(95).
Thus if £ is not equal to zero, the subgroup Ngp(g/z)(S) is contained in a
parabolic subgroup of Sp(E/Z). More precisely one has, up to conjugation,

A *

Nswra(S) < { | B | A € GLy(p) and B € Spy, 5 (p) |-
0 At

where the first k& elements of the basis are in Ng(S)/Z and then the 2n — 2k
next vectors complete a basis of Cg(Ng(S))/Z to obtain a standard T-basis,

see Notation 5.24. Moreover, S is a subgroup of Nsy(g/7)(S) acting trivially
on Ng(S), so

Id *

Sg{ . B ; |B€Sp2n—2k(p>}'

In order to prove that S is not expansive, let g be the following element of
Sp(E/Z) but not in Ngp(g/z)(S)

0 0 Id
Id 0
—Id 0 O

Let 9% be an element of SN Ng(S). One will show now that 9SNNg(S) < S.

The element 9% of Sp(£/Z) belongs to Ng(S) only if 9% is an element § of
Nsp(r/2)(S) and so is of the following form

AC D

B E

0 A
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SUBGROUP
Id ¢ D
Let s be B E |, then gs = sg only if
0 Id
0 0 Id Id ¢ D 0 0 Id
gs = 0 Id O B E| = 0 B
—Id 0 0 0 Id —Id -C -D
AC D 0 0 Id -D C A
= §g= B FE 0 Id 0= -E B 0
0 A=) \~=1d 0 0 —A=t 0 0
In other words C = D=F=0=C=D=F and B= B and A = Id.
Id 0
One has shown that 9% belongs to Ng(.S) if and only if % = s = B
0 Id

Therefore, one has 95 N Ng(S) < S, which shows that S is not expansive.

Suppose now that k& = 0 which means that Ng(S) = (Eyo---0 E,) X
Nsp(r/2)(S). Take the first 2r elements of the basis of £/Z in Ng(S)/Z and
complete by a basis of Cr(Ng(S))/Z. Because Ng(S) and Cg(Ng(S)) are
invariant by Nsy(g/z)(S) and S is a subgroup of Ngp(g/7)(S) acting trivially
on Ng(S) one has

A 0
NSp(E/Z)(S) S { <O B) |A € SpQT(p)vB € Sp2n—2r<p)}

Id 0
and S < { (0 B) | B € Sp2n—2r(p)}'

Let g be a non-central element of Cfg (N E(S)), such an element exists
because of Corollary 5.20. Using Lemma 5.22, one has

ISNNg(S) = {%]| % e Ng(S) and s € S}
= {g% 's|g%'s € Ng(S) and s € S}
= {9°% 's|g% ' € Ng(S) and s € S}.
The condition g%~ € Ng(S) implies that in £/Z the element s sends g to
gn for an n € Ng(S). But g belongs to Cp(Ng(S)) so, because of the form
of elements of S above, the element s sends g to an element of Cp(Ng(S))/Z

which shows that 7 = 1 and s acts trivially on g. By Lemma 5.18 it follows
that % = g. One concludes that SN Ng(S) < S and S is not expansive. [
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The next proposition treats the case where ¢ # 1 with an added assump-
tion, as we were not able to prove it in generality. There exists a decompo-
sition of F such that one can write Ng(S) as Fjo---0 E, X Hle T; for T;
non-central p-subgroups of E of order p such that each T; is contained in a
different Ej;.

Proposition 5.27. Let G be E x Sp(FE/Z) and S such that SN E = 1.
Suppose moreover that {¢(h) |h € H} C Eyo---0E, for the choice of the
decomposition above. Then S is not expansive.

Proof. First, using the notation as preceding the statement, suppose that k
is not equal to 0. As Ng(S) is a subgroup of Ng(H) = Cg(H) by Lemma
5.23 one knows that H acts trivially on Ng(S). In particular H normalizes
Hle T; so by Lemma 5.25,

Id

*
H < { B | Be Sanfzk(p)},
0 Id

if we choose a basis with the first k£ elements being a basis of Hle T; and
then the 2n — 2k next vectors complete a basis of Cg(Ng(S))/Z. Finally one
completes the list with & vectors of 7 := Hle T¢ to form a T-basis of /7,
see 5.24. Let g be the following element of Sp(£/Z) but not in Nsy(g/z)(S)

0 0 Id
0 Id 0
—Id 0 O

Let  := 9 = Y@(h)h) be an element of 95 N Ng(S). An easy calculation
similar to the one in the proof of Proposition 5.26, shows that z belongs
Id 0
to Ng(S) if and only if % = h = B . As {@(h)|h € H} C
0 Id
Ejo---0FE,, the element g acts trivially on ¢(h) and therefore %(h) = ¢(h).
Therefore, the fact that the element z = 9% = 9¢(h)h) belongs to 9SNNg(S)
implies that 9p(h)h) = (¢(h)h) and thus 95 N Ng(S) < S.
Now suppose k = 0 so Ng(S) = Eyo0---0 E,.. Again, as Ng(5) is a
subgroup of Ng(H) one knows that H acts trivially on Ng(S), so up to

conjugation
Id 0
m<{(§ 5) 15 eSh i},
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if we choose a basis with the first 2r elements taken in Ng(S) and then
2n — 2r elements of Cg(Ng(S)). Let g be an element of Cg(Ej0---0 E,) =
E,. 10---0FE,. Then for a z € Z one has

Yo(h)h) = gp(h)hg™" = go(h) g~ h = zg"g " p(h)h.

This is an element of Ng(S) only if g"g~! belongs to Ng(S). Therefore, we
have "g = gn for an element n of Ny(S). By the form of H the element "g
belongs to Cg(FE;o---oFE,), as does g, and so n must belong to Cg(E;o0---oF,)
too. As Cg(Fy0---0 E,.)N Ng(S) = Z the element n must be in the center
but then h(g) = g in E/Z which implies, by Lemma 5.18 that "g = g and so
actually n is trivial . Therefore h acts trivially on g. Since {¢(h)|h € H} C
Eio---oFE, = Cg(Cg(Eyo0---0E,)) the elements ¢g and ¢(h) commute,
so the element z above is 1. Finally, one has Yp(h)h) = ¢(h)h and so
ISN Ng(S) < S. O

Remark 5.28. For the second case, i.e. when S is a subgroup of G such
that SN E =T, with T = Hle T; for T; non-central p-subgroups of E of
order p such that each T} is contained in a different FE;, for some choice of
decomposition of E as the central product of n extraspecial groups FE; of
order p?, and k is smaller than or equal to n, remark that Ng(S) < Ng(T).
Indeed, if k € Ng(S) then

M =KSNE)="nN*E=SN*"E=SNE=T.
Therefore, using Lemma 5.25, one obtains
T<S<Ng(S)<Ng(T)<(Epy10---0FE, xT)x Py
with
A *

P, = { B | [A€GLy(p) and Be Spgnfzk(p)}-
0 A™

So an element s of S can be decomposed as em where e is an element of
Eyi10---0F, xT and m an element of Pj.

Here is one way to try to solve this case. Let z := 9% = Yem) be an
element of 95 N Ng(S) where g is the following element of Sp(E/Z) but not

iIl NSp(E/Z)(S>

0 0 Id
Id 0
—-Id 0 O
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Because ¢ sends e to T° the fact that z = 9em) belongs to Ng(S) < (Egy10
-~ 0 F, x T) x Py forces the element e to be reduced to 1. Then, an easy

calculation, as in the previous cases, shows that the fact that x belongs to
N¢(S) implies that

A 0 At 0
m = B and 9n = B
0 At 0 A

Now the remaining goal would be to prove that %m belongs to S but at
the moment this has not been done.

5.5.3 (EoCy)xSL(P/Z)

Let p be an odd prime and E denotes an extraspecial group of order
p® and exponent p. Let P := (F o C,i) be a central product of E and a
cyclic group C,i over Z(FE) for i > 1 and G be P x SL(P/Z). Then one has
Z(G) = Z(P) = Cy and P/Z(P) is elementary abelian of rank 2. In this
section Z refer to the center Z(P) of P. Note that with i = 1 one recovers
the case E xSL(P/Z). First one has to understand the action of SL(P/Z) on
P. One gives here a concrete definition of this action in term of generators.

Let
11 10
(1) = (i)

be two generators of SL(P/Z) acting on the vector space P/Z(P) with basis
{f1, f2}. Let fi and f; be two representatives in P and z a generator of Z
The action is defined as follows on P

((1) 1) i fi, fo fife, 292z

G ?) i fife, o fo, 2z

It is the action of SL(£/Z) on E as defined before with trivial action on C;.
So in the case i = 1, one obtains the same action as defined in the previous
section of Sp(E/Z) on E.

Lemma 5.29. Let s be an element of SL(P/Z) and e an element of P. If s
acts trivially on € in P/Z then % = e.
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Proof. Suppose € is not in < f1> or < f2> otherwise the result is straightforward
from the definition of the action of SL(P/Z) on P. By assumption there exists
an element h in SL(P/Z) such that "s is the matrix

I A
(0 1) for some A € IF),.

The element h corresponds to the change of basis from (fi, f2) to (€, f»). By
the definition of the action of SL(P/Z) on P we have "f; = f, but the left
hand side is hsh™! fihs™'h™! and therefore Sh~'fih) = h='fih. Using the
fact that "& = f; and so "e = zf; for a z in Z we have

‘e = (zh ' fih) = 2 (h " fih) = zh  fih = e.

Lemma 5.30. Let S be a subgroup of SL(P/Z), then one has
Na(5) = Np(S) » Nsvp/z)(5)-

Proof. Let x = ym be an element of Ng(S), with y € P and m € SL(P/Z).

Let s be an element of S. Then the fact that % = y (")~ ™s belongs to S

implies that "s € S and therefore m € Nspp/2)(S) < Ng(S). Soam™ =y
is an element of Ng(S)N P = Np(95), the product of two elements of N¢(S).
The other inclusion is straightforward. ]

Lemma 5.31. Let S be a subgroup of G, then one has
Np(S) = Ng(S)Z.
Proof. This is just a straightforward verification

Np(S) = {ez€PlecE,z€ Zand “S =S}
{eze P| S =5}
= {ez€ P|ee€ Ng(9)}
— Np(9)Z.
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Remark 5.32. Because the action of SL(P/Z) on P/Z is similar to the
action of Sp(E/Z) on E/Z, one can verify that Lemmas 5.19, 5.21, 5.23,
5.25 are also satisfied for P replacing F by P and elements of E by elements
of P. In this section, we refer to and use these Lemmas for P even if they
are only stated for E.

Lemma 5.33. Let p be an odd prime number, then
H1<SL (E/Z(E)),E/Z(E)) — 1.

Proof. Recall that the group SL(E/Z(E)) has p+ 1 simple F, SL(E/Z(E))-
modules, denoted by Vi,...,V,, where V; has dimension i, see |1] page 15
for more details. The action of SL(E/Z(E)) on E/Z(E) has no trivial
submodule and so Vo, = E/Z(F). Let P, be the indecomposable projec-
tive cover of Vi and m : P, — V; the corresponding homomorphism. As
p is odd, one can show that P; is uniserial, with three composition factors
which occur as Vi, V,_o and Vi, see [1] page 48 for more details. Recall
that H'(SL(E/Z(E)),E/Z(E)) = ExtIIFpSL(E/Z(E))(Fp,E/Z(E)). The latter
is trivial if and only if any exact sequence

0——E/Z(E)——W ——F,——0

splits where W is an F, SL(E/Z(E))-module. Suppose that such an exact
sequence does not split for some W and call g the homomorphism from W
toVi =F, As 0 C Vo ¢ W with W/V, simple we conclude by Jordan-
Holder Theorem on composition series that V5 is the unique non-zero proper
submodule of W. Indeed, the only other possibility for the composition se-
ries would be 0 C Vi3 C W, but then the previous exact sequence would
be split, which is excluded by assumption. The module P; being projective
there exists a homomorphism f : P, — W such that gf = 7m. By construc-
tion g(Im(f)) = V4 so Im(f) is not contained in Ker(g) = V5. Therefore
Im(f) = W because V3 is the unique non-zero proper submodule of W. But
this means that W is isomorphic to a quotient of P, and thus V5 occurs as

a composition factor of P;, which is a contradiction. This shows that every
exact sequence above splits and H'(SL(E/Z(E)), E/Z(E)) = 1. O

Remark 5.34. Let G be a group and A a Z|G]-module. One can show that
HY(G,A)=C/P
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where
C:={f:G— Alf(gh)= f(9)f(h) Vg,h € G}

and

P={f:G— A| there exists a € A with f(g) = a ' %}.

The elements of P are called the principal crossed homomorphisms or 1-
coboundaries and the elements of C the crossed homomorphisms or 1-cocyles.
One refers to [11] for a more developed presentation of group cohomology.

Lemma 5.35. Let S be a subgroup of P x SL(P/Z) such that SN P =1
and Np(S) = Z. Let g be an element of E. Then, elements of 9S N Ng(S)

are of the form Yp(h)h) where h acts trivially on g and h is an element of
SL(E/Z).

Proof. Let s = ¢(h)h be an element of S, and g an element of £. One needs
to know when 9 belongs to Ng(S). Using the following calculation,

Ig = ggp(h)hg’1 = go(h) "o th = zg hg’lgo(h)h for some z € Z(P),

where the last equality holds because [P, P] = Z(P), one remarks that
9 € Ng(S) if and only if g"g~ € Ng(S) because z and ¢(h)h belong to
Ng(S). This holds only if "=t € Z as ghg~* € P and Ng(S)N P = Z by
assumption. But this implies that h(g) = g in P/Z(P). Therefore h acts
trivially on ¢ by Lemma 5.29. [

Theorem 5.36. Let G := PxSL(P/Z), then G has no non-trivial expansive
subgroup with trivial G-core. Moreover, if S is a subgroup of E x SL(E/Z)
such that S N E = 1, then there exists g € E x SL(E/Z) but not in Ng(S)
such that if 9% belongs to 95 N Ng(S) then 9 = s.

Proof. Let S be a non-trivial expansive subgroup of G with trivial G-core.
We must have SN Z = 1, otherwise Z would be contained in the G-core of
S. So only two cases are possible:

1. SnP=1or
2. SN P =T for T a non-central p-subgroup of F of order p.
In the first case, one can check that S is a subgroup of the following form :

{o(h)h|h € H} where ¢ : H — P,
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for H < SL(P/Z) and with @(hk) = @(h) (k) for all h,k € H, i.e. ¢ is a
1-cocycle.

Assume first that ¢ = 1 and so S = H. By Lemma 5.31, Np(S) =
Ng(S)Z, so only two cases are possible Np(S) = Z or Np(S) = Z x @ for
(@ a non-central p-subgroup of E. Indeed, by the structure of subgroups of
E, the subgroup Ng(S) could only be Z(FE) or Z(E) x Q. To start, suppose
that Z = Np(S). Let g be an element of £ but not in Ng(S). So we can
write 95 as {gsg’ls | s € S} and using Lemma 5.30 we have

ISNNa(S)={g9% 's|g%9" € Z and s € S}.

If g% ' € Z then s acts trivially on g in P/Z, which means that s acts
trivially on ¢ by Lemma 5.29. So the fact that g% ' belongs to Z implies
that g%~! =1 as well as 9 = s and thus 95 N Ng(S) < S. This shows that
S is not expansive.

Now suppose that Np(S) = Z x @ for () a non-central p-subgroup of E,
which implies that S acts trivially on ) and so, up to conjugation, we have

Sg{(é (f) |a€IFp}.

Moreover, S = 1 is excluded by assumption, so we have equality. Let s
be an element of S and g be
0 1
-1 0)°

(06 )0 )= )

-1 0/ \0 1 1 0 —as 1

which is an element of Ngp,(p/z)(S) only if oy = 0. Therefore one has % =
1=sand 95N NSL(p/Z)<S) S S.

This shows that S is not expansive if ¢ = 1.

Assume now that ¢ # 1. Again, by Lemma 5.31, one has only two
possibilities for Np(S), either Np(S) = QZ or Np(S) = Z. In the first
case, by Lemmas 5.19 and 5.23 and Remark 5.32, H acts trivially on () and
therefore, up to conjugation, H is

{(o5) 1aem}
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Let g = (_01 (1)> and s = p(h)h an element of S. If 9 = 9p(h)% belongs

to 95 N Ng(S) then % € Ngip/z)(H) by Lemma 5.21. Write h as (1 a)

()60 -

which is an element of Ngy,p/z)(H) only if a = 0 and so % = h = 1. Thus
s =1 and therefore we conclude 95 N Ng(S) =1 and 9% = s.

Next we suppose that Np(9S) is equal to Z. Recall one has fixed a basis
<f1,f2> of E/Z(E). Let s = ¢(h)h be an element of S, and g = f; a
representative of f; in . One needs to know when 9% belongs to Ng(.S). By
Lemma 5.35, one knows that h(g) = g in P/Z. The same argument works
for g = f5. Therefore, using Lemma 5.29, one has

then

NS A Ng(S) < {(p(h)h) | h € H and "f; = f,} and

2SN Na(S) < {*(p(k)k) | k € H and *f, = fo}.

These sets are isomorphic to a unipotent group of order p as they act trivially
on fi respectively fo. Moreover, either one of these intersections is trivial
and then one takes respectively g to be f; or fs, or both intersections are
not trivial. In the latter case, H = SL(P/Z) since H contains two different
transvections, the one which acts trivially on f; and the one which acts
trivially on fo. By Lemma 5.33 , H'(SL(P/Z), P/Z) = 1 and so there exists

@ € P/Z such that p(h) = @ 'h(a) for all h € SL(P/Z), see Remark 5.34.
The element a is not trivial otherwise it is the case where ¢ = 1 that has
been treated before. Thus a does not belongs to Z = Ng(S). Then, for a
fixed h in SL(P/Z) there exists an element 2, € Z such that ¢(h) = z,a™! a.
Let g be equal to a which is as mentioned not an element of Ng(S). One
looks at 45N Ng(S). Let s be an element of S, then s = z,a~! *fah and the
fact that % has to belong to Ng(S) implies that h acts trivially on a. This
is the same reasoning as above for fis. So s = z,h and % = z,h = s € S,
which proves that %5 N Ng(S) < S.

For the second case, namely SN P = T for T" a non-central p-subgroup
of E of order p, remark that by Lemma 5.25, one has up to conjugation

A«

Na(S) < Net) = (T x 2) 1 (|

) | A€, and a € F,},
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where the basis is chosen with the first element in 7. Let s be an element

0 1 :
of S and g = 1 O.Onecanwrltesastz O )\1

and z in Z. Then, the fact that the element 9% belongs to Ng(S) implies

that oy = 0 and t = 1. Indeed, %29 )(\)S A ) belongs to Ng(S) only if
As

%z belongs to T x Z and 9(0 At ) to {(0 \-1 > | A ey and a € Fy}.
With the following calculation

0 1\ [ as 0 -1\ (At 0
-1 0 0 XY\ 0)  \—a, X\
one sees that the latter occurs only if a; = 0. Moreover %z belongs to T' x Z

only if £t =1 as g sends ¢ to T°.
As 91> and so, because o(z) divides p’ and

for some ¢t in T

Therefore s = zm = 2 0 A

A = ), the element s°*) = <)(\)S )\91) belongs to S. This implies that
sm~! = z belongs to S as a product of elements of S. Therefore z = 1

because one has S N P = T. Finally, we have s = (%s )\91> and 9 =

-1
(A(”’) ;\)) = 57! which is an element of S and so 95 N Ng(S) < S. O

Remark 5.37. In the case ¢ # 1 and Np(S) = Z, one has to notice that
one used 15N Ng(S) and 25 N Ng(S) to obtain information on S. But at
the end one proves the non-expansivity of S by looking at %S N Ng(S).

Theorem 5.38. Let G := P x K, with K a subgroup of SL(P/Z). Then G
has no non-trivial expansive subgroup with trivial G-core if and only if K is
not contained in a Borel subgroup of SL(P/Z).

Proof. Suppose first that K is contained in a Borel subgroup of SL(P/Z).
Let T be the p-subgroup of E of order p normalized by the Borel subgroup.
Then, the normalizer Ng(T') is Z x T x K and for all g in G but not in Ng(7T')
we have

(Ne(T)N TV = TT = Z x T

because 9" is contained in Z x T but not equal to 7. Then the Ng(T')-core
of Z x T is Z xT and so T is an expansive subgroup with trivial G-core.
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Conversely, suppose that K is not contained in a Borel subgroup of
SL(P/Z). If p divides |K| then K = SL(P/Z). Indeed, the number of
p-Sylow subgroups of K is either 1 or p 4+ 1. In the first case, the p-Sylow
subgroup, denoted by U, is normal. We would have, up to conjugation, that

1 o
U= { (0 1> |Oé < Fp} S K S NSL(P/Z)(U)-

So K would be contained in a Borel subgroup which is impossible by assump-
tion. Moreover, if the number of p-Sylow subgroups is p+ 1, then K contains
all the transvections which generate SL(P/Z). The case K = SL(P/Z) has
already been treated therefore we can assume that p doesn’t divide the order
of K.

Let S be a non-trivial subgroup of G with trivial G-core. We must have
SN Z(P) =1, otherwise Z(P) would be contained in the G-core of S. So
only two cases are possible:

1. SnP=1or
2. SN P =T for T a non-central p-subgroup of F of order p.

We start with S N P = 1. As p does not divide the order of K then
H'Y(S,E) = 1 and so up to conjugation S is a subgroup of K. Obviously,
we know that Z(P) < Np(S) < P. By Lemma 5.31, Np(S) = Ng(5)Z(P),
so only two cases are possible Np(S) = Z(P) or Np(S) = Z(P) x Q for Q
a non-central p-subgroup of E. Indeed, by the structure of subgroups of F,
the subgroup Ng(S) could only be Z(E) or Z(E) x Q. To start suppose that
Z(P) = Np(S). Let g be an element of E but not in N¢(S). So we can write
95 as {g ‘g 1s| s € S} and using Lemma 5.30 we have

ISNANG(S)={g%9 "'s|g%' € Z(P) and s € S}.

If g%~ € Z(P) then s acts trivially on g in P/Z(P), which means that s
acts trivially on g by Lemma 5.29. So the fact that g% ~! belongs to Z(P)
implies that g% ' = 1 and thus 95 N Ng(S) < S. This shows that S is not
expansive.

Now suppose that Np(S) = Z(P) x @ for @) a non-central p-subgroup of
E, which implies that S acts trivially on ) and so, up to conjugation, we

have
SS{(é (f) |0z€IFp}.
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Moreover, S = 1 is excluded by assumption, so we have equality. But then
p divides the order of S and so of K, which is impossible. So this case can
actually not occur.

For the second case, namely SN P =T, one observes that

Na(S) < Na(T)= (T x Z(P)) x C

= (T><Z(P))>4{<g 5?1> |BEF;and a €F}NK

~1
< axzeyui(y TS 1sem

The last inclusion holds for a fixed v because p does not divide the order of
K. Note that here the first vector of the basis belongs to T'. Moreover by
Schur-Zassenhaus lemma, S is of the form 7" x D where, up to conjugation
by an element of Ng(T'), D is a subgroup of C. As Z acts trivially on D and
T is contained in S, one can assume that D is a subgroup of C. Let’s prove
that S is not expansive. Let s be an element of S and g an element of K
but not in Ng(7T x Z). This element exists because K is not contained in a
A (A=)
0 At
T and A € ;. Then, the fact that the element 9% belongs to Ng(S) implies
that ¢ = 1. Indeed, % belongs to T' x Z(P) is only possible if t = 1 as g does
not belong to N¢(T' x Z).

Therefore 9% is reduced to %m which belongs to C' as it belongs to Ng(S).
But m belongs to C' as well as it belongs to D. Finally, since C' is cyclic we
conclude that if the element 9m belongs to C' then it must actually belong to
D, by simply looking at its order, as it is the same as the order of m. Thus
9 belongs to S. Finally, one concludes that 95 N Ng(S) < S and therefore
S is not expansive. O

Borel subgroup. One can write s as tm =t 7) for some ¢t in

5.5.4 E xSL(E/Z)

Again, let p be an odd prime and E denote an extraspecial group of order
p3 and exponent p. From the previous section one knows that G := ExSL(E/Z)
has no non-trivial expansive subgroup with trivial G-core. One gives here
more information about the structure of subgroups with trivial G-core.

Proposition 5.39. Let S be a subgroup of EXSL(E/Z) such that SNE =T.
Then either
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o S =Tx"Awith A a subgroup of { <g\ )\91> A€ F:} and b an element

of Nsig/z)(T) with Ng(S) = (Z x T) x C, where C is conjugate to a
subgroup of the group of diagonal matrices, or
o S=(TxV)x"A, forb an element of Nsig/z) (T) and where
V=ApwulueU} andp:U — Z

Q@
1
of the diagonal matrices. In this case one has Ng(S) = (Z xT x U) x
C, where again C is conjugate to a subgroup of the group of diagonal
matrices.

Proof. Remark that Ng(S) < Ng(T') because if k € Ng(S) then
M =HSNE)="SN"E=SN*"E=SNE=T.

is a homomorphism with U = { (1) |a € F,} and A is a subgroup

Moreover, by the third isomorphism theorem we have
Na(S)/(EN Na(S)) = ENa(S)/E.

Looking at the action of ENg(S) on E by conjugation we have an injec-
tion from ENg(S)/E to Aute(E)/Inn(E) the latter being isomorphic to
Sps(p) = SL(E/Z), where Autc(F) is the group of automorphisms of E
fixing the center. Remark that E'N Ng(S) = Z x T, indeed it’s clear that
ENNg(S) > ZxT and if ENNg(S) £ Z x T then the only possibility is that
ENNg(S) = E. But in this case T would be a normal subgroup of E because
we would have ' < Ng(S) andso T'= (SNE)=SNE=SNE=T,
for e in E. This is a contradiction as 7" is not normal in £ and so we can
conclude that £ N Ng(S) = Z x T. This leads us to an injection from
Na(S)/(Z x T) to SL(E/Z). We can be even more precise by noticing that
Ng(S) < Ng(Z xT). Indeed, let em be an element of Ng(S) with e € E and
m € SL(E/Z) then T < SasT < Sande™e ! <e™Ee ! <eFe!<FE
so ‘"' < SNE =T. Using the previous isomorphisms and the remark above
one can see that Ng(S)/(Z x T') must fix the line corresponding to Z x T
in the quotient £/Z(FE), and therefore must inject into a Borel subgroup of
SL(E/Z). To summarize we have seen that

Ne(9)/(Z xT) — { (g\ )\%1) |A€F, and o € Fp} =Cp x Cpyq
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and the order of Ng(S) could only be p?d or p*>d where d divides p — 1. One
treats these two cases.

If the order of Ng(S) is p*d one deduces by Schur-Zassenhaus’ lemma
that Ng(S) = (Z x T) x C where C is a complement of Z x T" in Ng(S)
and Ng(T') = (T x Z) x Ngi(/2)(T') by Lemma 5.25. By Schur-Zassenhaus’
lemma again, C' is conjugate, by an element of Ng(7T), to a subgroup of
Nsi(e/z)(T) and so, by looking at the order, C'is conjugate to a subgroup of
the group of diagonal matrices. Thus C' is cyclic of order d. Now we want
to describe S. First, we look at its p-Sylow subgroup 5,. As SNE =T and
SNZ =1 we have

T<S,=(TxZ)NS<ENS=T.

So again by Schur-Zassenhaus’ lemma we have S = T x F' where F' is a
complement of 7" in Ng(S). This complement is conjugate, by an element
of N¢(5), to a subgroup of C, so F is conjugate by an element k of Ng(T)
to a cyclic subgroup A of the group of diagonal matrices and we can write
S as T x "A. As k € Ng(T) one can write k as zthb where z € Z, t € T
and b belongs to the Borel subgroup, by Lemma 5.25. So one concludes that
S=Tx A =T x A =T x A because t € S.

If the order of Ng(.S) is p3d one can look at the unique p-Sylow subgroup
Ng(S), of Ng(S). Its order is p* and using Lemma 5.25 we find

Na(S), = Na(T), N Ng(S) = Na(T),

- T><Z><{<(1) i‘) |ae]Fp}::T><Z><U.
By Schur-Zassenhaus’ lemma we have Ng(S) = (Z x T x U) x C where C' is
a complement of Z x T'x U in Ng(S). By Schur-Zassenhaus’ lemma again,
C is conjugate, by an element of Ng(7T'), to a subgroup of N g/z) (1) and
so, by looking at its order, C' is conjugate to a subgroup of the group of
diagonal matrices. As SN E =T and SN Z = 1 the only possibilities for
the order of S are p?e or pe where e divides d. One can see that the equality
|S| = pe is impossible because it would imply that S =T x F where F'is a
complement of T" in N¢(.S) but this S is not normalize by (Z x T x U) x C.
Suppose now that |S| = p?e. Again by Schur-Zassenhaus’ lemma we deduce
that S = T x V x YA, where V = {p(u)u |u € U} withp : U — Z a
homomorphism and A could be taken as a subgroup of the diagonal matrices
by the same argument as in the preceding case. O]
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Remark 5.40. One has seen that there is no non-trivial expansive subgroup
with trivial G-core for G := E x SL(E/Z). However, using GAP, one can
find examples of n-expansive subgroups for n > 1. For example with p = 3,
the subgroup 7" := C5 x C} is 2-expansive with a number of (Ng(7'), N (T))-
double cosets of 3.

5.5.5 (B, xSL(E,/Z,)) x (E, x SL(E,/Z,))

Let p and g be two different prime numbers and E,, respectively E,
denotes an extraspecial group of order p?, respectively ¢* and exponent p,
respectively ¢. Let G; be E, xSL(E,/Z,) and G5 be E,xSL(E,/Z,). Finally
let G be the direct product of G; and G5. In proposition 1.2 we recall the
form of the subgroups of G. Let S be a subgroup of G. Define k;(.S) := SNG;
and let p;(.S) be the projection of S on G;. In particular one has

k1(S) % ka(S) < S < pr(S) X pa(S).

Moreover, using the form of S one can see that Ng(S) is a subgroup of
Ng, (ki1(S)) x Ng, (k2(S)) as well as a subgroup of Ng, (p1(5)) x N, (p2(9)).

In this section £ will refer to E, x E,, the subgroup Z, to the center
of £, and Z, to the center of F, so that Z, the center of I, is Z, x Z,.
One can also see G as E x (SL(E,/Z,) x SL(E,/Z,)) with the action of
SL(E,/Z,) x SL(E,/Z,) defined on E componentwise. This allows us to
extend Lemma 5.29.

Lemma 5.41. Let s be an element of SL(E,/Z,) x SL(E,/Z,) and e an
element of E. If s acts trivially on € in E/Z then ‘e = e.

One wants to look at the existence of expansive subgroups in G. If S is
an expansive subgroup of G with trivial G-core, one must have SN Z =1,
otherwise Z would be contained in the G-core of S. So, up to a permutation
between p and ¢, only three cases are possible:

1. SNE=1or

2. SNE =T, xT, for T, a non-central p-subgroup of E, of order p and
T, a non-central g-subgroup of E, of order ¢ or

3. SN E =1, for T, a non-central p-subgroup of E, of order p.

One investigates each case separately and starts with SN E = 1.
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SN(Ep xEq) =1

Throughout this section, let G be (E, x SL(E,/Z,)) x (E, % SL(E,/Z,))
and S be a subgroup of G with SN (£, x E,) = 1. Such a subgroup is of the
form:

{o(h)h|h € H} where ¢ : H — E, x E,
with p(hk) = p(h)"p(k) for all h,k € H and H < SL(E,/Z,) x SL(E,/Z,).
Write o(h) = (¢1(h), p2(h)) where ¢y : H — E, and ¢y : H — E.

Lemma 5.42. Let G be (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)) and S be a
subgroup of G with SN (E, X E,) = 1. Let h,v be elements of ki(H) x kqo(H).
Write h as (hy, hy) with h; in k;(H). Then, one has o;(hv) = @;(h) "ip;(v)
50 @; is a cocycle on k;(H) and a homomorphism on kj(H) with j different
from i. Furthermore v;(h) = @;(h1)e;i(hs).

Proof. Write v as (v, vz). One has

(p1(hv), pa(hv)) = @(hv) = @(h) "p(v)
(

Therefore one has

©1((h1,1)(v1, 1)) = @1(h1) "1 (v1)

and
©1((1, ha) (1, v2)) = @1(ha) o1 (va).

The same argument holds for ¢y and so ¢; is a cocycle on k;(H) and a
homomorphism on k;(H) with j different from . Finally, if & belongs to
ki(H) x ko(H), one has

p1(h) = ©1((h1, ha)) = @1((h1, 1)(1, ha)) = @1(h1) My (ha),

on the other hand one has ¢1((h, ha)) = p1((1, h2)(h1,1)) = p1(ha)e1(hy).
Therefore @1 (h2)p1(hn) = @1(h1) "1 (h2) and so i (he) = 1(he) in E/Z.
By Lemma 5.18, the element h; acts trivially on ¢;(hs) and thus one can
conclude that ¢1(h) = p1(h1)@1(hs). The same argument holds for ¢y. [

Proposition 5.43. Let G be (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)), then G
has no non-trivial expansive subgroup S with SN (E, x E,) = 1.

74



5.5 GROUPS WITH EXTRASPECIAL GROUPS IN THE FITTING
SUBGROUP

Proof. Up to a permutation between p and ¢, the normalizer Ng(S) is one
of the following:

1. E, x E,

2. B, x T, x Z,

3. B, x Z,

4. T, x Z, x T, x Z,
5. T, X Z, X Z,

6. Z, x Z,

for T, a non-central p-subgroup of E, of order p and 7| a non-central g¢-
subgroup of £, of order q.

Remark that Ng(S) = Cg(S) is a subgroup of Ng(H), as seen in Lemma
5.23 for E, x SL(E,/Z,) but the action being component by component the
argument works for (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)) too. So one
knows that H acts trivially on Ng(S), therefore in the first three cases H
acts trivially on E, so p;(H) = 1 and thus H < SL(E,/Z,). So an element
s of S is of the form (p1(h2), p2(he)he) for an hy € SL(E,/Z,). By the
Proposition 5.36, there exists g, € E, x SL(E,/Z,) but not in Ng(S) such
that 92((,02(h2)h2) = @o(hg)hy if 92((,02(h2)h2) belongs to Ng, (p2(S)). Let g be
(1, g2), then 9 = (¢;1(ha), 9(pa(h2)hs)) € Ng(S) implies that 9% belongs to
Ng, (p1(S)) x N, (p2(5)) as Na(S) < Ng, (1(5)) x Ng, (p2(S)). Therefore
we are in the situation of Proposition 5.36 and because of our choice of g one
has s = (¢1(hs), (p2(h2)h2)) = (p1(h2), 2(h2)hs) = s.

In the fourth case, namely Ng(S) =1, x Z, x T, x Z,, because H acts
trivially on 7, and T}, one has, up to conjugation, that

p(H) < { <(1) i‘) la € F,} and po(H) < { <é /f) BEF,}

By the form of subgroups of G, see Proposition 1.2, the only non-trivial
possibilities for H are H = p1(H), H = py(H) and H = p(H) X ps(H)
as p1(H) is included in a group of order p and py(H) of order g. In the

0 1

10 ,1). Let s be an element of S then

first case take g = (g1,1) = (
s = (¢1(h1)h1,p2(h1)). One looks at the implication of 9 belonging to
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Ng(S). This implies that % belongs to Ng, (p1(5)) X Ne, (p2(9)) as Na(S) <

Ng, (pl(S)) X Ng, (pQ(S)). In particular 9'(¢;(h1)h,) belongs to Ng, (pl(S)).
By Lemma 5.21, one has therefore that

Nhy € Nsiw,)z,)(p1(H)) = { (g ua_l) |a e F,and p € IF;}

0 1 1 « 0 -1 1 0 .
g — —
As 9hy (_1 O) <O 1) (1 0 ) (—a 1). This belongs to

Ng, (pl(S)) only when o = 0 and therefore s = 1 = 9%. To sum up, % €
N¢(S) implies that s = 1 and so 95 N Ng(S) = 1.

_01 (1))) and applying the same argu-
ment one has again that 95 N Ng(S) = 1.

For the third one take g = (( 0 1) , ( 0 1> ). An element s is of the

In the second case take g = (1, (

-1 0 -1 0
form (p1(h)hyi, p2(h)hy) for an h in H and as above the fact that 9% belongs
to Ng(S) implies that 9(p;1(h)hi) belongs to N, (pi(S)) and 9(¢a(h)hs)
belongs to N, (p2(S5)). Those conditions imply hy = 1 and hy = 1 with the
same calculation as above and therefore s = 1 = 9. This concludes the three
possibilities for this fourth case as one showed that 95N Ng(S) = 1 and thus
S is not expansive.

If Ng(S) =T, x Z, x Z, then, as above, p1(H) < { (é (f) | € Fy}.

Let g be g = (91,92) = ((_01 (1)) ,g2) with g, a non central element of

E, and s = (p1(h)h1, p2(h)hse) an element of S. Then the fact that 9 =
(9(p1(h)hy), %(p2(h)hs)) belongs to Ng(S) implies that % € Ng, (p1(S)) x
Ng, (p2(S )) Looking at the first component, with exactly the same argument
as in the previous case, one must have hy = 1. So s = (p1(h2)), p2(ha)h2)
and for some z € Z, = [E,, E,| one has

% = (T1(ha), (pa(ha)he)) = (P1(h2), g2a(ha) g5 'ha)
= (%%1(h2), 292 g5 "pa(ha)ha)
= (p1(ha)p1(h2) ™", 9295 1) (1, 2) (p1(ha), pa(ha)hs).

As (1, 2) and (p1(h2), p2(hs)hs) are element of N (.S) because z is in Z, and
(p1(ha), p2(ha)hy) in S, the element % belongs to Ng(S) if and only if the

Q
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element (919, (hy)p1(ha)™t, g2"25 ") belongs to No(S)NE =T, x Z, X Z,.
Thus g, g5 " belongs to Z, and so hy(gz) = ¢z in E,/Z,. By Lemma 5.18,
this implies that "2g, = g,. Therefore hy is contained, up to conjugation, in

(5 D1sen)

Thus if the element hy is not trivial its order is ¢ and so is ¢q(h2) in E, as
1 is a homomorphism on ky(H). But elements in £, have order p and p is
different from ¢ so ¢;(hg) = 1. Therefore, one has

gSﬂ Ng<S) S {(]., gQ@Q(hQ)hQ) | hg c kQ(H) and h292 = gg}

This set is isomorphic to a unipotent group of order ¢q. Taking two generators
fi and fy of E, and letting go = f; and g2 = fo, then either one finds an
element gy such that 95 N Ng(S) =1 or

1# 9SN Ne(S) = {(1, Ppa(ha)ha) | ha € ko(H) and gy = gy}

in both cases and so ks(H) contains two transvections, one acting trivially on
fi1 the other one on f5. This implies that ko(H) = SL(E,/Z,) and therefore

one has to treat the case H < { (é ?) |a € F,} x SL(E,/Z,). By Lemma

5.33, H'(SL(E,/Z,), E;/Z,) = 1 and so, by definition, there exists @ €
E,/Z, such that ¢s(h) = a 'h(a) for all h € SL(E,/Z,). Then, for some
Zhy, € Z; we have po(he) = zp,a ' "a for all hy € SL(E,/Z,). Now let

g = _01 (1)) ,a) and s be an element of S. Write s as (¢1(h)h1, pa(h)hs).

Again if 9 belongs to Ng(S) then hy = 1 and hy acts trivially on a. So s is
reduced to (¢1(ha), p2(ha)ha). Moreover ¢;(hs) is of order g as hy is of order
q. As an element of E,, the order of ¢;(h2) is also p and therefore the only
possibility is that ¢q(hy) = 1 as p is different from ¢. Finally, one has

s = (1,p2(ha)ha) = (1, zn,a” " Mahy) = (1, zp,a " ahs) = (1, zp,ho)
and thus
9 = (1, (zn,h2)) = (1, zna™a™"ha) = (1, 21, he) = s.

This shows that 95 N Ng(S) < S and therefore S is not expansive.
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Finally, if Ng(S) = Z, x Z, one takes g = (g1, g2) where g; and g, are non-
central elements of, respectively, E, and E,. Write s as (¢1(h)hq, p2(h)h2)
for an h = (hy,hy) in H. One has, for some 2z, € Z, = [E,, E,] and 2, €
Zq = [Eq, By,

9 = (9(p1(h)h1), P(pa(h)h2)) = (gr1(h) Mg b, gapa(h) "5 ha)
= (2101 ™97 " o1(h)ha, 2092 g5 02 (R)ha) = (9197, 92 "%95 1) (21, 22) 5.

As (z1,29) and s are element of Ng(S) the element 9% belongs to Ng(.S) if
and only if the element (g; Mg, ", g2 "2g5 ') belongs to Ng(S)NE = Z, x Z,.
Thus g; Mg; ' belongs to Z, and so hy(g7) = g7 in E,/Z,. By Lemma 5.18,
this implies that g, = g,. Likewise one obtains that 2, = g,. Then,

‘SN Na(S) < {%e(h)h) | h € H and "g = g}.

Take two generators f; and f, of E, and two generators f3 and f4 of Ej.
Letting g; be f; or fy and go be f3 or f; one obtains four possibilities for
gi; = (fi, f;) and so four intersections 945 N Ng(S). These intersections are
contained in subgroups C), x C, in G, where C), is generated by a transvection
that acts trivially on f; or f; and C|, is generated by a transvection that acts
trivially on f3 or f;. Indeed,

H < {(0 O?) |Oz1€IFp}><{((1) ﬂf) |51€Fq}f0rglg,
é Oil) |O(1€IFP}X{(612 (1)> |/82€]Fq} fOI‘g147

(
o< (o V) 1aemd (o 7)1 eE) oo
(

—_

H <

2

1 1 0
o 1> |04261Fp}><{(62 1> |52€Fq} for go4.

Either 935S N Ng(S) is trivial for one of these g¢;;, and in this case S is
not expansive, or the intersections are not trivial for the four elements g;;.
Looking at the different possibilities for the non trivial intersections, it im-
plies that H must contains at least two different transvections generat-
ing SL(E,/Z,) or SL(E,/Z,), as each intersection must contain at least a
subgroup of order p or ¢q. Without lost of generality, one may assume
that H = SL(E,/Z,) x Hy for Hy a subgroup of SL(E,/Z,). By Lemma

o

H <
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5.33, H'(SL(E,/Z,), E,/Z,) = 1 and so there exists a; € E,/Z, such that
©1(h1) = @y 'hy(ay) for all hy € SL(E,/Z,). Then, for a z;, € Z, we have
¢1(h1) = 2p,a7" May for all by € SL(E,/Z,). If Hy is not SL(E,/Z,), then
there exists g, equals to f3 or f; such that (»92)S' N Ng(S) does not contain
a copy of C,. Indeed, otherwise (/2SN Ng(S) and (/IS N Ng(S) would
contain a cyclic group of order ¢ and so two different transvections generating

SL(E,/Z,). So for g = (a4, g2),
95 N Ne(S) = { “29p(h)h) | h € H and "(ay,92) = (a1, 2)} = .
In other words hy = 1 and so

@92 p(h)h) = (@92 @y (hy)hy, a(hy))
(“1792)(zh1a1_1 h1a1h1, 902(h1))-

Remark that h; acts trivially on a;. Moreover h; is of order 1 or p so is
@2(hy1) by Lemma 5.42 then ¢o(hy) = 1 because p2(hy) is an element of E,.
So s = (zp,h1,1) and

(a1,92)g — Whg?)(gp(h)h) = (Zinhh 1) =5

which implies that 95 N Ng(S) < S. One has still to deal with the case
H = SL(E,/Z,) x SL(E,/Z,). First remark that this case is only possible
if ki(H) x ko(H) = H = p1(H) x po(H). By Lemma 5.42, one knows that
wi(h) = @i(h1)pi(hg) if h belongs to ki(H) x ko(H). Moreover, using the
fact that H'(SL(E,/Z,),E,/Z,) = 1, there exists a; € E,/Z, such that
©a(ha) = a3 'ha(az) for all hy € SL(E,/Z,). Recall that one has seen above
that

%S Na(S) < {Ap(h)h) | h € H and g = g}.

Now take g = (a1, az2) and let s be an element of S. One can write s as

(901 (h)hi, 902(h)h2) = (901 (h1)@1(ha)ha, 802(h1)902(h2)h2) .

Suppose moreover that ¢, or py are not trivial so that g is not an element of
N¢(S). If 9 belongs to Ng(S) then h acts trivially on g = (a1, az) and thus,

. . . . . 1 « 1
up to conjugation, h is contained m{ (0 1) la € ]Fp}x{ (0 1) |6 € Fq}.

So hy is of order a divisor of g as well as @o(hy) in E,. Again as p is different
from ¢ this forces @o(hy) = 1. Likewise, the element ¢ (hs) is trivial. So,
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replacing ;(h;) by zn,a; ' Ma; = z,,a; a; = zp,, the element s is reduced to

(zn, h1, 2nyho) and 9% = s which implies that 95 N Ng(S) < S. Suppose
now that ¢; = 1 as well as po. Then H = § = SL(E,/Z,) x SL(E,/Z,).
Let’s take g = (g1, ¢92) where g; and g, are non central elements of E, and
E, respectively. Let % be an element of 9H N Ng(H). As % = g"g~'h
belongs to Ng(H) if and only if g"g~! belongs to Np(H) = Z, X Z,, one
has, by Lemma 5.35, that g"g~ = 1. So, % belongs to 9H N Ng(H) implies
that % = h and so finally YH N Ng(H) < H, which shows that S is not
expansive. O

SN(Ep x Eq) =Ty x Ty
Such a subgroup is such that
T,xT, < S < Na(S) < Na(T, xTy) < Ni,wsiE,/z,) (Tp) X Ng,xsuie,/z,) (1)

Moreover ki (S)NE, = SN (E, x SL(E,/Z,))NE, = SN E, =T,, therefore
by Proposition 5.39 one knows that either k;(S) = T}, x "4, for b an element
of Nsi(g,/z,)(T') with A; a subgroup of { (3 )\91) | X e F} or ki(S) =
(T, x Vi) x *Ay, for b an element of Nsy,(g,/z7,)(T), where Vi = {p(v)u|u €

a) |a € F,} and A,

1
could again be taken as a subgroup of the diagonal matrices. In this section,
one only considers the case b = 1.

U,} and p : U, — Z, is a homomorphism for U, = {<(1)

Lemma 5.44. Let G be (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)), then G
has no non-trivial expansive subgroup S with S N (E, x E,) =T, x T, and
kl(S) = Tp X A1 or k2(S> = Tq X AQ.

Proof. Suppose that k1(S) = T}, x A;. First remark that the normalizer of

T, x Ay in E, x SL(E,/Z,) is (Z, x T,) x { ((>)\ )\91> | A € Fi}, except if

Ay <{xid}. Let g1 = (:1 (1) . Let s = (s1, $2) be an element of S. Then
one can write s, as 2t/ o 1) forsome 1< j<p, z€Z,tecT,

and \ € Fp as N(;(S) < NEPMSL(EP/ZP)(]{:I(S)) X NqulSL(Eq/Zq)(kQ(S))- Then
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—1 )y _ 1
the fact that 9is; = zz", 917% <>\0 A )\)\ ) belongs to Ng, usi(,/z,)(k1(S))
implies that t/ = 1 as well as A — A™' = 0 if A; is not a subgroup of {+id}
and therefore A = +1. But if A; is a subgroup of {#1id} then one also has
that A = £1. So, in both cases, s; = z;(j: Id) and 9's; = s;. Therefore with
g = (g1,1) if an element 9% belongs to 95 N Ng(S) then 9% = s.

Suppose that ko (S) = T, % Ay. A similar argument with g = (1, (:} é))
shows again that 95 N Ng(S) < S

Next suppose that ki(S) = (T, x V1) x A; and ko(S) = (T, x V2) x As.

Then one has,

A *
pl(S) < NEleSL(Ep/Zp)(kl(S)) = Zp X Tp X {(0 )\(i1> ’ A E Fp,Oé < Fp}

as p1(S) normalizes k;(S) and the equality comes from Proposition 5.39.
Similarly p»(S) is a subgroup of Ng, .si(g,/z,)(k2(5)). First note that either
Z, is not contained in p;(S) or Z, is not contained in py(S). Indeed, let
s = (s1,82) be an element of S. Then, by Lemma 1.2, there exists an
isomorphism ¢ : p1(S)/k1(S) — p2(S)/k2(S) such that ¢(57) = 53, where
3; denotes the image of s; in p;(S)/k;(S). But 51 = 27 (6\ /\01) is of order a
divisor of p(p—1). Similarly 53 is of order a divisor of ¢(¢—1). As p and ¢ are
two different prime numbers, this implies that either Z, is not contained in
p1(S) or Z, is not contained in py(.S). Otherwise p divides ¢ —1 and ¢ divides
p — 1, which is impossible. Without lost of generality, one can suppose that
Z, is not contained in p;(S). For a better understanding, we will put it as an
assumption in the following lemmas even if it is not a restriction to a more
specific case.

Lemma 5.45. Let G be (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)), then G
has no non-trivial expansive subgroup S with S N (E, x E,) = T, x T,
]{31(5) = (Tp X Vi) X Al, k‘g(S) = (Tq X ‘/2) X AQ, Zp ﬁ pl(S) and Zq ﬁ pQ(S)

Proof. Take g = ((_01 (1)) , (_01 (1))) With the assumptions, an element

s of S is of the form (ti (E)\ )\/fl) ,tfl (g g:)) where u, A € IE‘p,t% €T,
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and 8,a € F,, ¢\ € T,. As

a0 g
Ng(S) < Ng,usiu(g,/z,)(k1(S)) X Np,usue,/z,) (k2(5)),

the fact that the element 9% belongs to 95 N Ng(S) implies

) ) ) -1 ) -1
9t (())\ )\’lfl) T (g B(fl)) = (9 ()\M ?\) , 92 <5a g))

belongs to

(prTpx{(é A“l) NeF,uel,})x(Z, ><T>q{( s )]ﬁew*@ewp}).

To fulfill this condition, one must have o« =y =i = j = 0 and so % = 5!

which belongs to S and therefore implies that 95 N Ng(S) < S. O

Lemma 5.46. Let G be (E, x SL(E,/Z,)) x (E, x SL(E,/Z,)), then G
has no non-trivial expansive subgroup S with S N (E, x E,) = T, x T,
kl(S) = (Tp X ‘/1) X Al; kQ(S) = (Tq X ‘/2) X AQ, Zp f pl(S) and

( m{(o A1 )|)\€IF*}>/A2

is trivial or of exponent 2.

Proof. Let ¢ : pi(95) /k1 p2(S)/ko(S) be the isomorphism given in
Lemma 1.2. Take g = _1 O) With the assumptions, an element

s of S is of the form (sq, ’“t @ Ly

: (O 5 1)) where 8,0 € F,, ¢\ € T,. As
Ng(S> < NEPNSL(EP/ZP)(]CI(S>) X NEQNSL(Eq/Zq)(l@(S)); the fact that the ele-
ment 9% belongs to 95 N Ng(S) implies, with the same calculation as the

proof of Lemma 5.45, that a = i = 0 therefore s = (51,2, (g 50 >)
Bt 0

and 9 = (s, 28 ( 0 5)) The element 9 belongs to S if and only if

e (7 O) 2 g(sp), which s equal to 5 (7 ) and so % belongs t
al o g = ¢(51), which is equal to 2} o p-1)andso % elongs to
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—1
S if and only if <6 0> = (ﬁ 0 ) in pa(S)/k2(S), which is the case if

0 B 0 gt
g0 : .
0 g1) = 1 in po(S)/ko(S). This is fulfilled as
A0 .
()0 { () 1) 1rem})
is of exponent 2. n

Remark 5.47. The remaining cases are when &y (S) = (T, x Vi) x Ay, ka(S) =

A0 .
(Ty x Va) X As, Zy < pa(S) and (p2(S) N { (0 /\1) | A € F})/A; is not

trivial or of exponent different from 2 and afterwards one has to deal with
the case where b is not trivial.

SN (Ep, x Eg) =T,

Such a subgroup is such that
I, <5< Ng(9) < NG(T:D) < NEMSL(Ep/Zp)(Tp) X (Eq X SL(Eq/Zq))‘

Moreover k1 (S)NE, = SN (E, x SL(E,/Z,)) N E, = SN E, =1T,, therefore
by Proposition 5.39 one knows that either k;(S) = T}, x "4, for b an element
of Nsi(g,/z,)(T) with A; a subgroup of { (8 )\91> |\ € IF;} or k1(S) =

(T, x V1) x PA; for b an element of Nsv(g,)z,)(T), where
Vi=A{p(uu|ue U}

e
1
could be taken as a subgroup of the diagonal matrices. Because SN E, =1
one has that k(S) = {@(h)h | h € H} where ¢ : H — E,, with ¢(hk) =
o(h)"o(k) for all h,k € H and H < SL(E,/Z,).

and p : U, = Z, is a homomorphism for U, = { (1] | € F,} and A4,

Lemma 5.48. Let G be (E,xSL(E,/Z,)) x (E,xSL(E,/Z,)), then G has no
non-trivial expansive subgroup S with SN(E,x E,;) =T, and ki (S) = T,,x A;.
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Proof. The same argument, as in the proof of Lemma 5.44, works with
g = (<:1 (1)) , 1) knowing that
Na(S) < Ni,usug,/z,) (F1(5)) % (Eq 3 SL(Eq/Z))-
O]

Remark 5.49. To complete this case, one has still to deal with k;(S) =
(T, x Vi) x PA; and also, if b is not trivial with k(S) = T, x %A;.
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Chapter

Stabilizing Bisets and Roquette
Groups

In this chapter, our goal is to know if there exists a non-trivial biset U
n-stabilizing a simple faithful module for Roquette groups. One treats the
same examples as in the previous chapter. Namely,

e Roquette p-groups.
e Some simple groups.
e Groups with cyclic Fitting subgroup.

e Groups with extraspecial groups in the Fitting subgroup.

6.1 Roquette p-groups

The case of Roquette p-groups has already been studied in [3|. It is shown
that if U is a stabilizing biset for a faithful simple module, then U has to be
reduced to an isomorphism, see Theorem 3.10. One will discuss the case of n-
stabilizing bisets for n > 1. First we recall the character tables of generalized
quaternion, dihedral and semi-dihedral groups.

One starts with the character table of Qg1 and Dort1.
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1 s sr r TG < 2k P2
X1 1 1 1 1 1
X1 1 -1 -1 ... -1y ... 1
Xs|1 -1 1 -1 ... (=1 ... 1
X,1 =1 -1 1 .. 1 1

Xp, |2 0 0 2coshf ... 2cos hjo 2(—1)"

where § = 27 /2% and 1 < h < 2F1 -1,
Finally here is the character table of SDgx+1, for k > 3,

1 s st r ... ri(j<2kh P2
X1 1 1 1 ... 1 1
X |1 1 -1 -1 ... 1 ]
Xa |1 -1 1 —1 ...  (=1) 1
Xall =1 -1 1 ... (=1) 1
Xp, |2 0 0 a .. 8 2(—1)"

where 1 < h < 28! —1 and o and /3 are non-zero elements. For more details
see page 18 of [10].

Theorem 6.1. Let p be a prime number and let P be a Roquette p-group of
order p**1. Let U = Indinff/B Isog Defresg/D be a n-stabilizing biset for L
where L is a simple faithful CP-module. Then one has B =D = 1.

Proof. First note that by 2.18 and 2.19, the P-cores of B and D are trivial.
In particular, BNZ(P) and DNZ(P) have to be trivial, as these intersections
are contained in the P-core of, respectively, B and D. It follows from Lemma
5.1 that B and D are trivial, except possibly if p = 2, P is dihedral or semi-
dihedral, and B and D are non-central subgroups of order 2. Therefore one
has four cases to treat

e B and D are non-central subgroups of order 2,
e B is a non-central subgroup of order 2 and D =1,
e B =1 and D is a non-central subgroup of order 2,

e B=1and D =1.
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One starts with a general remark on the first three cases that occur only if
P is dihedral (with & > 3), or semi-dihedral (with £ > 3). As L is a simple
faithful module, by looking at the character tables of Doxry1 and SDor+1, one
sees that the character of L is Xp, for h odd and 1 < h < 2k=1 _ 1. Also the
character of Resg, 2(py(L), for Cy a non-central subgroup of order 2, is the
following

‘1CCZZ
2 0 0 =2

XResg2Xz(P)(L) ‘
where ¢ generates Cy and z generates Z(P). Thus the module XRes? s (D)
9 X
splits in the sum of the following two characters of degree one

‘10022
1 1 -1 =1

1 -1 1 -1

Therefore, Defres¢, 2(p)/c, (L) is the sign representation.

One proves now that the first three cases are impossible. Consider first
the case where B is a non-central subgroup of order 2 without assumption
on D. By Lemma 5.1, one knows that Np(B) = B x Z(P). This fact forces
us to have A = Np(B), otherwise the A/B-module M = Iso, Defresg/D(L)
would be trivial and by Proposition 2.16 the module L would be trivial as
well but this contradicts the fact that L is faithful. As A/B is of order 2, the
module M is therefore forced to be copies of the sign representation M;. As
L is of dimension 2, either M = M; or M = 2M;. We would like to know
if IndZ(Infﬁ/B(M)) is a sum of copies of L. To do so one uses the powerful
scalar product on characters and Frobenius reciprocity

(L,Ind(Inf},5(M))) = (Resly (L), Inf}, (M) = 1.

The latter equality holds because, as described in the general remarks above,
Res’ (L) is the sum of two non-isomorphic represention of degree 1. It is easy
to check that one of them is Inf4 /p(Mi). Thus at most two copies of L are
in the decomposition of Ind’ (Inf s5(M)), which has dimension 2*~" dim M.
As k > 3 one has

dim Ind’y (Inf4, 5 (M)) = 2¥"" dim M > (L, Ind);(Inf}}, 5(M))) dim L.

Indeed, if kK > 3, or k¥ = 3 but dimM = 2, then 2*"'dimM > 4 >
(L, Indi(lnfﬁ/B(M)» dim L and if £ = 3 and dim M = 1 then 2*~!dim M =
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4> 2 = (L,Ind}j(Inf},5(M))) dim L. So Ind;(Inf},5(M)) contains other
modules, non-isomorphic to L, in its decomposition which implies that it
cannot be the sum of n copies of L.

Assume now that B = 1 and D is a non-central subgroup of order 2. As
above one has C = Np(D) = D x Z(P) and M is the sign representation.
Moreover the subgroup A is of order 2 as A is isomorphic to C'/D. We would
like to know if Ind’(A) is a sum of copies of L. Again using the scalar
product one has

(L,Ind’j(M)) = (Res’{ (L), M) < 2.

The latter inequality comes because L is of dimension 2 and therefore the
sign representation can only occur twice. In fact, it is easy to see that it is
equal to 2 if A = Z(P) and 1 otherwise. In any case one has

dimIndj (M) =2¥ >4 =2dim L > (L, Ind(M)) dim L.

This means again that Ind’ (M) contains other modules, non-isomorphic to

L, in its decomposition and so it cannot be the sum of n copies of L.
Finally we are restricted to the last case, namely B =1 and D = 1 and

the result follows. [

We are therefore reduced to U := Ind/ Iso, Resf. In this case n must
be equal to |P : A| as the restriction does not change the dimension of the
module. Now, if we suppose that the n-stabilizing biset is strongly minimal,
then this implies that A = C' and A is a normal subgroup of P. Indeed,
by Corollary 2.13, one can suppose that (A,1) and (C, 1) are linked, which
implies that A = C' and by Theorem 2.12, there are n double (A, A)-cosets
in P and as n = |P : A| this forces A to be a normal subgroup of P.

This is why we focus on that situation and completly describe it in the
following theorem.

Theorem 6.2. Let p be a prime number and let P be a Roquette p-group
of order p**'. Let A be a normal subgroup of P, U := Ind} Isos Res) and
n=|P: A|. Then the following conditions are equivalent

1. P is generalized quaternion (with k > 2), dihedral (with k > 3), or
semi-dihedral (with k > 3) and A is the mazimal cyclic subgroup of
order p*. In particular, n and p are equal to 2.
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2. U(L) = nL for all faithful CP-modules L.
3. U(L) = nL for a faithful CP-module L.

Proof. Throughout the proof we denote by M the module Resi (L). First
suppose that the first condition holds and prove 2. Let L be an arbitrary
faithful C P-module. By Clifford’s Theorem, one has Res’, (L) = V @ %, for
V' a representation of dimension 1 of A. So

Ind’; Isog Res’y (L) = Ind’; Isos(V) @ Ind’{ Tsog (V)
and using Proposition 1.17 and the fact that A is normal one has
Ind’; Isos (V) = Ind’; Isos (V).

Thus, one obtains that U(L) = 21Ind’ Isos(V). Moreover, using Frobenius
reciprocity one has U(L) =2 L @ (L ® Infﬁ/A(Ml)), where M is the sign
represention for P/A. So

2Ind/; Isoy (V) = L & (L @ Inf}; 4 (M,))

and by Krull Schmidt theorem one deduces that Ind’y Isos(V) = L and there-
fore U(L) = 2L.

The fact that 2 implies 3 is obvious.

Prove now that 3 implies I by proving the contrapositive. Suppose first
that P is a cyclic group. Then by Clifford’s Theorem Res’;(L) = V where V
is a representation of dimension 1 of A. But then one has

(L,Ind{ Iso4(V)) = (Res’ (L), Isos V) < 1.

Yet, the dimension of Ind} (V) is |P : A| which is stricly bigger than one
and so other modules than L appear in the decomposition of Ind’ (V') which
means that it cannot be a sum of copies of L.

Suppose that P is not cyclic. One starts with A a maximal non-cyclic sub-
group of P. One knows that in this case |P : A| = 2. Using again Frobenius
reciprocity one has U(L) = L& (L®Inf,€/A(M1)) where M, is the sign repre-
sentation of P/A. In order to have n-stabilization one needs L ® Inf}, sa(My)
to be isomorphic to L. In terms of characters one must have X (g) = 0 for
all g which are not in A, as these elements act on Infg/ 4(My) as —1. Looking
at the character tables of non-cyclic Roquette p-groups one can check that
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this does not occur if A is a maximal non-cyclic subgroup of P. So U does
not n-stabilize L. As a consequence, one deduces that Res’ (L) is irreducible.
Indeed, if not then by Clifford’s Theorem one could decompose Res’ (L) as
the sum of two conjugate modules and using the same argument as above
it would give us an example of 2-stabilization. As Res’{(L) is irreducible,
one can actually see that every irreducible A-module can be written in this
manner. The reason is that Res’/(CP) = CA @ CA. Furthermore, by the
argument above, note that this implies that if V' is an irreducible A-module,
then Ind’y (V) 2 Ind; Res;(L) = L& (L@ Infp) (M) = Ly & Ly for Ly and
Ly two non-isomorphic irreducible CP-modules.

Finally, suppose that P is not cyclic and A is not maximal. Then, there
exists a non-cyclic maximal subgroup H containing A and

Ind’ (M) = Ind}, Ind’{ (M).

Decompose Ind (M) as the sum of irreducible H-modules V; and using the
remark above on the induction on modules from a maximal subgroup, one
obtains that

Ind% (M) 2 Ind};(0,V;) = ®i(Liy © Lio)

with, for all ¢, L;; and L;» two non-isomorphic irreducible P-modules. Thus
the module Ind%; (M) cannot be only n copies of a module L. [

6.2 Some simple groups

In this section, one treats examples of simple groups. One looks at the
existence of n-stabilizing bisets. To do so, one uses the existing descriptions
of the subgroups and simple modules of these groups. One also uses GAP
for the calculations.

6.2.1 As

Theorem 6.3. Let U := Indinfﬁ/B Isog Defresg/D be a stabilizing biset for L
a simple faithful CAs-module. Then one has (A, B) = (C, D) = (A4s,1).

Proof. By Proposition 3.15 one can suppose that U is minimal. Looking at
the simple faithful As-modules, the dimension of L can only be 3,4 or 5. If
U(L) = L then

dim L = |G : A] dim Defresg/D(L).

90



6.2 SOME SIMPLE GROUPS

As L is faithful and As is simple if A = A5 then B = 1 and moreover there
is no subgroup of index 2,3 or 4 in A;. Therefore, the only other possibility
is that dim Defresg/D(L) =1land dimL = |G : A| = 5. In this case A is one
of the copies of A4 in As. The only possibilities for B are 1,V or A;. By
Proposition 3.9 if B =1 then A = G and if B = A then Defresg/D(L) has to
be the trivial module but by Proposition 8.5 of [3| this implies that A = G.
Both cases are impossible so this means that B = V. By Proposition 2.20
one has |C| < |A| and |D| < |B|. Therefore, looking at the subgroups of As,
either (C, D) is conjugate to (A4, Vy) or (C, D) = (Cs,1). The latter case is
impossible because it would imply the following equality

1 =dim Defresg3/1(L) = dim Res (L) = dim L = 5.

Finally the only case to treat is U = Indinf(j4 /v, Iso Deflresfj4 v, and L is
the simple module of dimension 5. An easy calculation, which can be made
by GAP, shows that Resil(L) is the sum of the three non-trivial simple
representation of A4. As Vj acts trivially on both representation of dimension
one but not on the one of dimension three, one concludes that Deﬁresﬁ4 (L)
is of dimension two. Therefore U cannot stabilize L.

Remark 6.4. Let U = Indinf§4/v4 Defresi/v4 and take L to be the simple
module of dimension five. Then one has U(L) = 2L. Indeed, as seen in
the previous proof Defres§ o va(L) is the sum of two non-trivial modules of
dimension one. A quick calculation, which can be made with GAP, shows

that if you apply Indinff ,/v, to these modules you end up with two copies of
L.

6.2.2 Ag

Theorem 6.5. Let U := Indinfi/B Iso, Defresg/D be a stabilizing biset for L
a simple faithful CAg-module. Then one has (A, B) = (C, D) = (Ag, 1).

Proof. By Proposition 3.15 one can suppose that U is minimal. The dimen-
sion of L can only be 5,8,9 or 10. If U(L) = L then

dim L = |G : A| dim Defresg/D(L).

As L is faithful and Ag is simple if A = Ag then B = 1 and moreover there
is no subgroup of index 2,3,4 or 5 in Ag. Therefore, the only possibility
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is that dimDefresg/D(L) =1and dimL = |G : A = 10. In this case A
is a maximal subgroup of Ag of order 36 and is of the form (C5 x C3) X
Cy. As A is maximal, one has A = Ng(B). The only possibilities for B
are 1,C3 x C3,(C5 x C3) x Cy or A. By Proposition 3.9 if B = 1 then
A = G and if B = A then Defresg/D(L) has to be the trivial module but
by Proposition 8.5 of [3] this implies that A = G. If B = (C5 x C3) x Cy
then Defresg/D(L) has to be the sign representation and using GAP one
shows that if one applies Indinf§ J(CsxCs)ne, O the sign representation one
ends up with a reducible representation. Therefore the only possibility is
that B = (3 x C5 and A/B = C,. By Proposition 2.20 one has |C| < |A|
and |D| < |B|. Therefore, looking at the subgroups of Ag, either (C, D) is
conjugate to (A, B) or (C, D) = (Cy, 1). The latter case is impossible because
it would imply the following equality

1 =dim Defresg4/1(L) = dim Res¢, (L) = dim L = 10.
Finally the only case to treat is

. G G
U= Indlnf(C3><Cg)><C4/Cg><Cg Iso Defres(CgXCg)XlCzl/CaXC:%

and L is the simple module of dimension 10. An easy calculation shows
that Res?chcg)xc . (L) is the sum of four non-trivial simple representations of
(C3 x C3) x Cy, two of dimension one and two of dimension four. As C3 x C3
acts trivially on both representations of dimension 1 but not on the ones of
dimension four we conclude that Defres§ .va 1s of dimension two. Therefore
U cannot stabilize L. O

RemaI‘k 6.6. Let U - Indinffchcg)ﬂc;;/chCg DefreS(GC?’XCB)Xcél/C?’XCB and
take L the be the simple module of dimension 10. Then one has U(L) = 2L.
Indeed, as seen in the previous proof De{"res(GC:ch:;)NC4 Josxcy (L) 18 the sum
of two non-trivial modules of dimension one. A quick calculation, which can
be made with GAP, shows that if you apply Indinf(c’vchcg)xc4 JCsxcy 10 these
modules you end up with two copies of L.

6.2.3 A,

Theorem 6.7. LetU := Indinfﬁ/B Iso, Defresg/D be an n-stabilizing biset for
L a simple faithful CAz-module. Then one has (A, B) = (C,D) = (A7, 1).
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Proof. First one treats the case n = 1, which means that U(L) = L and
therefore L can be obtained by an induction from a subgroup A of A;. As
L is simple it must be induced from a simple module. One uses GAP to see
that every induction of a simple module from a subgroup of A; is reducible.
Therefore no such U can exist if A < As.

Let’s treat the case n > 1. Let M be Defresg/D(L) and write M as the
sum of simple modules M = @&;M;. Then nL = &; Indinfi/B Isos(M;) and
so Indinf§ /p 1804(M;) = mL for an m < n. This means that by inducing a
simple C A-module Inf% /5(M;) one should obtain m copies of L. Using GAP,

one can actually see that the induction of a simple module from a subgroup
of A; never gives several copies of the same module L. ]

Remark 6.8. One can see in this example that even if one has 3-expansive
subgroups in A7, as seen in the previous chapter see section 5.2, there is no
n-stabilizing biset for simple faithful CAz-modules.

6.2.4 PSLy(Fy;)

Theorem 6.9. Let U := Indinfi/B Iso, Defresg/D be a stabilizing biset for
a simple faithful CPSLy(Fyy)-module L. Then one has (A,B) = (C,D) =
(PSLy(Fy1), 1).

Proof. By Proposition 3.15 one can suppose that U is minimal. The dimen-
sion of L can only be 5,10,11 or 12. If U(L) = L then

dim L = |G : A] dim Defresg/D(L).

As L is faithful and PSLy(IFy;) is simple, if A = PSLy(F;;) then B = 1. More-
over there is no subgroup in PSLy(F;;) of index smaller than 11. Therefore,
the only possibilities are that dim Defresg/D(L) =landdimL = |G : 4| =
11 or 12. In the first case case A is one of the copies of A5 in PSLy(Fyq) so
B =1or B = A5 but by Proposition 3.9 if B =1 then A =G and if B = A5
then Defresg/D(L) has to be the trivial module. But by Proposition 8.5 of
[3] this implies that A = GG. Both cases are impossible so this means that A
is of index 12 and of the form C; x C5. Again B could only be 1, C; or
A, but the first and the last case have to be eliminated for the same reasons
as above. Therefore B = C4; and one has A/B = C5. By Proposition 2.20
one has |C| < |A] and |D| < |B|. Therefore, looking at the subgroups of
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PSLy(Fyy), either (C, D) is conjugate to (A, B) or (C,D) = (Cs,1). The

latter case is impossible because it would imply the following equality
1 =dim Defresgs/l(L) = dim Res, (L) = dim L = 12.

Finally the only case to treat is U = Indinff’ycnxcs‘)/cu Iso Defres(GCHNCs)/Cn
and L is one of the simple modules of dimension 12. An easy calculation
shows that Res$ .. (L) is the sum of four non-trivial simple representa-
tions of C11 x (5, two of dimension one and two of dimension five. As C1;
acts trivially on both representations of dimension one but not on the ones
of dimension five one concludes that Defres,(c’yc1 \xCs)/Cyy 18 of dimension two.
Therefore U cannot stabilize L. O

Remark 6.10. Let U = Indinf(Gcnxos)/cH Defresfcnxcs)/cu and take L the

be the simple module of dimension twelve. Then applying Indinf(GCHMCs) e
to these modules one ends up with two copies of L.

Remark 6.11. The group C}; x Cs has four non-trivial simple representa-
tions of dimension one. The group PSLy(F;;) has two simple modules of
dimension 12. The argument in the previous proof works for both of these
modules but the decomposition of Resglmcs(L) is not the same. The two
modules of dimension five appearing in the decomposition are the same. But
the pair of modules of dimension 1 are disjoint. However C4; acts trivially
on them and if one applies Indinf(%1 \xCs)/Cyy 1O these modules one ends up
with two copies of L.

6.3 Groups with cyclic Fitting subgroup

In this section one proves that if G is a solvable group such that F(G) =
=11, C r, and U is a stabilizing biset for a simple faithful CG-module,

then U has to be reduced to an isomorphism. Then one describes the case of
v-stabilizing bisets as one did for Roquette p-groups where v is an integer.
Suppose n = 2Fp k ...pFm for some distinct odd primes p; and integer k;, so
Cp = Co x [[1, C’ k. In section 5.3 Corollary 5.10 one has seen that such

a group G is Roquette Also, one has the following exact sequence
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1 Ch G S 1

where S is a subgroup of Aut(C,,). Suppose moreover that S is a subgroup
of Cy x [, Cp,—1 where Cy is either generated by 81 : g+ g~ ' or By : g —
g 2" where ¢ is a generator of Cor with k> 2, or S < [LCh—1if k<2
One starts with a general lemma.

Lemma 6.12. Let Cyr be a cyclic group of order 2% and Cy its subgroup of
order 2. Denote by Ty and T_ the trivial and the sign C-representation of

dimension 1 of Cy. Then the module Indgzk (Ty) decomposes as the sum of

all non-faithful representations of Cor and the module Indgzk (T) decomposes
as the sum of all faithful representations of Cor.

Proof. Observe that
Cok Co _ Co _ Gy _
Ind 2" (T-) @ Ind 2" (7)) = Ind 2" (T- @ T,) = Ind 2" (CCy) = CC.

But CCy decomposes as the sum of all simple CCy-modules. Using Krull-
Schmidt Theorem and the fact that Indgzk (T+) is not faithful as Cy is in

its kernel, one can conclude that Indgik (T) decomposes as the sum of all

non-faithful representations of Cyr. Therefore the module Indgzk (T-) has to
decompose as the sum of all faithful representations of Cyx. ]

Theorem 6.13. Let G be a Roquette group with F(G) = C,,. Let U :=
Indinfg/B Isoy Defresg/D be a v-stabilizing biset for L where L is a simple
faithful CG-module. Then B =1 and A contains Cy...C,, .

Proof. The idea of this proof is to restrict the module L to certain well-chosen
subgroups using once Clifford Theory and then Mackey’s formula as v L can
be written as U(L). Then one finds information by the fact that these two
decompositions should be isomorphic.

By Proposition 2.18, one knows that B has a trivial G-core. Therefore
BNC, = 1. Denote by M the A-module Infﬁ/B Iso, Defresg/D(L) and by H
the product Cs...C,, . Using Clifford Theory one has

Res§;(vL) &2 vRes$ (L) 2 v @yeqr pV

where V' is a simple H-module and [ := {g € G|V = V'}. As L is faithful the
module Res$ (L) is also faithful and so is V, because ker(%) = 9ker(V) =
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ker(V'), as the subgroups of H are characteristic. Now by Mackey formula
one has

Res$(vL) = Res$(Ind§(M)) = @ Indff 0. ResgmA(M)).
ge[H\G/A]

Let Q be a complement of H N A in H. Such a complement exists because
HNA<GC,y...Cp, and so Q = Cip/juna. Now one extends Resgy, (M)
to an H-module N by saying that () acts trivially on N. Therefore one has
Rest ,(N) = Resp,(M). Using this in the previous equation one has:

Res (vL) = EB Indff 04 4 Resﬁm‘(]\;[))
gE[H\G/A]

@ Indgm 9A g( ResgnA(N))
g€E[H\G/A]

IndgmA ReSZnA(N> D EB Indgm 9A g( ResgﬁA(N))
9ElH\G/4),

S @ Ind¥ o4 g(ResZmA(N)),

ge[H\G/A],
g#1

I

124

2

where {Ir;} is a set of isomorphism classes of simple C[H/H N A]-modules
for 1 < j < f, with f = |H : HN A|. The kernel of N is @ but, as
mentioned before, Res$ (L) is a sum of faithful modules, therefore Q = 1
and so H N A = H. This implies that H is a subgroup of A and therefore
normalizes B, because B is normal in A. This implies that B acts trivially
on H by Lemma 5.6. Therefore B is either trivial or w(B) is generated by (;
or (5, where m denotes the homomorphism from G to S. Suppose the latter
holds, so k£ > 2. By Clifford Theory

uRengk (L)=v @ my L4,
geG/1h

where L is a simple Cy-module and I} := {g € G| 9.1 = L;}. By definition
C,, is a subgroup of I;. As [], Cp,—1 acts trivially on Cas, it is a subgroup of
I,/C,, and so the order of G/I; is at most 2. This implies that there are at
most 2 non-isomorphic modules appearing in Resgzk (L).
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On the other hand, let’s use Mackey’s formula, but first notice that
CQ = H N Cgk S A N Cgk S NG(B) N CQk = NCQk(B) - CQ
where the last equality holds because either for 51 or 5 one has Cor ((5;)) =

{c € Oy | * = 1} = Cy. Using this remark and Mackey’s formula, let’s
restrict L to Cax:

[ C "~
Rengk (vL) = @ IndczngA 9 Resézk (M)

9€[Co1\G/A]
~ c ~ c ~
= Indg2  Rest,(M)® D Ind?qu (Resd, qa(M)).
9€[Cyk \G/A]
g#1

Remark that ReséQ(M ) decomposes as a sum of representations which are
either the trivial or the sign representation. But the trivial cannot occur.
Indeed suppose the trivial representation 7'y appears in the decomposition
of Res(, (M). Then Indgjk (T) is not a faithful representation as Cs is in
its kernel. This is a contradiction with the fact that ReSng (L) is faithful.

Therefore Res&(M ) is a sum of copies of the sign representation 7" and

Indgzlc Reséz(M ) = @Indgzk (T-). But Indggk (T) decomposes as the sum
of all faithful representations of Cyr, by Lemma 6.12. There are 2*~! such
non-isomorphic representations. So the module Rengk (L) decomposes with
at least 2F~! non-isomorphic representations. As k > 2 one has 2¥~! > 2 and
so this implies a contradiction with the decomposition using Clifford Theory.
Therefore the only possibility is that B = 1. ]

Theorem 6.14. Let G be a Roquette group with F(G) = C,,. Let U :=
Indinff/B Iso, Defresg/D be a stabilizing biset for L where L is a simple faith-
ful CG-module. Then one has (A, B) = (C,D) = (G, 1).

Proof. By Proposition 3.15 it is sufficient to look at minimal stabilizing bisets.
If U is minimal, one knows that if B = 1 then A = G by Proposition 3.9.
But Theorem 6.13 shows that B = 1 and so the results follows. O

One continues our investigation of v-stabilizing bisets for » > 1. One
reduces our study to strongly minimal bisets.
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Theorem 6.15. Let G be a Roquette group with F(G) = C,. Let U :=
Indf Isog Defresg /p be a strongly minimal v-stabilizing biset for L where L is

a simple faithful CG-module. Then D =1 and A = C' is a normal subgroup
of G.

Proof. First recall that by Proposition 2.19, one knows that D has a trivial
G-core. Therefore DNC,, = 1. By Corollary 2.13, one can suppose that (A, 1)
and (C, D) are linked, which implies that ANC = A and so A is a subgroup
of C, therefore A normalizes D. As A contains C5 ..., , by Theorem 6.13,
this implies that D acts trivially on Cy...C),,,, by Lemma 5.6. Therefore
D is either trivial or 7(D) is generated by f; or (2, where 7 denotes the
homomorphism from G to S. As in the proof of Theorem 6.13, one restricts
L to Cye using first Clifford Theory and secondly Mackey’s formula to obtain
with exactly the same arguments that D = 1. The key ingredient is that
AN Cy is again equal to Cy as A normalizes D.

Finally, as the sections are linked and D = 1 one obtains that A = C.
Moreover, by Theorem 2.12; there are v double (A, A)-cosets in G but also
v = |G : A| which forces A to be a normal subgroup of G. O

One finishes our study by completely describing the the remaining case.

Theorem 6.16. Let G be a Roquette group with F(G) = C,,. Let A be a
normal subgroup of G, U = Indg Res§ and v = |G : A|. Then the following
conditions are equivalent

1. A contains F(QG).
2. U(L) 2 vL for all faithful CG-modules L.
3. U(L) 2 vL for a faithful CG-module L.

Proof. One first proves that I implies 2. Suppose first that A contains F(G)
and prove then that U := Ind§ Res§ is a |G : A|-stabilizing biset for an arbi-
trary faithful CG-module L. First note that L can be written as Indl(,,’:(G) &)
where ¢ is a primitive nth root of unity. Indeed, every irreducible CG-
module comes from a summand of an induction from F'(G), but the module
Indg(G) (€) is irreducible as the conjugate representations of ¢ by the action
of G/F(G) are not isomorphic. The condition of primitivity on the root is
to ensure the faithfulness of the induced module. Furthermore, as A con-
tains F(G), then L 2 Ind$(V) where V := Ind?(G) (¢€). The A-module V/
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is irreducible because Indg(G) (€) is. Therefore, using Mackey’s formula, one
has

U(L) = IndRes§(L) = Ind§ Res§Ind5(V) = € md§ (V)
geG/A
= |G And§ (V) 2 |G A|L,

where the isomorphism between the first and the second line holds because
A is normal. As L was arbitrarily chosen, this holds for any faithful CG-
modules L.

The fact that 2 implies 3 is obvious.

Prove now that & implies 1 by proving the contrapositive. Let A be a
normal subgroup of G such that AN F(G) is not equal to F(G). Recall that
by Theorem 6.13, one knows that A contains Cy ..., , so this intersection
is not trivial. One shows that it is not possible to v-stabilize L for all faithful
CG-modules L. One knows that L = IndF(G (&) where £ is a primitive nth
root of unity. Then, by Mackey’s formula, one has

UL) = IdfRes{Indf) ()= P  d{Ind},pq Resype (%)
GEIA\G/F(@))
@ IndAmF ReSAmF (gf)
9EIA\G/F(G)]
~ (G
= |A\G/F(G )|IndAmF Resimp)(a)(f)

12

~ F(G F(G
=~ |A\G/F(G)| Ind§ g Ind} 7 o Resy P (6).
Using Frobenius reciprocity one has Indiﬁg)(G) Resigg(a) (&) = @;6®]Ir; where

{Ir;} is a set of isomorphism classes of simple C[F'(G)/(F(G)N A)]-modules.
The sum is not reduced to one module as AN F(G) is not equal to F(G) by
assumption. This means that U(L) is isomorphic to

B 14\G/F(G)] Indf (€ & 1),

Thus our purpose is to show that Indg(G) (¢ ® Ir;) is not isomorphic to L =

Indg(G) (&) for at least one representation Ir;. To do so, one proves that { @Ir
is not conjugate, by an element of G/F(G) to & where Ir denotes a non-trivial
C[F(G)/(F(G) N A)]-module. We specify which Ir is taken later on.
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Let p be a prime dividing |F(G) : AN F(G)| and note i its highest power
dividing |F(G) : AN F(G)|. Choose p such that p is strictly smaller that p*
where k is the highest power of p such that p* divides n. As F(G) is cyclic,
one decomposes Ir as the tensor product of a representation 6 of C); and a
representation 0¢ of its complement in F(G)/(F(G)NA), ie Ir = § ®6°. Note
that 6 is a p’th root of unity. In the same fashion & = & ® &, where & is a
p¥th root of unity and &, is a representation for C,, Jp+- Then one has

ERIr=6LH®IREE R0

One now sets Ir such that 0 = ffk_l then one has & ®6 = 11+pk_l. Because of
the assumption on S made at the beginning of the section, this representa-
tion cannot be conjugate to the representation &; by an element of G/F(G).
Indeed, such an element would have order a divisor of p’ as such an element
must be of the following form

1 k—1i
a:& ="

Moreover, it is easy to check that a’(£;) = %Hpk% and so o = id. So

£ ®Ir is not conjugate to £. Finally one has proved that Indg(G) (¢ ®1Ir) is not
isomorphic to L = Indﬁ(G) (€) and therefore other modules than L appear in
the decomposition of U(L). O

6.4 p-hyper-elementary groups

Let p be a prime number. Let G be C,, x P where P is a p-group and C,, is
a cyclic group of order prime to p. There is an action map ¢ : P — Aut(C,,).
Such a group is called a p-hyper-elementary group. If G is a Roquette p-
hyper-elementary group, with p an odd prime, then we are again in the
situation of cyclic Fitting subgroup as mentioned in Remark 5.13. Even
so one gives results in this section with more flexibility on the field of our
representations. Nevertheless, for p = 2, we are not in the situation of
cyclic Fitting subgroup by Theorem 5.12. Note also that Corollary 6.23 is
a generalisation of Theorem 9.6.1 page 171 of [2]. In this section, let k be
a field where the irreducible representations of C), are of degree one. For
example one can take k = C. As usual we are interested in faithful modules.
Note that if th