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Abstract 

Understanding of the physical and geometrical characteristics of the radiation induced defects in 

ferritic steels based on Fe-Cr is essential to optimize their properties as structural materials for nuclear 

power plants. Their observation in a thin foil by transmission electron microscopy (TEM) in 

diffraction contrast mode is one of the most used techniques. However, the comparison between the 

experimental TEM images and those that can be obtained by simulation is needed to give a reliable 

assessment of the characteristics of these defects, especially for the small radiation induced 

dislocation loop. Indeed, its black-white contrast is not directly related to its actual characteristics, and 

even more so when the loop size comes down to nanometres. In addition, it has been already noticed 

that the relaxation at the free surfaces of the needed thin foil for TEM should be taken into account in 

the analysis, but it remained a challenge till today. 

The dislocation loops formed in the Fe-Cr base alloys have a Burgers vector of the type ½ a0<111> or 

a0<100>. Experimentally, irradiation by accelerated ions is often used to study the dislocation loop, 

and the dynamic study of its formation and evolution can be done in situ in a TEM with ions. Ion 

irradiation presents several advantages over post-irradiation studies conducted on samples irradiated 

in a nuclear reactor. However, the ratio of ½ a0<111> to a0<100> loops is modified during in-situ 

TEM experiments irradiation of ferritic material as the very mobile loops ½ a0<111> can be lost at the 

free surfaces of the thin foil. 

This work is part of a project to validate the simulations with experiments to better understand the 

mechanism of formation of the dislocation loop in Fe-Cr, particularly in relation to temperature and 

its characteristics, that is its vector Burgers, habit plane, size and shape. The aim of this work is to 

implement different models of continuum elasticity to address the problem of surface relaxation of the 

TEM thin foil, which induces a so-called 'image' force on a dislocation loop or line. Models are 

implemented in the TEM image simulation code 'CUFOUR', based on Schaeublin-Stadelmann 

equations, in order to understand the impact on the TEM images. Strengths that characterize this work 

are: 

· A robust method for calculating anisotropic image forces has been successfully developed in Fourier 

space. This new method works for a straight dislocation or a dislocation loop in a semi-infinite space, 

or a thin foil. 

· The method of has been successfully implemented in CUFOUR code. 

· A screw dislocation, ½ a0<111>, straight and inclined in a thin foil of ultra high purity Fe, was used 

to validate the simulation of TEM images with experimental TEM. A good agreement between 

experiment and simulation is found. 

· Different types of dislocation loop were implemented in CUFOUR. The effect of the diffraction 

condition , the loop characteristics and properties of the thin foil is systematically studied. The effect 

of the image forces on the TEM image was particularly studied. It appears that close to the surface 

they can completely invert its black-white contrast. 

· The anisotropy of Fe has a strong influence on the images forces, relative to the isotropic case. The 

anisotropy thus cannot be ignored. In iron, temperature increases this effect. The elastic energy 

induced by the free surface becomes remarkable when the depth of the dislocation loop beneath the 

surface is comparable to the characteristic length thereof. Moreover, there is large difference between 

the ½ a0[111] loop in a (111) foil and the a0[100] loop in a (100) foil. 

Keywords: transmission electron microscopy, diffraction contrast image, image stress effect, 

anisotropy, dislocation loop, column approximation, CUFOUR, Schaeublin-Stadelmann equations. 
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Résumé 

Comprendre les caractéristiques physiques et géométriques des défauts induits par irradition dans les 

aciers ferritiques à base de Fe-Cr est fondamental pour optimiser leurs propriétés comme matériaux de 

structure pour les centrales nucléaires. Leur observation par microscopie électronique à transmission 

(MET) en mode de contraste de diffraction est l'une des techniques les plus utilisées. Cependant, la 

comparaison entre les images MET expérimentales et celles que l’on peut obtenir par simulation est 

nécessaire pour porter un jugement fiable sur les caractéristiques de ces défauts, en particulier pour les 

petites boucles de dislocations. En effet, le contraste noir - blanc observé pour la boucle de dislocation 

n'est pas directement lié à ses caractéristiques réelles, et ce d’autant plus lorsque la taille de la boucle 

est nanométrique. De plus, il a été déjà été remarqué que la relaxation aux surfaces libres de la lame 

mince nécessaire pour la MET devrait être tenu en compte dans l’analyse, mais cela est resté un défi. 

Les boucles de dislocation formées dans les alliages à base de Fe-Cr sont de type ½ a0<111> et 

a0<100>{100}. Expérimentalement, on utilise souvent des irradiations par ions accélérés pour étudier 

le mécanisme de formation de la boucle de dislocation, ainsi que les processus de son développement 

dynamique avec des irradiations aux ions conduites in situ dans un MET, ce qui présente plusieurs 

avantages par rapport aux études post-irradiation conduites sur des échantillons irradiés en réacteur 

nucléaire. Cependant, le rapport ½ a0<111> / a0<100> des boucles est modifié au cours des 

expériences MET in-situ d’irradiation de matériau ferritique, car les boucles ½ a0<111> très mobiles 

peuvent être perdues aux surfaces libres de la lame mince. 

Ce travail fait partie d'un projet visant à valider les simulations par des expériences pour mieux 

comprendre le mécanisme de formation de la boucle de dislocation dans les alliage Fe-Cr, en 

particulier en relation avec la température et ses caractéristiques, soit son vecteur Burgers, plan 

d’habitat, taille et forme. Le but de ce travail a été de mettre en œuvre différents modèles d’élasticité 

du continuum afin de traiter du problème de la relaxation de surface de la lames mince, qui induisent 

une force dite ‘image’, pour une ligne et une boucle de dislocation. Les modèles développés été 

implémentés dans le code simulation ‘CUFOUR’ de simulation d’images MET, basé sur les équations 

Schaeublin – Stadelmann, afin d’en comprendre l’impact sur les images MET. Les points forts qui 

caractérisent ce travail sont les suivants : 

· Une méthode robuste de calcul de la force image anisotrope a été développée avec succès dans 

l'espace de Fourier. Cette nouvelle méthode fonctionne pour une dislocation droite et une boucle de 

dislocation dans un semi-espace infini ou un film mince. 

· La méthode de calcul des forces images a été implémentée avec succès dans le code ‘CUFOUR’. 

· Une dislocation vis, ½ a0<111>, droite et inclinée dans une lame mince de Fe ultra pur, a été utilisée 

pour valider les simulations avec de la MET expérimentale. 

· Différents boucles de dislocation ont été mises en œuvre dans CUFOUR. L'effet de la condition de 

diffraction, des caractéristiques de la boucle et des propriétés de la lame mince est étudié 

systématiquement.  L’effet des forces images sur l’image MET a été particulièrement étudié.  l 

apparaît que ces forces images peuvent complètement inverser son contraste noir-blanc. 

· L’anisotropie du Fe a une forte influence sur les forces images, relativement au cas isotrope. 

L’anisotropie ne peut donc être ignorée. Dans le fer cet effet augmente avec la température. En outre, 

l'énergie élastique induite par la surface libre devient remarquable lorsque la profondeur de la boucle 

de dislocation sous la surface est comparable à la longueur caractéristique de celle-ci. L’effet entre 

une boucle de type ½ a0[111] dans une lame (111) par rapport   une boucle de même taille de type 

a0[100] dans une lame (100) est très différent. 

Mots-clés: microscopie électronique à transmission , contraste de diffraction , surfaces libres, effet des 

forces images, approximation de la colonne, fer pur, énergie élastique, dislocation, CUFOUR , 

équations Schaeublin – Stadelmann. 
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Introduction 

 

In 2011, nuclear power provided 10% of the world's electricity, and nuclear energy is still a promising 

option for the world energy market in the 21th century. The innovative Generation-IV (Gen-IV) 

nuclear energy systems and fusion systems are still under continuous research and development, 

especially concerning the safety, waste treatment and efficiency issues. The combination of high heat 

load, high thermal neutron flux and corrosive environment could be a major obstacle for the viability 

of some of the Gen-IV systems and fusion reactors. The safe and reliable performance of such nuclear 

plants is strongly dependent on the assessment of materials degradation. Changes of mechanical and 

physical properties of materials during irradiation arise from microstructural changes such as the 

formation of dislocation loops and cavities, segregation and precipitation that impede dislocation 

mobility, thus leading to hardening, a shift in the ductile to brittle transition temperature and a 

reduction of fracture toughness.  

Fe-Cr based reduced activation ferritic/martensitc steel has been considered as a promising candidate 

structural material for Gen-IV reactors and fusion reactors. Even though these materials are used in 

the nuclear industry since decades, there is still a lack of quantitative understanding of the physical 

and geometrical features of defects formed under thermo-mechanical and intense flux of energetic 

neutron flux loads. TEM post-irradiation checking is widely used for studying irradiation defects 

formed within irradiated materials. It is known that in Fe-Cr alloys, there are ½ a0<111> and a0<100> 

types of dislocation loops that are formed during irradiation.  

TEM imaging using diffraction contrast is one of the most widely used techniques for studying 

irradiation defects. Observation of small dislocation loops (  5 nm) with TEM is still a challenge 

today, as the diffraction contrast of the dislocation loop is not directly related to the actual features of 

the loops, and the widely accepted       invisibility criterion for dislocations is of limited utility 

for small dislocation loops. In addition, there are surface relaxation effect that won’t be negligible. In 

order to make reliable assessments on the characteristics of dislocation loops, TEM image simulation 

and TEM experimental observation are employed together to understand the structure of the defects. 

The difficulty in this approach is the lack of knowledge on the image contrast modification induced 

by the free surfaces. In addition, the synergetic effect of image stress and the strong anisotropy of Fe-

Cr alloys will make the contrast more complex. Besides such image contrast analysis difficulties for 

post-irradiation checking with TEM, the free surface effect of thin TEM foil on the physical behavior 

of defects during in-situ irradiation experiments is still not well understood. Indeed, the observation of 

the irradiation induced microstructure is inherently conducted in thin areas of the TEM sample, for 

they have to be transparent to electrons. This implies that the image contrast of dislocation loops and 

the physical status of small dislocation loops ( 1 nm in radius) formed during in-situ ion irradiation 

experiments is strongly influenced by the proximity of free surfaces, because of the so-called image 

forces, as it was recognized long ago [Masters, 1963].  

In this work we attempt to quantify some of these pending issues by developing appropriate elasticity 

models and many beam TEM image simulations using the code CUFOUR. Comparison with TEM 

experimental investigation of inclined dislocations in ultra high purity (UHP) Fe is made in order to 

validate simulations, and thus provide a better understanding of free surfaces effect in TEM thin foils 

on irradiation induced damage in Fe-Cr alloy. The experimental characterization of the dislocation in 

Fe is performed using diffraction contrast or conventional TEM. 

 

Aims of the work 

In view of the described challenges the aims of the current work are the following: 

• Development of isotropic and anisotropic elasticity models to describe image forces for a dislocation 

line inclined in the thin TEM foil and for a dislocation loop. 

•  mplementation of inclined dislocation and dislocation loop models into CUFOUR code, based on 

Schaeublin-Stadelmann equations for many beam TEM image simulation. 
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• Experimental verification with an inclined screw dislocation in ultra high purity Fe, quantitative 

evaluation of the TEM image contrast intensity profile with the different inclined dislocation elasticity 

models. 

•  nvestigation of the effect of the diffraction condition, foil physical properties, inclined dislocation 

and dislocation loop physical and geometrical properties on their simulated TEM image, including 

image forces. 

• Elucidation of the effects of thin TEM foil free surfaces on the black-white contrast of nanometric 

dislocation loops. 

• Qualitative evaluation of the synergistic effects of anisotropy and image stress effect on dislocation 

loops are studied in a bcc Fe thin TEM foil, especially focusing on an a0[001](001) loop within (001) 

foil and a ½ a0[111](111) loop within (111) foil. 
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Chapter. 1: Background and literature review 

 

In this chapter, dislocation loops in irradiated Fe-Cr alloy are reviewed firstly, then theories on TEM 

image simulation and micromechanics of defects are briefly reviewed, especially focusing on the 

image stress of thin foil and free surface effect on TEM image contrast. 
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1.1. Fe-Cr based alloy application in future nuclear reactors 

The International Generation-IV (Gen-IV) initiative was incubated in 2000 to promote the 

development of a new generation of nuclear energy systems, which hold economics, safety, 

environmental performance and proliferation resistance advantages over the current Gen II and Gen 

III reactors. The main physical parameters of the Gen-IV reactors: three thermal neutron reactors and 

three fast reactors are shown in Table 1.1. In the thermal reactors, almost all neutrons in the reactor 

core have a low energy (~0.025 eV), while in the fast reactors, the neutron energy is much higher 

(more than 1 MeV).  

 

Table 1.1: Survey of Generation IV nuclear reactors [Mesquita, 2013]. 

 

 

The promising structural materials for the six types of Gen-IV systems are shown in Table.1.2, and 

the major service requirements of candidate structural materials for these reactors are summarized in 

the three following categories [Murty, 2008; Yvon, 2009]. 

 The in-core materials need to exhibit dimensional stability under irradiation, whether under 

stress (irradiation creep or relaxation) or without stress (swelling, growth); 

 The mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, 

resilience) of all structural materials  have to remain acceptable after aging; 

 The materials have to retain their properties in corrosive environments (reactor coolant). 

 

Table 1.2: Summary of candidate materials for Gen-IV reactors [Kuksenko, 2011]. 
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Besides the development of the six types of Gen-IV fission reactors, international research 

cooperation on fusion technology is also on the way. Fusion has very promising energy efficiency, 

safety and environmental friendly advantages over fission reactors. However, as shown in Fig. 1.1, the 

cruel thermo-mechanical stress, high temperatures, intense high-energy neutron flux, fusion 

transmutation (He/dpa, H/dpa) puts the greatest challenge for fusion structural materials development. 

 

 

Figure 1.1: Overview operating temperatures and displacement damage dose regimes for current 

Gen-II and Gen-IV reactors [Zinkle, 2000]. 

 

1.1.1. Displacement cascade and defects evolution 

Radiation damage event is defined as the transfer of energy from an incident particle to the impacted 

solid, the resulting distribution of target atoms after completion of the collision event, and the 

subsequent microstructural evolution process. The radiation damage event is actually composed of 

several distinct processes: [Was, 2007] 

(1) The primary knock-on event: 

 The interaction of an energetic incident particle with a lattice atom, resulting in the transfer of 

kinetic energy to the lattice atom, such energy transfer gives birth to a primary knock on atom 

(PKA). 

 The displacement of the atom from its lattice site. 

(2) The displacement cascade: 

 The passage of the displaced atom through the lattice and the resulting additional knock-on 

atoms, trigger a displacement cascade (collection of point defects created by the PKA) event. 

 It introduces vacancy and self-interstitial atom (SIA) defects during the collision cascade 

process. The radiation damage event is terminated when the PKA comes to rest in the lattice 

as an interstitial. An equal number of vacancies and interstitials, or Frenkel pairs, are created. 

(3) The defects post-cascade evolution (migration, annihilation, diffusion) 

 These point defects (vacancies and interstitials) will diffuse, annihilate, cluster, and interact 

with dislocation, grain boundary, foreign elements, thus forming the foundation for all 

observed macroscopic physical and mechanical properties degradation of materials [Ullmaier, 

1980; Was, 2007]. 
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 Point defects can cluster into dislocation loops for SIA and vacancies, and voids for vacancies. 

Details of this process and its timescale are given in Table 1.3. 

 

Table 1.3: Approximate time-scale for the production of defects in irradiated metals [Ullmaier, 1980]. 

 

 

Irradiation causes another type of damage. When the energy is sufficient, there are nuclear reactions 

creating foreign elements, especially a large amount of hydrogen and helium atoms, which precipitate 

into bubbles and grow by absorption of vacancies [Chen, 2008]. The final defect structure depend 

strongly on accumulated dose, dose rate, irradiation source, temperature, alloy types, minority 

alloying elements, and production rate of impurities. The interaction between different types of 

irradiation defects and dislocation is crucial for understanding the macroscopic mechanical properties 

degradation of nuclear structural materials, such as hardening, swelling, creeping, embrittlement, 

segregation, and shift of ductile-brittle transition temperature (DBTT). According to the service 

temperature and irradiation condition, the main mechanical degradation issues of irradiated nuclear 

structural materials can be summarized as following: 

 At low temperature (up to 0.35   , dose>0.1 dpa), there will be radiation embrittlement, 

hardening, reduction in fracture toughness and increase in DBTT, thus reducing the lifetime 

of the irradiated materials; 

 Within intermediate temperature region (up to 0.45   , dose>10 dpa), there will be drastic 

reduction of ductility, and irradiation creep. 

 At high temperature (between 0.35-0.6   , dose>10 dpa), there will be radiation 

induced/enhanced segregation and precipitation, swelling due to void formation (this will 

happen for most alloys between 0.35-0.55   ), fusion materials exhibit a peculiar He 

embrittlement. 

 

1.1.2. Fe-Cr based alloy as structural material 

As shown in Table 1.2 and Fig. 1.1, Fe-Cr based austenitic steels, ferritic/martensitic (F/M) alloys and 

their oxide dispersion strengthened (ODS) versions are promising candidates for structural materials 

in future fusion reactors and Gen-IV, and the Cr content is one of the key parameters to be optimized 

in order to guarantee favorable properties under irradiation exposure. The application of Fe-Cr based 

nuclear structural materials cover over a wide range of temperature:  

 Low temperature (300-600°C) range: austenitic steels, ferritic/martensitic steels, and ODS 

alloys;  

 Intermediate temperature range (600-800°C): traditional and modified austenitic steels, ODS 

F/M steels, iron or nickel based super-alloys, refractory alloys;  

 High temperature (> 800°C) range: advanced ODS and refractory based systems.  
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Depending on the irradiation source, the temperature, the accumulated dose and the dose rate, various 

irradiation experimental schemes are proposed for investigating the mechanical properties degradation 

of commercial and experimental Fe-Cr alloys, such as hardening, swelling, loss of elongation, creep 

and DBTT shift. However, making a clear general conclusion on the relationship between mechanical 

properties and irradiation conditions, namely dose, dose rate and temperature is still very challenging, 

until present. [Suganuma, 1982; Kohyama, 1996; Garner, 2000; Luppo, 2000; Malerba, 2008]  

 

1.2. Dislocation loops in irradiated Fe-Cr alloy  

1.2.1. Dislocation loops formed in Fe-Cr alloy under irradiation 

For several decades, a number of experimental studies focused on the formation of dislocation loops 

in bcc materials under irradiation, including Fe based steel and also other bcc metals, such as Cr, Mo, 

W, Nb and V [Downey, 1965; Eyre, 1965a; Master, 1965; Meakin, 1965; Haeussermann, 1972; Sikka, 

1973; Shiraishi, 1974; Narayan, 1976; Chen, 1978; English, 1980; Little, 1980; Suganuma, 1981; 

Robertson, 1982; Horton, 1982; Ward, 1989; Muroga, 1996; Schäublin, 2002; Zinkle, 2006; Chen, 

2008; Hernández, 2008; Yao, 2008; Kuksenko, 2011; Klimenkov, 2011].  It is generally accepted that 

the configuration of dislocation loops only depends on the lattice structure. Here, a summary of the 

defects in bcc metals is given in Table 1.4. Taking these facts into consideration, one can conclude 

that the irradiation induced dislocation loops in Mo, W, Nb and V are interstitial with a Burger’s 

vector ½ a0111> and on a habit plane (HN) {111}. Occasionally, other Burgers vectors and habit 

planes in W and Nb are reported but seem less reliable. Pure Fe and Fe-based ferritic/martensitic 

steels were widely investigated at different temperature regimes, and two types of dislocation loops 

Burgers’s vector are found, namely ½ a0<111> or a0<100>.  

One of the key features is the common observation that a quite large portion of the dislocation loops 

formed during irradiation at elevated temperatures (300-600 ) are interstitial loops with b=a0<100>, 

and quite strong evidences confirm that their nature and habit plane are interstitial and {100}, 

respectively, in all Fe and Fe-based bcc materials. The situation of the ½a0<111> loops is somewhat 

unclear. One recent paper reported that ½a0<111> loops have both {011} and {111} habit planes 

[Zinkle, 2006], while another reported only {111} habit planes [Chen, 2008].  
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Table 1.4: Summary of experimental studies on dislocation loop in bcc structural materials. 

 T (K) b    nature specimen irradiation ref. 

Fe 823 a0001 {001} I thin p, Fe Master, 1965 

333 ½a0<111> - - bulk n Eyre, 1965a 

353-593 ½a0<111> 

a0001 

 - 

- 

bulk n Robertson, 1982 

623-723 ½a0<111> 

a0001 

- 

{001} 

- 

I 

bulk n Horton, 1982 

703-763 ½a0<111> 

a0001 

- 

{001} 

 thin e Ward, 1989 

333 ½a0<111> {111}, {110}  bulk n Zinkle, 2006 

Fe+10%Cr 653-733 a0001 {001} I bulk n Little, 1980 

573-773 ½a0<111> 

a0001 

 

{001} 

 thin e Muroga, 1996 

Fe+15%Cr 473-873 ½a0<111> 

a0001 

- 

- 

- 

- 

thin e Suganuma, 1981 

Fe+19%Cr 573-773 ½a0<111> 

a0001 

{111} 

{001} 

I 

I 

Semi-bulk 

(100 m) 
 Chen, 2008 

Mo 873 ½a0<111> {111} I bulk n Meakin, 1965 

333-1473 ½a0<111> {111}, {321} I bulk n Downey, 1965 

293-673 ½a0<111> 

a0001 

{110}-{111} 

{110}-{001} 

V 

V 

thin 

(10 nm) 

W, Sb English, 1980 

W 293 ½a0<111> 

½a0011 

{011} 

{011} 

V 

V 

thin 

(10 nm) 

Au Haeussermann, 

1972 

703-853 ½a0<111> {111}  bulk n Sikka, 1973 

Nb 353 ½a0<111> 

½a0011 

{111} 

{111} 

 bulk n Chen, 1978 

303 ½a0<111> 

½a0011 

 I, V 

I, V 

bulk n Narayan, 1976 

V 323-823 ½a0<111> {111} I, V bulk n Shiraishi, 1974 

Fe; Fe+ 

(5,8,11,9,18%) 

Cr 

300; 573 ½a0<111> 

a0<100> 

{110}-{111} 

{001} 

I,V thin  

(15-85 nm) 

Fe+, Xe+ Hernández, 2008 

Fe; Fe+8%Cr; 300; 573 ½a0<111> {110}-{111} 

 

I,V thin (<100 

nm) 

Fe+ Yao, 2008 

Fe+(9,12%)Cr 773 ½a0<111> 

a0<100> 

{110}-{111} 

{001} 

Not 

mentioned 

Thin(80-

150 nm) 

n, Fe+ Kuksenko, 2011 

F82H 523; 583 ½a0<111> 

a0<100> 

- 

- 

I bulk p Schäublin, 2002 

Eurofer 97 523-723 ½a0<111> -  bulk n Klimenkov, 2011 

 (Symbols used: T, irradiation/ annealing temperature; b, Burgers vector; -, between; I, interstitial; V, 

vacancy; p, proton; n, neutron; e, electron; L, low; M, middle and H, high. The results followed by “-” 

means preliminary or not clear.) 

 

In-situ ion irradiation experiments suggested that the difference in the a0<001>/ ½ a0<111> ratio 

between Fe and Fe-Cr alloys mainly originates from the fact that dislocations in Fe-Cr alloys are less 

mobile and more ½ a0<111> loops in the Fe TEM foil are lost to the free surfaces than in the Fe-Cr 

TEM foil [Masters, 1963; Hernandez, 2008; Yao, 2008; Jenkins, 2009]. Loop loss to the surface is 

thought to occur under the influence of surface image forces, with the gliding along the Burgers 

vector as the most probable loss mechanism [Masters, 1963]. Prokhodtseva [Prokhodtseva, 2013] 

studied the effect of the free surfaces of TEM thin foil on the irradiation induced microstructure, and 

compared the irradiation defects formed in TEM thin foil under in-situ irradiation with that formed in 

bulk materials irradiated ex situ with single and dual beams. In bulk ultra-high purity (UHP) Fe and 

Fr(Cr) samples after single and dual beam irradiation, mainly ½ a0<111> loops and few a0<100> 

loops were observed, but of smaller size than in thin foils, emphasizing the effects of free surfaces on 

the type of produced loops. It is thus inferred that ½ a0<111> loops dominate the early loop 

population and visible a0<100> loops observed in UHP Fe and Fe-Cr thin foils stem from addition 

and/or absorption reactions between ½ a0<111> loops. The difference between bulk and thin foil 

irradiation experiments shows that the formation of visible a0<100> loops is promoted by the presence 
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of free surfaces, the more so in the thinnest regions of the sample, leaving a loop population 

dominated by a0<100> loops. Thus, quantification of the ratio of ½ a0<111>/ a0<100> loops appears 

difficult when performed during TEM in-situ iron irradiation experiments. Moreover, it was 

experimentally established that chromium decreases the mobility and increases the thermal stability of 

loops [Arakawa, 2004]. Theoretical works have also shown that Cr atoms decrease the mobility of 

SIA clusters or small dislocation loops in Fe-Cr alloys [Terentyev, 2005; Terentyev, 2009]. 

 

1.2.2. Formation mechanism of a0<001> dislocation loop 

In order to explain the a0<100> loop, which is unique to bcc Fe and Fe-Cr alloys, Eyre and Bullough 

[Eyre, 1965b] proposed a mechanism to describe the formation of a0<100> and ½ a0<111> dislocation 

loops in bcc metals from the shearing of aggregates of a0<110> dumbbell self-interstitials. The latter 

are the most favorable SIAs in Fe, and can form tiny aggregates or dislocation loops on the close 

packed {110} plane. According to extensive molecular dynamics (MD) simulations, an alternative 

mechanism was proposed based on the reaction of loops initially as ½ a0<111>{110} [Marian, 2002]. 

In addition an ab-initio calculations  predicted that the most stable interstitial clusters in -iron with 

more than 5 atoms are arrangements of parallel a0<111> dumbbells on {110} habit planes [Willaime, 

2005]. More recently, by using a full anisotropic elasticity approximation in the treatment of 

dislocations, the appearance of a0<100> loops in bcc iron at elevated temperatures is explained by the 

experimentally measured temperature dependence of the elastic constants [Dudarev, 2008]. This is 

actually driven by spin fluctuations, leading to the decrease of shear stiffness constant (C11-C12)/2 with 

increasing temperature towards the      phase transition temperature of 912°C. This changes the 

anisotropic elastic free self-energy of the dislocations in iron. As shown in Fig. 1.2, it is expected that 

the a0<100> prismatic loops become increasingly favorable with increasing temperature. The 

calculation is mainly based on elastic continuum model which could be questionable when applied on 

the nanometric loops. The influence of Cr, which is vital for the understanding of Fe-Cr alloys, was 

not taken into account. These investigations demonstrate that additional parameters must influence the 

loop formation process. One possibility could be the ferromagnetic interaction between atoms which 

is affected by Cr content, and correspondingly a magnetic potential was developed for MD [Dudarev, 

2005], which is not confirmed through experiments yet. 

 

 

Figure 1.2: Energy of different types of dislocation loops [Dudarev, 2008]. 

 

Another formation mechanism derived from Monte Carlo simulations by Xu et al. [Xu, 2013] 

involves an atomistic process with the reaction product having a Burgers vector that is not the sum of 

the reacting loops Burgers vectors. Moreover, authors claim that the interaction between interstitial 
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loops is stochastic in nature and different outcomes can be obtained from the same initial 

configuration. So, two reacting ½ a0<111> loops can lead to the formation of either a0<100>, or larger 

½ a0<111> loop with about the same probability. Recently, it was observed in UHP Fe that loops 

formed under irradiation with He contain both ½ a0<111>{211} and a0<100>{100} components 

which are considered as intermediate stages of transformation of ½ a0<111> loops to a0<100> [Chen, 

2013]. Direct formation of a0<100> from the interaction of two ½ a0<111> loops has not been 

experimentally observed yet [Arakawa, 2011], although spontaneous change of the Burgers vector 

from ½ a0<111> into a0<100> has been reported [Arakawa, 2006]. 

 

1.3. TEM imaging of defects 

1.3.1. TEM application for studying irradiation induced dislocation loop  

TEM imaging with diffraction contrast is one of the most widely used techniques for studying 

irradiation defects in irradiated material. The crystal is set at some well-defined diffraction condition, 

and an objective aperture is used to form an image by selecting only the transmitted beam or one of 

the diffracted beams. The defect strain field causes local changes in diffraction condition. Indeed, the 

diffracting planes may be locally bent, causing changes in the excitation of the diffracted beam used 

to form the image. Under diffraction contrast, only the elastic strain field is thus imaged. Nanometric 

dislocation loops induced by irradiation gives in such a way a typical black-white contrast. This is the 

most common mechanism used in radiation-damage studies. However, TEM image characteristics 

depend sensitively on the selected diffraction conditions. 

The various types of irradiation defects, such as small defect clusters, dislocation loops, stacking fault 

tetrahedra, precipitates, voids and He bubbles can be investigated in TEM using diffraction contrast, 

Fig. 1.3 shows some of them [Packan, 1979; Prokhodtseva, 2013; Kiritani, 2000]. 
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Figure 1.3 Transmission electron micrographs showing typical irradiation induced defects: (a), 

"black dots" or small dislocation loops in Fe-14Cr after irradiation with heavy ions to 1 dpa at room 

temperature, [Prokhodtseva, 2013]; (b), dislocation loops in pure Fe following electron irradiation 

[Kiritani, 2000]; (c), Cavities in austenitic steel irrdiated with ions to 70 dpa at 900 K pre-implanted 

with 1400 appm He [Packan, 1979].(from [Prokhodtseva, 2013]) 

 

The invisibility criterion states that when       is satisfied for straight dislocation observation in 

TEM, all the lattice displacement components of a defect lie in the diffraction plane, there will be no 

diffraction contrast of dislocation. However, complications may arise since the displacement field of a 

general dislocation will distort any diffracting plane, so that even when       there will be residual 

contrast. Therefore, complete invisibility of a dislocation requires that both       and       
  are satisfied simultaneously [Nabarro, 2007]. Different from straight dislocation invisibility 

criterion, loops with       are often still visible when imaged under dynamical two-beam 

conditions. Under weak-beam imaging conditions, loops usually show invisibility or very weak 

contrast when      . However, small loops with       may also show very weak contrast 

under weak-beam imaging conditions. 

 

1.3.1.1. Black-white contrast of four types of dislocation loops 

As summarized by Eyre from TEM image simulations with two beam dynamic diffraction and 

isotropic dislocation loop model, depending on the magnitude of |   |  and dislocation loop 

orientation, these contrast types have been classified as follows [Jenkins, 2001]. 

Type 1. |   |   , and the acute angle between the loop normal    and the beam direction z is less 

than about 45 . As an example, two beam TEM DF image of a ½ a0[   ](    ) loop is shown in Fig. 

1.4(a), the diffraction vector is g=[   ̅],and the diffraction condition is g(1.0g) along (011) pole. 

Type 2. |   |   , and the acute angle between the loop normal    and the beam direction z is equal 

or close to 90 . As an example, two beam TEM DF image of a ½ a0[   ̅](    ̅) loop is shown in Fig. 

1.4(b), the diffraction vector is g=[   ],and the diffraction condition is g(1.0g) along (011) pole. 
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Type 3.   |   |   , this is a simple black–white lobe with no interface structure, independent of 

the angle between loop normal    and z. As an example, two beam TEM DF image of an 

a0[   ](    ) loop is shown in Fig. 1.4(c), the diffraction vector is g=[  ̅ ],and the diffraction 

condition is g(1.0g) along (011) pole. 

Type 4. |   |   , this is again a black–white lobe but now the interface between the lobes has 

structure, for example a small white area of contrast within the dark lobe. As an example, two beam 

TEM DF image of an a0[   ](    ) loop is shown in Fig. 1.4(d), the diffraction vector is g=[   ̅],and 

the diffraction condition is g(1.0g) along (011) pole. 

 

    

Figure 1.4: Simulated DF images of edge dislocation loops of types ½ a0<011> and a0<100> in bcc 

molybdenum foil with normal z=(011). (a), ½ a0[   ](    ) loop with g=[   ̅]; (b), ½ a0[   ̅](    ̅) 

loop with g(1.0g) under g=[   ]; (c), a0[   ](    ) loop with g=[  ̅ ]; (d), a0[   ](    ) loop 

with g=[   ̅]. Foil thickness t=121.8 nm, loop radius R=1.16 nm; loop located 118.32nm from 

bottom of the foil [Eyre, 1977a]. 

 

Type 1 shows quite weak visibility contrast. Type 2, 3 and 4 images are insensitive to a range of 

practically relevant variables related to the imaging plane, crystal thickness, dislocation loop position 

within the layer structure (i.e. L1, L2 or L3), dislocation loop size, and also independent of material 

properties [Eyre, 1977a]. However, despit of such basic classification of the contrast, quantitative 

judgment of the physical parameters of small dislocation loops is still not feasible for most cases.  

 

1.3.1.2. L-vector analysis of dislocation loops black-white contrast and its limit  

When performing a TEM analysis of defects, imaging with various diffraction vectors for the same 

defect is required for a full quantitative analysis. It relies on examining the changes in directions of 

black–white lobes with the operating diffraction vector  . The black–white lobes direction is defined 

by the so-called L-vector. For a given black–white contrast figure, the L-vector is defined to run from 

the center of the black contrast lobe to the center of the white contrast lobe. For defects with 

symmetrical strain fields, such as spherical precipitates, the L-vector is found to run approximately 

parallel to g vector [Jenkins, 2001]. 

For dislocation loops, the direction of L in many situations is parallel to  , or its projection    on the 

image plane. For an evaluation of  , it is then necessary only to evaluate the direction of L for at least 

two images taken at different foil orientations [Jenkins, 2001]. 

For dislocation loops, however, the direction of the L-vector is usually tied fairly closely to the 

Burgers vector   or its projection on the image plane   . L-vectors do not rotate to follow   from one 

micrograph to another. L-vector analysis generally works well for edge loops if the angle between   

and   is small. However, the simple L-vector approach may break down when the angle between   

and   or    is large, or when non-edge loops are present. Simple L-vector analysis may therefore fail 

even in the simple case of edge loops in an isotropic elastic material [Jenkins, 2001]. L vector analysis 

is therefore not sufficient for a reliable determination of an unknown type of loop. 

 

(a) (b) (c) (d) 
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1.3.2. The necessity for TEM image simulation 

It is known that experimental TEM image of dislocation loops is complex, which depends on beam 

diffraction condition, TEM foil geometrical and physical properties and defect features, such as foil 

normal direction, beam direction, loop habit plane, loop Burgers vector, loop depth, loop size, SIA or 

vacancy loop. In order to make a reliable judgment on the features of dislocation loops quantitatively, 

experimental observation and TEM image simulation comparison is needed. The image simulations 

are made using computer programs which integrate the equations of the dynamical theory of electron 

diffraction. The most extensive simulations have been made using the two-beam Howie–Whelan 

dynamical equations. [Jenkins, 2001] 

 The majority of the simulations in the literature have used two-beam dynamical theory in the 

column approximation. These approximations appear to work well provided that the Bragg 

condition is satisfied (i.e.     ). There have been few simulations of loop contrast under 

kinematical or weak-beam diffraction conditions, where these approximations are less good. 

 Most of the simulations have been done for loops located within the first few depth layers, 

usually the first depth layer   . When dislocation loops are situated within the layer structure, 

the black-white contrast will be reversed at depth 0.25   , 0.75    and 1.25    from free 

surfaces, and L vector will change direction as well. 

 The calculations require knowledge of the displacement field of a loop in a thin foil. Bulk 

model may work if the loop does not be close to the foil surface, and if this surface is not 

constrained by an oxide layer, then the strain field of a loop in a semiinfinite medium is 

required. Most authors, however, have used an expression for the strain field due to a small 

loop in an infinite medium derived from linear elasticity theory and so neglect the effect of 

the nearby surface. 

 Elastic anisotropy has not been included in most cases. 

 

1.3.2.1 Dynamic diffraction principle in TEM imaging of defects 

In order to explain the complex black-white contrast of defects, theoretical description of electron 

scattering through the derivation of the relevant Schroedinger equation is employed. However, when 

deriving the differential equations from Schroedinger equation, the second order differential terms are 

omitted under most conditions, and electron energy loss is usually not included in the simulation.  

There are mainly lattice image multi-slice simulation and electron dynamical diffraction differential 

equations simulation schemes for TEM image simulation of defects, as described in the following. 

 

1.3.2.2 Multislice approach 

The first description of the multislice theory was given in the classic paper by Cowley and Moodie 

[Cowley, 1957], which originates from a physical optics approach. The development of a computer 

algorithm from the multislice theory of Cowley and Moodie for numerical computation was 

summarized by Goodman and Moodie [Goodman, 1974], the crystal foil is divided into thin slices 

perpendicular to the electron beam, so that the scattering process and the wave propagation can be 

treated independently. The multislice approach is convenient for interpreting the mechanism of phase 

contrast imaging of high resolution transmission electron microscopy (HRTEM) and simulations of 

HRTEM micrographs, but it is not widely used in diffraction contrast image simulations of defects. 

Since the multislice formula is a kind of numerical integration, there are some continuing discussions 

on its accuracy. Moreover, there are some open questions on an applicability of the multislice 

approach when used to calculate diffraction intensities in higher order Laue zones (HOLZ) or in the 

case of an inclined illumination [Ishizuka, 1998]. 
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1.3.2.3 Differential equations approach 

Before elaborating the differential equations approach, a basic concept for electron diffraction contrast 

imaging is explained. Electron diffraction is essentially a forward scattering process, even after 

several scattering events in the multi-scattering cases, the scattering angles are still quite small, and 

most electron travels nearly parallel to the incident beam. An electron which enters the foil at one 

point will never leave a cylinder column parallel to the incident beam, then so-called column 

approximation (CA) is introduced by M. Whelan and colleagues [Whelan, 1957], assuming that 

neighboring columns do not interact, ie. no electrons are exchanged between columns, so that 

dynamical diffraction equations can be solved for each column independently. CA is essentially 

equivalent to the high energy approximation. [Graef, 2003] 

Differential equations approach can be classified into two categories: CA and non-CA respectively 

[Howie, 1961; Howie, 1968]. As to CA scheme, the differential equations are reduced into a system 

of ordinary differential equations. While, a system of coupled partial differential equations will be 

generated for non-CA scheme [Williams, 2009]. The development history of differential equations 

approach is simply shown in Fig. 1.5. 

 

Figure 1.5: Classification of differential equations approach for TEM image simulation of defects 

[Howie, 1961; Howie, 1968; Takagi, 1962; Head, 1973; Schaeublin, 1993; Zhou, 2005]. 

 

Until present, several softwares are reported in literature for TEM image simulation of defects, such 

as ONEDIS/TWODIS [Head, 1973], CUFOUR [Schaeublin, 1993], TEMACI [Zhou, 2005], 

SIMCOM [Janssens, 1992], COMIS [Rasmussen, 1991]. The physical models and schemes are 

summarized in Table.1.5. 

 

Howie, 1961; 

(CA) 

Howie-Whelan, 
1961; 

(many beam) 
Schaeublin-
Stadelmann, 

1993; 

(two beam) 

Head, 1973; 

(non-CA) 

Howie-Basinski 
(HB), 1968; 

(many beam) 

Takagi, 1962; 

Zhou, 2005; 
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Table 1.5: Packages or codes for simulation of diffraction contrast images [Zhou, 2005]. 

(‘CA’ means column approximation; ‘HB’ represents Howie-Basinski) 

code model defects Fields of 

defects 

Reference  

COMIS CA and HB Straight dislocations, plane faults, 

anisotropic 
   ( ) [Rasmussen, 1991] 

CUFOUR CA Straight dislocations, plane faults, 

anisotropic   
  ( )

  
 

[Schaeublin, 1993] 

ONEDIS/TWODIS CA and two 

beam 

Straight dislocations, plane faults, 

isotropic and anisotropic 
   ( ) [Head, 1973] 

- CA and HB Straight dislocations, anisotropic - [Wiezorek, 1995] 

- CA and two 

beam 

Dislocation loops, isotropic 
  

  ( )

  
 

[Bullough, 1971] 

- CA and two 

beam 

n-sides dislocation loops, isotropic    ( ) [Saldin, 1979a; 1979b] 

SIMCON CA and two 

beam 

Straight dislocations, dislocation 

loops   
  ( )

  
 

[Janssens, 1992] 

- Perturbation Infinitesimal loops, isotropic and 

anisotropic 
   ( ) [Wilkens, 1972; Wilkens, 

1981] 

TEMACI HB Dislocation loops, isotropic 
  

  ( )

  
 

Zhou, 2005] 

 

Several authors have examined the effects of the CA on both strong beam images and weak beam 

images of line dislocations, and have generally concluded that these are likely to be small [Jouffrey, 

1967; Howie,1970; Humphreys, 1976]. However, Lewis et al. [Lewis, 1979] have made analytical and 

numerical studies of Takagi’s equations [Takagi, 1962; Takagi, 1969], and claim that the CA is likely 

to be unreliable in the simulation of weak-beam images of single point-defects and, by inference, 

small point-defect clusters [Zhou, 2005]. Although Howie [Howie, 1970] concluded that the 

difference between CA and non-CA calculations for measurements of spacing is negligible for 

conventional WB-TEM, it was shown that when the partial dislocations do not lie at the same depth in 

the foil the effect of non-CA can be severe [Wiezorek, 1995]. Schaeublin mentioned that the error of 

CA amounts to about 10
-4

    , which is negligible [Schaeublin, 2006].  

Lewis argued that the main image detail with non-CA scheme will not be where the CA would predict, 

but shifted to the left or the right by easily determined amounts. This shifting has the consequence that 

dislocation images, from two or more dislocations, will not be separated in space by the same lateral 

distance, as the dislocations themselves unless the dislocations are all the same distance from the exit 

surface of the crystal [Lewis, 1979]. 

Zhou made comparison between the WB images of a 10.0nm flat-on vacancy dislocation loop with 

Burgers vector 1/3 a0[111](111) in silicon for g=( ̅  )with CA and HB approaches, the image 

simulated by the HB approach is shifted by about 1.10nm in a direction opposite to g vector. In 

general, the magnitude of the displacement depends on both the diffraction conditions and loop depth 

from bottom of thin TEM foil. The images simulated by the HB approach are broader and of lower 

maximum intensity than images obtained using CA. Zhou claimed that: CA treatment in HW equation 

may fail in weak-beam diffraction contrast imaging if the thickness of the foil is relatively large, and 

the effects associated with a breakdown of the CA are quite serious for very small dislocation loops. 

For loops smaller than about 3.0nm, there is significant difference between images simulated by the 

HB and CA approaches. For loops larger than about 5.0nm, the difference is small [Zhou, 2004].  

The size of dislocation loops may be divided into three regions: (a), d>5.0 nm; (b), 5.0 nm >d> 2.0 

nm; and (c) d< 2.0 nm. For defects larger than about 5.0 nm, a combination of dynamical two beam 

imaging and image contrast simulations has proven very successful for determining defect 

morphologies [Jenkins, 2001], the contrast is not very sensitive to small changes in diffraction 

conditions. Under such case, weak-beam imaging and dynamical two-beam imaging are adequate. It 

has been found experimentally, however, that the visibility of very small clusters of size < 5.0 nm is 

usually better under weak-beam diffraction conditions [Jenkins, 1999; Kirk, 2000]. MD (in the form 

of conjugate gradient minimization of the potential energy of a large system of interacting atoms) 
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models work well for small clusters of defects (<=5.0 nm). Comparison between MD and elasticity is 

important for identifying the limits of elasticity. The use of elasticity theory is likely to be a good 

approximation for loops of sizes greater than about 2.0 nm, but less feasible for smaller loops [Jenkins, 

2001; Zhou, 2006]. In that case, MD would have to be used for the TEM image simulation. Besides, 

elastic theory has considerable computation speed advantages over MD when defects size is large, as 

the number of atoms within MD periodic box increases explosively with increase of defects 

characteristic size. More accurate results obtained using lattice models [Dudarev, 2003; Hudson, 2004] 

show that deformations remain smooth and continuous even in the core of small defects, and 

singularities present in solutions found using elasticity can be eliminated by introducing a small 

regularizing correction in the denominators of the relevant formulas.  

As an example, comparison between experimental and simulated TEM images under many beam 

diffraction condition for small Frank loops in fcc Cu is shown in Fig. 1.6 [Zhou, 2006]. 

 

 

Figure 1.6: TEM experimental and simulated images of a 1/3 a0 [ ̅  ]( ̅  )  edge-on Frank 

dislocation loop of diameter 2.5 nm within [110] fcc Cu thin foil for g=[   ] with [110] pole. Foil 

thickness t=60.0 nm, located 30.0 nm from bottom of the foil. (a), Experimental observation, many 

beam; (b), The full Howie–Basinski approach, many beam, non-CA, with Yoffe isotropic dislocation 

loop employed; (c), The modified Howie–Whelan equations,  many beam, CA, with Yoffe isotropic 

dislocation loop employed; (d), the modified Howie–Whelan equations, two beams, CA, with Yoffe 

isotropic dislocation loop employed;  [Zhou, 2006]. 

 

1.4 Free surface effect of defects 

1.4.1. Continuum micromechanics of defects 

For a perfect finite solid, four basic equations are employed for the description of a deformation field, 

namely: 

(1). Differential equilibrium equation: 

            (1-1) 

In which,       is the first order derivative of the stress component    , and    is the external force on 

the solid. 

(2). Geometry equation: 

    
 

 
(         )  (1-2) 
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In which,     is the strain component, and      is the displacement gradient component. 

(3). Principle of deflections consistency: 
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(1-3) 

(4). Displacement and (or) stress boundary condition (BC): 

        (1-4) 

In which,    is the stress tensor, and   is normal vector at given stress BC   . 

       (1-5) 

In which,    is the displacement vector, and   is the given displacement BC at    . 

However, solids are generally imperfect. Micromechanics of defects is fundamental for studying the 

displacement, stress field of various types of defects (dislocation, dislocation loops, inclusions, 

precipitates) within solid materials [Mura, 1987]. 

 

 

Figure 1.7: Defects within a finite solid [Devincre, 2004]. 

 

Compared to the four basic equations for a perfect finite solid, the general description of defects 

within imperfect finite solid not only needs to satisfy the fundamental relation of elasticity, but also 

needs to satisfy the constitutive laws of defects and solid matrix respectively. As shown in Fig. 1.7, 

defects within finite solid can be described as: 

         (1-6) 
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the stress equilibrium condition. 

         (1-7) 

at given stress BC     . 

       (1-8) 

at given displacement BC    . 

         (1-9) 

the constitutive relation equation for solid. 

     (    )   (1-10) 

 in   the continuous solid   . 

         (1-11) 

within the defects region   . 

As shown in Fig. 1.8, the final stress field of defects within finite body can be considered as the 

superposition of the stress field of defect in infinite solid, and the virtual displacement and stress field 

along the boundary, which will satisfy the given displacement and stress BC. 

 

 

Figure 1.8: Superposition treatment of defects within finite solid [Giessen, 2010]. 

 

1.4.2. Anisotropic elasticity of defects in solid 

In order to evaluate the displacement field   due to a dislocation within a finite solid, a surface   is 

defined across which the tractions are continuous, while the displacement has a discontinuity  . 

[Gosling, 1994] 

The anisotropic stress-displacement relation can be written as:    

               (1-12) 

In which,       is the anisotropic elastic modulus.     

                             (1-13) 

Equilibrium equation of solid is written as: 

              (1-14) 

Then, the displacement u in the body B should satisfy (1-14) together with the following displacement 

and stress BCs (1-15) and (1-16). 

          (1-15) 

should be satisfied when  | |    .    
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[  ]       and   [           ]  [ ]   (1-16) 

should be satisfied across the surface of defects  .  

                (1-17) 

should be satisfied on the boundary of finite body   , where [ ] represents the jump in   across  . 

Equation (1-17) expresses the zero traction BC on the outer surface    of the body   within which the 

dislocation resides. 

The displacement maybe expressed as [Volterra, 1907]: 

  (  )   ∫            (    )     (1-18) 

where    (    ) is the mk-component of the Green’s tensor for the body  , such Green’s function 

represents the elastic displacement in the m-direction at   induced by a unit point force in k-direction 

applied at   .  

           (    )      (    )     (1-19) 

together with homogeneous BCs on the boundary  : 

            (    )       (1-20) 

for       . 

If   is finite, a modification is needed to ensure overall equilibrium. The simplest would be to require 

zero displacement on some part of   . However, this is not an issue for a half space. 

The stress can be easily written as: 

   (  )   ∫            
      (    )

   
      

(1-21) 

The above area integrals representation is valid for a dislocation in any elastic body, provided that the 

Green’s tensor appropriate for that body is used.  f the defects are located in an isotropic and 

homogeneous full space, the above equation can exactly be reduced to a line integral, as given by 

Mura [Mura, 1963], and Gosling and Willis [Gosling, 1994]. However, in the inhomogeneous 

anisotropic finite solid case, it is difficult to convert the involved surface integral into a line integral, 

since the Green’s function does not satisfy the derivative relationship   (   )   ⁄     (   )   ⁄ , 

[Chu, 2012].  

For isotropic solids, both the 2D and 3D Green’s functions are classic and can be found in many text 

books [Wang, 1997].  

For general anisotropic solids, the 2-D Green’s functions have been extensively studied, such as 

Barnett and Lothe [Barnett, 1973; Barnett, 1974], Hwu and Yen [Hwu, 1991], Stroh [Stroh, 1958; 

Stroh, 1962], Ting [Ting, 1982; Ting, 1992] and Wang [Wang, 1994].  

However, derivation of 3D Green’s functions within anisotropic finite solid is not easy.  n general, six 

different methods have been proposed to calculate the elastostatic Green's function in 3D anisotropic 

solid: (a) non-explicit contour-form integrals; (b) numerical integration method; (c) Series expansion 

technique; (d) Dual reciprocity technique; (e) Eigenvalue and eigenfunction method; and (f) Stroh's 

formalism [Pan, 2000b]. 

 

1.4.3. Half infinite space, thin foil 

Accounting for the effects of free surfaces of straight dislocation in half space and thin foil is 

classically treated in 2D by simply introducing the mirror images with respect to the free surface of all 

the dislocation lines considered. In 3D, the problem is much more complex for two reasons: (a) 

dislocation finite segments must be considered; (b) these segments may not necessarily be parallel to 

the free surface [Fivel, 1996].  
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Generally speaking, the stress field of finite body containing arbitrary dislocations and dislocation 

loops, other than the applied external stress, acting on the surface of a stressed body should vanish in 

order to satisfy the free surface BC:  

         (1-22) 

In order to satisfy the free surface BCs, there are two methods that have been used in the literature: (a) 

those where image dislocations are invoked; (b) those where surface dislocations are used. 

[Jagannadham, 1978] 

When an image dislocation model is used to satisfy the free surface BCs, a dislocation which is a 

mirror image of the real dislocation is employed, appearing on the other side of the free surfaces. The 

stress field of the image dislocation cancels with the stress field of the real dislocation only on the 

surface of the finite body; the total stress field is not zero elsewhere under the free surface within 

finite solid. Simply employing an image dislocation does not cancel all of the stress components at 

free surfaces automatically, and therefore additional stress functions must be imposed. [Hirth, 1982; 

Head, 1953] 

As shown in Fig. 1.9, in order to produce traction-free BC, an infinitely long screw dislocation in a 

free-standing foil of thickness h gives rise to an infinite series of image dislocations, the right hand 

screw (RHS) dislocation and left hand screw dislocation (LHS) series are mirrored infinite screw 

dislocations induced by the free surfaces of thin foil, which is similar to a face-to-face amounted 

mirror pair for the object sitting in-between them [Hartmaier, 1999]. 

 

 

Figure 1.9: Image stress for screw dislocation parallel to free surface within thin foil [Hartmaier, 

1999]. 

 

As shown in Fig. 1.10, a finite segment can be treated as the subtraction of two semi-infinite segments; 

the image stress field of such a segment is simply the subtraction of the two image stress fields of the 

semi-infinite segments [Tang, 2006]. As a source of stress, an arbitrarily shaped dislocation (a) 

terminating at the free surface is viewed here as a sum of two configurations, i.e. (b) and (c). The 

Yoffe solution applies directly to (b) and the standard FEM is used to calculate the image stress for (c). 

 



Chapter. 1: Background and literature review 

25 

 

 

Figure 1.10: Decomposition and superposition used in the hybrid method are illustrated 

schematically for a half-space [Tang, 2006]. 

 

As shown in Fig. 1.11, isotropic elasticity analytical solutions for the elastic fields of a sub-surface 

rectangular dislocation loop, with any combination of the Burgers vector components, lying below 

and parallel to a free surface of a half medium have been obtained. The stress around the loop at the 

free surface is given by        
     

      
 , where    

  is the stress around this loop in an unlimited 

medium,    
   is the stress from the image loop in the same medium and    

  is the additional stress 

determined from the condition of the vanishing of the normal and tangential components on the free 

surface. It can be said that the influence of free surface on the loop is equivalent to the influence of the 

stress        
      

 . Thus, the force which the free surface exerts on an unit length of the finite loop 

has components                , where      is the Levi-Civita tensor;     are the components of the 

Burgers vector of dislocation loop; and    are the components of the unit vector of the curve [Baštecká, 

1964]. 

 

 

Figure 1.11: Edge prismatic loop and its image edge dislocation loop; a) Burgers vector of image 

loop II has reverse direction to Burgers vector of loop I; b) Burgers vector of both dislocation loops 

have the same direction [Baštecká, 1964]. 

 

Beyond such simple examples, boundary problems can involve curved surfaces, anisotropy, 

elastically mismatched interfaces and atomistically mismatched interface. The image stress for these 

cases are often extremely difficult to deal with [Liu, 2005]. A theorem based on anisotropic Stroh’s 

formula for calculating the image stress of infinite straight dislocations in anisotropic bicrystals has 

been found by Barnett and Lothe [Barnettt, 1974], which was further deployed for the elastic field 

calculation of dislocations emerging at the free surface of half space [Lothe, 1982]. Integration 

(a) (b) 
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solutions based on Gosling and Willis method [Gosling, 1994] and Boussinesq solution [Fivel, 1996] 

are also developed for dislocation and dislocation loops with complex geometrical and physical 

configuration within half space and thin foil.  

Dislocations cannot terminate inside an infinite medium, and the stress fields of dislocation segments 

do exist, they only satisfy equilibrium if they form a complete loop, which includes dislocations that 

continue to infinity. Therefore, in order to compute the stress fields due to dislocations that intersect 

the free surface, the dislocation segment has to be extended outside the thin foil. As shown in Fig. 

1.12(a), these continuations, which are termed virtual dislocations, allow the dislocation to form a 

complete loop (or go to infinity) and allow the stress field to satisfy equilibrium. The image stress, 

then, must account for the surface traction generated by all the real dislocations as well as virtual 

dislocations. The efficient scheme for virtual dislocation implementation is elongating the terminating 

dislocation segment until infinite far away along the tangential direction of the dislocation segments 

that intersect the free surface outside thin foil. This choice is made mainly out of convenience, but it 

also appears to have the best convergence when the image force is computed using spectral methods 

[Weinberger, 2009]. As shown in Fig. 1.12(b), in order to compute the image stress field of 

dislocation piercing the half-space, an adaptive meshing process for  surface integral calculation in the 

form of Boussinesq operators has to be performed, which constructs a denser mesh when getting 

closer to the piercing point [Fivel, 1996]. 

 

  

Figure 1.12: Treating of local area abound piercing point (a), Virtual dislocation treatment for 

piercing dislocation (b), Schematic of the local surface grid which is centered on each dislocation 

intercept point. [Fivel, 1996; Weinberger, 2009]. 

 

Alternatively, the image stress due to free surfaces and interfaces can now, owing to computing power, 

be computed by finite element method.  

 

1.4.4. Surface relaxation effects on TEM contrast 

Surface relaxation plays an important role in TEM image contrast, particularly for end-on screws, and 

sometimes also by affecting their configurations at the surface [Hazzledine, 1975]. The Eshelby twist 

is well known to make it possible to image end-on screws by diffraction contrast [Tunstall, 1964; 

Williams, 2009], even though       and        . 

Tunstall et al. [Tunstall, 1964] have shown that in two-beam conditions the diffraction contrast is in 

the form of black–white lobes perpendicular to the diffracting vector, with the line of no-contrast 

parallel to g. Hirth [Hirth, 2007] shows that the surface relaxation strain field for screws normal to 

thin foils, as calculated by Eshelby and Stroh [Eshelby, 1951] with isotropic elasticity, gives rise to 

diffraction contrast in the form of black-white lobes, when imaged in weak-beam dark field under two 

beam diffraction conditions, with the line of no contrast parallel to g, and can be used to determine the 

sign of the dislocations. Unlike weak-beam images of inclined dislocations, the image contrast field is 

very broad owing to the long-range nature of surface relaxation strain field.  

(a) (b) 
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The free surface relaxation effect on TEM diffraction contrast for thin foil containing a loop parallel 

to the surface can be treated by taking the sum of the displacement fields of the loop and its mirror 

image in the foil surface [Ruhle, 1965]. Ohr [Ohr, 1977] has reported a more sophisticated technique 

for handling surface relaxation for finite loops, and has concluded that the image contrast of small 

loops lying very close to a stress-free surface is indeed sensitive to the presence of the surface. The 

surface was found to affect the size and detailed shape of the black–white contrast figure. When the 

distance of the loop from the surface exceeds its diameter, free surface relaxation effect does not 

appear to be too serious a problem. In practice, the situation is even more complicated, as the 

conditions at the surface are not well established. For example, a surface oxide layer may be present 

which constrains the underlying material.  
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Chapter 2: Experiment 

 

In this chapter, bcc Fe TEM sample preparation and the TEM diffraction contrast of dislocation are 

described firstly, using many beam Schaeublin-Stadelmann equations for the latter. Then, TEM 

experimental observation techniques of defects and dislocation quantitative analysis are discussed. 
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2.1. Preparation of TEM sample 

2.1.1. Initial material 

Ultra high purity (UHP) Fe for the TEM investigation of the present study was elaborated at Ecole des 

Mines de Saint-Etienne, France [Coze, 2007]. The material was elaborated by induction melting and 

subsequent solidification under Ar. It was then forged at 1000°C into a rod that has a hexagonal 

section and 20 mm in diameter. It was then cooled by air, followed by cold forging down to 11 mm, 

inducing a reduction of 70%. The rod was annealed between 700°C to 850°C for one hour in Ar. The 

obtained UHP Fe is single phased and with a body centered cubic (bcc) crystalline structure. The 

mean grain size is about 4 to 650 μm and the dislocation density is about 1.2*10
8
 cm

-2
. Its Vickers 

hardness is 75 HV. From this rod, delivered to CRPP Materials Group at PSI, slices were cut using a 

diamond saw to a thickness of 300 µm. These slices were used for TEM sample preparation. 

The chemical composition of the UHP Fe [Coze, 2007] employed for TEM experiment is shown in 

Table 2.1. 

 

Table 2. 1 Chemical composition of UHP Fe after hot forming and in the as-delivered final 

metallurgical condition [Coze, 2007]. 

 Reference number C S O N P Cr 

Fe  1235 3/4 2/2 5/4 2/1 <5 <2 

 

2.1.2. Mechanical and electrochemical polishing  

UHP Fe is ferromagnetic, it causes distortion of the TEM image that can be difficult if not impossible 

to compensate with the beam shift, beam tilt, condensor and objective astigmatism correctors. In 

addition, these beam corrections often need to be adjusted when shifting or tilting the TEM sample 

during the observation, making stable continuous observation of the same defects under different 

beam condition difficult without further beam correction and optimization. To minimize these side-

effects induced by ferromagnetic samples, the volume of the sample was reduced using the method 

described below. 

Firstly, the thickness of the 300    thick UHP Fe slice is reduced to 110-150    by mechanical 

polishing with wet SiC papers of, firstly, number 400, then 1000 and finally 2000. Then, the slice is 

bent back and forth a few times to impose plastic deformation with ball pen cylinder, then made flat 

by compression between two plates, thus producing a dislocation density within the sample that is 

sufficient to ensure that a few dislocations are visible in TEM in a typical field of view of 1 µm
2
. As 

dislocation produces long range displacement and stress field, such limited number of dislocations 

within the observed region will avoid the influence of neighboring dislocation on the distortion field 

of considered dislocation. Then, as shown in Fig. 2.1, a 1 mm disk is punched out from the UHP Fe 

slice with a precision puncher.  

Secondly, a supporting disk with 3 mm outer diameter and 1 mm inner diameter is made out of 316L 

steel plate, which is not ferromagnetic. Its thickness is 100   . As shown in Fig. 2.1, a 1 mm hole is 

punched out of a 100 µm thick 316L sheet with a high precision puncher. Then, the punched 316L 

sheet is placed on a 3 mm cutting matrix, with a 1mm pin in its 1mm hole. Hammer is again 

employed to knock out a 3 mm 316L disk out of the 316L sheet. 
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Figure 2.1: Devices employed for 1mm Fe sample fabrication (a), High-resolution Eckert 1mm 

puncher; (b), The alignment pin and corresponding cutting mold; (c), Alignment of 1mm hole of 316L 

sheet; (d), Punch 3 mm ring out of 316L sheet. 

 

Thirdly, the 1 mm Fe disk is mounted into the 1 mm hole of the 3 mm supporting 316L disk.  The 

supporting 316L disk with the 1mm TEM Fe sample inside are glued together with G1 glue from 

GATAN® at 110  for 4 minutes. Once the glue is hardened and cooled, the specimen is reduced to 

about 100    thickness by mechanical polishing with wet SiC paper of number 2000 and finally 4000. 

Finally, the composite specimen is electrochemical polished at -23 °C with Tenupol5 device of 

STRUERS®. The chemical solution is 7% in volume of 70%-HClO4 and methanol of 93% purity. 

The polishing voltage is 50 V, and the jet flow is set to 20 (Tenupol5 setting). It produces a TEM 

sample with a central hole, whose edges are transparent to electrons. After electrochemical polishing, 

the TEM sample is cleaned with pure ethanol in three successive bathes, making sure to remove the 

chemical residues produced during the electrochemical process. In order to reduce oxidization of the 

TEM sample surfaces, the TEM sample is then mounted onto the TEM sample holder and transferred 

into TEM chamber as fast as possible. 

 

2.2. Many beam dynamical theory 

To calculate the propagation of electrons in a faulted crystal, the dynamical theory of contrast is 

employed [Hirth, 1969]. The crystal at a point   is described by a faulted potential  ( ) that can be 

written as a Fourier series: 

 ( )  
  

   
∑ [     (      ( ))]   (      )   (2-1) 

The summation is done over all reciprocal lattice vectors  , with me the electron mass and   the 

Planck constant.  ( ) describes the displacement field around the lattice defect. The Schrödinger's 

wave equation is: 

(a) (b) 

(c) (d) 
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   ( )  (
     

  ) [   ( )] ( )     (2-2) 

 ( ) is the function associated to the electron wave that moves through the faulted crystal. The 

proposed solution to the Schrödinger equation is: 

 ( )  ∑      (   (      ) )   (2-3) 

The function   ( )  is associated with the beams that come out of the sample, including the 

transmitted beam (beam 0) and the diffracted beams (beam 1 to  ). The contrast intensity   recorded 

on the micrographs for a diffraction contrast image, is simply     ( )    
 ( ). Fig. 2.2 shows the 

crystal and the beams in the reciprocal space.   is the direction of the transmitted beam;   is the 

reciprocal lattice vector and    the deviation parameter. (      ) is the direction of the beam with 

index   and we will take a co-ordinate    along this direction.  

 

 

Figure 2.2: Representation in the reciprocal space of a g(4g) weak beam condition [Schaeublin, 

1993]. 

 

We then substitute  ( ) and  ( ) in the Schrödinger equation. We obtain a system of   differential 

equations of the first order with n unknowns   ( ): 

   ( )

   
 ∑

  

    
  ( )    (   (   ) ( )     (     ) )  (2-4) 

The equations are to be integrated along the proper beam direction   . This is difficult to solve 

analytically. To simplify, the column approximation that allows making the integration along the 

same direction for all beams is employed. Actually the error made with this approximation is 

relatively small (about         ).  Indeed, the scattering angle for high energy electron diffraction is 

quite small. It is thus reasonable to assume that an electron which enters the foil will never leave a 

column centered on the point or pixel of interest. This column is parallel to the incident beam 

direction, and has a diameter of a few Ångstroms at most, depending on the foil thickness and the 

acceleration voltage, implying that the neighboring column will never interact, or in other words that 

there is no electron exchange between columns. The column approximation means that the direction 

of the transmitted beam is employed for making the integration, so that: 

 

   
 

 

  
  (2-5) 

Then, the equations (2-4) can be written as matrix form: 
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  ( )

  
   ( )  (2-6) 

and 

 ( )  [  ( )       ( )    ( )]
   (2-7) 

The matrix M is symmetrical and has the following expression: 

[
 
 
 
 
 
         

            

      
            

      
            ]

 
 
 
 
 

  

 

 

(2-8) 

Where the coefficients are: 
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(   ( ))]  

       (
 

    
 

 

    
 )  

      (
 

  
 

 

  
 )  

 

 

 

(2-9) 

In which,  ( ) is the displacement field, and    defines the extinction distance which becomes large if 

beam   becomes far from the transmitted beam;   
  is related to    through a material-dependent 

absorption constant. Equation (2-8) shows that the derivative of each beam is a linear combination of 

all the beams. The contribution of each beam in the linear combination is weighted by the matrix 

coefficients (2-9).    is a scaling factor that was originally introduced by Head et al [Head, 1973]. to 

avoid convergence problems and save calculation time in the integrations. 

Finally, the equation for the transmitted beam 
   

  
 is: 
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(2-10a) 

The general equation for a diffracted beam 
   

  
 is: 
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(2-10b) 

Equations (2-10) show that the derivative of each beam is a linear combination of all the beams. The 

contribution of each beam in the linear combination is weighted by the matrix coefficients (2-9). 

The physical meaning of relations (2-10) is that the contribution of a beam   depends on the 

associated deviation parameter    (diffraction condition), the associated extinction distance    

(material characteristics) and a cross-term      that has the expression of an extinction distance. High 

|  | values correspond to large     and therefore beam   may have a weak contribution; but when this 

same beam has a small deviation parameter   , it may have a strong contribution. It appears that the 

importance such contribution has a balance between   , deduced from the observation conditions and 

  , given by the material characteristics. This had to be taken into account in the choice of the beams 
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included in the calculation. The general rule is the following: beams have to be close to the 

transmitted beam (small   ) and situated close to the Ewald sphere intersections with the systematic 

row (small   ). The dependence on      indicates that if we take for instance beam   , then beams 

      and      will contribute strongly to beam   as      is small. 

 

2.3. TEM diffraction imaging of defects 

2.3.1. BF, DF, WBDF  

When performing TEM experimental observation of defects, either the direct beam or some of the 

diffracted beams in the selected area diffraction (SAD) pattern may be employed to form bright 

field(BF) and dark field (DF) images, respectively. Conventional bright field is taken by allowing the 

incident beam to pass through the objective apparture. Conventional dark field imaging involves 

tilting the incident illumination until a diffracted, rather than the incident, beam passes through a 

small objective aperture in the objective lens back focal plane. As shown in Fig. 2.3, such bright field 

or dark field images can be obtained by allowing the infocusing transmitted or diffracted beam to pass 

through the objective lens, which can be realized by tilting electron beam or tilting the sample. In 

single crystal specimens, single-reflection dark field images of a specimen tilted just off the Bragg 

condition allow one to observe only those lattice defects, like dislocations or precipitates, which bend 

a single set of lattice planes in their neighborhood. Analysis of intensities in such images may then be 

used to estimate the amount of that local distortion [Williams, 2009].  

 

 

Figure 2.3: Diagram for transmitted beam and diffracted beam [Williams, 2009]. 

 

As shown in Fig. 2.4, after tilting the beam (or equivalently tilting the sample) far off exact Bragg 

diffraction condition, 3g beam condition is obtained, when selecting the diffraction beam g for 

imaging, it will produce a weak beam dark field image. The background will be black, and only the 

local region of around defects will show strong black-white contrast. The defect free sample area 

appears dark because of the weak diffraction intensity. However, close to the dislocation core the 

(   ) plane is bent back to the Bragg condition, which gives rise to a bright intensity, close to the 

exact dislocation line. The main challenge is to adjust the tilt conditions in the way that the excitation 

error of the g reflection used is close to zero only near the dislocation core where the bending of the 
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(   ) plane is most prominent. Then a very sharp dislocation line near the dislocation core becomes 

visible in the WBDF image. 

Three conditions have to be satisfied to get a high quality WBDF image: 

 Beam tilt to on-axis DF and selection of a Bragg spot by using objective aperture 

 Right adjustment of the excitation error 

 Two beam conditions to get high contrast 

 

 

Figure 2.4: Relationship between the orientation of Ewald sphere and position of Kikuchi line for 

g(3g) WBDF by tilting beam [Williams, 2009]. 

 

The contrast of WB images decreases as the thickness increases (due to a corresponding increase in 

inelastic scattering). However, the orientation of the specimen is accurately set by reference to the 

Kikuchi lines observed in the DP, and these are not visible in specimens which are too thin. Moreover, 

if the observations is made on certain defects, their physical behavior within thin TEM foil should not 

influenced by the surface of the foil, thus TEM foil must not be too thin. In order to maintain the 

balance between these two naturally controversial geometrical requirements on TEM thin foil: 

optimizing the image quality under weak beam condition (enough visibility under far off exact Bragg 

diffraction condition) and keep the physical properties of defects within thin TEM foil (representative 

of defects physical properties within bulk material), the as-prepared TEM thin foil should have a 

moderated thickness. Reliable weak beam observation experiments of defect are suggested to be 

performed within regions where the thickness is about 70 nm [Williams, 2009]. 

 

2.3.2. TEM observation technique of crystal defects 

It has been found experimentally that the visibility of very small crystal defect clusters of sizes below 

5 nm is usually enhanced under the weak-beam diffraction condition, a method that was strongly 

developed from the 70’s, starting with [Cockayne, 1969] and [Stobbs, 1971]. Weak-beam TEM 

imaging technique has remained a fundamental tool for studying dislocation in the past 40 years.  

In current thesis, the experimental characterization of the dislocation in Fe is thus performed using 

diffraction contrast or conventional TEM, with a JEOL2010 transmission electron microscope 

situated at PSI Villigen, Switzerland. The microscope, equipped with LaB
6
 electron emission gun, is 

operated at 200 keV. Bright field, dark field and weak beam dark field methods are deployed to 

analyze the dislocation. 

 

(a) (b) 
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2.3.3. The deviation vector 

The imaging condition in diffraction contrast mode is best described in reciprocal space, see Fig 2.2, 

showing the Ewald sphere and one row of reciprocal lattice points of the investigated crystal, the so 

called systematic row, the diffraction condition can be described by the deviation vector Sg, which is 

the is the minimum distance from the Ewald sphere to the reciprocal lattice point. The diffraction 

condition can be written as   (  ), where    is the imaging beam and    is the excited beam of the 

systematic row: 

    (   )
   

 
  (2-11) 

As shown in Fig 2.5, in exact Bragg condition, the bright Kikuchi line intersects the systematic row of 

reciproca lattice points at 3g. When tilting the thin foil by a small angle, if the bright Kikuchi line 

shifts towards the origin of reciprocal space, then the excitation error is negative. Conversely, if tilting 

towards the opposite direction, a positive excitation error will appear.  

 

   

Figure 2.5: Three types of deviation vectors in Fe at 200KV in JEOL 2100 (a), g(3g) with S3g=0; (b), 

g(3g) with 3g<0; (c), g(3g) with S3g>0. 

 

2.4. Quantitative characterization of dislocation 

Before describing the dislocation, the notation for planes and directions in real space is described in 

Table 2.2. A dislocation is described by dislocation direction and a Burgers vector. A dislocation loop  

is described by and a Burgers vector and a habit plane. 

 

Table 2.2: Notation for planes and directions in real space. 

 General Particular 

Direction <uvw> [uvw] 

Plane {hkl} (hkl) 

 

2.4.1. Basic     analysis principle 

The g·b analysis technique is based on the fact that generally the contrast of a dislocation line nearly 

vanishes when g·b = 0. For a pure screw dislocation, whose Burgers vector is parallel to the 

dislocation line, in an isotropic medium, there is no edge component. The visibility criterion g     

applies well. Thus, the determination of the direction of Burgers vector of a screw direction consists 

in finding two vectors    and    for which the dislocation contrast vanishes. Then, the Burgers vector 

direction is the cross product of the two  -vectors, thus   | |          |       |. A pure edge 

dislocation is only invisible when       and  (   )    . However, this special condition exists 

only for   parallel to dislocation line [Edington, 1975; Graef, 2003]. 

For a general dislocation in an anisotropic matrix the invisibility principle does not apply completely, 

which means that in the case g·b = 0 there is a residual contrast. Detailed TEM image simulation may 

be employed to unambiguously and quantitatively determine the dislocation configuration at the 

origin of this contrast [Edington, 1975; Douin ,1998; Graef, 2003]. This is particularly the case when 

(a) (b) (c) 
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the anisotropy ratio is high, for Fe which is 2.4 at room temperature and increases with increasing 

temperature [Dever, 1972].  

Nevertheless, in order to make the quantitative analysis of dislocation’s parameters, it is necessary to 

start with a g.b analysis, as it allows to roughly determine the Burgers vector direction, but not its sign 

or amplitude. In this work on pure bcc Fe, we have used specific zone axes, those that provide the 

most useful diffraction vectors for defect analyses.  

The g·b value for <111> screw dislocation in bcc Fe for [001], [011] and [111] zone axes conditions 

are given in Appendix. A.  

 

2.4.2. Determination of sample thickness via EELS 

Electron energy loss spectroscopy (EELS), uses the fact that some of the electrons running down the 

TEM column with a narrow range of kinetic energies will undergo inelastic scattering, which means 

that they lose energy. The amount of energy loss can be measured via an electron spectrometer and 

interpreted in terms of what caused the energy loss [Egerton, 1996; Iakoubovskii, 2008a]. EELS 

allows quick measurement of local thickness in TEM, with 10% accuaracy. The most efficient 

procedure is the following: 

Firstly, Measure the energy loss spectrum in the energy range about 5-200 eV (wider is better).  

Secondly, extract zero-loss peak (ZLP) using standard routines and calculate the surface under the 

ZLP (  ) and under the whole spectrum (  ). 

Finally, the thickness of TEM sample can be calculated out: 

      (    ⁄ ) (2-12) 

In which,   is the mean free path of electron inelastic scattering, which has recently been tabulated for 

most elemental solids and oxides [Iakoubovskii, 2008b]. 
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Chapter. 3: Elastic image field calculation method 

 

This chapter presents the method to calculate the elastic field in a thin foil in presence of a crystal 

defect, including the free surface effect. As described in the literature review, this effect induces 

additional elastic fields that are treated using the free traction BC principle. This chapter starts with 

(3.1) the general methodology, followed by the detailed description of the calculation of these image 

fields in Fourier space, starting with (3.2) the solution in the infinite half-space, followed by (3.3) its 

extension to the thin foil, and (3.4) the image energy of defect within half space and thin foil. 

Solutions for the displacement field and self energy of a dislocation loop in bulk material are then 

given in (3.5) and (3.6) respectively. 
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3.1. General methodology 

As described in the literature review, the classical image stress methods in Cartesian coordinate 

consist basically firstly of superposing an image dislocation beyond free surface, where the surface 

acts as a mirror to the considered dislocation in the sample, and then secondly of devising a stress 

function that will cancel the residual shear and normal stresses    
  acting at this surface, thus 

satisfying the free surface condition. However, such simple “mirror method” is limited to a few 

dislocation configurations. Thus, it is necessary to develop an alternative solution that can solve the 

image stress problem for defects with arbitrary configuration, especially when anisotropy is included.  

The general methodology consists in calculating separately, on the one hand, the so-called bulk elastic 

field due to the defect and, on the other hand, the so-called image elastic field, and finally adding 

them together to obtain the so-called total elastic field, which is the desired solution.  

This implies that, concerning for example the stress field of a dislocation within a half space or thin 

foil, there is a total stress field (   
     ) that is treated as two superimposed stress fields. There is on 

the one hand the bulk or infinite stress field (   
 ) induced by the same defect in an infinite crystal and 

on the other hand the image stress field (   
     

) induced by the presence of the free surfaces, which 

is employed to satisfy the free traction BC principle. The total stress inside the half space or thin foil 

can then be written as the superposition of the two stress fields: 

   
         

     
    

   (3-1) 

This is schematically represented in Fig. 3.1.  

 

   

Figure 3.1: Schematics of the method to obtain the stress field of a dislocation loop in presence of  

free surfaces of foil.(a), bulk stress; (b), image stress; (c), total stress. 

 

Given the geometrical and physical parameters of the defect and of the host crystal, the corresponding 

stress    
  in the infinite medium at the free surface position can be calculated. The resulting stress 

field    
  in the infinite medium is then employed for calculating the resultant image displacement, 

strain and stress field, as described in the following. 

The total traction stress components    
      should be zero at the free surface position.  

⑴, The corresponding bulk stress    
  at free surfaces in equation (3-1) can be produced in Cartesian 

coordinate, and then written into 2D discrete series: 

   
  ∑ ∑  ̂ (     )    

    (         )  (3-2) 

⑵, Due to the completeness of Fourier series, the corresponding image displacement field satisfying 

the equilibrium of the foil, that is to say the restriction to the free surface or (x,y) in Cartesian 

coordinate space, can be written as a superposition of the general solutions written in Fourier space, in 

the form of Fourier series for each (     ) mode.  

 (     )  ∑ ∑ [ ̂ (       )   ̂ (       )]    
    (         )  (3-3) 

⑶, The image stress field can be obtained from the anisotropic Hooke’s law: 

+ = 

(a) (b) (c) 
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 (     )  ∑ ∑ [ ̂ (       )   ̂ (       )]    
    (         )  (3-4) 

The unknown coefficients  ̂ (       ),  ̂ (       ),  ̂ (       ) and  ̂ (       ) are described 

as a function of the single parameter , and the corresponding coefficients can be calculated by 

matching the image stress field (   
     ) at the free surface position        for each Fourier mode 

between equation (3-2) and (3-4), thus producing the final image displacement, strain and stress field 

at arbitrary position  within the medium. 

The method developed here is based on the solution of Weinberger [Weinberger, 2009], which 

consists in describing the elastic field in Fourier space. The advantage of the Fourier space is that the 

developed method is also valid for other types of defects, which is of general application. Conversely, 

an analytic solution in real space would have to be deduced for each case, one by one. 

The numerical algorithm for doing this in a half space or a crystal thin foil is elaborated in the 

following subsections. Both half space and crystal thin foil are considered to be periodic in both   and 

  directions, with periodic length    and    respectively. The wave number in Fourier space is 

described as          ⁄  and          ⁄  , where                 

In summary, the flowchart for the calculation of the image elastic field in real Cartesian space of a 

defect in presence of a free surface is shown in Fig 3.2.  

 

 

Figure 3.2: Schematics showing the general procedure deployed to find the solution to the 

components of the image elastic field, for the case of e.g. a dislocation loop in an anisotropic medium. 

 

In order to harvest the image elastic field at given position within thin foil, there are seven steps to be 

fulfilled, as follows: 

 ① Write the arbitrary image displacement field at the free surface in 2D Fourier space. 

 ② Generate 2D image stress field via 3D anisotropic Hooke’s law in Fourier space. The 

image stress field    
     

 is written in 2D discrete Fourier series with unknown 2D discrete 

Fourier coefficients. 

 ③ Calculate the bulk stress    
  of the inclined dislocation or the dislocation loop at the free 

surfaces via known elastic models. 

 ④ Perform 2D discrete Fourier transformation for the bulk stress, thus producing the 2D 

discrete Fourier coefficients for bulk stress field    
 . 

 ⑤ Match bulk stress field and image stress field in 2D discrete Fourier space, so as to satisfy 

the free traction stress BC    
     

     
  . 

 ⑥ Produce 2D discrete Fourier coefficients for the arbitrary image displacement field in 

Fourier space. 

z

z
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 ⑦ Perform inverse 2D discrete Fourier transformation, thus producing image elastic fields, 

namely the displacement, displacement gradient, and stress fields, in real space. 

Finally, the total elastic field is the sum of the bulk elastic field and the image elastic field.  

Note that this method was already applied in the case of isotropic materials [Weinberger, 2009], but 

never for anisotropic once. This is the task we have undertaken in this work. The solution we have 

developed for that is given in the following. 

 

3.2. Fourier space solution for anisotropic half space problem 

Let   direction be perpendicular to the (   ) free surface of the half space that occupies the region 

   . The following image displacement solution is periodic in both   and   directions, and 

exponential in the z direction, assumed to be of the type    (   ). Hence,  

(     )  ∑ ∑ ( (     )  (     )  (     ))     (            )    
  (3-5) 

In which, (     ) are the image displacement fields in the half space coordinate (     ) . The 

Fourier coefficients ( (     )  (     )  (     ))  being complex for each Fourier mode 

(     ), the image displacement components are written in terms of complex exponentials. In the 

end only the real parts of the solution are retained for the solution. The real parts of the corresponding 

roots   should be larger than zero for the lower half space. 

In order to solve the problem for half space with an arbitrarily oriented crystal surface, two sets of 

Cartesian coordinate should be employed. There is the original coordinate (        ), which is 

related to the basic crystal orientation, such as [   ], [   ]and [   ] for bcc crystals, and the half 

space coordinate (     ), where   is along the half space free surface normal direction. 

The rotation angles needed to get to the half space coordinate (     ) relative to original coordinate 

(        ) are (     ), respectively. The rotation matrix is thus: 

    [

                                                  
                                                   

                     

]  

(3-6) 

The relation between positions (        ) in the original coordinate and positions (     ) in the half 

space coordinate can be written as: 

      (  )   (3-7) 

The stiffness matrix in the half space coordinate can be written as: 

                 
         (3-8) 

In which,      
  is the four-order elastic matrix in the original coordinate,       is the four-order 

elastic matrix in the half space coordinate. The strain displacement relation is:  

    
 

 
(
   

   
 

   

   
)  

(3-9) 

Thus, the corresponding stress field in half space coordinate can be calculated through Hooke’s law:  

              (3-10) 

The equilibrium equation in half space coordinate is:  

         (3-11) 

After submitting the displacement field (3-5) into (3-9)-(3-11), the following sextic equation in   is 

produced: 
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[   ( )] [
 
 
 

]=0 
 

(3-12) 

Thus, the determinant of the cofactor matrix of the equation should be zero: 

   [   ( )]     (3-13) 

The determinant of the cofactor matrix described by (3-13) will produce a sixth-order equation in  , 

which will produce the three desired   roots. They can be real or complex roots, and the real part of 

the roots should be positive for the half space (   ). These roots correspond to the attenuation 

properties of the displacements when getting far away from the free surface in the medium. For some 

special cases, the determinant is reduced to the product of two sub-determinants, namely the product 

of a second-order equation and a fourth-order equation. Then, the image displacement field is 

described by one independent displacement mode, and the coupled displacement modes in the sagittal 

plane perpendicular to the independent displacement mode. 

After replacing the parameter   in (3-5) with the calculated   from (3-13), the final image 

displacement field at the free surface of half space is:  

[
 
 
 
]  [  ] [

  

  

  

]     (         )  
 

(3-14) 

And the elastic relationship will produce the image stress field at free surface: 

[

   

   

   

]  [  ] [

  

  

  

]     (         )  
 

(3-15) 

Following the flowchart in Fig. 3.2, the (        ) for each Fourier mode is produced, thus solving 

the image displacement field for half space. 

In the following, solutions to some special cases are given. 

 

3.2.1. The image stress of a cubic crystal with [001] orientation 

In the absence of body forces, the stress equilibrium equation given by the standing Christoffel 

equation [Dellinger, 1991] for cubic material with a (001) free surface can be written in terms of the 

displacement field (     ) as: 

{

   (           )  (       )       (       )     (       )   

   (           )  (       )       (       )     (       )   

   (           )  (       )       (       )     (       )   

  

 

(3-16) 

According to the basic properties of cubic crystal, the elastic energy should be larger than zero and the 

determinant of the stiffness matrix should be positive, thus producing the following conditions: 

{
         
          

  
(3-17) 

By placing the displacement field (3-5) into the equilibrium equation (3-16), one obtains the following 

equations for each Fourier mode:  

[
 
 
 
 

[

(        
       

    )      (       )     (       )

     (       ) (        
       

    )     (       )

    (       )     (       ) (        
       

    )

]  [
 
 
 

]   

]
 
 
 
 

  

 

(3-18) 

The condition that non-zero roots exist requires that the determinant of the coefficients matrix of 

equation (3-18) is zero. 
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(a) Mode (         ) 

When the determinant of the coefficient matrix in equation (3-18) is zero, a sextic equation in   is 

produced, which has in general three desired roots with positive real parts. Depending on the 

attenuation coefficient properties of the three    , the ratios of the corresponding (        ) are 

calculable. After performing the cofactor expansion along the first row of the matrix in equation (3-

18), the corresponding (        ) are the elements along the first row of the cofactor expansion 

matrix in equation (3-18). 

  

  
 

  

  
 

  

  
     (3-19) 

the resultant (        ) is described in Appendix (B-1). 

(b) Mode (         ). 

The determinant of the matrix in equation (3-18) can be reduced into the product of two sub-

determinants, which will produce 3 roots:    |  |, and  (     ) are the roots (with positive real 

parts) of the following equation. 

       (  )
 
 (                     )  

  (  )
 
   

            (     ) (3-20) 

(c) Mode (         ). 

The determinant can be reduced into the product of two sub-determinants, which will produce 3 roots: 

   |  |, and  (     ). They are the roots with positive real parts of the following equation. 

       (  )
 
 (                     )  

  (  )
 
   

            (     )  (3-21) 

(d) Mode (         ). 

The mode (         ) means constant force and displacement fields. This leads to a uniform 

stress within the half space. Physically, a dislocation will not be able to exert a constant traction in the 

half space. The (         ) mode is thus avoided. 

After getting all modes for the Fourier analysis in (a), (b), (c) and (d), the displacement components 

are related with the coefficients (        ) as follows: 

[
 ̂
 ̂
 ̂
]  [  ] [

  

  

  

]  
 

(3-22) 

The resultant [  ] is described in Appendix (B-1). From the displacement field in equation (3-5), it is 

straightforward to obtain the strain field     through differentiation and the stress field     using 

Hooke’s law. The corresponding tractions composed of the stress components     on the surface 

    are composed of the coefficients (        ) through the following matrix equation: 

[

 ̂  

 ̂  

 ̂  

]  [  ] [

  

  

  

]  
 

(3-23) 

The resultant [  ] is described in Appendix (B-1). Given the surface traction     produced by the 

defect in infinite medium at the foil surface position, the Fourier coefficients (        ) of any 

Fourier Mode (     ) can be determined from these relationships. Once the Fourier coefficients are 

obtained, the displacement, stress field of this Fourier mode is completely determined through Fourier 

analytic expressions. 
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3.2.2. The image stress of a HCP crystal with [0001] orientation 

For a HCP half space with (    ) free surface, the basic crystal cell is defined with the following 4 

vectors:    [  ̅  ] ,    [   ̅ ] ,    [ ̅   ]and   [    ] . The basic coordinate is:    
[  ̅  ],    [   ̅ ],    [    ]. The geometrical relation is shown in Fig 3.3. 

 

  

Figure 3.3: The HCP crystal. (a), crystal index of HCP in the Basel plane; (b), Cartesian coordinate 

definition. 

 

         In the absence of body forces, the equilibrium equation can be written in terms of the 

displacement field  (     ) as: 

{

(                    )  (       )(       )  ⁄     (       )   

(       )(       )  ⁄  (                    )     (       )   

   (       )     (       )  (                    )   

  

 

(3-24) 

         The displacement field (3-5) will be considered as the solution for lower half space, and the 

following equilibrium equation can be concluded: 

[
 
 
 
 ( 

       
     

(       )

 
  
 )      

(       )

 
(    )(       )

     
(       )

 
(        

     
(       )

 
  
 ) (    )(       )

(    )(       ) (    )(       ) (        
       

    )]
 
 
 
 

[
 
 
 

]     

 

(3-25) 

This equation can be written as:  

[

         

         

         

] [
 
 
 

]     
 

(3-26) 

         In which the corresponding parameters are described in the Appendix (B-2). In order to produce 

non-zero roots, the determinant should be set to zero, which will result in a sextic equation producing 

6 roots in   , but only 3 complex roots (with positive real part) are selected for producing the 

displacement fields. 

(a), the mode (         ). 

After doing the cofactor expansion along the first row of the cofactor matrix in equation (3-26), the 

corresponding (        )  elements along the first row of the cofactor expansion matrix can be 

produced. The corresponding displacement field can be written as:  

  

  
 

  

  
 

  

  
     (3-27) 

The corresponding (        ) are described in Appendix (B-2). 

(b), the mode (         ). 

(a) (b) 
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The determinant of the cofactor matrix will be reduced to the product of two sub-determinants, which 

will produce the three desired roots:    |  |  √(       ) (    )⁄ , and (     ) are the roots 

(with positive real parts) of the following equation: 

        
  (                     )  

   
          

     (     )  (3-28) 

(c), the mode (         ). 

The determinant of the cofactor matrix will be reduced to the product of two sub-determinants, which 

will produce the three desired roots:    |  |  √(       ) (    )⁄ , and (     ) are the roots 

(with positive real parts) of the following equation: 

        
  (                     )  

   
          

     (     )  (3-29) 

(d), the mode (         ). 

The mode (         ) means constant force and displacement fields. This leads to uniform 

stress inside half space medium, thus leading to infinite energy because the domain is infinite. 

Physically, a dislocation will not be able to exert a constant traction on the half space, such (   

      ) mode is avoided. 

The corresponding [  ] and [  ] are described in Appendix (B-2). 

 

3.3. Fourier space solution for anisotropic thin foil problem 

For a thin foil with arbitrarily oriented crystal surfaces, a similar procedure can be applied. There is 

the original coordinate (        ), which is related to the basic crystal orientation, such as [   ], 
[   ] and [   ] for bcc crystals, and the thin foil coordinate (     ), where   is along the foil free 

surface normal direction. The following image displacement field is employed: 

{
 

 
  ∑ ∑ [      (    )        (    )]     (         )    

  ∑ ∑ [      (    )        (    )]     (         )    

  ∑ ∑ [      (    )        (    )]     (         )    

  

 

(3-30) 

The equilibrium equations at the position    can be rewritten into two independent sets of equations 

on (        ) and (        ), the symmetrical and the asymmetrical parts respectively. Then, 

three roots (  
    

    
 ) and three roots (  

    
    

 ) for the symmetrical and asymmetrical matrix 

equations can be calculated, respectively to these parts. 

The symmetrical image displacement solution can be written as: 
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(3-31) 

And the asymmetrical image displacement solution can be written as: 
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(3-32) 

The symmetrical image stress solutions can be written as: 
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(3-33) 

And the asymmetrical image stress solution can be written as: 
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(3-34) 

The corresponding bulk stress field (   
 )  produced by dislocation loops or finite dislocation 

segments at free surfaces of thin foil can be calculated with suitable elasticity models in the original 

coordinate, which can be converted into thin foil coordinate: 

   
        (   

 )   (3-35) 

The bulk stress field can be also be written in Fourier space, and converted into the symmetrical and 

asymmetrical parts, as follows: 

  (     )  ∑ ∑ [( ̂ ) (       )  ( ̂ ) (       )]    
    (         )  (3-36) 

Then the corresponding coefficients (  
    

    
 ) and (  

    
    

 ) for each Fourier mode in the thin 

foil coordinate can be calculated by matching each Fourier mode of the image stress and bulk stress at 

the free surface position. In such a way the corresponding image displacement field, strain field and 

stress field within the volume can be calculated. 

Finally, the image displacements and stress solutions of any point within the foil can be written as: 

  
     

   
    

   (       )  (3-37) 

And the displacement gradient field: 

    
     

     
      

   (       )  (3-38) 

And 

   
     

    
     

   (3-39) 

 

3.3.1. The image stress of a cubic crystal thin foil with [001] orientation 

In the absence of body forces, the stress equilibrium equation for cubic material with a (001) free 

surface can be written in terms of the displacement field (     ) as: 

{

   (           )  (       )       (       )     (       )   

   (           )  (       )       (       )     (       )   

   (           )  (       )       (       )     (       )   

  

 

(3-40) 

The equilibrium equations can be written in the foil coordinate. Considering the independent 

properties (        ) and (        ), the equilibrium equation can be written separately  into 

the symmetrical and asymmetrical parts. 

 (a) Mode (         ). 

 When the determinant of the coefficient matrix in equation (3-40) is zero, 3 desired roots (  
    

    
 ) 

with positive real parts will be produced. After doing the cofactor expansion along the first row of the 

coefficient matrix, the corresponding (  
    

    
 )  elements along the first row of the cofactor 

expansion matrix can be calculated. The ratios of the corresponding (  
    

    
 ) are calculable, 

which can be written as: 

  
 

  
  

  
 

  
  

  
 

  
    

   
(3-41) 

The resultant (  
    

    
 ) is described in Appendix (B-3). 
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Likewise for the asymmetrical part, when the determinant of its coefficient matrix in equation (3-40) 

is zero, 3 desired roots (  
    

    
 ) with positive real parts will be produced. After doing the cofactor 

expansion along the first row of the coefficient matrix, the corresponding (  
    

    
 ) elements along 

the first row of the cofactor expansion matrix can be calculated. The ratios of the corresponding 

(  
    

    
 ) are calculable, which can be written as: 

  
 

  
  

  
 

  
  

  
 

  
    

   
(3-42) 

The resultant (  
    

    
 ) is also described in Appendix (B-3). 

(b) Mode (         ). 

The determinant can be reduced into the product of two sub-determinants. For the symmetrical part, 

this is expressed by the following equation that has three roots, namely   
  |  | and (  

    
 ), the 

latter being roots with positive real parts. 

       (  
 )

 
 (                     )  

  (  
 )

 
   

            (     ) (3-43) 

For the asymmetrical part this is expressed by the following equation that has three roots, namely 

  
  |  | and (  

    
 ),  , the latter being the roots with positive real parts. 
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 (                     )  

  (  
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            (     ) (3-44) 

(c) Mode (         ). 

The determinant can be reduced into the product of two sub-determinants. For the symmetrical parts, 

this is expressed by the following equation that has three roots, namely   
  |  | and (  

    
 ), the 

latter being the roots with positive real parts. 

       (  
 )

 
 (                     )  

  (  
 )

 
   

            (     ) (3-45) 

For the asymmetrical parts, this is expressed by the following equation that has three roots, namely 

  
  |  | and (  

    
 ), the latter being the roots with positive real parts. 
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            (     )  (3-46) 

(d) Mode (         ). 

The mode (         ) means constant force and displacement fields. This leads to uniform 

stress inside the thin foil. Physically, a dislocation will not be able to exert a constant traction stress 

field on the free surface. The (         ) mode is thus avoided. 

Finally, the symmetrical image displacement matrix [  ] and symmetrical image stress [  ], and the 

asymmetrical image displacement matrix [  ] and asymmetrical image stress [  ] for each Fourier 

mode are described in Appendix (B-3). 

 

3.3.2. The image stress of a cubic crystal thin foil with [111] orientation 

When cubic foil is following the [   ̅], [ ̅  ] and [   ] coordinate, the equilibrium equation is: 

{
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(3-47) 

In which,  
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(3-48) 

The equilibrium equations can be written in the foil coordinate. Considering the independent 

properties (        ) and (        ), the equilibrium equation can be written separately  into 

the symmetrical and asymmetrical parts. 

(1) Mode (         )  and (         ) .  

When the determinant of the coefficient matrix in equation (3-47) is zero, 3 desired roots (  
    

    
 ) 

with positive real parts will be produced. After doing the cofactor expansion along the first row of the 

coefficient matrix, the corresponding (  
    

    
 )  elements along the first row of the cofactor 

expansion matrix can be calculated. The ratios of the corresponding (  
    

    
 ) are calculable, 

which can be written as: 

  
 

  
  

  
 

  
  

  
 

  
    

   
(3-49) 

The resultant (  
    

    
 ) is described in Appendix (B-4). 

Likewise for the asymmetrical part, when the determinant of its coefficient matrix in equation (3-47) 

is zero, 3 desired roots (  
    

    
 ) with positive real parts will be produced. After doing the cofactor 

expansion along the first row of the coefficient matrix, the corresponding (  
    

    
 ) elements along 

the first row of the cofactor expansion matrix can be calculated. The ratios of the corresponding 

(  
    

    
 ) are calculable, which can be written as: 

  
 

  
  

  
 

  
  

  
 

  
    

   
(3-50) 

The resultant (  
    

    
 ) is also described in Appendix (B-4). 

(2) Mode (         ).  

As to the symmetrical part, the determinant will be reduced to the product of two sub-determinant, 

which will produce the three desired roots:   
  (      

  |  |  √(   
    

     
    

 ))    
 ⁄ , and 
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 ) are the roots with positive real parts of the following equation: 
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(3-51) 

Likewise, the determinant will be reduced to the product of two sub-determinant, which will produce 

the three desired roots:   
  (      

  |  |  √(   
    

     
    

 ))    
 ⁄ , and (  

    
 ) are the roots 

with positive real parts of the following equation: 
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(3-52) 

(3) Mode (         ). 

The mode (         ) means constant force and displacement fields. This leads to a uniform 

stress inside the half space medium, thus leading to infinite energy because the domain is infinite. 

Physically this means that a dislocation will not be able to exert a constant traction on the half space, 

such a mode is thus avoided. 

Finally, the symmetrical image displacement matrix [  ] and symmetrical image stress [  ], and the 

asymmetrical image displacement matrix [  ] and asymmetrical image stress [  ] for each Fourier 

mode are described in Appendix (B-4). 
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3.4. Image energy calculation 

3.4.1. Image energy for the half space 

Let  ̅  and  ̅  be respectively the traction force and displacement field in the surface of the lower 

half space for each Fourier mode. They are related to each other through [  ] and [  ] matrices as 

follows: 

 ̅  [  ]  [  ]    ̅    (3-53) 

Then, the image energy for half space is: 

  
     

  
 

 
∫  ̅   ̅   
 

  (3-54) 

 

3.4.2. Image energy for the thin foil 

The image energy of the foil can be written as the sum of two contributing parts, namely the upper 

and lower half spaces, the upper and lower free surfaces of thin foil.  

 

  

 

 

Figure 3.4: Image energy of thin foil (a), bulk material containing defects, the perfect lattice will be 

bended; (b), two half space with stress field BC, which is equal in magnitude as the stress field 

induced by defects in bulk material, but in opposite direction; (c), foil containing defects with stress 

BC, which is equal in magnitude as the stress field induced by defects in bulk material; (d), foil 

containing defects with free surfaces, after releasing the stress field in (b) and (c), there are no 

external forces need to be applied to the infinite medium, but there will be a displacement jump across 

the surfaces of thin foil. 

 

As shown in Fig. 3.4(a), the infinite energy    of a dislocation loop can be treated as the sum of all 

the elastic energy stored in two half spaces and the thin foil zones. The displacement, stress field and 

elastic energy storage in these three regions is equivalent to the sum of Fig. 3.4(b) and Fig. 3.4(c). 

        +    
    (3-55) 

As shown in Fig. 3.4(b), the whole energy   
    is the sum of elastic energy   

  and   
  stored within 

the two half spaces, and can be expressed as integral over the foil upper and lower surfaces. 

      
   +    

  (3-56) 

and 

  
   

 

 
∫      

    
    (3-57) 

and 

  
   

 

 
∫      

    
    (3-58) 

As shown in Fig.3.4(c), the whole energy   
    can be expressed as the sum of three parts: the elastic 

energy    stored inside the thin foil with free surfaces, which is equivalent to Fig. 3.4(d); and two 

T+ 

T- 

-T+ 

-T- 

u+ 

u- 
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boundary stress loading induced additional elastic energy   
  and   

  respectively, which can be 

expressed as integral over the foil upper and lower surfaces. 

  
        +    

   +    
  (3-59) 

And, 

  
  

 

 
∫      

    
    (3-60) 

and 

  
  

 

 
∫      

    
    (3-61) 

As shown in Fig. 3.4(d), the whole elastic energy stored inside the thin foil with free surfaces can be 

expressed as   . Similar to Weinberger [Weinberger, 2007], analytic expressions for the elastic 

energy of an arbitrary dislocation network in an infinite medium is described as   , then the elastic 

energy    stored inside the thin foil with free surfaces are decompose into two parts: 

       +           (3-62) 

Alternatively, the following equation stands: 

       +    
   +    

  +     
    +    

  (3-63) 

Finally, the image energy can be written as: 

        
 

 
∫ ∫ [  (   )    (   )    (   )    (   )]

   ⁄

    ⁄

   ⁄

    ⁄
      (3-64) 

In which,   (   ) and   (   ) are the displacement jump in the upper and lower surface of thin foil, 

respectively. 

 

3.5. Displacement field of dislocation loop within bulk material 

The general theory of curved dislocations in anisotropic media was developed by Volterra [Volterra, 

1907], De Wit [De Wit, 1960] and Mura [Mura, 1963; Mura, 1968]. The special case of curved 

dislocations in an isotropic medium was attributed to Burgers [Burgers, 1939] and Peach and Koehler 

[Peach, 1950]. The Burgers formulas for the displacement field of isotropic dislocation loop with 

Burgers vector   can be expressed as a sum including curvilinear integrals made along the dislocation 

line,  : 
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  (3-65) 

In which,        is the vector from dislocation position    to the calculated position  . 

   ∫
    

   
  (3-66) 

is the surface integral taken over the surface,  , of the dislocation loop. 

Besides Burgers formula for isotropic dislocation loops, the bulk displacement field of general 

anisotropic dislocation loops can also be calculated with the surface integration formula of Volterra: 

  ( )    ∫       
     

 (    )     (3-67) 

Where the surface  is the dislocation surface, which is a cap of dislocation line , whose boundary is 

the dislocation loop perimeter, and       are the elastic constants of the the material and      
  is the 

first order derivative of Green’s function in bulk material. 

For an isotropic material, it appears that:  
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(3-68) 

Where        is the vector from dislocation position    to the calculated position  ,   is  Lamé's 

first parameter of isotropic material, and   is shear modulus of isotropic material,     is the Kronecker 

delta operator.  

For anisotropic materials, a corresponding modulus matrix and the first order derivatives of 

anisotropic Green’s function will be employed for the calculation. 

 

3.6. Self-energy of a dislocation loop within bulk material 

3.6.1. Interaction energy between two dislocation loops 

 

 

Figure 3.5: Schematics of two interacting dislocation loops [Hirth, 1982]. 

 

As shown in Fig. 3.5, if loop 1 is created while loop 2 is present, the stress originating from loop 2 

does work ,    , which is the interaction energy between the two loops: 
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(3-69) 

In which, 

    
   

      
  (3-70) 

The above formula was first obtained by Blin [Blin, 1955]. 

 

3.6.2. Self-energy of a dislocation loop with isotropic elasticity 

In forming the dislocation line, work must also be done against the self-stress of the loop. Each 

element of the loop feels a force caused by the stress originating from all other parts of the loop, and 

the work done against all these forces is a work called the self-energy. Only when the total force on 

each element of the loop is zero is the loop in equilibrium, and only then does one find an extremum 

in the total energy of the system. [Hirth, 1982] 

The self-energy, is obtained when the two involved dislocation loops are overlaped, which means that 

the double integration is done on the same loop. Finally, the the self-energy of single loop is obtained 

by dividing the integration by 2. 
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(3-71) 

As is expected from the discussion of the core region of a straight dislocation, the self-energy diverges 

as the separation between two finite dislocation elements approaches zero. Cut off procedures must be 

introduced to avoid the divergence. This problem is characteristic of all types of interaction between 

two adjacent segments of the same dislocation line, as the separation distance between neighboring 

segments is at dislocation core radius level. [Hirth, 1982] 

 

3.6.3. Self-energy of a dislocation loop with anisotropic elasticity 

As already been mentioned in chapter.1, Green’s function can be expressed as: 

   ( )  
 

   | |
∮    ( ̅) 

  
  

( ̅)    (3-72) 

In which, S1 is an integral path along a unit circle lying on the plane perpendicular to x. 

Then, a new function     is introduced: [Ohsawa, 2009; Ohsawa, 2011] 
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  (3-73) 

In which, | |   , and     is surface of a unit sphere in Fourier space; 

Then, the function     satisfies the following relation: 

   ( )        ( )  (3-74) 

As has been developed by Mura, the stress field components produced by closed dislocation loops    

in anisotropic crystals are represented by integral representations:  

   ( )       ∮               (    )  
    

 
    (3-75) 

where the line integral with respect to   
  is performed along the dislocation line   ;     are the 

Green’s functions for anisotropic crystals;       are the elastic constants; and   
  is the Burgers vector 

of the dislocation loop   . 

Similarly, a new stress function     for the stress field produced by dislocation loops in anisotropic 

crystals can be expressed as: 

   ( )       ∮               (    )  
    

 
    (3-76) 

Which is simply by replacing     with the function    .  

According to the linear elasticity theory, the energy of interaction between a dislocation loop and an 

applied stress field     is equal to the work done on the surface   bounded by the dislocation line    

while the dislocation loop is created. Therefore, the interaction energy is expressed as: 

     ∫        
  (3-77) 

After mathematical operation, the interaction energy in the form of surface integration can be reduced 

into linear integration along dislocation perimeter line: 

      ∮              
  (3-78) 

Then, the interaction energy can be expressed as: 

        
 ∫ ∫                           (    )      

 
 

  (3-79) 
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Finally, the self-energy can be expressed as the summation of four double integrals over the two 

identical dislocation loops (  and    will be the same dislocation loop perimeter): 
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In which, 
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(3-81) 

The following parameters are used for        function calculation: 
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and 

   ( )             (  
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and the other components are obtained by the cyclic permutation of (1, 2, 3) and where 
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(3-84) 
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Chapter. 4: TEM image simulation method 

 

In this chapter, the TEM image simulation method using CUFOUR code is described. Then, the 

simulation schemes for the inclined dislocation and dislocation loop are presented, together with the 

different corresponding elasticity models implemented in CUFOUR. 
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4.1. General methodology  

In order to study the free surface effect on TEM image contrast of inclined dislocation and dislocation 

loops, different types of elasticity models are developed. Each elasticity model has its special physical 

meaning and can be compared with each other for studying the impact image stress effect, anisotropy, 

and the synergetic effect of image stress and anisotropy on TEM image contrast of inclined 

dislocation and dislocation loop. What is more, two very important approximations are employed for 

the TEM image simulation, and will be briefly discussed in chapter 6. 

(1), the column approximation (CA) impact on TEM image is not studied. 

(2), the dislocation core contribution to TEM image contrast is not considered. 

The displacement gradient field models of different types of inclined dislocation and dislocation loop 

are implemented into many beam TEM image simulation code CUFOUR for simulating diffraction 

contrast TEM image, based on Schaeublin-Stadelmann equations. As shown in Fig.4.1, the general 

structure of CUFOUR consists of three main parts:  

 Pre-processing of geometrical and physical parameters input.  

 Solving Schaeublin-Stadelmann equations in CUFOUR. 

 Post-processing of the simulated TEM diffraction contrast image.  

Firstly, the subroutine “forems.f” in CUFOUR is employed for producing input parameters, including 

beam condition, TEM thin foil properties, and defect properties. These parameters are stored in 

“CUFOUR.inp”, containing diffraction vector, deviation parameter, beams number included, image 

size, foil thickness, lattice parameter, material element type and beam convergence angle. 

Secondly, depending on the simulation purpose, one of the physical model of either inclined 

dislocation or the dislocation loop will be selected, together with the input parameters in 

“CUFOUR.inp”, many beam TEM image simulation will be performed in CUFOUR, thus producing 

the transmitted or diffracted beam intensity at the pixel corresponding to the column position in the 

image. The dislocation core of inclined dislocation and dislocation loops are all ignored in the current 

work. 

Finally, the simulated diffraction contrast TEM image “*.ima” is generated, which contains the 

intensity information, ranging  from 0 to 1 at each pixel and the corresponding scale bar. 

Following the flowchart of Fig. 4.1, the simulation schemes of inclined dislocation and dislocation 

loop are elaborated in details as follows. The geometrical and physical parameters for describing foil, 

electron beam and inclined dislocation are defined in CUFOUR for obtaining a TEM image 

comparable to experiment. These parameters can be divided into four categories: Defects Model 

Selection, Materials Data, Geometry Data and Diffraction Condition Data respectively. 

The Material Data specifies the material physical properties of thin TEM foil for CUFOUR, consists 

of the following parameters: 

 Space Group 

 Lattice Parameter 

 Atomic Positions 

 Elastic Constants 

The Geometry Data specifies the beam, foil and inclined dislocation or dislocation loop geometrical 

parameters for CUFOUR, consists of the following parameters: 

 Foil normal 

 Electron beam Direction 

 Direction vector of inclined dislocation or normal vector of dislocation loop habit plane  

 Burgers vector of inclined dislocation or dislocation loop 

 Image size 

 Thickness of the thin foil 
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Diffraction Condition Data specifies the beam diffraction conditions for CUFOUR, consists of the 

following parameters: 

 Transmitted image or diffracted image 

 Diffraction vector 

 Included beam number 

 Laue circle center 

 Beam convergence angle 

 

 

Figure 4. 1: CUFOUR TEM image simulation flowchart 

 

4.1.1. Simulation scheme for inclined dislocation 

The Defects Model Selection specifies which type of inclined dislocation model will be employed for 

the TEM image simulation. Ten types of inclined dislocation models have been implemented in 

CUFOUR, they are classified into the following four categories: 

 Image stress effect of inclined dislocation 

 Finite dislocation segment integration of inclined dislocation 

 Image stress effect plus finite dislocation segment integration of inclined dislocation  

 Infinite dislocation models 

As to the image stress effect implementation schemes, the stress field at free surfaces is calculated 

from dislocation segments integration, which is prolonged outside thin foil, because dislocation can 

not terminate inside finite solid. Such prolongated dislocation is called virtual dislocation. It implies 

that the inclined dislocation is prolonged outside the thin foil on both sides. These outer segments are 
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each 2.5 times the length of the dislocation within the thin TEM foil. This length has been chosen 

arbitrarily.  

In summary, the ten candidate isotropic/anisotropic inclined dislocation models are shown in Table4.1. 

 

Table 4. 1 Candidate models for inclined dislocation in thin foil [Stroh, 1958; Hirth, 1982; Mura, 

1987; Devincre, 1995; Li, 2008; Akarapu, 2009; Weinberger, 2009; Yin, 2010; Wu, 2012]. 

Model type Image gradient Finite gradient Total gradient Bulk gradient 

Isotropic Image gradient via 

Devincre formula 

Finite gradient via 

Mura formula 

Total gradient via Devincre Image 

gradient plus Mura finite gradient 

Bulk gradient 

via Hirth and 

Lothe formula Image gradient via 

Mura formula 

Total gradient via Mura Image gradient 

plus Mura finite gradient 

Anisotropic Image gradient via 

Willis–Steeds–Lothe 

(WSL) formula 

Finite gradient via 

Willis–Steeds–Lothe 

formula 

Total gradient via Willis–Steeds–Lothe 

mage gradient plus Willis–Steeds–

Lothe finite gradient 

Bulk gradient 

via Stroh’s 

formula 

 

4.1.2. Simulation scheme for dislocation loops 

The Defects Model specifies which type of dislocation loop model will be employed for the TEM 

image simulation. Ten types of dislocation loop models implemented in CUFOUR, they are classified 

into the following three categories: 

 Image stress effect of dislocation loop 

 Bulk dislocation loop 

 Image stress effect of dislocation loop plus infinite dislocation loop 

As to the circular loop calculation, the elastic field induced by the circular loop is obtained using 

linear superposition of the ones induced by straight dislocation segments describing the loop. The 

loop is approximated by a regular polygon, made here of 30 to 40 straight dislocation segments of 

equal size. 

In summary, the five isotropic/anisotropic dislocation loop models are shown in Table.4.2 and 

Table.4.3 respectively. 

 

Table 4.2: Candidate models for isotropic dislocation loop in thin TEM foil [Stroh, 1958; Hirth, 1982; 

Mura, 1987; Devincre, 1995; Li, 2008; Akarapu, 2009; Weinberger, 2009; Yin, 2010; Wu, 2012]. 

Model type Image gradient Bulk gradient Total gradient 

Isotropic Image gradient via 

Devincre’ formula 

 

Bulk gradient via 

Mura’s formula 

Total gradient via Devincre image gradient plus 

Mura infinite  gradient  

Isotropic  mage gradient via Mura’ 

formula 

Total gradient via Mura image gradient plus Mura 

infinite  gradient 

 

Table 4. 3 Candidate models for anisotropic dislocation loop in thin TEM foil [Stroh, 1958; Hirth, 

1982; Mura, 1987; Devincre, 1995; Li, 2008; Akarapu, 2009; Weinberger, 2009; Yin, 2010; Wu, 

2012]. 

Model type Image gradient Bulk gradient Total gradient 

Anisotropic Image gradient via 

Willis–Steeds–Lothe 

formula 

 

Bulk gradient via 

Willis–Steeds–Lothe 

formula 

Total gradient via Willis–Steeds–Lothe image 

gradient plus Willis–Steeds–Lothe infinite gradient 

Anisotropic Image gradient via 

Mura formula 

Total gradient via Mura image gradient plus Willis–

Steeds–Lothe infinite gradient 
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4.2. Inclined dislocation 

4.2.1. Image solution of inclined dislocation 

4.2.1.1. Isotropic Devincre-Weinberger model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

The geometrical relation for bulk stress calculation via Devincre [Devincre, 1995] dislocation 

segment integration is shown in Fig.4.2, the unit vector    is parallel to the dislocation line   ,   is 

the vectorial distance between a point    of the dislocation line and an arbitrary point r at which the 

stress produced by the segment    is calculated.   is the component of   normal to   . Devincre’s 

formula for isotropic stress field induced by dislocation segment    within space can be written as: 

   ( )  
 

   [[     ]  
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(4-1) 

In which,   is the position vector of calculated point within thin TEM foil,    is the position vector of 

dislocation segments,   is Burgers vector of inclined dislocation, and   is Poisson ratio and   is 

isotropic modulus of TEM thin foil material.  

In the above-mentioned formulas, the following relations will apply: 

     (    )  

            

        

         

          

   (    )       

  

 

 

(4-2) 

The specific definition may be described as:                                              
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The following definition will be applied: 
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(     )  (   )     

 

(4-4) 

Then, the stress field can be written as:  

   
  ( )  ((   ( ))

    
 (   ( ))

    
)    (4-5) 

 Finally, the stress field at free surfaces can be produced. 
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Figure 4.2: The geometrical relationship for finite (bulk) stress calculation with Devincre formula 

 

The isotropic image stress calculation in Fourier space is described by Weinberger [Weinberger, 

2009]. The details for isotropic Devincre-Weinberger model implementation into CUFOUR are 

described in Algorithm 4.1 of Appendix C. 

  

4.2.1.2. Isotropic Mura-Weinberger model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

The stress field induced by dislocation segments in isotropic material can be produced via Mura’s 

formula [Akarapu, 2009]. Firstly, the gradient field can be written as:          

    ( )  ∫               (    )  
    

   (4-6) 

The integration is performed along inclined dislocation line within thin foil, and the virtual dislocation 

parts of the inclined dislocation outside thin foil. In which,  
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(4-7) 

In which, the strain-gradient relation is: 

    
 

 
 (         )  (4-8) 

The isotropic stress-strain relation is: 

                               (4-9) 

Then, the stress field at free surfaces can be produced. 

The isotropic image stress calculation in Fourier space is described by Weinberger [Weinberger, 

2009]. The details for isotropic Devincre-Weinberger model implementation into CUFOUR are 

described in Algorithm 4.2 of Appendix C. 
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4.2.1.3. Anisotropic Willis-Steeds-Lothe (WSL) and Wu model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

The bulk stress field of an anisotropic finite dislocation segment can be obtained through the Willis–

Steeds–Lothe [Yin, 2010] formula:  

   

   
 

 

   
             {         [(  )

   (  )   ]     [(  )
     ]  }  

    (4-10) 

where   is the shortest distance from field point   to the dislocation line pointing along  . 

As shown in Fig 4.3, an infinitely long dislocation line passing through the origin along unit vector   
is studied, and a local right-hand Cartesian coordinate system       is employed for calculating 

its stress field. To obtain the stress field of this dislocation requires the solution of the following 

eigenvalue problem, 

       
  (4-11) 

Where   is a 6*6 matrix,  

      [
(  )  (  ) (  )  

(  )(  )  (  ) (  )(  )  ] 
(4-12) 

In which, (  )              and (  )   is its inverse. The intrinsic matrix       for anisotropic 

crystal is written into integral formulas format: 
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(4-13) 

Where   measures the rotation angle of the local coordinate system       abound unit vector 

along dislocation line   direction. 

Even though the matrix   depend on the choices of   and  , the matrices       only depend on 

vector  , i.e. they are independent of   and  . This can be seen from their expressions in the integral 

formalism. Because all integrands have a period of π, the matrices can be rewritten as integrals from 0 

to π, decreasing the domain of numerical integration. 

 

 

Figure 4.3: The geometrical relation around inclined dislocation for calculation  
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As shown in Fig.4.3, the geometric setup to derive the stress field using the Willis–Steeds–Lothe 

formula in the collinear case.   is an arbitrary unit vector in the     plane at an angle   from  . 

   |  |,    |  | (4-14) 

The displacement gradient at collinear point   is:  
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In which, 
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(4-16) 

In which, the strain-gradient relation is:  

    
 

 
 (         )                                                                    (4-17) 

Thus, anisotropic stress-strain relation is: 

                                                                                        (4-18) 

Then, the bulk stress field at free surfaces can be produced. 

The details of anisotropic image stress calculation in Fourier space is described by Wu [Wu, 2012]. 

The details for anisotropic Willis-steeds-Lothe and Wu model implementation into CUFOUR are 

described in Algorithm 4.3 of Appendix C. 

 

4.2.2. Bulk solution via finite dislocation segment 

4.2.2.1. Isotropic Mura model 

Firstly, the displacement gradient field of isotropic dislocation segment via Mura formula [Akarapu, 

2009] is calculated with formulas (4-6) and (4-7). Then, the bulk gradient via Mura dislocation 

segment integration is performed along inclined dislocation line within thin foil. 

The details for isotropic Mura model implementation into CUFOUR are described in Algorithm 4.4 of 

Appendix C. 

 

4.2.2.2. Anisotropic Willis-steeds-Lothe model 

Firstly, the displacement gradient field of anisotropic dislocation segment via Willis–Steeds–Lothe 

formula [Yin, 2010] is calculated with formulas from (4-10) to (4-16). Then, the bulk gradient via 

Willis–Steeds–Lothe dislocation segment integration is performed along inclined dislocation line 

within thin foil. 

The details for anisotropic Willis–Steeds–Lothe model implementation into CUFOUR are described 

in Algorithm 4.5 of Appendix C. 

 

4.2.3. Total solution, as image + bulk solutions 

4.2.3.1. Isotropic Devincre-Weinberger-Mura model 

The total gradient can be calculated out by adding isotropic Devincre-Weinberger model and isotropic 

Mura model together. Isotropic Devincre-Weinberger model is described in Part 4.2.1.1. of this 

chapter, and isotropic Mura model is described in Part 4.2.2.1. of this chapter. [Devincre, 1995; 

Akarapu, 2009; Weinberger, 2009] 

The details for isotropic Devincre-Weinberger-Mura model implementation into CUFOUR are 

described in Algorithm 4.6 of Appendix C. 
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4.2.3.2. Isotropic Mura-Weinberger-Mura model 

The total gradient can be calculated out by adding isotropic Mura-Weinberger model and isotropic 

Mura model together. Isotropic Mura-Weinberger model is described in Part 4.2.1.2. of this chapter, 

and isotropic Mura model is described in Part 4.2.2.1. of this chapter. [Akarapu, 2009; Weinberger, 

2009] 

The details for isotropic Mura-Weinberger-Mura model implementation into CUFOUR are described 

in Algorithm 4.7 of Appendix C. 

 

4.2.3.3. Anisotropic WSL-Wu-WSL model 

The total gradient can be calculated out by adding anisotropic WSL-Wu model and anisotropic WSL 

model together. Anisotropic WSL-Wu model is described in Part 4.2.1.3. of this chapter, and 

anisotropic WSL model is described in Part 4.2.2.2. of this chapter. [Yin, 2010; Wu, 2012] 

The details for anisotropic WSL-Wu-WSL model implementation into CUFOUR are described in 

Algorithm 4.8 of Appendix C. 

 

4.2.4. Bulk solution via infinite dislocation 

4.2.4.1. Isotropic Hirth-Lothe model 

The displacement field induced by an isotropic screw dislocation [Hirth, 1982] is:  
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)                             (4-19) 

Then, the gradient field can be written as: 
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and 

   

  
  

 

  

 

                              
(4-21) 

The details for isotropic Hirth-Lothe model implementation into CUFOUR are described in Algorithm 

4.9 of Appendix C. 

 

4.2.4.2. Anisotropic Stroh model 

The displacement field of anisotropic dislocation [Stroh, 1958] is written as:     

      ( )                                           (4-22) 

In which, 

                                      (4-23) 

Considering the equilibrium condition, the following equilibrium equations can be produced: 

[      (           )            ]                                   (4-24) 

It can be written into matrix formula, 

                                    (4-25) 

In which,  

          (           )                                         (4-26) 
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Final, the displacement field can be written as: 
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   ]   (4-27)  

The gradient can be written as:               
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          ; 

 

 (4-28)  

The details for anisotropic Stroh model implementation into CUFOUR are described in Algorithm 

4.10 of Appendix C. 

 

4.3. Dislocation loop 

4.3.1. Image solution 

4.3.1.1. Isotropic Devincre-Weinberger model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

In order to implement image stress effect efficiently, isotropic dislocation loop can be segmented into 

many segments, and the bulk stress field at free surfaces of thin foil can be produced from Devincre 

dislocation segment integration [Devincre, 1995] around dislocation loop perimeter. 

The isotropic image stress calculation in Fourier space is described by Weinberger [Weinberger, 

2009]. The details for isotropic Devincre-Weinberger model implementation into CUFOUR are 

described in Algorithm 4.11 of Appendix C.  

 

4.3.1.2. Isotropic Mura-Weinberger model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

In order to implement image stress effect efficiently, isotropic dislocation loop can be segmented into 

many segments, and the bulk stress field can be produced from Mura dislocation segment integration 

[Akarapu, 2009] around dislocation loop perimeter. 

The isotropic image stress calculation in Fourier space is described by Weinberger [Weinberger, 

2009]. The details for isotropic Mura-Weinberger model implementation into CUFOUR are described 

in Algorithm 4.12 of Appendix C.  

 

4.3.1.3. Anisotropic WSL-Wu model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

In order to implement image stress effect efficiently, anisotropic dislocation loop can be segmented 

into many segments, and the bulk stress field can be produced from Willis–Steeds–Lothe dislocation 

segment integration [Yin, 2010] around dislocation loop perimeter. 

The anisotropic image stress calculation in Fourier space is described by Wu [Wu, 2012]. The details 

for anisotropic WSL-Wu model implementation into CUFOUR are described in Algorithm 4.13 of 

Appendix C. 
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4.3.1.4. Anisotropic Mura-Wu model 

As shown in the flowcharts in Fig. 3.2 and Fig. 4.1, when calculating the image gradient value at 

given point, the corresponding bulk stress field at free surfaces should be cancelled by its 

corresponding image stress field.  

The stress field of dislocation loop in anisotropic infinite medium can be calculated by integration of 

Green’s function. The stress field of dislocation loop in infinite medium is described as [Mura, 1987]:     

   ( )       ∮               (    )  
    

 
  

  (4-29) 

(Note. 1: Stress field components produced by closed dislocation loops      in anisotropic crystals are 

represented by integral representations: where the line integral with respect to   
   is performed along 

the dislocation line   ,       are the first derivative of Green's functions for anisotropic crystals, and 

the derivative of Green’s function is different for different anisotropic crystal;       are the elastic 

constants; and   
  is the Burgers vector of dislocation loop   ) 

In which,        
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    (4-30) 

The integration is performed in the plane normal to      vector for a round.   is the calculated 

position vector in space,    is the dislocation loop position vector on the loop perimeter when 

performing integration around dislocation loop. 

For cubic crystals: 
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And the other components are obtained by the cyclic permutation of 1, 2 and 3, where,   
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(4-32) 

For Hexagonal crystals (transversely isotropic): 
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The anisotropic image stress calculation in Fourier space is described by Wu [Wu, 2012]. The details 

for anisotropic Mura-Wu model implementation into CUFOUR are described in Algorithm 4.14 of 

Appendix C. 

 

4.3.2. Bulk solution 

4.3.2.1. Isotropic Mura model 

Firstly, the displacement gradient field of isotropic dislocation segment via Mura formula [Akarapu, 

2009] is calculated with formulas (4-6) and (4-7). Then, the bulk gradient via Mura dislocation 

segment integration is performed along dislocation loop perimeter.  

The details for isotropic Mura model implementation into CUFOUR are described in Algorithm 4.15 

of Appendix C. 

 

4.3.2.2. Anisotropic WSL model 

Firstly, the displacement gradient field of anisotropic dislocation segment via Willis–Steeds–Lothe 

formula [Yin, 2010] is calculated with formulas from (4-10) to (4-16). Then, the bulk gradient via 

Willis–Steeds–Lothe dislocation segment integration is performed along dislocation loop perimeter.   

The details for anisotropic WSL model implementation into CUFOUR are described in Algorithm 

4.16 of Appendix C. 

 

4.3.3. Total solution, as image + bulk solutions 

4.3.3.1. Isotropic Devincre-Weinberger-Mura model 

The total displacement gradient can be calculated out by adding isotropic Devincre-Weinberger model 

and isotropic Mura model together. Isotropic Devincre-Weinberger model is described in Part 4.3.1.1. 

of this chapter, and isotropic Mura model is described in Part 4.3.2.1. of this chapter [Devincre, 1995; 

Akarapu, 2009; Weinberger, 2009]. 

The details for isotropic Devincre-Weinberger-Mura model implementation into CUFOUR are 

described in Algorithm 4.17 of Appendix C. 

 

4.3.3.2. Isotropic Mura-Weinberger-Mura model 

The total displacement gradient can be calculated out by adding isotropic Mura-Weinberger model 

and isotropic Mura model together. Isotropic Mura-Weinberger model is described in Part 4.3.1.2. of 

this chapter, and isotropic Mura model is described in Part 4.3.2.1. of this chapter [Akarapu, 2009; 

Weinberger, 2009]. 

The details for isotropic Mura-Weinberger-Mura bulk gradient model implementation into CUFOUR 

are described in Algorithm 4.18 of Appendix C. 



Chapter. 4: TEM image simulation method 

67 

 

 

4.3.3.3. Anisotropic WSL-Wu-WSL model 

The total displacement gradient can be calculated out by adding anisotropic WSL-Wu model and 

anisotropic WSL model together. Anisotropic WSL-Wu model is described in Part 4.3.1.3. of this 

chapter, and anisotropic WSL model is described in Part 4.3.2.3. of this chapter [Yin,2010; Wu,2012]. 

The details for anisotropic WSL-Wu-WSL model implementation into CUFOUR are described in 

Algorithm 4.19 of Appendix C. 

 

4.3.3.4. Anisotropic Mura-Wu-WSL model 

The total displacement gradient can be calculated out by adding anisotropic Mura-Wu model and 

anisotropic WSL model together. Anisotropic Mura-Wu model is described in Part 4.3.1.4. of this 

chapter, and anisotropic WSL model is described in Part 4.3.2.3. of this chapter [Mura,1982; Li,2008; 

Yin,2010; Wu,2012]. 

The details for anisotropic Mura-Wu-WSL model implementation into CUFOUR are described in 

Algorithm 4.20 of Appendix C. 

 

4.4. General considerations on the different models 

Some considerations are made on the different models used to describe the dislocation line and the 

dislocation loop. Concerning the dislocation line, models consider an infinite or a finite dislocation 

line. For the simulation using the infinite dislocation line, the isotropic Hirth-Lothe model and the 

anisotropic Stroh model are convenient for speed. One typical calculation of the present work can be 

calculated within less than 10 seconds. 

For the simulation using the finite dislocation line, the calculation time depends on the model 

employed. For to anisotropy calculation, the Willis–Steeds–Lothe expression can be used, which is 

based on a matrix formalism.  t can faster than the anisotropic Mura’s formula, which is based on 

double integral formalism, based on anisotropic Green’s function. As to the isotropic calculation, 

Devincre model is slightly faster than isotropic Mura’s model, depending on the segmentation number. 

The larger the number the faster Devincre’s model is. 

As to the image stress model and total model, the total calculation time depends on both the 

dislocation segment models employed, and the image stress Fourier wave number       and 

meshing density   . With their increase, the calculation time increases fast. 

From the experimental verification, we can see that anisotropy can change the contrast remarkably. 

Also, the image stress effect cannot be ignored, especially the contrast of the inclined dislocation tips. 

Our experience indicate that the anisotropic WSL-Wu-WSL total model is the closest to the 

experimental observation, but calculation speed is slower than with anisotropic Stroh bulk model.  

Concerning the models for dislocation loops, the simulation with anisotropic WSL bulk model is 

slower than with isotropic Mura bulk model. As to the image stress model and total model: 

The total calculation time depends also on the dislocation segment models employed, and the image 

stress Fourier wave number       and meshing density   . the calculation speed thus increases 

fast with their increase.  For to anisotropic calculation, the Willis–Steeds–Lothe expression can be 

used, which is based on matrix formalism.  t’s faster than anisotropic Mura’s formula, as for the 

inclined dislocation. Also, as to the isotropic calculation with the dislocation loop, Devincre’s model 

is slightly faster than isotropic Mura’s model, depending on the segmentation number. 
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Chapter.5: Results 

 

In this chapter, the displacement, displacement gradient and stress field of the inclined dislocation, 

and the dislocation loop within half space and thin foil are shown firstly. Then, their TEM image for 

the thin foil simulated with CUFOUR are presented. TEM image simulations are performed mainly in 

Fe, but also in Cu and Mo, for there are well know detailed studies in the latter materials. They are 

used here as reference.  
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The details of many beam Schaeublin-Stadelmann equations, and dislocation and dislocation loop 

elastic field models employed here are described in chapter 2 and chapter 4, respectively.There are 

two types of cubic crystals employed for the calculation in this chapter, namely Fe and Cu. Their 

mechanical properties are shown in Table 5.1 and Table 5.2 respectively. The elastic constants of  -
Fe single crystal are shown in Table 5.1 with  their dependence on temperature. 

 

Table 5.1: Elastic parameters of pure bcc Fe [Voigt, 1889; Reuss, 1929; Dever, 1972]. 

T( ) C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 

Anisotropy 

 ratio (-) 

Voigt modulus 

(GPa) 

Voigt Poisson 

ratio (-) 

Reuss 

 modulus (GPa) 

Lattice   

Parameter (nm) 

25 232.20 135.60 117.00 2.4224 89.5200 0.2735 74.5724 a=0.2866 

300 214.20 132.00 111.10 2.7032 83.1000 0.2779 66.0812 

600 186.70 126.50 105.30 3.4983 75.2200 0.2809 52.6675 

900 148.60 122.20 99.00 7.4436 64.7200 0.2880 27.6734 

 

Table 5.2: Elastic parameters of pure fcc Cu at room temperature [Voigt, 1889; Straumanis, 1969; 

Ledbetter, 1974]. 

T( ) C11 

(GPa) 

C12 

(GPa) 

C44 

(GPa) 

Anisotropy 

 ratio (-) 

Voigt modulus 

(GPa) 

Voigt Poisson  

ratio (-) 

Lattice   

Parameter (nm) 

25 169.1 122.2 75.42 3.2162 54.632 0.3249 a=0.36149 

 

5.1. Elastic field calculation  

5.1.1. Energy of dislocation loop 

There are mainly two known types of dislocation loops formed in irradiated Fe-Cr alloy, namely 

a0[001](001) and ½ a0[111](111) dislocation loops, and one less known, the ½ a0[111](110) loop. The 

energy of dislocation loops consist of two parts, namely the elastic self-energy and the dislocation 

core energy. The isotropic and anisotropic self-energy of these three types of circular dislocation loop 

is calculated with the methods described in the part 3.5 of chapter 3. Following the treatment method 

of dislocation core by Aubry [Aubry, 2011], the core cut-off parameter is equal to the norm of the 

Burgers vector  , and a core energy per unit length of  | |   ⁄  [Aubry, 2011] is added to the elastic 

self-energy of dislocation loops in both isotropic and anisotropic cases. For isotropic model, the value 

of   in the core energy expression equals to Voigt isotropic modulus, while for anisotropic model, the 

value of μ in the core energy expression is chosen to be the Reuss isotropic modulus. The 

corresponding Voigt and Reuss isotropic moduli for bcc Fe at different temperature are shown in 

Table 5.1. Figs. 5.1 (a), (c) and (e) show the isotropic and anisotropic energy of a0[001](001), ½ 

a0[111](011) and ½ a0[111](111) dislocation loops at 25, 300, 600 and 900°C as a function of loop 

radius. Figs. 5.1 (b), (d) and (f) show the anisotropic to isotropic energy ratio in the same condition. 

The isotropic energy is higher than anisotropic models for all three types of dislocation loops. The 

ratio between anisotropic and isotropic energy of all three types of dislocation loops of the same loop 

radius always decrease with increasing anisotropic ratio. With the increase of temperature,  the 

isotropic and anisotropic energy decreases in all cases. It should be noted that when loop size is 

relatively small, smaller than 4 to 6 nm, their dislocation core energy constitutes a remarkable share of 

the total energy,. 
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Figure 5.1: Energy of a dislocation loop in bulk material as a function of its radius at different 

temperatures calculated with Voigt isotropic and anisotropic models. for a0[001](001) loop (a), 

energy; (b), anisotropic to isotropic energy ratio; for ½ a0[111](011) loop (c), energy; (d), 

anisotropic to isotropic energy ratio; for ½ a0[111](111) loop (e), energy; (f), anisotropic to isotropic 

energy ratio.  

 

5.1.2. The relative error of image stress calculation for half space and thin  foil 

The calculation method is optimized with respect to the number of waves and the number of meshes 

in Fourier space. The relative errors in the image displacement amplitude at free surface and image 

(c) 

(a) (b) 

(e) (f) 

(d) 
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energy of a dislocation loop within bcc Fe half space and thin foil are calculated with isotropic 

Devincre and anisotropic WSL dislocation loop models, as a function of the wave number and 

meshing number. They are calculated for a nanometric ½ a0[111](111) loop in (111) bcc Fe half space 

and thin foil with (x,y,z) crystallographic orientations as  [   ̅], [ ̅  ] and [   ], respectively. The 

nanometric a0[001](001) loop in (001) bcc Fe half space and thin foil with (x,y,z) crystallographic 

orientations as [001], [010] and [001], respectively is also considered. 

Fig. 5.2 (a), (b), (c) and (d) show the relation with the meshing number or wave number of the relative 

error of the image energy,       , and the surface out-of-plane image displacement amplitude, 

   |   (  )     (  )|, induced by the same dislocation loop within half space or a thin foil 

using Voigt equivalent isotropy and anisotropy. Simulation parameters are given in Table 5.4. 

 

Table 5.3: Simulation parameters for studying the relative error of the image energy and surface out-

of-plane image displacement amplitude versus meshing number or wave number within half space or 

a thin foil. (PL: Periodic length in 2D space; MN: Meshing number along periodic length; WN: 

Wave of numbers for Fourier series; SN: Number of segments of the inclined dislocation and 

dislocation loop; t: Thickness of thin TEM foil; d: Depth of dislocation loop within thin TEM foil from 

bottom, or depth of dislocation loop under free surface of half space; R: Dislocation loop radius; T: 

Temperature ) 

Fig Periodic Boundary condition (PBC) Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

(a) 120 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 30 40 - 25 5 25 

(b) 120 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 30 40 30 15 5 25 

(c) 120 80 5, 10, 15, 20, 25, 30 40 - 25 5 25 

(d) 120 80 5, 10, 15, 20, 25, 30 40 30 15 5 25 
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Figure 5.2: Relative errors in the calculation using Voigt isotropic and anisotropic elasticity of the 

image displacement and image energy of pure bcc Fe containing a nanometric a0[001](001) 

dislocation loop within anisotropic (001) half space and (001) thin film and a nanometric ½ 

a0[111](111) dislocation loop within isotropic (111) half space and (111) thin film. Relative error of, 

(a) the image displacement and the image energy of half space versus meshing number; (b) the image 

displacement and the image energy of thin foil versus meshing number; (c) the image displacement 

and the image energy of half space versus wave number; (d) the image displacement and the image 

energy of thin foil versus wave number. 

 

All relative error results in Fig. 5.2 show convergence as the wave number or meshing number 

increase. The image energy calculation converges faster than the displacement convergence rate for 

both half space and thin foil. Voigt isotropy calculation converges faster than the anisotropy case. It 

appears that for free surfaces of half space and thin foil with periodic length (PL) of 120 nm , a 

meshing number (MN) and wave number (WN) of respectively 80 and 25 is reasonable in terms of 

computing time and relative error. 

 

5.1.3. Image force for half space 

5.1.3.1. Inclined dislocation 

In this part, the image stress of an inclined ½ a0[111](111) screw dislocation within (001) bcc Fe half 

space is calculated with Voigt isotropic and anisotropic image stress models, with (x,y,z) 

crystallographic orientations as [001], [010] and [001], respectively. The simulation parameters are 

shown in Table 5.4, and the simulation results are shown in Fig. 5.3 and Fig. 5.4 respectively. 

(a) (b) 

(c) (d) 
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Table 5.4: Simulation parameters for an inclined ½ a0[111](111) screw dislocation within (001) bcc 

Fe half space.  

Meshing PBC Dislocation physical parameters 

PL (nm) MN WN b    T ( ) 

40 100 30 ½ a0[111] (111) 25 

 

   

   
Figure 5.3: Surface image elastic field for an inclined ½ a0[111](111) screw dislocation within (001) 

bcc Fe half space, calculation with isotropic Devincre model. Image stress (a)    ; (b)    ; (c)    ; 

Image displacement (nm) along (d) X; (e) Y; and (f) Z.  

 

   

   
Figure 5.4: Surface image elastic field for an inclined ½ a0[111](111) screw dislocation within (001) 

bcc Fe half space, calculation with anisotropic WSL model. Image stress (a)    ; (b)    ; (c)    ; 

Image displacement (nm) along (d) X; (e) Y; and (f) Z.  

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 5.3 and Fig. 5.4 show that the image stress field amplitude with isotropy is around 2 times higher 

than the one with anisotropy. The amplitude of the resulting out-of-plane and in plane image 

displacement field with isotropy is around 3 times higher than the amplitude of anisotropy, with a 

dependence on x, y, or z direction.  

 

5.1.3.2. Dislocation loop 

In this part, the image stress of a ½ a0[111](111) dislocation loop within (111) bcc Fe half space is 

calculated with Voigt isotropy and anisotropy image stress models, with (x,y,z) crystallographic 

orientations as  [   ̅], [ ̅  ] and [   ], respectively. The simulation parameters are given in Table 

5.5, and the simulation results are shown in Fig. 5.5 and Fig. 5.6 respectively. 

 

Table 5.5: Simulation parameters for a ½ a0[111](111) dislocation loop within (111) bcc Fe half 

space. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN b    d (nm) R (nm) T ( ) 

80 80 30 40 ½ a0[111] (111) 10 5 25 

 

   

   
Figure 5.5: Surface elastic field of a ½ a0[111](111) dislocation loop within (111) bcc Fe half space, 

calculation with isotropic Devincre model. Image stress (a)    ; (b)    ; (c)    ; Image displacement 

(nm) along (d) X; (e) Y; and (f) Z.  

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 5.6: Surface elastic field of a ½ a0[111](111) dislocation loop within (111) bcc Fe half space, 

calculation with anisotropic WSL model. Image stress (a)    ; (b)    ; (c)    ; Image displacement 

(nm) along (d) X; (e) Y; and (f) Z. 

 

Fig. 5.5 and Fig. 5.6 show that the in plane image stress amplitude (       ) is nearly the same for 

both isotropic and anisotropic, while the out of plane image stress field amplitude     with anisotropy 

is around 1.35 times the amplitude with isotropy. The resulting in plane image displacement 

amplitude with isotropy is nearly the same as with anisotropy. While the displacement field essential 

feature is different. The out-of-plane image displacement amplitude of anisotropic calculation is 

around 1.35 times the amplitude of isotropic Devincre calculation case. The image displacement field 

also evolves, from circular to triangular shape with rounded corners. 

 

5.1.3.3. Factors influencing the effect of dislocation loop image stress 

In this part, the impact of anisotropy ratio which relates to the effect of temperature, loop depth under 

free surface, loop radius on the in plane and out-of-plane image displacement amplitude and image 

energy of a ½ a0[111] (111) dislocation loop within (111) bcc Fe half space and an a0[001](001) 

dislocation loop within (001) bcc Fe half space is evaluated. The employed dislocation loop models 

are the isotropic Devincre and the anisotropic WSL ones.  

In the following, the effect of the anisotropy ratio is described. The elastic modulus of bcc Fe is 

shown in Table 5.1. The simulation parameters are shown in Table 5.6, and the simulation results are 

shown in Fig. 5.7.  

 

Table 5.6: Simulation parameters for anisotropy ratio effect of a ½ a0[111](111) dislocation loop 

within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc Fe half space. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN b    d (nm) R (nm) T ( ) 

80 80 30 40 - - 10 5 25, 300, 600, 900 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 5.7: Image displacement versus temperature of (a) an a0[001](001) dislocation loop within 

(001) bcc Fe half space; and (b) a ½ a0[111](111) dislocation loop within (111) bcc Fe half space.  

 

As shown in Fig. 5.7, when comparing anisotropic calculation results for a ½ a0[111](111) dislocation 

loop within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc Fe half 

space, the in plane and out-of-plane image displacement amplitudes with anisotropy show increasing 

or decreasing trend with the increase of temperature, while the in plane and out-of-plane image 

displacement amplitudes with isotropy remains nearly the same. The image displacement amplitude 

for the a0[001](001) dislocation loop does not changes so much with increasing temperature, while the 

impact for the ½ a0[111](111) dislocation loop is remarkable. It is interesting to notice that the out-of-

plane image displacement amplitude for a ½ a0[111](111) dislocation loop calculated with anisotropy 

is much stronger than with isotropy, while the one for a0[001](001) dislocation loop calculated with 

isotropy is larger than with anisotropy. 

The effect of the dislocation loop radius effect is now described. The anisotropic image displacement 

field is calculated with WSL-Wu anisotropic image stress model. The simulation parameters are 

shown in Table 5.7, and the simulation results are shown in Fig. 5.8. 

 

Table 5.7: Simulation parameters for studying loop radius effect of a ½ a0[111](111) dislocation loop 

within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc Fe half space. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN d (nm) b    R (nm) T ( ) 

80 80 30 40 10 - - 1,2,3,4,5,6,7,8,9,10, 11 25  

 

(a) (b) 
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Figure 5.8: Image force induced surface displacement as a function of loop radius of a ½ a0[111](111) 

dislocation loop within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc 

Fe half space, calculated with anisotropic WSL dislocation loop model. Loop depth is 10 nm. 

 

Fig. 5.8 shows that when loop radius is smaller than 4 to 5 nm, the in-plane image displacement 

amplitude for the ½ a0[111](111) dislocation loop within (111) bcc Fe half space and for the 

a0[001](001) dislocation loop within (001) bcc Fe half space calculated with anisotropic WSL model 

are nearly the same. However, when loop size is larger than 4 to 5 nm, the in plane image 

displacement amplitude for the a0[001](001) dislocation loop increases sharply with loop radius, and 

is much larger than for the ½ a0[111](111) dislocation loop of the same size. While the out-of-plane 

image displacement amplitude for the a0[001](001) dislocation loop is always smaller than for the ½ 

a0[111](111) dislocation loop. In other words, with the increase of loop radius, the out-of-plane image 

displacement amplitude for the ½ a0[111](111) dislocation loop within (111) bcc Fe half space is 

always larger than for the corresponding a0[001](001) dislocation loop of the same size within (001) 

bcc Fe half space, but their difference decreases. Conversely, the in plane image displacement for the 

a0[001](001) dislocation loop within (001) bcc Fe half space is larger than for the corresponding ½ 

a0[111](111) dislocation loop of the same size within (111) bcc Fe half space, when loop radius is 

relatively large. 

In the following, the effect of the dislocation loop depth is described. The anisotropic image 

displacement field is calculated with WSL-Wu anisotropic image stress model. The simulation 

parameters are shown in Table 5.8, and the simulation results are shown in Fig. 5.9. 

 

Table 5.8: Simulation parameters for studying loop depth effect of a ½ a0[111](111) dislocation loop 

within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc Fe half space. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN b    d (nm) R (nm) T ( ) 

40,60,80,100,120 80,100 30 40 - - 5,10,15,20,25 5 25  
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Figure 5.9: Simulation results for studying loop depth effect of a ½ a0[111](111) dislocation loop 

within (111) bcc Fe half space and an a0[001](001) dislocation loop within (001) bcc Fe half space, 

calculated with anisotropic WSL dislocation loop model. Loop radius is 5 nm. 

 

As shown in Fig. 5.9, the in plane and out-of-plane image displacement amplitudes for both 

dislocation loops decrease with the increase of loop depth. However, with the increase of loop depth, 

the in plane and out-of-plane image displacement amplitude for a0[001](001) dislocation loop 

decreases more steeply than for the ½ a0[111](111) dislocation loop within (111) bcc Fe half space. In 

summary, the out of plane image displacement amplitude of ½ a0[111](111) dislocation loop is larger 

than for the corresponding a0[001](001) dislocation loop, and decreases slowly with the increase of 

loop depth. Conversely, the in plane image displacement amplitude for the a0[001](001) dislocation 

loop is stronger than for the corresponding ½ a0[111](111) dislocation loop when relatively close to 

free surface, but decreases rapidly with increasing loop depth. It remains then nearly of the same 

amplitude, as for the corresponding ½ a0[111](111) dislocation loop. 

It can be concluded from the calculation results regarding the impact of temperature, loop radius, and 

loop depth on the image displacement of ½ a0[111](111) dislocation loop within (111) bcc Fe half 

space and a0[001](001) dislocation loop within (001) bcc Fe half space that (1) the out-of-plane image 

displacement is more important than in plane image displacement for ½ a0[111](111) dislocation loop 

within (111) bcc Fe half space, and (2) the in plane image displacement is more important  than out-of 

plane image displacement for a0[001](001) dislocation loop within (001) bcc Fe half space.  

 

5.1.4. Image force for thin foil 

5.1.4.1. Inclined dislocation 

The thin foil relates to the TEM thin foil, and for the purpose of the TEM image simulation we remind 

here that it is the displacement gradient that is considered, because it is the input for CUFOUR code. 

In this subsection, the image stress induced displacement gradient fields are calculated, with a study 

of the difference between Voigt isotropic method and anisotropic method for a ½ a0[111](111) 

inclined screw dislocation within (001) bcc Fe thin foil. The isotropic and anisotropic image 
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displacement gradient field is calculated respectively from Devincre-Weinberger isotropic image 

stress and WSL-Wu anisotropic image stress models in Fourier space. The simulation parameters are 

shown in Table 5.9, and the simulated results are shown in Fig. 5.10 and Fig. 5.11 respectively.  

 

Table 5.9: Simulation parameters for a ½ a0[111](111) inclined dislocation within (001) bcc Fe thin 

foil.  

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) 

60 120 30 10 30 ½ a0[111] [111] 25 

 

   

   
Figure 5.10: Image force induced displacement gradient for a ½ a0[111](111) inclined screw 

dislocation within (001) bcc Fe thin foil via isotropic Devincre model in the upper surface (a), (du/dz); 

(b), (dv/dz); (c), (dw/dz); and lower surface (d), (du/dz); (e), (dv/dz); (f), (dw/dz). 

 

   

   
Figure 5.11: Image force induced displacement gradient for a ½ a0[111](111) inclined screw 

dislocation within (001) bcc Fe thin foil via anisotropic WSL model in the upper surface (a), (du/dz); 

(b), (dv/dz); (c), (dw/dz); and lower surface (d), (du/dz); (e), (dv/dz); (f), (dw/dz). 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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It appears in Fig. 5.10 and Fig. 5.11 that (1) the image gradient amplitude of a ½ a0[111](111) inclined 

screw dislocation with anisotropy is stronger than the corresponding image displacement gradient 

amplitude with isotropy, and (2) the image gradient via anisotropy shows stronger asymmetrical 

properties than with isotropy. 

 

5.1.4.2. Dislocation loop 

In this subsection, a prismatic ½ a0[111](111) dislocation loop situated in the middle of a (111) bcc Fe 

thin foil is employed to study the image displacement field difference with Voigt isotropic and 

anisotropic models. The crystallographic orientations are: [   ̅], [ ̅  ] and [   ] respectively. The 

isotropic and anisotropic image displacement field is calculated respectively with Devincre-

Weinberger isotropic image stress and WSL-Wu anisotropic image stress models in Fourier space. 

The simulation parameters are shown in Table 5.10, and the corresponding image stress and image 

displacement field are shown in Fig. 5.12 and Fig. 5.13 respectively.  

 

Table 5.10: Simulation parameters for a ½ a0(111)[111] dislocation loop within (111) thin foil. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) b    d (nm) R (nm) T ( ) 

120 80 30 40 28 ½ a0[111] [111] 14 3.0 25 

 

Fig. 5.12 shows the isotropic image stress as induced in-plane and out-of-plane displacement fields, 

and Fig. 5.13 shows the anisotropic case.  
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Figure 5.12: Image force induced in plane and out-of-plane displacement fields for a ½ a0[111](111) 

loop within (111) bcc Fe isotropic thin foil, calculated with isotropic Devincre dislocation model. 

Upper surface image stress (a), Txz; (b), Tyz; (c), Tzz; Upper surface image displacement (a) du (nm); 

(e), dv (nm); (f), dw (nm); Lower surface image stress (g), Txz; (h), Tyz; (i), Tzz; Lower surface image 

displacement (j), du (nm); (k), dv (nm); (l), dw (nm). 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Figure 5.13: Image force induced in plane and out-of-plane displacement fields for a ½ a0[111](111) 

loop within (111) bcc Fe anisotropic thin foil, calculated with anisotropic WSL dislocation model. 

Upper surface image stress (a), Txz; (b), Tyz; (c), Tzz; Upper surface image displacement (a) du (nm); 

(e), dv (nm); (f), dw (nm); Lower surface image stress (g), Txz; (h), Tyz; (i), Tzz; Lower surface image 

displacement (j), du (nm); (k), dv (nm); (l), dw (nm). 

 

It can be concluded from the calculation results shown in Fig. 5.12 and Fig.5.13 that a stronger image 

stress induced in plane and out-of-plane image displacement amplitude is produced with anisotropy, 

relative to the amplitude calculated by Voigt isotropy. Especially, the out of plane image displacement 

amplitude with anisotropy is several times the amplitude of the isotropic calculation case. The image 

displacement field characteristic features with anisotropy model are quite different from Voigt 

isotropic model. In effect, the image displacement field evolves from a circular to a triangular shape 

with rounded corners. It can be concluded that anisotropy cannot be neglected when calculating the 

image stress of dislocation loops within anisotropic bcc Fe thin foil. 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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5.1.4.3. Comparison between bulk, image and total displacement field 

In order to study the impact of anisotropic image stress on the displacement field of dislocation loops 

within a thin foil, a prismatic ½ a0[111](111) dislocation loop situated in the middle of (111) bcc Fe 

thin foil and a prismatic  a0[001](001) dislocation loop situated in the middle of (001) bcc Fe thin foil 

are employed. The corresponding anisotropic bulk displacement and image displacement field are 

shown in Fig. 5.14 and Fig. 5.15, respectively. The anisotropic bulk displacement is calculated with 

Mura area integration described in chapter.3, and the anisotropic image displacement field is 

calculated with WSL-Wu anisotropic image stress method in Fourier space as described in chapter 3 

as well. The simulation parameters are shown in Table 5.11, and the simulated results are shown in 

Fig. 5.14 and Fig. 5.15 respectively. 

 

Table 5.11: Simulation parameters for studying the impact of image stress effect on the modification 

of the bulk displacement field for a prismatic ½ a0[111](111) dislocation loop situated in the middle 

of (111) bcc Fe a thin foil of 30.0 nm thickness and a prismatic a0[001](001) dislocation loop situated 

in the middle of (001) bcc Fe thin foil, 30.0 nm thick. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

80 80 30 40 30 15 5.0 25 
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Figure 5.14: Bulk, image and total displacement fields for a prismatic a0[001](001) dislocation loop 

situated in the middle of a (001) bcc Fe thin foil, 30.0 nm thick. In plane displacement du of (a), upper 

surface; (b), lower surface; In plane displacement dv of (c), upper surface; (d), lower surface; Out-of-

plane displacement dw of (e), upper surface; (f), lower surface. 

 

(c) 

(a) (b) 

(e) (f) 

(d) 
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Figure 5.15: Bulk, image stress and total displacement field for a prismatic ½ a0[111](111) 

dislocation loop situated in the middle of a (111) bcc Fe thin foil, 30.0 nm thick. In plane 

displacement du of (a), upper surface; (b), lower surface; In plane displacement dv of (c), upper 

surface; (d), lower surface; Out-of-plane displacement dw of (e), upper surface; (f), lower surface. 

 

It is shown in Fig. 5.14 and Fig. 5.15 that the bulk displacement amplitude is comparable to the 

corresponding image displacement amplitude, with a dependence on foil orientation and dislocation 

loop properties. The out-of-plane bulk displacement field is strengthened remarkably. A ½ 

a0[111](111) dislocation loop within (111) bcc Fe thin foil shows strongest out-of-plane image 

displacement amplitude, while an a0[001](001) dislocation loop within (001) bcc Fe thin foil shows 

weaker out-of-plane displacement. As to the in plane bulk displacement field, it is remarkable to 

notice than the impact of image stress is to cancel it, thus recovering the distorted lattice in the plane 

parallel to the free surfaces of the thin foil.  

 

(c) 

(a) (b) 

(e) (f) 

(d) 
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5.1.4.4. Factors influencing thin foil effect 

As shown in Figs. 5.12, 5.13, 5.14, and Fig. 5.15, the difference between isotropic and anisotropic 

image stress effect is remarkable, with a dependence on the orientation of bcc Fe thin foil, anisotropy 

ratio and dislocation loop type.  

In the following the effect of the anisotropy ratio on the image stress induced displacement is studied. 

The elastic modulus of bcc Fe for the calculation is chosen from Table 5.1. The isotropic and 

anisotropic image displacement field is calculated from Devincre-Weinberger isotropic image stress 

and WSL-Wu anisotropic image stress models in Fourier space respectively. The simulation 

parameters are shown in Table 5.12, and the simulation results are shown in Fig. 5.16. 

 

Table 5.12: Simulation parameters for a prismatic ½ a0[111](111) dislocation loop situated in the 

middle of (111) bcc Fe thin foil of 50.0 nm thickness and for a prismatic a0[001](001) dislocation 

loop situated in the middle of (001) bcc Fe thin foil, 50.0 nm thick.  

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

120 100 30 40 50 25 5.0 25, 300, 600, 900 
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Figure 5.16: Temperature dependence of the image force induced displacement for a prismatic ½ 

a0[111](111) dislocation loop situated in the middle of (111) bcc Fe thin foil, 50.0 nm thick, and for a 

prismatic  a0[001](001) dislocation loop situated in the middle of a (001) bcc Fe thin foil, 50.0 nm 

thick, calculated with isotropic Devincre and anisotropic WSL dislocation loop model. In plane image 

displacement (a), du; and (b), dv; and out-of-plane image displacement (c), dw. 

 

(a) 

(b) 

(c) 
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It is shown in Fig. 5.16 that the in plane and out-of-plane displacements with Voigt isotropy show 

little change with temperature for both dislocation loops. However, both the in plane and out-of-plane 

image displacement fields with anisotropy show increasing trends with temperature. The upper and 

lower free surfaces show the same displacement field feature and magnitude for the a0[001](001) 

dislocation loop, while the upper surface for the ½ a0[111](111) dislocation loop shows stronger 

displacement magnitude than the lower surface. The in-plane displacement magnitude for ½ 

a0[111](111) dislocation loop is nearly the same as for a0[001](001) dislocation loop, depending on 

upper or lower surface, and temperaturę. Conversely, the out-of-plane displacement  magnitude  for ½ 

a0[111](111) dislocation loop is always several times larger than for a0[001](001) dislocation loop. 

In the following the effect of dislocation loop radius on the image stress induced displacement field is 

presented. The anisotropic image displacement field is calculated with WSL-Wu anisotropic image 

stress models in Fourier space. The elastic modulus of bcc Fe for the calculation is chosen from Table 

5.1. The simulation parameters are shown in Table 5.13, and the simulation results are shown in Fig. 

5.17. 

 

Table 5.13: Simulation parameters for a prismatic ½ a0[111](111) dislocation loop situated in the 

middle of (111) bcc Fe thin foil of 50.0 nm thickness and for a prismatic  a0[001](001) dislocation 

loop situated in the middle of (001) bcc Fe thin foil, 50.0 nm thick, calculated with anisotropic WSL 

dislocation loop formula. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

120 100 30 40 50 25 2, 4, 6, 8, 10 25 

 

 

Figure 5.17: Dislocation loop radius effect on the image force induced surface displacement for a 

prismatic ½ a0[111](111) dislocation loop situated in the middle of (111) bcc Fe thin foil, 50.0 nm 

thick, and for a prismatic a0[001](001) dislocation loop situated in the middle of (001) bcc Fe thin 

foil of 50.0 nm thickness, calculated with anisotropic WSL dislocation loop formula. 

 

As shown in Fig. 5.17, the in-plane image displacement amplitude for a0[001](001) dislocation loop is 

nearly the same as ½ a0[111](111) dislocation loops, while the out-of-plane image displacement 



Chapter.5: Results 

90 

 

amplitude for a0[001](001) dislocation loop is smaller than for the ½ a0[111](111) dislocation loop of 

the same size. In other words, with the increase of loop radius, the ½ a0[111](111) dislocation loop 

within (111) foil shows the largest out-of-plane image displacement amplitude, while a0[001](001) 

dislocation loop within (001) foil shows remarkable in-plane image displacement. As shown in Fig. 

5.14 and Fig. 5.15, the corresponding out-of-plane image displacement of upper and lower surfaces 

for a0[001](001) dislocation loop in (001) foils shows symmetrical properties. However, for ½ 

a0[111](111) dislocation within (111) thin foil, the corresponding out-of-plane image displacement at 

upper and lower surfaces within (111) foil still loses symmetrical properties, the image displacement 

amplitude on the upper surface is a little stronger than on the lower surface.  

In the following the effect of dislocation loop depth on the image induced displacement field is 

presented. A ½ a0[111](111) dislocation loop within (111) thin foil and an a0[001](001) dislocation 

loop within (001) thin foil with dislocation loop radius 1.0 and 5.0 nm respectively are employed for 

the calculation. The simulation parameters are shown in Table 5.14, and the simulated results are 

shown in Fig. 5.18 and 5.19 respectively. 

 

Table 5.14: Simulation parameters for a ½ a0[111](111) dislocation loop within (111) thin foil and 

for an a0[001](001) dislocation loop within (001) thin foil. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

20, 40, 80, 120, 150, 200 80 30 40 50 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 48 1.0, 5.0 25 

 

 
Figure 5.18: The dependence of surface image displacement on loop depth within thin foil for ½ 

a0[111](111) dislocation loop within (111) thin foil and for a0[001](001) dislocation loop within (001) 

thin foil with dislocation loop R=1.0 nm. 
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Figure 5.19: The dependence of surface image displacement on loop depth within thin foil for ½ 

a0[111](111) dislocation loop within (111) thin foil and for a0[001](001) dislocation loop within (001) 

thin foil with dislocation loop R=5.0 nm. 

 

As shown in Fig. 5.18 and Fig. 5.19, when comparing results for ½ a0[111](111) dislocation loop and 

for a0[001](001) dislocation loop, with the increase of loop depth under free surface, the in plane 

image displacement amplitude and out-of-plane image displacement amplitude for both ½ 

a0[111](111) dislocation and for a0[001](001) dislocation loop decrease. Moreover, the in plane and 

out-of-plane image displacement amplitudes for a0[001](001) dislocation loop drop sharply with loop 

depth, more steeply than for the ½ a0[111](111) dislocation loop. In other words, with the increase of 

loop depth within bcc Fe thin foil, the ½ a0[111](111) dislocation loop within (111) foil shows the 

largest out of plane distortion amplitude, and decreases more slowly with depth. Conversely, the 

a0[001](001) dislocation loop within (001) foil shows stronger in-plane image displacement, and 

decreases sharply, finally reaching nearly the same amplitude as ½ a0[111](111) dislocation loop 

within (111) foil. 

In summary, it can be concluded from the calculation regarding the impact of anisotropy ratio, loop 

radius and loop depth within thin foil on the image displacement for ½ a0[111](111) dislocation loop 

within (111) thin foil and for the a0[001](001) dislocation loop within (001) thin foil that (1) the out-

of-plane image displacement is more important than in plane image displacement for ½ a0[111](111) 

dislocation loop within the (111) foil. While (2) the in plane image displacement is more important  

than out-of-plane displacement for the a0[001](001) dislocation loop in (001) foil.  

 

5.2. TEM image simulation results for inclined dislocation 

Before starting many beam TEM image simulation with CUFOUR, some elements about the 

employed diffraction condition are reminded.  

The ng(mg) notation is adopted to describe the diffraction condition, where ng is the imaging beam, 

and mg is the position where the Ewald sphere cuts the systematic rows. The diffraction conditions 

employed for the diffraction contrast TEM image simulations in this chapter are the following:  

(1) If two beam simulation schemes are employed, only 0g and 1g are included in the calculation. 
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(2) If many beam simulation schemes are employed, the included beams for diffraction condition are 

shown in Table 5.15. 

 

Table 5.15: Many beam TEM image simulation condition employed in CUFOUR. 

Beam diffraction condition Beam number  Included beams 

g(1.10g) 6 -2g,-1g, 0g, 1g, 2g, 3g 

g(2.10g) 5 -1g, 0g, 1g, 2g, 3g 

g(3.10g) 6 -1g, 0g, 1g, 2g, 3g, 4g 

g(3.75g) 8 0g, 1g, 2g, 3g, 4g, 5g, 6g, 7g 

g(4.10g) 7 -1g, 0g, 1g, 2g, 3g, 4g, 5g 

g(4.75g) 8 0g, 1g, 2g, 3g, 4g, 5g, 6g,7g 

g(6.25g) 8 0g, 1g, 2g, 3g, 4g, 5g, 6g, 7g 

 

Note that the effect of beam convergence angle is not studied in the current thesis, and all the 

simulation tasks are performed at a fixed convergence angle of 10 mrad [Schaeublin, 2000]. 

The study of the dislocation core impact on the simulation TEM images is not included in all the 

following TEM simulations of inclined dislocation and dislocation loop.  

 

5.2.1. Comparison between elasticity models  

TEM BF many beam image simulation for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil along (001) pole is performed for studying the efficiency and reliability of different isotropic 

and anisotropic inclined dislocation line models as described in chapter 4. The diffraction vector is: 

g=(020), and the diffraction condition is: 0g(1.1g). The simulation parameters are given in Table 5.16, 

and the simulated images are shown in Fig. 5.20 and Fig. 5.21 respectively. 

 

Table 5.16: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil. 

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

100 100 30 20 70 ½ a0[111] [111] 25 0.2 
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Beam Models 

0g(1.1g), BF, 

g=(   ) 

(a) (b) (c) (d) 

    
(e) (f) (g) (h) (i) (j) 

      
Figure 5.20: Simulated TEM images of a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil along (001) pole. The diffraction vector is: g=(   ), and the diffraction condition is: g(1.1g). 

(a), anisotropic WSL finite model; (b), anisotropic infinite Stroh model; (c), anisotropic WSL-Wu-

WSL total model, virtual dislocation outside thin foil not included; (d), anisotropic WSL-Wu-WSL 

total model, virtual dislocation outside thin foil included; (e), isotropic Mura finite model; (f), 

isotropic infinite Hirth-Lothe  model; (g), isotropic Devincre-Weinberger-Mura total model, virtual 

dislocation outside thin foil not included;  (h), isotropic Devincre-Weinberger-Mura total model, 

virtual dislocation outside thin foil included;  (i), isotropic Mura-Weinberger-Mura total model, 

virtual dislocation outside thin foil not included;  (j), isotropic Mura-Weinberger-Mura total model, 

virtual dislocation outside thin foil included. 

 

beam  (a)  (b)  (c)  (d)  (e)  (f) 

0g(1.1g), BF, 

g=(   ) 

      
Figure 5.21: Simulated many beam TEM images of a ½ a0[   ](   ) inclined screw dislocation 

within (001) bcc Fe thin foil along (001) pole. The diffraction vector is (   ), and the diffraction 

condition is: g(1.1g). (a), anisotropic WSL-Wu image gradient model, virtual dislocation outside thin 

foil not included; (b), anisotropic WSL-Wu image gradient model, virtual dislocation outside thin foil 

included; (c), isotropic Devincre-Weinberger image gradient model, virtual dislocation outside thin 

foil not included; (d), isotropic Devincre-Weinberger image gradient model, virtual dislocation 

outside thin foil included; (e), isotropic Mura-Weinberger image gradient model, virtual dislocation 

outside thin foil not included; (f), isotropic Mura-Weinberger image gradient model, virtual 

dislocation outside thin foil included. 

 

Figs. 5.20 (c), (d), (g), (h), (i) and (j) show that the essential contrast features of the six total gradient 

models match each other; Figs. 5.20 (a) and (e) show that the essential contrast features of the two 

finite gradient models match each other; Figs. 5.21 (b) and (f) show that the essential contrast features 

of the two bulk gradient models match each other; Fig. 5.21 (a), (b), (c), (d), (e) and (f) show that the 

essential contrast features of the six image stress effect models match each other. These models show 

that the contrast details difference between isotropy and anisotropy models is remarkable, and the 

black-white contrast via anisotropy shows elongated and rotated contrast features, compared to 

isotropy one. As shown in Figs. 5.20 (a), (b), (c) and (d), when       is satisfied for inclined 

dislocation, the image stress effect on the contrast is not remarkable. 

Considering the anisotropy feature of most crystal and the calculation efficiency, if free surface effect 

is not included for inclined dislocation, Fig. 5.20 (b) anisotropic infinite Stroh model is the most 

g g g g g g 

g g g g g g 

g g g g 
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reasonable models for simulation. If free surface effect is included for inclined dislocation, Fig. 5.20 

(c) anisotropic WSL-Wu-WSL total model will be the best option.  

 

5.2.2. Verification by TEM experiments with intensity profile information 

In order to assess the reliability of CUFOUR displacement gradient field implementation schemes, a 

comparison between a 200 kV TEM experimental image and simulated image of an inclined screw 

dislocation in bcc Fe is performed. The TEM sample preparation and TEM bright field experiments 

are performed following the procedures described in chapter 2. The thickness of TEM thin foil was 

calculated with EELS as described in chapter 2. TEM BF experimental observation is performed on a 

200 kV TEM JOEL2010, at PSI Villigen. 

 

5.2.2.1. Inclined dislocation within [001] bcc Fe thin foil 

The experimental TEM imaging of a ½ a0[111] inclined dislocation within a (001) bcc Fe thin foil 

along (001) pole is performed with g=(020), close to a two beam dynamical diffraction condition, and 

the experimental image is shown in Fig. 22(d). The thickness measured by EELS is 88 nm.  

TEM BF two beam image simulation is performed for g=(020). The simulation parameters are shown 

in Table 5.17, and the images simulated with two beams for the 0g(0.65g) diffraction condition are 

shown in Fig. 5.22. The corresponding intensity profile comparison between simulated and 

experimental image is shown in Fig. 5.23. It should be noted that when producing the profile along 

the dashed yellow line, normalization process should be performed for both the intensity and the 

position firstly. The intensity of experimental image in Fig. 5.22(d) is linearly scaled and shifted 

within [0, 1] region, thus the maximum and minium intensity of experimental image is the same as the 

maximun and minium intensity of smulated TEM images via anisotropic Stroh infinite model in Fig. 

5.22 (c). The actual profile line position of the experimental TEM image is also scaled and shifted 

within [0, 1] normalized position region. Thus, the intensity profile can be compared between 

experimental and simulated TEM images at the same position, and real TEM image observation can 

be verified reliably. 

 

Table 5.17: Simulation parameters for a ½ a0[111] inclined dislocation within (001) bcc Fe thin foil, 

with two beams g(0.65g) diffraction conditions included in CUFOUR. 

PBC Dislocation physical parameters 

ZA    PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

[001] [001] 180 120 30 50 88 ½ a0[111] [111] 25 0.2 

 

   
 

Figure 5.22: Experimental and simulated TEM images of a ½ a0[111] inclined dislocation within a 

(001) thin foil along (001) pole, with two beams, g=(020), g(0.65g) diffraction condition. (a), 

anisotropic WSL-Wu image gradient model; (b), anisotropic WSL-Wu-WSL total gradient model; (c), 

anisotropic Stroh infinite gradient model; (d), Experimental TEM image. The intensity profile, taken 

along the marked line, is around 7.0 nm away from the dislocation line. It is shown in Fig. 5.21. 

g g g 

g 
(a) (b) (c) (d) 
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Figure 5.23: Intensity profile of experimental and simulated TEM image for a ½ a0[111] inclined 

dislocation within (001) bcc Fe thin foil along the yellow dashed line shown in Fig. 5.20(d). 

 

It can be concluded from Fig. 5.22 and 5.23 that the experimental and simulated TEM images match 

quite well. The intensity profile within the black-white oscillations of the dislocation also matches 

each other. However, the background intensity of the simulated TEM image profile differs from the 

experimental one in the regions away from the dislocation. As shown in Fig. 5.23, the black-white 

oscillations simulated via WSL-Wu-WSL model will be slightly shifted along the inclined dislocation 

direction, compared to the anisotropic Stroh infinite model. 

 

5.2.2.2. Verification of inclined dislocation within [011] bcc Fe thin foil 

The experimental TEM imaging of a ½ a0[111] inclined dislocation within (011) bcc Fe thin foil along 

[011] pole is performed with g=(200), close to two beam dynamical diffraction condition, and the 

experimental image is shown in Fig. 5.24(d). The thickness measured by EELS is 57 nm.  

TEM BF imaging is performed with g=(200) for g(0.6g) diffraction condition. The simulation 

parameters are shown in Table 5.18, and the images simulated with two beams for the g(0.6g) 

diffraction condition are shown in Fig. 5.24. The corresponding intensity profile of simulated and 

experimental image is shown in Fig. 5.25 and Fig. 5.26 respectively. 
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Table 5.18: Simulation parameters for a ½ a0[111] inclined dislocation within (011) bcc Fe thin foil, 

with two beams g(0.60g) diffraction condition included in CUFOUR.  

PBC Dislocation physical parameters 

ZA    PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

[011] [011] 105.0 120 30 20 57.1338 ½ a0[111] [111] 25 0.2 

 

    
Figure 5.24: Experimental and simulated TEM image of a ½ a0[111] inclined dislocation within (011) 

bcc Fe thin foil along (011) pole, with g=(200), g(0.60g) diffraction condition. (a), anisotropic WSL-

Wu image gradient model; (b, anisotropic WSL finite gradient model; (c), anisotropic WSL-Wu-WSL 

total gradient model; (d), Experimental TEM image.  

 

  

  
Figure 5.25: Intensity profile of experimental and simulated TEM image with two beam g=(200), 

g(0.60g) diffraction condition for a ½ a0[111](111) inclined dislocation within (011) bcc Fe thin foil 

along (011) pole. Intensity profile taken  along (a), L1; (b), L2; Intensity profile of  (c), experimental 

and simulated TEM image simulated with anisotropic elasticity along L1; (d), experimental and 

simulated TEM image simulated with anisotropic elasticity along L2. 
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Figure 5.26: Intensity profile of experimental and simulated TEM image with two beam g=(200), 

g(0.60g) diffraction condition for a ½ a0[111](111) inclined dislocation within (011) bcc Fe thin foil 

along (011) pole. Intensity profile taken along (a), L3, around 3.0 nm away from the dislocation line; 

(b), L4, around 5.5 nm away from the dislocation line. Intensity profile of experimental and simulated 

TEM image simulated with anisotropic elasticity along (c), L3; (d), L4.  

 

It can be concluded from Fig. 5.24, 5.25 and 5.26 that the experimental and simulated TEM images 

matches each other reasonably well, and that the essential features of the intensity profile along L1, 

L3 and L4 also match each other quite well. However, the background intensity of the simulated TEM 

image profile differs from experimental intensity profile along L2. aIt could be due to the fact that the 

absolute contrast amplitude along L2 is rather weak, and thus drown into the background noise. As 

shown in Fig. 5.25, the difference between the intensity amplitudes simulated via anisotropic WSL-

Wu-WSL model and the anisotropic Stroh infinite model along L1 and L2 is quite small in the region 

near to dislocation line, while their intensity amplitudes differ a lot in the region far away from 

dislocation line. As shown in Fig. 5.26, the difference between the intensity amplitudes simulated via 

anisotropic WSL-Wu-WSL model and the anisotropic Stroh infinite model along L3 and L4 is quite 

small. 

 

5.2.3. Image force effect induced end-on contrast 

Surface relaxation plays an important role in the TEM image of crystal defects, as is well known for 

end-on screw dislocations. Indeed, the so-called Eshelby twist induced by the free surface is able to 

generate a black-white contrast image for end-on screw dislocations in TEM diffraction contrast 

imaging.  
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Tunstall et al [Tunstall, 1964] showed that in two beam conditions the diffraction contrast is in the 

form of black–white lobes perpendicular to the diffracting vector, with the line of no contrast parallel 

to g. Hirth [Hirth, 2007] shows that the surface relaxation for screws normal to thin foils, calculated 

by Eshelby and Stroh [Eshelby, 1951] on isotropic elasticity, gives rise to diffraction contrast in the 

form of black-white lobes, when imaged in weak beam dark field under two beam diffraction 

conditions, with the line of no contrast parallel to g, and can be used to determine the sign of the 

dislocation. Unlike weak beam images of inclined dislocations, the image contrast field in bright and 

dark field is very broad owing to the long range nature of the displacement field of a dislocation.  

TEM many beam image simulation for an a0[   ] end-on dislocation within (   ) bcc Fe thin foil 

along (   ) pole is performed. The diffraction vector is: g=(   ), and the diffraction conditions are: 

0g(1.1g), 1g(1.1g) and 1g(3.1g). The simulation parameters for the thin TEM foil are shown in Table 

5.19, and the simulated images are shown in Fig. 5.27.  

 

Table 5.19: Simulation parameters for an a0[   ](   ) end-on screw dislocation in (   ) bcc Fe 

thin foil. 

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

70 80 30 20 30, 31, 32, 33, 34, 35 a0[   ] [   ] 25 0.2 

 

Beam t (nm) 

30 31 32 33 34 35 

0g(1.1g), 

g=(   ), BF 

      
1g(1.1g), 

g=(   ), DF 

      
1g(3.1g), 

g=(   ), DF 

      
Figure 5.27: Simulated TEM images of an a0[   ] end-on screw dislocation within (   ) bcc Fe thin 

foil along (   ) pole. The diffraction vector is: g=(   ), and the diffraction conditions are: g(1.1g) 

and g(3.1g). The dislocation model is anisotropic WSL-Wu image model. 

 

It can be concluded from Fig. 5.27 when       invisibility criterion is satisfied for end-on 

dislocation, the image stress effect on the contrast is remarkable, with the emergency of a broad 

black-white contrast field. 

5.2.4. Image force effect relation to TEM foil thickness  

TEM DF image simulation for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe thin foil 

along (001) pole is performed for studying TEM foil thickness effect on its contrast. The diffraction 

vector is: g=(   ), and the diffraction condition is: 1g(3.1g). The simulation parameters for the thin 

TEM foil are shown in Table 5.20, and the simulated images are shown in Fig. 5.28. 
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Table 5.20: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil along (001) pole with diffraction vector g=(   ). 

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

100 100 30 20 40,45,46,47,48,49,50,55 ½ a0[   ] [   ] 25 0.4 

 

d (nm) 

40 45 50 55 

    
Figure 5.28: Simulated many beam TEM images of a ½ a0[   ] inclined screw dislocation within 

(001) bcc Fe thin foil along (001) pole. The diffraction vector is: g=(   ), and the diffraction 

condition is: 1g(3.1g). The employed model is anisotropic WSL-Wu image gradient model;  

 

It can be concluded from Fig. 5.28 that when increasing TEM foil thickness from 40 to 55 nm 

gradually, the contrast evolves remarkably. The contrast around the piercing region of inclined 

dislocation at upper free surfaces will have oscillation features, and the black-white contrast flips with 

increasing TEM foil thickness, which is similar to the contrast oscillations of small dislocation loop 

within layer structure of thin TEM foil.  

 

5.2.5. Effect of anisotropy 

TEM BF many beam image simulation for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil along (001) pole is performed for studying the anisotropy ratio effect with various elasticity 

models. The diffraction vector is: g=(   ), and the diffraction condition is: 0g(1.1g). The simulation 

parameters are given in Table 5.21, and the simulated images are shown in Fig. 5.29. 

 

Table 5.21: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil for studying the anisotropy ratio effect on the black-white contrast of simulated TEM images. 

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

100 100 30 20 70 ½ a0[111] [111] 25 0.2 

 

g g g g 
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Beam Model T ( ) 

25 300 600 900 

 

 

 

0g(1.1g), 

g=(020); 

BF 

 

(a) 

    
(b) 

    
Figure 5.29: Simulated many beam TEM images of a ½ a0[   ](   ) inclined screw dislocation 

within (001) bcc Fe thin foil along (001) pole for studying the effect of anisotropy ratio. The 

diffraction vectors is g=(   ), and the diffraction condition is: 0g(1.1g). (a), anisotropic WSL finite 

model; (b), anisotropic WSL-Wu image gradient model, virtual dislocation outside thin foil included. 

 

It can be concluded from Fig. 5.29 that the essential black-white contrast oscillation features of 

inclined dislocation via isotropy and anisotropy models match each other and anisotropy ratio have 

remarkable effect on the simulated TEM image, making the black-white oscillations contrast 

elongated and rotated. The image stress induced contrast around the piercing points at free surfaces 

also evolves with anisotropy ratio. 

 

5.2.6. Effect of zone axis 

[001] and [011] poles of bcc crystal are the most employed zone axes in TEM imaging observation of 

dislocation. TEM image simulation for a ½ a0[   ] inclined screw dislocation within bcc Fe thin foil 

under different zone axes is performed. The diffraction conditions employed for each diffraction 

vector and zone axis are g(1.1g) BF and DF, g(2.1g) DF and g(4.1g) DF. 

 

5.2.6.1. Simulated ½ a0[111] dislocation line under [001] zone axis 

TEM image simulation for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe thin foil along 

(001) pole is performed. The diffraction vectors are: g= (   )  and (   ) , and the diffraction 

conditions are: g(1.1g), g(2.1g)  and g(4.1g). The simulation parameters are shown in Table 5.22, and 

the simulated images are shown in Fig. 5.30. 

 

Table 5.22: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe 

thin foil along (001) pole, with g(1.1g), g(2.1g) and g(4.1g) diffraction conditions. The diffraction 

vectors are g=(   ) and (   ). 

Dislocation physical parameters 

   ZA SN t (nm) b    T ( ) CR (nm) 

[001] [001] 50 40 ½ a0[   ] (   ) 25 0.2 

 

g g g g 

g g g g 
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Beam condition 0g(1.1g), BF 1g(1.1g), DF 1g(2.1)g, DF 1g(4.1g), DF 

g=(110) 

    
g=(200) 

    
Figure 5.30: Simulated TEM images of a ½ a0[111](111) inclined screw dislocation within (001) bcc 

Fe thin foil along (001) pole. The diffraction vector are: g=(   ) and (   ), with 0g(1.1g), 1g(1.1g), 

1g(2.1g) and 1g(4.1g) diffraction conditions. The employed model is anisotropic WSL finite gradient 

model. 

 

It can be concluded from Fig. 5.30 that when high-order beams are excited for g(4.1g) diffraction 

condition, the number of black-white contrast oscillations will increase sharply. 

 

5.2.6.2. Simulated ½ a0[111] dislocation line under [011] zone axis 

TEM image simulation for a ½ a0[   ] inclined screw dislocation within (011) bcc Fe thin foil along 

(011) pole is performed. The diffraction vectors are: g= (  ̅ )  and (   ) , and the diffraction 

conditions are: g(1.1g), g(2.1g) and g(4.1g). The simulation parameters are shown in Table 5.23, and 

the simulated images are shown in Fig. 5.31. 

 

Table 5.23: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (011) bcc Fe 

thin foil along (011) pole, with g(1.1g), g(2.1g) and g(4.1g) diffraction conditions. The diffraction 

vectors are g=(  ̅ ) and (   ).  

Dislocation physical parameters 

   ZA SN t (nm) b    T ( ) CR (nm) 

[011] [011] 50 40 ½ a0[   ] (   ) 25 0.2 

 

g g g g 

g g g g 
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Beam 

condition 

Models 0g(1.1g), BF 1g(1.1g), DF 1g(2.1)g, DF 1g(4.1g), DF 

 

 

g=(  ̅ ) 

(a) 

    
(b) 

    
 

 

g=(   ) 

(c) 

    
(d) 

    
Figure 5.31: Simulated TEM images for a ½ a0[111] inclined screw dislocation within (011) bcc Fe 

thin foil. The diffraction vectors are: g=(  ̅ ) and (   ) along (011) pole. (a), anisotropic WSL 

finite gradient model; (b), isotropic Mura finite gradient model; (c), anisotropic WSL finite gradient 

model; (d), isotropic Mura finite gradient model; 

 

It can be concluded from Fig. 5.31 that when       invisibility criterion for g=(  ̅ ) is satisfied, 

anisotropy models and isotropy finite model are still able to generate some residual contrast, and the 

difference between isotropy and anisotropy finite models are remarkable. Conversely, when       

invisibility criterion for g=(   ) is not satisfied, the TEM image contrast difference between isotropy 

and anisotropy models is also remarkable for g(1.1g) diffraction condition, but their difference is not 

so drastic as the       case. 

 

5.3. TEM image simulation results for dislocation loop 

5.3.1. Comparison between elasticity models 

There are ten types of dislocation loop models for TEM image simulation in CUFOUR as described in 

chapter 4, including four dislocation loop image gradient models, two infinite gradient models, and 

four total gradient models, via image gradient model plus infinite gradient model. TEM DF two beam 

image simulation for a ½ a0[   ̅](   ̅) edge-on dislocation loop within (011) bcc Fe thin foil along 

(011) pole is performed for studying the efficiency and reliability of these ten dislocation loop models. 

The diffraction vectors is: g= (   ̅) , and the diffraction condition is: g(1.1g). The simulation 

parameters are shown in Table 5.24, and the simulated images are shown in Fig. 5.32. 
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Table 5.24: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.32 

nm within (011) bcc Fe thin foil along (011) pole for g=(   ̅). Foil thickness t=50.0 nm, loop located 

40.0 nm from bottom surface of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 

PL (nm) MN WN SN    ZA t (nm) b    d 

(nm) 

R 

(nm) 

T ( ) 

200 100 80 25 40 [011] [011] 50 ½ a0[   ̅] [   ̅] 40 1.16 25 

 

(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

     
Figure 5.32: Simulated TEM images of a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.32 

nm within (011) bcc Fe thin foil along (011) pole for g=(   ̅). Foil thickness t=50.0 nm, loop located 

40.0 nm from bottom of the foil. Comparison between ten dislocation loop models: (a), isotropic Mura 

bulk model; (b), isotropic Devincre-Weinberger image model; (c), isotropic Mura-Weinberger image 

model; (d), isotropic Devincre-Weinberger-Mura total model; (e), isotropic Mura-Weinberger-Mura 

total model; (f), anisotropic WSL bulk model; (g), anisotropic WSL-Wu image model; (h), anisotropic 

Mura-Wu image model; (i), anisotropic WSL-Wu-WSL total model; (j), anisotropic Mura-Wu-WSL 

total model. 

 

Figs. 5.32 (b), (c), (g) and (h) show that the essential contrast features of the four image stress effect 

models match each other, but the anisotropy will make the isotropy black-white lobes elongated and 

slightly bended;  Figs. 5.32 (d), (e), (i) and (j) show that the essential contrast features of the four total 

gradient models match each other, but the anisotropy will make the isotropy black-white lobes 

elongated; Figs. 5.32 (a) and (f) show that the essential contrast features of the two bulk gradient 

models match each other, but the anisotropy will make the isotropy black-white lobes elongated. 

When image stress effect models and total gradient models are employed, the calculation speed for 

isotropic Mura and Devincre models are more or less the same, while the calculation speed of 

anisotropic WSL models are much faster than Mura models. Considering the anisotropy feature of 

most crystal and the calculation efficiency, if free surface effect is not included, Fig. 5.32 (f) 

anisotropic WSL bulk model is the most reasonable models for simulation. If free surface effect is 

included, Fig. 5.32 (i)  anisotropic WSL-Wu-WSL total model will be the best option. 

 

5.3.2. Comparison between CA and non-CA TEM image simulation schemes 

As there is continuous discussion over the limits and reliability of the column approximation (CA) for 

TEM image simulation, TEM DF images for ½ a0[   ̅](   ̅) edge-on dislocation loop within (011) 

fcc Cu thin foil along (011) pole are simulated with two beam diffraction condition in CUFOUR, with 

the various elasticity models, because it is well documented in the literature. The elastic modulus for 

fcc Cu at room temperature is shown in Table 5.2. The diffraction vectors are: g=(   ), (   ̅), (  ̅ ) 

g g g g g 

g g g g g 
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and (  ̅ ), and the diffraction condition is: g(1.0g). The simulation parameters are shown in Table 

5.25, and the simulated images are shown in Fig. 5.33. 

 

Table 5.25: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 4.86 

nm within (011) fcc Cu thin foil along (011) pole for g=(   ), (   ̅) (  ̅ )     (  ̅ ). The foil 

thickness t=127.575 nm, loops located 123.93 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R (nm) d (nm) CR (nm) 

100 [011] [011] 40 127.575 ½ a0[   ̅] (   ̅)   2.43 123.93 0.1 

 

CA/non-CA Model Diffraction vector for imaging 

g=(   ) g=(   ̅) g=(  ̅ ) g=(  ̅ ) 
CA,  

Howie-Wehlan 

 

Isotropy 

 
Non-CA,  

Howie-Basinski 

Isotropy 

 
CA,  

Schaeublin-

Stadelmann 

 

Isotropy 

    
CA,  

Schaeublin-

Stadelmann 

 

Anisotropy 

    
Figure 5.33: Simulated TEM images via CA and non-CA calculation schemes for a ½ a0[   ̅](   ̅) 
edge-on dislocation loop of diameter 4.86 nm within (011) fcc Cu thin foil along (011) pole. Foil 

thickness t=127.575 nm, loop located 123.93 nm from bottom of the foil. The original images of Eyre 

[Eyre, 1977b] via CA with isotropic Bullough dislocation loop model [Bullough, 1960] are shown in 

(a–d), the images of Zhou [Zhou, 2005] via non-CA with isotropic Yoffe dislocation loop models 

[Yoffe, 1960] are shown in (e–h), the images of CUFOUR via CA with isotropic Mura dislocation 

loop models [Schaeublin, 1993; Mura, 1987] are shown in (i–l), and the images of CUFOUR via CA 

with anisotropic WSL dislocation loop models [Schaeublin, 1993; Yin, 2010] are shown in (m–p). The 

diffraction conditions are: (a), (e), (i) and (m), g=(   ),      ; (b), (f), (j) and (n), g=(   ̅), 
     ; (c), (g), (k) and (o), g=(  ̅ ),      ;  (d), (h), (l) and (p), g=(  ̅ ),      . 

 

It can be concluded from the simulated TEM images in Fig. 5.33 that CA does not exhibit remarkable 

difference from non-CA calculation results, when the thickness of TEM foil is 121.8 nm. While 

anisotropy has a remarkable impact on the simulated TEM image. Indeed, the simulated TEM images 

via anisotropy model are more elongated along the black-white lobe direction, compared to 

corresponding Voigt isotropy model. Thus, it can be concluded that simulated TEM image via CA is 

reliable, and the impact of CA on the final black-white contrast modification is negligible, when 

compared to anisotropy effect.  
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5.3.3. The convergence of anisotropy towards isotropy 

It has been demonstrated in Fig. 5.34 that the difference between simulated TEM images of 

dislocation loop via Voigt isotropy and anisotropy models is remarkable. Here, TEM DF images of ½ 

a0[   ̅](   ̅) edge-on dislocation loop within (011) bcc Fe thin foil along [011] pole are simulated 

with two beam diffraction condition in CUFOUR to demonstrate the impact of anisotropy ratio on its 

TEM image contrast, with the various elasticity models. The artificial elastic modulus for bcc Fe 

simulation is shown in Table 5.26, with increasing anisotropy ratio from 1.05 to 5.0. The diffraction 

vectors is: g=(  ̅ ), and the diffraction condition is: g(2.0g). The simulation parameters are shown in 

Table 5.27, and the simulated images are shown in Fig. 5.34.  

 

Table 5.26: Artificial elastic modulus for studying anisotropy effect on TEM image contrast. 

C11 (GPa) 150 150 150 150 150 150 

C12 (GPa) 100 100 100 100 100 100 

C44 (GPa) 26.5 30 37.5 50 62.5 125 

2C44/(C11-C12) 1.05 1.2 1.5 2.0 2.5 5.0 

 

Table 5.27: Simulation parameters for a ½ a0[   ̅](   ̅)  dislocation loop of diameter 2.32 nm 

within (011) bcc Fe thin foil along (011) pole with g=(  ̅ ). Foil thickness t=121.8 nm, loops located 

118.32 nm from bottom surface of the foil.  

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R (nm) d (nm) CR (nm) 

100 [011] [011] 40 121.8 ½ a0[   ̅] (   ̅)   1.16 118.32 0.1 

 

Beam Model Anisotropy ratio 

(a) (b) (c) (d) (e) (f) 

g(2.0g), 

DF, 

g=(  ̅ ) 

Isotropy 

      
g(2.0g), 

DF, 

g=(  ̅ ) 

 

Anisotropy 

 
      

Figure 5.34: Simulation images for ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.32 nm 

within (011) bcc Fe thin foil along (011) pole with increasing anisotropy ratio for g=(  ̅ ). Foil 

thickness t = 121.8 nm, loops located 118.32 nm from bottom of the foil.  Anisotropy ratio (a) 1.05; (b) 

1.20; (c) 1.50; (d) 2.00; (e) 2.50; (f) 5.00. 

 

It is concluded from Fig. 5.34 that when changing the anisotropy ratio, the essential image feature is 

retained, but the black-white contrast magnitude and size of each wing of the butterfly evolves sharply 

with increasing anisotropy ratio. The convergence of simulated TEM image black-white contrast via 

anisotropy model towards isotropy model is confirmed when anisotropy ratio is close to 1.0. 

 

5.3.4. Comparison between two beam and many beam simulation schemes 

It has been estimated [Head, 1973] that about 90% of the total intensity was contained in the first two 

beams and it was deduced that the two-beam simulation was suitable for many situations. TEM DF 

image simulation are performed for ½ a0[   ̅](   ̅) edge-on dislocation loop within (011) bcc Fe 

thin foil along (011) pole with two beam and many beam diffraction condition in CUFOUR to study 

the impact of diffraction beam number included on the simulated TEM image black-white contrast, 
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with the various elasticity models. The elastic modulus for Fe at room temperature is shown in Table 

5.1. The diffraction vectors are: g=(  ̅ ), (   ), (   ̅) and (   ̅), and the diffraction condition is: 

g(1.1g). The simulation parameters are shown in Table 5.28, and the simulated images are shown in 

Fig. 5.35. 

 

Table 5.28: Simulation parameters for a ½ a0[   ̅](   ̅)  edge-on dislocation loop of diameter 2.32 

nm within (011) bcc Fe thin foil along (011) pole for g=(  ̅ ), (   ), (   ̅) and (   ̅) . Foil 

thickness t=121.8 nm, loop located 118.32 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R (nm) d (nm) CR (nm) 

100 [011] [011] 40 121.8 ½ a0[   ̅] (   ̅)   1.16 118.32 0.1 

 

Beam  Model  Diffraction vector for imaging 

(a) (b) (c) (d) 

g(1.1g), DF, 

two beam 

Isotropy 

 

    
g(1.1g), DF, 

many beam 

Isotropy 

 

    
g(1.1g), DF, 

two beam 

Anisotropy 

 

    
g(1.1g), DF, 

many beam 

Anisotropy 

 

    
Figure 5.35: Comparison between two beams and many beams via isotropic and anisotropic 

dislocation loop models for a ½ a0[   ̅](   ̅)  dislocation loop of diameter 2.32 nm within (011) bcc 

Fe thin foil along (011) pole. Foil thickness t=121.8 nm, located 118.32 nm from bottom of the foil. 

Diffraction vector (a) g=(  ̅ ); (b) g=(   ); (c) g=(   ̅); (d) g=(   ̅).  

 

It is concluded from Fig. 5.35 that the essential features of these simulated TEM images are retained, 

which is independent of anisotropy and number of beams. The black-white contrast of simulated 

image with many beam scheme is however slightly broader than the corresponding two beam case. 

The latter confirms that when the diffraction condition is close to a Bragg condition, a two beam 

calculation is sufficient. [Head, 1973] 

 

5.3.5. Experimental verification with Frank edge-on loop within irradiated copper 

A study of the black-white contrast of TEM images of small Frank loops in fcc Cu is performed to 

further validate simulation. This case is selected as it is well documented in the literature. Thus, TEM 

DF many beam image simulation for a 1/3 a0[ ̅  ]( ̅  ) edge-on dislocation loop within (110) fcc 

Cu thin foil along (110) pole are performed with the various elasticity models. The elastic modulus for 
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Cu at room temperature is shown in Table 5.2. The diffraction vector is: g=(   ), and the diffraction 

conditions are: g(3.75g), g(4.75g) and g(6.25g) along [110] pole. The simulation parameters are 

shown in Table 5.29, and the simulated images are shown in Fig. 5.36. 

 

Table 5.29: Simulation parameters for a 1/3 a0 [ ̅  ]( ̅  )  edge-on Frank dislocation loop of 

diameter 2.5 nm within (110) fcc Cu thin foil along (110) pole for g=(   ). Foil thickness t=60.0 nm, 

located 30.0 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R(nm) d (nm) CR (nm) 

100 [110] [110] 40 60 1/3 a0[ ̅  ] ( ̅  )  2.5 30 0.1 

 

Models  (g, 3.75g)     (g, 4.75g)     (g, 6.25g)     

 

(a) many beam, 

Experimental 

 

(b) Many beam  

Howie-Basinski, 

Non-CA, Yoffe isotropy 

(c) Many beam 

modified Howie–Whelan [Zhou, 

2005], CA, Yoffe isotropy 

(d) Two beam, 

modified Howie–Whelan [Zhou, 

2005], CA, Yoffe isotropy 

(e). Many beam, 

Schaeublin-Stadelmann, 

CA, Mura isotropy 

(f). Many beam, 

Schaeublin-Stadelmann, 

CA, WSL anisotropy 

Figure 5.36: Simulation images of a 1/3 a0[ ̅  ]( ̅  ) edge-on Frank dislocation loop of diameter 

2.5 nm within (110) fcc Cu thin foil along (110) pole for g=(   ). Foil thickness t=60.0 nm, located 

30.0 nm from bottom of the foil. (a), experimental observation [Zhou, 2005]; (b), the full Howie–

Basinski approach, many beam, non-CA, with Yoffe isotropic dislocation loop model [Zhou, 2005; 

Yoffe, 1960]; (c), the modified Howie–Whelan equations,  many beam, CA, with Yoffe isotropic 

dislocation loop model [Yoffe, 1960; Zhou, 2005]; (d), the modified Howie–Whelan equations, two 

beams, CA, with Yoffe isotropic dislocation loop model [Yoffe, 1960; Zhou, 2005]; (e), the 

Schaeublin-Stadelmann equation, many beam, CA, with isotropic Mura infinite dislocation loop 

model employed in CUFOUR [Mura, 1987; Schaeublin, 1993]; (f), the Schaeublin-Stadelmann 

equation, many beam, CA, with anisotropic WSL infinite dislocation loop model employed in 

CUFOUR [Mura, 1987; Schaeublin, 1993].  

 

The simulated TEM images in Fig. 5.36 show that routines (b) and (c) for the g(3.75g) beam 

condition produce similar contrast features, while routines (d), (e) and (f) produces another set of 
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similar contrast features. Although the details of the simulated weak beam images are more complex 

when the higher-order diffraction conditions g(4.75g) and g(6.25g) are achieved, the essential features 

are always the same, there is little to distinguish them and all seem to reasonably match the 

experimental images. 

Zhou explained that many beam calculations suggest that complex image structures not directly 

related to the loop geometry may appear if higher-order reflections are satisfied (n=4, 5 or 6, in 

particular for n=5, 6). These effects occur as a result of interference involving higher-order beams, 

and are absent in a two-beam calculation [Zhou, 2005]. 

 

5.3.6. The L, g and b vectors relation analysis 

It is widely accepted that       invisibility criterion for inclined dislocation is valid if the 

investigated crystal is isotropic or its anisotropy ratio is not high. However, such invisibility criterion 

is of limited utility for small dislocation loops, as loops with that       invisibility criterion are 

often not invisible under dynamical two beam condition. For example, the butterfly visible contrast 

shown in Fig 5.35 and Fig. 5.36 is produced under       invisibility criterion condition. On one 

hand, loops with       usually show invisibility or very weak contrast under weak-beam imaging 

conditions; On the other hand, loops with that       may also show very weak contrast under 

weak-beam imaging conditions. Such complex situation of       invisibility criterion for small 

dislocation loops will make reliable judgment of Burgers vector difficult from single TEM diffraction 

imaging experiment. So-called “L-vector” is proposed as an alternative means for Burgers vector 

determination for small dislocation loops [Eyre, 1977a]. This method relies on checking of changes of 

black-white streaking direction with the operating diffraction vector  , and the L vector is following 

the black-white streaking direction, running from the center of black contrast lobe to the center of the 

white contrast lobe [Eyre, 1977a]. However, as mentioned in chapter 1, the L vector method works 

well only under very limited conditions, and it may cause some misleading judgment for reliable 

Burger vector determination for small dislocation loops.  

TEM DF two beam image simulation of ½ a0[   ̅](   ̅)  edge-on dislocation loop within (011) fcc 

Cu thin foil along (011) pole are performed for studying the reliability and limits of L vector method 

for Burgers vector b judgment of small dislocation loop, with the various elasticity models. The 

elastic modulus for fcc Cu at room temperature is shown in Table 5.2. The diffraction vectors are: g= 

 (  ̅ ),  (   ̅) and  (  ̅ ) respectively, and the  diffraction condition is: g(1.0g). The simulation 

parameters are shown in Table 5.30, and the simulated images are shown in Fig. 5.37 and Fig. 5.38 

respectively. 
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Table 5.30: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 4.86 

nm within (011) fcc Cu thin foil along (011) pole for g= (  ̅ ),  (   ̅) and  (  ̅ ). Foil thickness 

t=127.575 nm, located 123.93 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R (nm) d (nm) CR (nm) 

100 [011] [011] 40 127.575 ½ a0[   ̅] (   ̅)   2.43 123.93 0.1 

 

 

 

Isotropy 

 

 

 

Anisotropy 

Figure 5.37: The l-g-b relation for a ½ a0[   ̅](   ̅)  edge-on dislocation loop of diameter 4.86 nm 

within (011) fcc Cu thin foil along (011) pole for g=  (  ̅ ),  (   ̅) and  (  ̅ ). Foil thickness 

t=127.575 nm, located 123.93nm from bottom surface of the foil. 

 

 

 

Isotropy 

 

 

 

Anisotropy 

Figure 5.38: The l-g-b relation for a ½ a0[   ̅](   ̅)  edge-on dislocation loop of diameter 4.86 nm 

within (011) fcc Cu thin foil along (011) pole for g=  (  ̅ ),  (   ̅) and  (  ̅ ). Foil thickness 

t=127.575 nm, located 123.93nm from bottom surface of the foil. 

 

It can be concluded Fig. 5.37 and Fig. 5.38 that the angle (<= 90 °) between L (or - L) and b will 

increase with the increase of the angle between g and b slowly, but lags behind. When anisotropic is 

considered, the L vector direction of the black-white lobe will be larger than corresponding isotropic 

cases, and the black-white lobe will be elongated or compressed. These results clearly indicate that 

predicting the direction of b from knowledge of L will lead to ambiguities even in the simple case of 

edge dislocation loops in elastically isotropic materials. This will be especially true when the number 

of possible Burgers vector directions is large (e.g. 14 in the BCC lattice), since then there will be few 

(possibly no) imaging orientations where a unique assignment of b can be made from experimentally 

observed I directions. [Jenkins, 2001]  
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5.3.7. Image force dependencies 

In order to investigate free surface effect on TEM image black-white contrast of dislocation loops, the 

displacement field near upper and lower free surfaces are relaxed in order to make the surfaces stress 

free. This is difficult to do exactly but the condition may be partially fulfilled for a loop parallel to the 

surface by taking the sum of the displacement fields of the loop and its mirror image in the foil 

surface [Ruhle, 1965]. However, such investigations mainly focused on effects of the surface on the 

layer structure of thin TEM foil for dislocation loops. Surface effects on loop contrast were thus not 

investigated systematically. Ohr [Ohr, 1977] reported a more sophisticated technique for handling 

surface relaxation for finite loops, and concluded that the image stress induced contrast of small loops 

lying very close to a stress free surface is indeed sensitive to the presence of the surface. The free 

surface was found to affect the size and detailed shape of the black–white contrast image [Ohr, 1977].  

In this part, the various isotropic and anisotropic image stress models of dislocation loops are 

compared with each other to study the effect of image stress on their TEM image black-white contrast. 

 

5.3.7.1. Zone axis effect 

(1) [001] zone axis. 

TEM DF image simulations of an a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin foil 

along (001) pole are performed. The diffraction vectors are g=(   ) and (   ), and the diffraction 

condition is: g(1.1g). The simulation parameters are shown in Table 5.31, and the simulated images 

are shown in Fig. 5.39. 

 

Table 5.31: Simulation parameters for an a0[   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=50.0 nm, 

located 5.0 nm from bottom of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t (nm) b    d 

(nm) 

R 

(nm) 

T 

( ) 

CR 

(nm) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 5.0 5.0 25 0.2 

 

Beam (a) (b) (c) (d) (e) (f) 

g(1.1g), 

BF, 

g=(   ) 

      
g(1.1g), 

BF, 

g=(   ) 

      
Figure 5.39: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=50.0 nm, 

located 5.0 nm from bottom surface of the foil. (a), isotropic Mura-Weinberger image model; (b), 

isotropic Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d), anisotropic WSL-

Wu image model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model. 

 

The intensity profiles for such a0[   ](   ) edge-on dislocation loops for g=(110) and (200) are 

shown in Fig. 5.40 and Fig. 5.41 respectively, and the yellow marked line in Fig. 5.39 (a) is extracted 

for the profile comparison between models. 
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Figure 5.40: Profile across the TEM image of an a0[   ](   ) edge-on dislocation loop of diameter 

10.0 nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=50.0 nm, located 

5.0 nm from bottom surface of the foil. Profile taken along the line marked in yellow in Fig. 5.40(a). 

 

 
Figure 5.41: Profile across the TEM image of an a0[   ](   ) edge-on dislocation loop of diameter 

10.0 nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=50.0 nm, located 

5.0 nm from bottom surface of the foil. Profile taken along the line marked in yellow in Fig. 5.40(a). 
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(2) [011] zone axis. 

TEM DF image simulations for ½ a0[   ̅](   ̅) edge-on dislocation loop within (011) bcc Fe thin 

foil along (011) pole are performed. The diffraction vectors are: g=(  ̅ ), (   ), (   ̅) and (   ̅), 
and the diffraction condition is: g(1.1g). The simulation parameters are shown in Table 5.32, and the 

simulated images are shown in Fig 5.42.  

 

Table 5.32: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.0 

nm within (011) bcc Fe thin foil along (011) pole for g=(  ̅ ), (   ), (   ̅) and (   ̅) . Foil 

thickness t=40.0 nm, located 35.0 nm from bottom of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d 

(nm) 

R 

(nm) 

T 

( ) 

CR 

(nm) 

200 80 80 20 40 [011] [011] 40 ½ a0 [   ̅] [   ̅] 35 1.0 25 0.1 

 

Beam (a) (b) (c) (d) (e) (f) 

g(1.1g), 

DF, 

g=(  ̅ ) 

      
g(1.1g), 

DF, 

g=(   ) 

      
g(1.1g), 

DF, 

g=(   ̅) 

      
g(1.1g), 

DF, 

g=(   ̅) 

      
Figure 5.42: Simulated TEM images of a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.0 

nm within (011) bcc Fe thin foil along (011) pole for g=(  ̅ ), (   ), (   ̅) and (   ̅) . Foil 

thickness t=40.0 nm, located 35.0 nm from bottom of the foil. (a), isotropic Mura-Weinberger image 

model; (b), isotropic Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d),  

anisotropic WSL-Wu image model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL 

total model. 
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(3). [111] zone axis. 

TEM DF image simulations of an a0[   ](   ) edge-on dislocation loop within (111) bcc Fe thin foil 

along (111) pole are performed. The selected diffraction vectors is: g=( ̅  ), and the diffraction 

condition is: g(2.1g). The simulation parameters are shown in Table 5.33, and the simulated images 

are shown in Fig. 5.43.  

 

Table 5.33: Simulation parameters for an a0[   ](   ) edge-on dislocation loop of diameter 6.0 nm 

within (111) bcc Fe thin foil along (111) pole for g=( ̅  ). Foil thickness t=30.0 nm, located 15.0 nm 

from bottom of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d (nm) R 

(nm) 

T 

( ) 

CR 

(nm) 

200 70 70 25 40 [111] [111] 30 a0[   ] (   ) 15 3.0 25 0.1 

 

Beam (a) (b) (c) (d) (e) (f) 

g(2.1g), 

DF, 

g=[ ̅  ] 

      
Figure 5.43: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 6.0 nm 

within (111) bcc Fe thin foil along (111) pole for g=( ̅  ). Foil thickness t=30.0 nm, located 15.0 nm 

from bottom of the foil. (a), isotropic Mura-Weinberger image model; (b), isotropic Mura bulk model; 

(c), isotropic Mura-Weinberger-Mura total model; (d),  anisotropic WSL-Wu image model; (e), 

anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model.  

 

It can be concluded from Figs. 5.39, 5.42 and 5.43 that when the loop size is comparable to the 

distance to free surfaces, the image stress effect on the TEM image contrast becomes important, 

which is able to change the contrast remarkably. When the loop is very small (R=1 nm), the emage 

stress effect on the contrast is ignorable. Anisotropy also have strong impact on the image stress 

contrast of TEM images. Thus, the impact of image stress on the black-white contrast should be 

studied systematically. In the following, the relation between loop radius, depth, anisotropy and 

upper/lower surface and image contrast of TEM images will be investigated systematically for an 

a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin foil along (001) pole. 

 

5.3.7.2. Loop depth within thin TEM foil effect 

In this part, various isotropic and anisotropic dislocation loop models are compared with each other to 

study the relation between loop depth and image stress effect on its TEM image black-white contrast. 

TEM BF image simulations for an a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin 

foil along (001) pole are performed. The diffraction vector is: g=(   ), and the diffraction condition 

is: g(1.1g). The simulation parameters are shown in Table 5.34, and the simulated images are shown 

in Fig. 5.44.  
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Table 5.34: Simulation parameters for an a0 [   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=50.0 nm, located 5.0, 

10.0, 15.0 and 20.0 nm from bottom surface of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d (nm) R 

(nm) 

T 

( ) 

CR 

(nm) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 5,10,15,20 5 25 0.2 

 

d (nm) (a) (b) (c) (d) (e) (f) 

20 

      
15 

      
10 

      
5 

      
Figure 5.44: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=50.0 nm, located 5.0, 

10.0, 15.0 and 20.0 nm from bottom of the foil. (a), isotropic Mura-Weinberger image model; (b), 

isotropic Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d), anisotropic WSL-

Wu image model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model. 

 

The following conclusions can be made from the simulation results in Fig. 5.44 when dislocation loop 

depth is 10.0, 15.0, and 20.0 nm from bottom surface of thin TEM foil (far away from free surface), 

image stress is strengthening the black-white contrast of dislocation loop contrast generated with bulk 

model. When dislocation loop depth is 5.0 nm from bottom surface of thin TEM foil (close to free 

surface), image stress is weakening the black-white contrast of dislocation loop contrast generated 

with bulk model. 

When changing the dislocation loop depth within the thin TEM foil, its black-white contrast of with 

bulk models flips from layer L1 to L2, layer structure of thin foil. This is because the bulk gradient 

field of bulk model will be always around dislocation loops. However, the black-white contrast of 

dislocation loop image model never flips, as the image gradient field will be always generated at the 

free surfaces, and distributed under free surfaces of thin TEM foil. Thus, image stress effect on TEM 

contrast is independent of dislocation loop depth within thin TEM foil.  

It can be concluded that when TEM foil thickness is constant, dislocation loop black-white contrast 

via bulk model flips with its depth, while its contrast modification by image stress never flips with its 

depth within thin TEM foil. Finally, the total TEM image contrast may be flipped. Indeed, image 

stress effect will have strengthening or weakening effect on the TEM image black-white contrast 

intensity via bulk models, with a swelling or shrinking the black-white contrast distribution area. It 

depends on the relative intensity distribution comparison between image stress effect induced contrast 
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modification on the black-white contrast generated via bulk model, thin TEM foil properties, loop 

depth, and diffraction condition. 

 

5.3.7.3. Loop radius effect 

In this part, various isotropic and anisotropic dislocation loop models are compared with each other to 

study the relation between loop radius and image stress effect on its TEM image black-white contrast. 

TEM BF image simulations for a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin foil 

along (001) pole are performed. The diffraction vector is: g=(   ), and the diffraction condition is: 

g(1.1g). The simulation parameters are shown in Table 5.35, and the simulated images are shown in 

Fig. 5.45. 

 

Table 5.35: Simulation parameters for an a0 [   ](   ) dislocation loop of diameter 2.0, 5.0, 8.0 

and 11.0 nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t = 50.0nm, 

loops located 5.0 nm from bottom surface of the foil.  

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d 

(nm) 

R (nm) T 

( ) 

CR 

(nm) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 5 2, 5, 8, 11 25 0.2 

 

R (nm) (a) (b) (c) (d) (e) (f) 

2 

      
5 

      
8 

      
11 

      
Figure 5.45: Simulated TEM images of an a0 [   ](   ) dislocation loop of diameter 2.0, 5.0, 8.0 

and 11.0 nm within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t = 50.0nm, 

loops located 5.0nm from bottom of the foil. (a), isotropic Mura-Weinberger image model; (b), 

isotropic Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d), anisotropic WSL-

Wu image model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model.  

 

The following conclusions can be made from the simulation results in Fig. 5.45. When loop radius is 

5.0, 8.0 and 11.0 nm, the image stress weakens the contrast of TEM image. When loop radius is 2.0 

nm, the image stress strengthens the contrast of TEM image. 
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5.3.7.4. Anisotropy ratio effect 

In this part, various isotropic and anisotropic dislocation loop models are compared with each other to 

study the relation between anisotropy ratio and image stress effect on its TEM image black-white 

contrast. TEM BF image simulations for a0[   ](   ) edge-on dislocation loop within (001) bcc Fe 

thin foil along (001) pole are performed. The diffraction vector is: g=(   ), and the diffraction 

condition is: g(1.1g). The simulation parameters are shown in Table 5.36, and the simulated images 

are shown in Fig. 5.46.  

 

Table 5.36: Simulation parameters for an a0 [   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole at 25, 300, 600 and 900   for g=(   ). Foil 

thickness t=50.0 nm, loop located 5.0 nm from bottom surface of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d 

(nm) 

R 

(nm) 

T ( ) CR 

(nm) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 5.0 5.0 25, 300, 

600, 900 

0.2 

 

T ( ) (a) (b) (c) (d) (e) (f) 

25 

      

300 

      

600 

      

900 

      

Figure 5.46: Simulated TEM images of an a0 [   ](   ) edge-on dislocation loop of diameter 10.0 

nm within (001) bcc Fe thin foil along (001) pole at 25, 300, 600 and 900   for g=(   ). Foil 

thickness t=50.0 nm, loop located 5.0 nm from bottom of the foil. (a), isotropic Mura-Weinberger 

image model; (b), isotropic Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d), 

anisotropic WSL-Wu image model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL 

total model. 

 

The following conclusions can be made from the simulation results in Fig. 5.46. When changing the 

temperature from 25  to 900 , the image stress always weakens the contrast of TEM image of 

dislocation loops; However, when Voigt isotropy theory is employed, the effect will not show 

remarkable evolution of the TEM black-white image contrast. Conversely, when anisotropy theory is 

employed, the effect will show remarkable evolution of the TEM black-white image, and the shape 

feature of total effect evolves from two black and white half rings to two black and white half-moons. 
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5.3.7.5. Image stress effect at upper and lower surfaces  

When loop is situated at the same distance to the upper or lower free surfaces, their impact on the 

simulated TEM image black-white contrast may be different. In this part, isotropic and anisotropic 

image stress effect, bulk gradient and total gradient field models of dislocation loops are compared 

with each other to study the individual contribution of image stress effect induced by upper and lower 

surfaces on the TEM image black-white contrast of a dislocation loop. TEM DF image simulations 

are employed for a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin foil along (001) 

pole, situated close to the upper and lower free surfaces. The diffraction vectors are: g=(110) and 

(200), and the diffraction conditions are: g(1.1g) and g(3.1g). 

 

(a). Image stress effect by upper surface on a0 [   ](   ) dislocation loop 

The simulation parameters are shown in Table 5.37, and the simulated TEM images are shown in Fig. 

5.47.  

 

Table 5.37: Simulation parameters for an a0 [   ](   ) dislocation loop of diameter 10.0 nm within 

(001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=50.0 nm, loop 

located 45.0 nm from top surface of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t 

(nm) 

b    d 

(nm) 

R 

(nm) 

T 

( ) 

CR 

(nm) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 45 5 25 0.2 
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Beam (a) (b) (c) (d) (e) (f) 

g(1.1g), BF, 

g=(110) 

      
g(1.1g), BF, 

g=(200) 

      
g(1.1g), DF, 

g=(110) 

      
g(1.1g), DF, 

g=(200) 

      
g(3.1g), DF, 

g=(110) 

      
g(3.1g), DF, 

g=(200) 

      
Figure 5.47: Simulated TEM images of an a0 [   ](   ) dislocation loop of diameter 5.0 nm within 

(001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=50.0 nm, loop located 45.0 nm 

from bottom of the foil. (a), isotropic Mura-Weinberger image model; (b), isotropic Mura bulk model; 

(c), isotropic Mura-Weinberger-Mura total model; (d), anisotropic WSL-Wu image model; (e), 

anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model.  

 

(b). Image stress effect by lower surface on a0 [   ](   ) dislocation loop  

The simulation parameters are shown in Table 5.38, and the simulated TEM images are shown in Fig. 

5.48. 

 

Table 5.38: Simulation parameters for an a0 [   ](   ) dislocation loop of diameter 10.0 nm within 

(001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=50.0 nm, loop 

located 5.0 nm from bottom of the foil. 

PBC and TEM image simulation physical parameters 

HT 

(KV) 
PL 

(nm) 

MN WN SN    ZA t (nm) b    d 

(nm) 

R 

(nm) 

T 

( ) 

200 100 80 25 40 [001] [001] 50 a0[   ] (   ) 5 5 25 
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Beam (a) (b) (c) (d) (e) (f) 

g(1.1g), BF, 

g=(110) 

      
g(1.1g), BF, 

g=(200) 

      
g(1.1g), DF, 

g=(110) 

      
g(1.1g), DF, 

g=(200) 

      
g(3.1g), DF, 

g=(110) 

      
g(3.1g), DF, 

g=(200) 

      
Figure 5.48: Simulated TEM images of an a0 [   ](   ) dislocation loop of diameter 5.0 nm within 

(001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=50.0 nm, loop 

located 5.0 nm from bottom of the foil. (a), isotropic Mura-Weinberger image model; (b), isotropic 

Mura bulk model; (c), isotropic Mura-Weinberger-Mura total model; (d), anisotropic WSL-Wu image 

model; (e), anisotropic WSL bulk model; (f), anisotropic WSL-Wu-WSL total model. 

 

5.3.8. Effect of loop depth 

TEM DF image simulation of a ½ a0 [   ̅](   ̅) edge-on dislocation loop within (011) fcc Cu thin 

foil along (011) pole is performed for studying the effect of loop depth on its black-white contrast, 

with the various elasticity models. The elastic modulus for Cu at room temperature is shown in Table 

5.2. The diffraction vectors is: g=(  ̅ ), and the diffraction condition is: g(1.0g). The simulation 

parameters are shown in Table 5.39, and the simulated images with a loop depth within layer structure 

and transition zone are shown in Fig. 5.49 and Fig. 5.50 respectively. 

 

Table 5.39: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 4.86 

nm within (011) fcc Cu thin foil along (011) pole for g=(  ̅ ).  

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R(nm) T ( ) 

200 [011] [011] 40 127.575 ½ a0 [   ̅] [   ̅] - 2.43 25 

 

5.3.8.1. Loop depth change effect within layer structure of TEM foil 

The effect of changing the loop depth within the layer structure of a fcc Cu thin foil is shown in Fig. 

5.49.  
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Beam Model d (nm)  

123.93 118.93 113.93 108.93 103.93 

g(1.0g) , DF, 

g=(  ̅ ) 
Isotropic 

     
g(1.0g) , DF, 

g=(  ̅ ) 
Anisotropic 

     
Figure 5.49: Simulated TEM images of a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 4.86 

nm within (011) fcc Cu thin foil along (011) pole for g=(  ̅ ). Foil thickness t=127.575 nm, loop 

located at 123.93, 118.93, 113.93, 108.93, and 103.93 nm respectively from the bottom surface of the 

foil.  

 

It can be concluded from Fig. 5.49 that when changing the loop depth within the layers structure (L1, 

L2, L3) near thin TEM foil free surface, the essential contrast features do not change so much, except 

for the oscillatory nature of the black-white contrast. Note that, anisotropy will not change such 

oscillatory nature. Similar conclusions are obtained for g=(   ), (   ̅), (  ̅ ) and (  ̅ ) diffraction 

vectors along (011) pole. The essential features of these images are retained. However, the size and 

shape of simulated TEM image evolves remarkably with loop depth across whole TEM foil thickness. 

The simulated images provide solid support for the conclusion given by Eyre via isotropic model that 

all loops located within the layer structure keep the oscillatory nature of the black-white contrast when 

changing depth; while the essential features of these image types are unchanged. [Eyre, 1977b] 

 

5.3.8.2. Loop depth change across whole TEM foil thickness 

The effect of changing loop depth across the whole TEM foil thickness of a fcc Cu thin foil is shown 

in Fig. 5.50.  

 

Beam Model d (nm) 

13.7875 33.7875 53.7875 73.7875 93.7875 

g(1.0g) , DF, 

g=(  ̅ ) 
Isotropic 

     
g(1.0g) , DF, 

g=(  ̅ ) 
Anisotropic 

     
Figure 5.50: Simulated TEM images of a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 4.86 

nm within (011) fcc Cu thin foil along (011) pole for g=(  ̅ ). Foil thickness t=127.575 nm, loop 

located at 13.7875, 33.7875, 53.7875, 73.7875, and 93.7875 nm from the bottom surface of the foil. 

 

Fig. 5.50 shows essentially the same that was concluded from Fig. 5.49. The difference is that the size 

of the loop image contrast features does not change so much as for the loop in the layer structure, very 

close to a free surface.  
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5.3.9. Anisotropy ratio effect 

TEM DF two beam image simulation for a ½ a0 [   ̅](   ̅) edge-on dislocation loop within (011) 

bcc Fe thin foil along (011) pole is performed in CUFOUR for studying the effect of anisotropic ratio 

on its black-white contrast with the different elasticity models. The elastic modulus for Fe at different 

temperature is shown in Table 5.1. The diffraction vectors is: g=(   ), and the diffraction condition 

is: g(1.1g). The simulation parameters are shown in Table 5.40, and the simulated images are shown 

in Fig. 5.51. 

 

Table 5.40: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.32 

nm within (011) bcc Fe thin foil along (011) pole at 25, 300, 600, 900   for g=(   ). Foil thickness 

t=121.8 nm, loop located 118.32 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R (nm) T ( ) 

200 [011] [011] 40 121.8 ½ a0 [   ̅] [   ̅] 118.32 1.16 25, 300, 600, 900 

 

Beam Model T 

25   300   600   900   

g(1.1g) , DF, 

g=(   ) 
Isotropic 

    
g(1.1g) , DF, 

g=(   ) 
Anisotropic 

    
Figure 5.51: Simulated TEM images for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.32 

nm within (011) bcc Fe thin foil along (011) pole at 25, 300, 600, 900   for g=(   ). Foil thickness 

t=121.8 nm, loop located 118.32 nm from bottom surface of the foil.  

 

It can be concluded from Fig. 5.51 that when increasing temperature from 25  to 900 , the essential 

double-arc image contrast feature of small dislocation loops within L1 layer of thin foil does not 

change. However, the shape of anisotropic DF image evolves sharply with increasing temperature, 

while the shape of corresponding Voigt isotropy DF image remains nearly the same. Therefore, it is 

concluded that simulated DF images with anisotropy are remarkably different from the ones with 

Voigt isotropy, and the anisotropy ratio has a strong impact on the simulated TEM image contrast. 

Similar conclusions are obtained for g=  (   ̅  ) ,  (     ) ,  (     ̅)  and  (     ̅)  diffraction 

vectors along (011) pole. The essential features of these image types are retained, but the size and 

shape evolves remarkably with temperature. 

 

5.3.10. Loop radius effect 

TEM DF many beam diffraction image simulation for a ½ a0[   ̅](   ̅) edge-on dislocation loop 

within (011) bcc Fe thin foil along (011) pole is performed for studying loop radius effect on the 

black-white contrast with the various elasticity models. The diffraction vectors is: g=(   ), and the 

diffraction condition is: g(1.1g). The simulation parameters are shown in Table 5.41, and the 

simulated images are shown in Fig. 5.52. 
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Table 5.41: Simulation parameters for a ½ a0[   ̅](   ̅) edge-on dislocation loop of diameter 2.0, 

3.0, 4.0, 5.0 and 6.0 nm within (011) bcc Fe thin foil along (011) pole at 25   for g=(   ). Foil 

thickness t =121.8 nm, loop located 118.32 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R (nm) T ( ) 

200 [011] [011] 40 121.8 ½ a0 [   ̅] [   ̅] 118.32 1.0, 1.5, 2.0, 2.5, 3.0 25 

 

Beam Model R (nm) 

1.0 1.5 2.0 2.5 3.0 

g(1.1g), DF, 

g=(   ) 
Isotropic 

     
g(1.1g), DF, 

g=(   ) 
Anisotropic 

     
Figure 5.52: Simulated TEM images of a ½ a0[   ̅](   ̅)  edge-on dislocation loop of diameter 2.0, 

3.0, 4.0, 5.0 and 6.0 nm within (011) bcc Fe thin foil along (011) pole at 25   for g=(   ). Foil 

thickness t=121.8 nm, loop located 118.32 nm from bottom surface of the foil. 

 

It can be concluded from Fig. 5.52 that when changing loop radius within the first layer of thin foil, 

the essential image black-white contrast feature does not change so much, and the double-arc contrast 

feature is retained. Similar loop size effect is also simulated for g= (   ̅  ),  (     ),  (     ̅), and 

 (     ̅ ) diffraction vectors along (011) pole, and the essential contrast feature of these simulated 

TEM images are retained. The loop radius effect for simulated TEM images of dislocation loops 

within L1 layer can be considered as typical for all loops located within the layer structure when 

changing dislocation loop size. As mentioned by Zhou [Zhou, 2005], the use of elasticity theory is 

likely to be a good approximation for loops of sizes greater than about 2.0 nm, but less good for 

smaller loops where molecular dynamics (in the form of conjugate gradient minimization of the 

potential energy of a large system of interacting atoms) would have to be used to find displacement 

fields.  

 

5.3.11. Zone axis effect 

[001], [011] and [111] poles of bcc crystal are the most employed zone axes in TEM diffraction 

imaging observation of irradiation defects. TEM image simulations of dislocation loops under 

different zone axis are performed in CUFOUR. Results are shown in the following.  

 

5.3.11.1. Simulated [100] dislocation loop under [001] zone axis 

TEM image simulations of an a0[   ](   ) edge-on dislocation loop within (001) bcc Fe thin foil 

along (001) pole are performed with isotropic and anisotropic models. The diffraction vectors are: 

g=(   ) and (   ), and the diffraction conditions are: g(1.1g), g(2.1g) and g(4.1g). The simulation 

parameters are shown in Table 5.42, and the simulated images are shown in Fig. 5.53 and Fig. 5.54. 
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Table 5.42: Simulation parameters for an a0[   ](   ) edge-on dislocation loop of diameter 2.0 nm 

within (001) bcc Fe thin foil along (001) pole for g=(   ) and (   ). Foil thickness t=40.0 nm, loop 

located 20.0 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R (nm) T ( ) 

200 [001] [001] 40 40 a0[   ] [   ] 20 1.0 25 

 

Dislocation loop  Model g=(   ) 
(a) (b) (c) (d) 

a0 [100] (100) Isotropic 

    
Anisotropic 

    
Figure 5.53: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 2.0 nm 

within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

Dislocation loop Model g=(   ) 
(a) (b) (c) (d) 

a0 [100] (100) Isotropic 

    
Anisotropic 

    
Figure 5.54: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 2.0 nm 

within (001) bcc Fe thin foil along (001) pole for g=(   ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

5.3.11.2. Simulated [100] dislocation loop under [011] zone axis 

TEM image simulations of an a0[   ](   ) edge-on dislocation loop within (011) bcc Fe thin foil 

along (011) pole are performed with isotropic and anisotropic models. The diffraction vectors are: 

g=(   ) and (  ̅ ), and the diffraction conditions are:  g(1.1g), g(2.1g) and g(4.1g). The simulation 

parameters are shown in Table 5.43, and the simulated images are shown in Fig. 5.55 and Fig. 5.56. 
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Table 5.43: Simulation parameters for an a0[   ](   ) edge-on dislocation loop of diameter 2 nm 

within (011) bcc Fe thin foil along (011) pole for g=(   ) and (  ̅ ). Foil thickness t=40.0 nm, loop 

located 20.0 nm from bottom surface of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R (nm) T ( ) 

200 [011] [011] 40 40  a0 [100] [100] 20 1.0 25 

 

Dislocation loop Model g=(   ) 
(a) (b) (c) (d) 

a0 [100] (100) Isotropic 

    
Anisotropic 

    
Figure 5.55: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 2.0 nm 

within (011) bcc Fe thin foil along (011) pole for g=(   ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

Dislocation loop Model g=(  ̅ ) 
(a) (b) (c) (d) 

a0 [100] (100) Isotropic 

    
Anisotropic 

    
Figure 5.56: Simulated TEM images of an a0[   ](   ) edge-on dislocation loop of diameter 2.0 nm 

within (011) bcc Fe thin foil along (011) pole for g=(  ̅ ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

5.3.11.3. Simulated [111] dislocation loop under [111] zone axis 

TEM image simulations of a ½ a0[   ](   ) edge-on dislocation loop within (111) bcc Fe thin foil 

along (111) pole are performed with isotropic and anisotropic models. The diffraction vectors are: 

g=(  ̅ ) and ( ̅  ), and the diffraction conditions are: g(1.1g), g(2.1g) and g(4.1g). The simulation 

parameters are shown in Table 5.44, and the simulated images are shown in Fig. 5.57 and Fig. 5.58. 
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Table 5.44: Simulation parameters for a ½ a0[   ](   ) edge-on dislocation loop of diameter 2.0 

nm within (111) bcc Fe thin foil along (111) pole for g=(  ̅ ) and ( ̅  ). Foil thickness t=40.0 nm, 

loop located 20.0 nm from bottom surface of the foil.  

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    d (nm) R (nm) T ( ) 

200 [111] [111] 40 40  ½ a0 [111] [111] 20 1.0 25 

 

Dislocation loop Model g=(  ̅ ) 
(a) (b) (c) (d) 

½ a0 [111] (111) Isotropic 

    
Anisotropic 

    
Figure 5.57: Simulated TEM images of a ½ a0[   ](   ) edge-on dislocation loop of diameter 2.0 

nm within (111) bcc Fe thin foil along (111) pole for g=(  ̅ ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

Dislocation loop Model g=( ̅  ) 
(a) (b) (c) (d) 

½ a0 [111] (111) Isotropic 

    
Anisotropic 

    
Figure 5.58: Simulated TEM images of a ½ a0[   ](   ) edge-on dislocation loop of diameter 2.0 

nm within (111) bcc Fe thin foil along (111) pole for g=( ̅  ). Foil thickness t=40.0 nm, loop located 

20.0 nm from bottom surface of the foil. Diffraction condition (a) g(1.1g), BF; (b) g(1.1g), DF; (c) 

g(2.1g), DF; (d) g(4.1g), DF. 

 

It can be concluded from the simulated TEM contrast of dislocation loops under different zone axes 

and diffraction conditions that reliable judgment on the nature and physical parameters of dislocation 

loops formed in irradiated nuclear materials can be made by comparison between simulation and 

experimental observation. For example, Chen [Chen, 2013] investigated the habit plane of dislocation 

loops formed in irradiated UHP Fe through experimental TEM observation with different diffraction 

conditions under several zone axes, which can be further improved and quantified through 

comparison with simulated TEM images. 
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Chapter.6: Discussion 

 

In this chapter, TEM contrast of inclined dislocation and dislocation loop are discussed, especially 

focusing on the image stress effect on TEM contrast. Then, the image energy of dislocation loops 

within thin TEM foil are explored. Finally, The effect of column approximation (CA), dislocation 

core gradient on TEM image simulation is briefly discussed. 
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6.1. TEM contrast of inclined dislocation 

Complete invisibility of a dislocation requires that both       and (   )      are satisfied 

simultaneously. Image simulations suggest that a perfect dislocation will exhibit weak residual 

contrast and effectively is indistinguishable from the background when the parameter   
 

 
(   )  

       [Nabarro, 2007]. 

It should be noted that the elastic distortion field induced by the defects is following a linear 

superposition principle, while the intensity in the TEM image is not.  Indeed the electron waves going 

through the thin foil follow  a complex exponential function,    (      
  

  
), which indicates that 

the distortion field, R, actually introduces a phase shift to the electron waves. Thus, when the incident 

transmitted beam is set to an arbitrary value of 1.0, the final amplitude of the electron waves in the 

TEM image is always between 0.0 and 1.0. Thus, such image intensity amplitude is not following 

superposition principle. However, it can be used qualitatively when comparing the contribution to the 

image contrast from image force field and from bulk field. 

 

(a) Image stress effect on inclined dislocation contrast under       condition. 

Verification between experimental and simulated TEM images of ½ a0[111] inclined dislocation with 

different elasticity models was performed, the corresponding TEM images and profile comparison are 

shown in Fig. 5.22, Fig. 5.23, Fig. 5.24, Fig. 5.25 and Fig. 5.26 respectively. Simulation suggested 

that the black-white contrast oscillation will be shifted along inclined dislocation direction slightly, if 

image stress effect is considered, but image stress effect will not be able to influence the basic g, b 

analysis principle. The image stress effect induced absolute intensity amplitude is around 0.00 to 0.20, 

relative to the 1.0 intensity of incident transmitted beam, which is low compared to corresponding 

bulk intensity amplitude under       dislocation visibility condition. Experimentally, it may 

become difficult to discriminate it from background noise.  

 

(b) Image stress effect on inclined dislocation contrast under       condition. 

In order to test this condition, an experimental TEM observation of a ½ a0[111] inclined dislocation 

within (001) bcc Fe thin foil along [001] pole was performed with g=(  ̅ ), close to a two beam 

dynamical diffraction condition. It is shown in Fig. 6.1(e).  

TEM BF and DF two beam image simulation is performed for g=(  ̅ ), with g(1.1g) diffraction 

condition.The simulation parameters are shown in Table 6.1, and the simulated images are shown in 

Fig. 6.1. There are four black-white oscillations in the experimental TEM image along dislocation line. 

The effective extinction distance is:    
   

   √    
    

 ⁄ , in which    is about 37 nm. the 

thickness is:     
   

, giving 148 nm. By changing the thickness around this value, a good match 

between the simulated image Fig. 1.6 (c) and the experimental image one in Fig. 6.1(e) is found for a 

thickness of 123 nm. 

 

Table 6.1: Simulation parameters for a ½ a0[   ] inclined screw dislocation within (001) bcc Fe thin 

foil along (001) pole with diffraction vector g=(  ̅ ). 

PBC Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

250 120 30 50 123 ½ a0[   ] [   ] 25 0.2 

 



Chapter.6: Discussion 

129 

 

Beam  (a) (b) (c) (d) (e) 

BF, 

g=(  ̅ ),  

g(1.1g) 

     

DF,  

g=(  ̅ ), 

 g(1.1g) 

    
 

Figure 6.1: Experimental and simulated TEM images of a ½ a0[111] inclined dislocation within a 

(001) thin foil along (001) pole, with two beams, g=(  ̅ ) , g(1.1g) diffraction condition. (a), 

anisotropic WSL-Wu image gradient model; (b), anisotropic WSL finite gradient model; (c), 

anisotropic WSL-Wu-WSL total gradient model; (d), anisotropic Stroh infinite gradient model; (e), 

Experimental TEM image.  

 

It can be seen from the difference between Fig. 6.1(b), Fig. 6.1(c) and Fig. 6.1(d) that the image stress 

effect is remarkable near the tips of inclined dislocation under       condition, as the absolute 

amplitude of residual contrast of anisotropy models is quite low (0.00-0.20), which is comparable to 

image stress induced contrast amplitude (0.00-0.20). This is valid for both BF and DF images. 

 

(c) Image stress effect on end-on dislocation contrast. 

As shown in Fig. 5.27, many beam TEM image simulation for studying end-on black-white contrast is 

performed, and the end-on TEM contrast is quite sensitive to foil thickness. As mentioned by Mendis 

[Mendis, 2008], the absolute intensity of the diffraction contrast in the simulated many beam images 

is too low to be detectable in experimental images which have higher levels of background noise 

[Mendis, 2008]. 

In summary, this comparison between experimental and simulated images confirms that image forces 

have a remarkable impact on the TEM images of inclined dislocation for weak visibility conditions, 

that is to say      . This opens the field to experiments allowing to probe and quantify image 

forces in thin TEM foil. 

 

6.2. TEM contrast of nanometric dislocation loops 

As we have seen in chapter 5 surface relaxation has an effect on the extent of the first black–white 

depth layer L1. The reason for this is clear. Surface relaxation tends to make (   (   )   ⁄ ) 

symmetrical, and so expands the first layer. For a finite loop, the first layer is predicted to be of 

thickness 0.3   when surface relaxation is included, compared with 0.25   when it is not. Jenkins 

noted that it is not always clear if surface relaxation occurs in practice. This may introduce some 

uncertainty about the extent of the first layer which has some implications when the black–white 

stereo technique is used to determine the nature of the loop [Jenkins, 2001]. 

When image stress effect was included, the in-plane distortion field near free surface of bulk model 

will be reduced to a great degree, thus inducing additional modification on simulated TEM image 

based on bulk gradient model. The systematic study on the image stress effect of an a0[001](001) 

dislocation loop within (001) bcc Fe thin foil along [001] pole indicate that the contrast intensity 

amplitude of image stress models and bulk models is within [0.0, 0.2], and total models is within [0.0, 

0.25] for most simulation cases. According to the simulated TEM images of dislocation loops with 

g g g g g 

g 

g g g g 
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different models in chapter 5, the following four basic image stress effect modification modes are 

proposed for the first time, as shown in Fig. 6.2: 

 Image stress effect is strengthening the image contrast, and swelling/shrinking the 

shape of bulk model at the same time. For example, as shown in Fig. 5.44, when d=10, 

15 and 20 nm,the contrast is strengthened.  

 Image stress effect is weakening the image contrast, and swelling/shrinking the shape 

of bulk model at the same time. For example, as shown in Fig. 5.44, when d=5 nm,the 

contrast is strengthened. 

 Image stress effect is weakening the image contrast of bulk model and flipping the 

black-white essential feature of bulk model, swelling/shrinking the shape at the same 

time, as image stress effect is stronger than bulk model. For example, as shown in Fig. 

5.45, when R=11 nm,the contrast is weakened and flipped for the anisotropy case. 

 Image stress effect is weakening the image contrast of bulk model and sometimes 

even flipping the black-white essential feature of bulk model, swelling/shrinking the 

shape at the same time, as bulk model and image stress effect are both quite weak. For 

example, as shown in Fig. 5.45, when R=5 and 8 nm,the contrast is weakened for the 

anisotropy case. 

 

  

  

Figure 6.2:  The impact of image stress on TEM contrast of dislocation loop. 

 

However, the study for arbitrary oriented dislocation loops within TEM foil under arbitrary diffraction 

condition should be done in the future. 

 

6.3. Dislocation loops in bcc Fe thin foil 

As presented in the literature review, it is known that ½ <111> loops can run out of thin foil during in 

situ experiments. It should be noted hower than this was not reported yet for the <001> loops. 

Actually, the traction force on dislocation loop towards free surface may be described simply by 

          ⁄ , , which is denoted here as ‘attraction force’. Note that it is not strictly speaking the 

total traction force, which would involve the additional cross terms related to    and   , but it is 

proportional to it. It allows to qualitatively compare the impact of free surfaces induced traction force 

on the different types of dislocation loops and orientiations. 

The elastic energy of a dislocation loop in an Fe thin foil as a function of depth is considered. For this, 

a ½ a0[111](111) dislocation loop within (111) thin film and an a0[001](001) dislocation loop within 

(001) thin film with dislocation loop radius 1.0 ad 5.0 nm are employed. The simulation parameters 

are given in Table 6.2, and the simulated results are shown in Fig. 6.3. 

 

(a) (b) 

(c) (d) 

Image 

contrast 

Bulk 

contrast 
Total 

contrast 

Image 

contrast 

Bulk 

contrast 
Total 

contrast 

Image 

contrast 

Bulk 

contrast 
Total 

contrast 
Image 

contrast 

Bulk 

contrast 

Total 

contrast 



Chapter.6: Discussion 

131 

 

Table 6.2: Simulation parameters for ½ a0[111](111) dislocation loop within (111) thin film and for 

a0[001](001) dislocation loop within (001) thin film. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN t (nm) d (nm) R (nm) T ( ) 

20, 40, 80, 120, 150, 200 80 30 40 50 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 48 1, 5 25 

 

  

  

Figure 6.3: The dependence of energy and attraction force to free surface with loop depth within thin 

foil (a). Image energy and attraction force versus depth (R=1 nm); (b), (R=5 nm); Energy versus 

depth (c). (R=1 nm); (d), (R=5 nm). 

 

It can be concluded from Fig. 6.3 that for a0[001](001) prismatic dislocation loop parallel to [001] free 

surface case, the image energy of a0[001](001) loop drops sharply with the increase of depth under 

free surface. However, it is amazing to notice that the image energy of ½ a0[111](111) dislocation 

loops is quite remarkable, and decreasing much flatter than a0[001](001) dislocation loop with depth. 

The influencing depth of ½ a0[111](111) dislocation loops within (111) thin TEM foil is much longer 

than a0<001> dislocation loop within (001) thin TEM foil. 

Here, the study is limited within very special cases, mainly a ½ a0[111](111) dislocation loop within 

(111) bcc Fe thin TEM foil and an a0[111](001) dislocation loop within (001) bcc Fe thin TEM foil. In 

order to understand better about the synergetic effect of anisotropy and image stress effect on TEM 

black-white contrast and physical behavior of dislocation loops better, further systematical research 

should be carried out. Fitzgerald explained that: Currently, there are no reliable electronic or atomistic 

approaches to modelling dislocations in Fe at high temperature, and the theoretical resolution of the 

question of a0<100> mobility will have to await their development. Further studies, involving large 

scale DD simulations and in situ straining at high temperatures in the TEM, are required to further 

elucidate this mechanism of the formation and evolution of a0<100> type of loops [Fitzgerald, 2013]. 

As pointed out by Masters [Masters, 1963], ½ a0<111> dislocation loops is able to run out of thin foil 

easily, It has also been estimated by MD calculation that   a shear stress of a few MPa to 20 MPa is 

(a) (b) 

(c) (d) 
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sufficient to move an edge dislocation [Haghighat, 2010]. At low temperatures at least, a0<100> 

dislocations have a much lower mobility than their ½ a0<111> counterparts, by virtue of their much 

higher Peierls barrier [Fitzgerald, 2013]. Such remarks has been supportedd by in-situ ion irradiation 

experiments and corresponding simulations by Abury [Aubry, 2011], Prokhodtseva [Prokhodtseva, 

2013], Fitzgerald [Fitzgerald, 2009], Yao [Yao, 2008], Hernández [Hernández, 2008] and Moll [Moll, 

2013]. In the experiments by Yao [Yao, 2008], it was demonstrated that ½ a0<111> dislocation loop 

will run out of thin foil quite easily in pure iron material during in-situ heavy ion irradiation 

experiments, and the bulk/thin foil irradiation comparison experiments performed by Prokhodtseva 

[Prokhodtseva, 2013] shows that the formation of visible a0<100> loops is promoted by the presence 

of free surfaces, the more so in the thinnest regions of the sample leaving a loop population dominated 

by a0<100> loops, both experiments confirmed that free surfaces has a much stronger effect on ½ 

a0<111> loop than a0<001> loops.  

Although in situ TEM irradiation experiments has several advantages over post-irradiation TEM 

investigation of bulk irradiated material, the present investigation of anisotropy and image stress 

effect of thin foil provides some insight into these. In particular, it sheds some lights on their 

representativeness of corresponding post-irradiation TEM investigation of bulk irradiated material, 

especially when the defects density is high, or anisotropy ratio is high. 

 

6.4. Column approximation 

As shown in  Fig. 5.33, comparison between simulated TEM images via HB, CA and Schaeublin-

Stadelmann dynamic diffraction schemes are performed for a ½ a0[   ̅](   ̅) dislocation loop of 

diameter 4.86 nm located 123.93 nm from bottom of a 127.575 nm thick Cu TEM foil along [011] 

pole. It can be concluded that: the simulated TEM image via CA is reliable, and the impact of CA on 

the final black-white contrast modification is not remarkable, when compared to anisotropy effect. 

However, there are some special cases that non-CA should not be ignored any more. As shown in Fig. 

6.4 (a), if two straight dislocations are sitting nearly along beam direction, then the side shift of profile 

along g (or opposite to g) direction will not be the same amplitude, the intensity overlap will become 

complex, and there will be big difference between simulated TEM images via CA and non-CA 

respectively. As shown in Fig. 6.4 (b), if the left edge of loop L2 is nearly below loop the right edge 

of loop L1, then the side shift of intensity for these two loops will be different, and the final intensity 

profile will also becomes complex if non-CA is considered. If free surface effect is also considerred, 

things will become more complex, which needs further study in the future. It should also be noted that 

when there is global bending of the thin TEM foil, the local effective deviation parameter    is 

changed gradually over the observation zone.  

 

  

 

  

 

Figure 6.4: Special cases for CA (a), two dislocation lines situated nearly along the beam direction; 

(b), two dislocation loops situated nearly along the beam direction. 

 

L1 
L2 

non-CA CA 

L1 
L2 

non-CA CA 
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6.5. Dislocation core treatment 

Current knowledge on dislocation core is still quite limited, even though a lot HRTEM experimental 

and theoretical investigation on dislocation core configuration has been made in recent years. For 

example, a non-singularity dislocation theory is developed by Cai, and dislocation core of pure 

aluminum is investigated with HRTEM by Mills  [Cai, 2006; Mills, 1989] Here, the dislocation core 

of inclined dislocation on simulated TEM image is studied briefly.The stress field around piercing 

point is quite high and the piercing point constitutes a mathematical singularity. In order to represent 

the stress field of an inclined dislocation precisely, it is necessary to refine the meshing of free 

surfaces. Surface meshing is refined to study its effect on the simulated TEM images. TEM many 

beam simulation for ½ a0[111] inclined dislocation within (001) bcc Fe thin foil along [001] pole is 

performed. The diffraction vector is: g=(   ); and the diffraction conditions are g(1.1g) BF and 

g(3.1g) DF. The simulation parameters are given in Table 6.3, and the simulated images are shown in 

Fig. 6.5.  

 

Table 6.3: Simulation parameters for [   ] end-on dislocation in [   ] thin foil. 

Periodic boundary condition (PBC) Dislocation physical parameters 

PL (nm) MN WN SN t (nm) b    T ( ) CR (nm) 

70 10, 20, 30, 40, 60 30 20 32 a0[   ] [   ] 25 0.2868 

 

Beam 

condition 
MN 

10 20 30 40 60 

g(1.1g), BF 

     
g(3.1g), DF 

     
Figure 6.5: Simulated TEM images of an a0[   ](   ) end-on dislocation within [   ] thin bcc Fe 

TEM foil along [001] pole for studying meshing number effect on black-white contrast, the diffraction 

vector is: g=(   ), and the diffraction conditions are g(1.1g) and g(3.1g). The inclined dislocation 

model employed for calculation is inclined anisotropic WSL-Wu image gradient model.  

 

It can be seen from Fig. 6.5 that with the increase of meshing number, the simulated TEM image 

becomes stable, showing black-white lobe contrast. 
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Chapter.7: Conclusion and perspectives 

 

In this chapter, general conclusion of the thesis is given. Then, perspectives for further research on 

elastic calculation TEM image simulation including image forces for hcp crystals are given and 

briefly elaborated. 
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In this work we have studied in detail the impact of the free surfaces of a TEM bcc Fe thin foil 

containing a dislocation line and dislocation loop, including elastic field, elastic energy and TEM 

images contrast. For that purpose, a new method has been developed, and the resulting displacement 

field including anisotropy was successfully used to simulate the TEM image of the defect, namely a 

straight inclined dislocation or a dislocation loop.  

 

7.1 Conclusion 

7.1.1. Anisotropic image stress method 

 The anisotropy image stress method for dealing with the free surfaces problems of defects 

within a crystalline thin foil was successfully developed, in Fourier space.  

 

7.1.2. Dislocation loops within thin TEM foil 

 Qualitative evaluation of the synergistic effects of anisotropy and image stress was made, 

especially focusing on an a0[001](001) loop within (001) foil and a ½ a0[111](111) loop 

within (111) foil.  

 For the a0[001](001) loop within (001) foil case, image stress induced in plane image 

displacement is quite remarkable, and such in-plane relaxation is closely related to TEM 

image diffraction contrast modification. The corresponding image energy drops sharply with 

the increase of depth under free surfaces of thin TEM foil, and such feature does not change 

so much with increasing anisotropy ratio.  

 For the ½ a0[111](111) loop within (111) foil case, image stress induced out-of-plane image 

displacement is quite remarkable. The corresponding image energy of ½ a0[111](111) loop 

within (111) foil is quite remarkable, and decreases much flatter than for the a0[001](001) 

loop within (001) foil.  

 

7.1.3. TEM contrast of inclined dislocation 

 The various types of elasticity models are successfully implemented into many beam TEM 

image simulation code CUFOUR. Each model has its special physical meaning and can be 

compared with each other for studying the impact image stress effect, anisotropy, and the 

synergetic effect of image stress and anisotropy on TEM image contrast of inclined 

dislocation. 

 The effect of beam conditions, zone axis, foil physical properties are studied systematically 

for ½ a0[111](111) inclined dislocation within bcc Fe thin foil. Simulations indicate that the 

difference between isotropy and anisotropy models is remarkable. Anisotropy thus cannot be 

ignored. The comparison to experimental images of screw dislocations in UHP Fe indicates 

that while anisotropy has indeed a remarkable impact, image forces seem to have a negligible 

impact when       but a strong impact when      . The latter opens very interesting 

perspectives, as it would allow quantifying them. 

 

7.1.4. TEM contrast of nanometric dislocation loops 

 The various types of elasticity models are successfully implemented into many beam TEM 

image simulation code CUFOUR. Each model has its special physical meaning and can be 

compared with each other for studying the impact image stress effect, anisotropy, and the 

synergetic effect of image stress and anisotropy on TEM image contrast of dislocation loops. 

 The simulated TEM image via CA is reliable, and the impact of CA on the final black-white 

contrast modification is not remarkable, when compared to anisotropy effect. 
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 The classical L-vector analysis is quite limited for quantitative judgment on Burgers vector b 

via only one diffraction experiments. The angle between L and b will increase with the 

increase of the angle between g and b, but more slowly. When anisotropy is considered, the L 

vector will be rotated slightly, and the black-white lobe will be elongated or compressed. 

 When image stress effect is included, additional modification on simulated TEM image based 

on bulk gradient model is remarkable for       weak visibility condition.  

 

7.2. Perspectives 

7.2.1. Comparison between MD, isotropic and anisotropic models 

There are elasticity and MD based defect models employed for describing the deformation field of a 

loop. However the capability of these models for very small loops (R<= 1 nm) is still under 

investigation. Here, following case study from the literature, TEM two beam DF image simulations 

are performed for ½ a0[   ̅](   ̅) head-on dislocation loop within (011) bcc Mo thin foil along [011] 

pole, with different models. The elastic modulus for bcc Mo at room temperature is shown in Table 

7.1. The diffraction vectors is g=( ̅  ̅), and the diffraction condition is g(1.0g). The simulation 

parameters are given in Table 7.2, and the simulated images are shown in Fig. 7.1. 

 

Table 7.1: Elastic parameters of pure bcc Mo at room temperature [Featherstone, 1963]. 

T( ) C11 

(GPa) 
C12 

(GPa) 
C44 

(GPa) 
Anisotropy 

 ratio (-) 
Shear modulus 

(GPa) 
Poisson  

ratio (-) 
Lattice   

Parameter (nm) 

25 440.77 172.43 121.65 0.9067 54.632 0.3249 a=b=c=0.315 

 

Table 7.2: Simulation parameters for a ½ a0[   ̅](   ̅)  dislocation loop of diameter 2.32 nm within 

(011) bcc Mo thin foil for g=( ̅  ̅) along [011] pole. Foil thickness t = 121.8 nm, loops located 

118.32 nm from bottom of the foil. 

Dislocation loop physical parameters 

HT (KV)    ZA SN t (nm) b    R (nm) d (nm) CR (nm) 

100 [011] [011] 40 121.8 ½ a0[   ̅] [   ̅] 1.16 118.32 0.1 

 

     

Figure 7.1: Simulated TEM images of a ½ a0[   ̅](   ̅)  dislocation loop of diameter 2.32 nm 

within (011) bcc Mo thin foil for g=( ̅  ̅) along [011] pole. Foil thickness t = 121.8 nm, loop located 

118.32 nm from bottom of the foil. (a). Isotropy, Eyre, 2B [Eyre, 1977b]; (b). MD, EMS, Multi slice 

FFT [Stadelmann, 1987; Schaeublin, Private communication, 2014]; (c). Isotropy, CUFOUR, 2B; (d). 

Anisotropy, CUFOUR, 2B; (e). TEM DF, experimental image, 2B [Eyre, 1977b].  

 

 t can be concluded from Fig. 7.1 that the essential “butterfly” contrast features of edge-on dislocation 

loop via elasticity and MD are preserved, and qualitatively coincide with the ones in the experimental 

observation. However, this would require further quantitative assessment, in particular for the MD 

calculation, which exhibits the largest difference relative to the experimental image. 

 

g g g 

(a) (b) (e) (c) (d) 
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7.2.2. Further application on HCP crystal 

The methodology was applied to hcp Zr to study the impact of the image forces via isotropic and 

anisotropic elasticities for dislocation loops within a half space. The elastic modulus for hcp Zr at 

room temperature is given in Table 7.3. The image stress effect of a prismatic c[0001](0001) 

dislocation loop with R=5.0 nm in a [0001] oriented single crystal hcp Zr half space is studied. The 

crystallographic orientations of (     ) coordinates are [  ̅  ], [   ̅ ] and [    ] respectively The 

simulation parameters are given in Table 7.4, and the simulated image stress and image displacement 

displacement results are shown in Fig. 7.2 and Fig. 7.3. 

 

Table 7.3: Elastic parameters of pure hcp Zr at room temperature. [Fischer, 1964] 

T( ) C11 

(GPa) 
C12 

(GPa) 
C13 

(GPa) 
C33 

(GPa) 
C44 

(GPa) 
Shear modulus 

(GPa) 
Poisson  

ratio (-) 
Lattice   

Parameter (nm) 

25 143.4 72.8 65.3 164.8 32.0 36.4067 0.3307 a=b=0.34 

c=0.551454 

 

Table 7.4: Simulation parameters for a c[0001](0001) dislocation loop within (0001) hcp Zr half 

space. 

PBC Dislocation loop physical parameters 

PL (nm) MN WN SN b    d (nm) R (nm) T ( ) 

80 80 30 40 c[0001] (0001) 10 5 25 

 

   

   

Figure 7.2: Image elastic fields by a c[0001](0001) loop within a (0001) Zr anisotropic half space, 

calculated with isotropic Devincre model. Image stress (a), Txz; (b), Tyz; ( c), Tzz. Image 

displacement along (d, X; (e), Y; (f), Z. 

 

(a) (b) (c) 

(d) (e) (f) 
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Figure 7.3: Image elastic fields by a c[0001](0001) loop within a (0001) Zr anisotropic half space, 

calculated with anisotropic WSL model. Image stress (a), Txz; (b), Tyz; ( c), Tzz. Image displacement 

along (d, X; (e), Y; (f), Z. 

 

From the calculation results shown in Fig. 7.2 and Fig. 7.3, one can conclude that anisotropy cannot 

be neglected when calculating the image stress induced 3D displacement fields of free surfaces. When 

comparing the isotropic and anisotropic calculation results for c[0001](0001) dislocation loop within 

(0001) hcp Zr half space, the resulting in-plane and out-of-plane image displacement amplitude are 

(0.0258 nm, 0.0258 nm, 0.0610 nm) and (0.0240 nm, 0.0240 nm, 0.0778 nm) respectively. Hcp Zr 

gives stronger in plane displacement amplitude with Voigt isotropy model than anisotropy model, and 

a weaker out-of-plane image displacement with Voigt isotropy model than anisotropy model, thus 

proving the importance of anisotropic image stress of HCP thin TEM foil. 
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Appendix 

Appendix A: The invisibility criterion g·b for bcc Fe crystal 

g b 

½ [   ] ½ [ ̅  ] ½ [  ̅ ] ½ [   ̅] ½ [ ̅ ̅ ] ½ [  ̅ ̅] ½ [ ̅  ̅] ½ [ ̅ ̅ ̅] 

[  ̅ ] 0 -1 1 0 0 1 -1 0 

[ ̅  ] 0 1 -1 0 0 -1 1 0 

[ ̅ ̅ ] -1 0 0 -1 1 0 0 1 

[   ] 1 0 0 1 -1 0 0 -1 

[   ] 1 1 -1 1 -1 -1 1 -1 

[  ̅ ] -1 -1 1 -1 1 1 -1 1 

[ ̅  ] -1 1 -1 -1 1 -1 1 1 

[   ] 1 -1 1 1 -1 1 -1 -1 

Table A. 1: The invisibility criterion g·b for diffraction vectors in the [001] pattern for the ½ a0 <111> 

dislocation in bcc Fe. 

g b 

½ [   ] ½ [ ̅  ] ½ [  ̅ ] ½ [   ̅] ½ [ ̅ ̅ ] ½ [  ̅ ̅] ½ [ ̅  ̅] ½ [ ̅ ̅ ̅] 

[   ̅] 0 0 -1 1 -1 0 1 0 

[  ̅ ] 0 0 1 -1 1 0 -1 0 

[ ̅  ] -1 1 -1 -1 1 -1 1 1 

[   ] 1 -1 1 1 -1 1 -1 -1 

[  ̅ ] 1 -1 2 0 0 1 -2 -1 

[ ̅  ̅] -1 1 -2 0 0 -1 2 1 

[ ̅ ̅ ] -1 1 0 -2 2 -1 0 1 

[   ̅] 1 -1 0 2 -2 1 0 -1 

Table A. 2: The invisibility criterion g·b for diffraction vectors in the [011] pattern for the ½ a0 <111> 

dislocation in bcc Fe. 

g b 

½ [   ] ½ [ ̅  ] ½ [  ̅ ] ½ [   ̅] ½ [ ̅ ̅ ] ½ [  ̅ ̅] ½ [ ̅  ̅] ½ [ ̅ ̅ ̅] 

[   ̅] 0 0 -1 1 -1 0 1 0 

[   ] 1 0 0 1 -1 0 0 -1 

[   ] 1 0 1 0 0 0 -1 -1 

[  ̅ ] 0 0 1 -1 1 0 -1 0 

[ ̅ ̅ ] -1 0 0 -1 1 0 0 1 

[ ̅  ̅] -1 0 -1 0 0 0 1 1 

[ ̅ ̅ ̅] -2 0 -1 -1 1 0 1 2 

[  ̅ ] 1 0 2 -1 1 0 -2 -1 

[   ̅] 1 0 -1 2 -2 0 1 -1 

Table A. 3: The invisibility criterion g·b for diffraction vectors in the [111] pattern for the ½ a0 <111> 

dislocation in bcc Fe. 
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Appendix B: Anisotropic image stress matrix for half space and film 

Appendix B. 1: [001] cubic semi space 

(a) the  0, 0x yk k   mode. 

 
(A.2-1) 

  
(A.2-2) 

 
(A.2-3) 

 (b) the  0, 0x yk k   mode. 

 
(A.2-4) 

 

(A.2-5) 

(c) the  0, 0x yk k   mode.  

 
(A.2-6) 

 
(A.2-7) 

 

Appendix B. 2: [0001] HCP semi space 

(a) the  0, 0x yk k   mode.         
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(b) the  0, 0x yk k   mode. 
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(c) the  0, 0x yk k   mode.  
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Appendix B. 3: [001] cubic film 

 (a) the  0, 0x yk k   mode.  
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Appendix B. 4: [111] cubic film 
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Appendix C: CUFOUR subroutines algorithm for TEM image simulation 

Algorithm. 4.1: 

The details for implementing inclined isotropic Devincre-Weinberger image gradient model into CUFOUR are 

described as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

14 Calculate dislocation core stress tensor    
    , according to eigengenstress in basic crystal coordinate, and 

the user can decide including core stress or not into the following simulation. 

15 else 

16 Calculate the inclined dislocation induced bulk stress value via isotropic Devincre dislocation segment 

integration at given position  , according to formula (4-1) to (4-5) in crystal coordinate. 

17 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC.  

18 end if 

19 end for 

20 Transform the image stress field from crystal coordinate to beam coordinate. 

21 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

22 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Devincre 

dislocation segment integration, and comparison will be made between isotropic Devincre dislocation 

segment integration model and isotropic Weinberger image stress models in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of isotropic Weinberger image stress model can 

be calculated out respectively.  

23 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration 

along electron propagation direction. 

 

Algorithm. 4.2: 

The details for implementing inclined isotropic Mura-Weinberger image gradient model into CUFOUR are 

described as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 
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transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

14 Calculate dislocation core stress tensor    
    , according to eigengenstress in basic crystal coordinate, and 

the user can decide including core stress or not into the following simulation. 

15 else 

16 Calculate the inclined dislocation induced bulk stress value via isotropic Mura dislocation segment 

integration at given position  , according to formula (4-6) to (4-9) in crystal coordinate. 

17 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC. 

18 end if 

19 end for 

20 Transform the image stress field from crystal coordinate to beam coordinate. 

21 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

22 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Mura 

dislocation segment integration, and comparison will be made between isotropic Mura dislocation 

segment integration model and isotropic Weinberger image stress models in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of isotropic Weinberger image stress model can 

be calculated out respectively. 

23 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(     ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation 

process at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta 

integration along electron propagation direction.       

 

Algorithm. 4.3: 

The details for implementing inclined anisotropic WSL-Wu image gradient model into CUFOUR are described 

as following:  

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

14 Calculate dislocation core stress tensor    
    , according to eigengenstress in basic crystal coordinate, and 

the user can decide including core stress or not into the following simulation. 

15 else 
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16 Calculate the inclined dislocation induced bulk stress value via anisotropic WSL dislocation segment 

integration at given position  , according to formula (4-10) to (4-18) in crystal coordinate. 

17 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC. 

18 end if 

19 end for 

20 Transform the image stress field from crystal coordinate to beam coordinate. 

21 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 

22 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic WSL 

dislocation segment integration, and comparison will be made between anisotropic WSL dislocation 

segment integration model and anisotropic Wu image stress models in Fourier space, thus satisfying free 

traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of anisotropic Wu image stress model can be 

calculated out respectively. 

23 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(     ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation 

process at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta 

integration along electron propagation direction. 

 

Algorithm. 4.4: 

The details for implementing inclined isotropic Mura finite gradient model into CUFOUR are described as 

following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

10 Step.2: Calculate the Mura isotropic finite gradient value within thin TEM foil. 

11 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

12 Calculate dislocation core gradient     
    , according to eigengenstrain (or averaging gradient around 

dislocation segments) in crystal coordinate. 

13 else 

14 Calculate the inclined dislocation induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

15 Perform integration along dislocation line, and harvest the finite gradient at the calculated position vector 

 .  

16 end if 

17 Transform the finite gradient value from crystal coordinate to beam coordinate. 

18 Finally, harvest the finite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction. 

 

Algorithm. 4.5: 

The details for implementing inclined anisotropic WSL finite gradient model model into CUFOUR are 

described as following: 
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1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

9 Step.2: Calculate the WSL anisotropic finite gradient value within thin TEM foil. 

10 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

11 Calculation dislocation core gradient     
    , according to eigengenstrain (or averaging gradient around 

dislocation segments) in crystal coordinate. 

12 else 

13 Calculate the inclined dislocation induced finite gradient value via WSL anisotropic dislocation segment 

integration at given position  , according to formula (4-10) and (4-16) in crystal coordinate. 

14 Perform integration along dislocation line, and harvest the finite gradient at the calculated position vector 

 . 

15 end if 

16 Transform the finite gradient value from crystal coordinate to beam coordinate. 

17 Finally, harvest the finite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction. 

 

Algorithm. 4.6: 

The details for implementing inclined isotropic Devincre-Weinberger-Mura total gradient model into CUFOUR 

are described as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

14 Calculate dislocation core stress tensor    
    , according to eigenstress in basic crystal coordinate, and the 

user can decide including core stress or not into the following simulation. 

15 else 

16 Calculate the inclined dislocation induced bulk stress value via isotropic Devincre dislocation segment 

integration at given position  , according to formula (4-1) to (4-5) in crystal coordinate. 

17 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC.  

18 end if 

19 end for 
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20 Transform the image stress field from crystal coordinate to beam coordinate. 

21 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

22 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Devincre 

dislocation segment integration, and comparison will be made between isotropic Devincre dislocation 

segment integration model and isotropic Weinberger image stress models in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of isotropic Weinberger image stress model can 

be calculated out respectively.  

23 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

24 Step.4: Calculate the Mura isotropic finite gradient value within thin TEM foil. 

25 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

26 Calculate dislocation core gradient     
    , according to eigengenstrain (or averaging gradient around 

dislocation segments) in crystal coordinate. 

27 else 
28 Calculate the inclined dislocation induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

29 Perform integration along dislocation line, and harvest the finite gradient at the calculated position vector 

 .  

30 end if 
31 Transform the finite gradient value from crystal coordinate to beam coordinate. 

32 Add the image gradient value via isotropic Devincre-Weinberger image gradient model and finite gradient 

value via Mura isotropic dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 

 

Algorithm. 4.7: 

The details for implementing inclined isotropic Mura-Weinberger-Mura total gradient model into CUFOUR are 

as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

14 Calculate dislocation core stress tensor    
    , according to eigenstress in basic crystal coordinate, and the 

user can decide including core stress or not into the following simulation. 

15 else 

16 Calculate the inclined dislocation induced bulk stress value via isotropic Mura dislocation segment 

integration at given position  , according to formula (4-6) to (4-9) in crystal coordinate. 

17 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC.  

18 end if 

19 end for 
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20 Transform the image stress field from crystal coordinate to beam coordinate. 

21 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

22 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Mura 

dislocation segment integration, and comparison will be made between isotropic Mura dislocation 

segment integration model and isotropic Weinberger image stress models in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of isotropic Weinberger image stress model can 

be calculated out respectively.  

23 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

24 Step.4: Calculate the Mura isotropic finite gradient value within thin TEM foil. 

25 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

26 Calculate dislocation core gradient     
    , according to eigengenstrain (or averaging gradient around 

dislocation segments) in crystal coordinate. 

27 else 
28 Calculate the inclined dislocation induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

29 Perform integration along dislocation line, and harvest the finite gradient at the calculated position vector 

 .  

30 end if 
31 Transform the finite gradient value from crystal coordinate to beam coordinate. 

32 Add the image gradient value via isotropic Mura-Weinberger image gradient model and finite gradient 

value via Mura isotropic dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction.        

 

Algorithm. 4.8: 

The details for implementing inclined anisotropic WSL-Wu-WSL total gradient model into CUFOUR are as 

following: 

1 Input: Parameters declaration (                                          ).  

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

9 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

10 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

11 for      ⁄       ⁄      ⁄       ⁄  do 

12 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

13 Calculate dislocation core stress tensor    
    , according to eigenstress in crystal coordinate, and the user 

can decide including core stress or not into the following simulation. 

14 else 

15 Calculate the inclined dislocation induced bulk stress value via anisotropic WSL dislocation segment 

integration at given position  , according to formula (4-10) to (4-18) in crystal coordinate. 

16 Perform integration along dislocation line, and harvest the bulk stress and image stress at free surfaces of 

thin TEM foil, according to free traction BC. 

17 end if 

18 end for 

19 Transform the image stress field from crystal coordinate to beam coordinate. 
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20 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 

21 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic WSL 

dislocation segment integration, and comparison will be made between anisotropic WSL dislocation 

segment integration model and anisotropic Wu image stress models in Fourier space, thus satisfying free 

traction BC for each (     ) Fourier mode. Then, the 2D discrete Fourier coefficients for the symmetrical 

and asymmetrical image displacement field of anisotropic Wu image stress model can be calculated out 

respectively. 

22 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

23 Step.4: Calculate the WSL anisotropic finite gradient value within thin TEM foil. 

24 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

25 Calculate dislocation core gradient     
    , according to eigengenstrain (or averaging gradient around 

dislocation segments) in crystal coordinate. 

26 else 
27 Calculate the inclined dislocation induced finite gradient value via WSL anisotropic dislocation segment 

integration at given position  , according to formula (4-10) and (4-16) in crystal coordinate. 

28 Perform integration along dislocation line, and harvest the finite gradient at the calculated position vector 

 . 

29 end if 
30 Transform the finite gradient value from crystal coordinate to beam coordinate. 

31 Finally, harvest the finite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil. 

32 Transform the finite gradient value from crystal coordinate to beam coordinate. 

33 Add the image gradient value via anisotropic WSL-Weinberger image gradient model and finite gradient 

value via anisotropic WSL dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 

 

Algorithm. 4.9: 

The details for implementing inclined isotropic Hirth-Lothe infinite gradient model into CUFOUR are described 

as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector , and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

10 Step.2: Calculate the isotropic Hirth-Lothe infinite gradient value within thin TEM foil. 

11 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

12 Calculate dislocation core gradient     
    , according to eigengenstrain in crystal coordinate. 

13 else 
14 Calculate the inclined dislocation induced infinite gradient value via inclined isotropic infinite Hirth-Lothe 

model at given position  , according to formula (4-19) and (4-23) in crystal coordinate. 

15 Perform integration along dislocation line, and harvest the infinite gradient at the calculated position 

vector  .  

16 end if 
17 Transform the infinite gradient value from crystal coordinate to beam coordinate. 
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18 Finally, harvest the infinite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction. 

 

Algorithm. 4.10: 

The details for implementing inclined anisotropic infinite Stroh model into CUFOUR are described as following: 

1 Input: Parameters declaration (                                          ). 

2 Output: (    ⁄      ⁄      ⁄ )      

3 Step.1: Building up the simulation physical condition. 

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , inclined dislocation segmentation number   , and initialize the 

transformation matrix between crystal coordinate, beam coordinate, TEM foil coordinate and inclined 

dislocation coordinate:                          respectively. 

6 Define inclined dislocation direction vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of inclined dislocation, and the position of dislocation segment is described by   . 

9 Step.2: Calculate the anisotropic Stroh infinite gradient value within thin TEM foil. 

10 If   is within the dislocation core region of inclined dislocation of TEM thin foil, then 

11 Calculate dislocation core gradient     
    , according to eigenstrain in crystal coordinate. 

12 else 
13 Calculate the inclined dislocation induced infinite gradient value via inclined anisotropic Stroh infinite 

gradient model at given position  , according to formula (4-24) and (4-30) in crystal coordinate. 

14 Perform integration along dislocation line, and harvest the infinite gradient at the calculated position 

vector  .  

15 end if 
16 Transform the infinite gradient value from crystal coordinate to beam coordinate. 

17 Finally, harvest the infinite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction.     

 

Algorithm. 4.11: 

The details for implementing dislocation loop isotropic Devincre-Weinberger image gradient model into 

CUFOUR are described as following: 

1 Input: Parameters declaration (                                       ). 

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 Calculate the dislocation loop induced bulk stress value via isotropic Devincre dislocation segment 

integration at given position  , according to formula (4-1) to (4-5) in crystal coordinate. 
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14 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

15 end for 

16 Transform the image stress field from crystal coordinate to beam coordinate. 

17 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

18 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Devincre 

dislocation segment integration, and comparison will be made between isotropic Devincre dislocation 

segment integration model and isotropic Weinberger image stress model in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of dislocation loop isotropic Weinberger image 

gradient model can be calculated out respectively.  

19 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration 

along electron propagation direction. 

 

Algorithm. 4.12: 

The details for details for implementing dislocation loop isotropic Mura-Weinberger image gradient model into 

CUFOUR are described as following:  

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 Calculate the dislocation loop induced bulk stress value via isotropic Mura dislocation segment integration 

at given position  , according to formula (4-6) to (4-9) in crystal coordinate. 

14 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

15 end for 
16 Transform the image stress field from crystal coordinate to beam coordinate. 

17 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 
18 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Mura 

dislocation segment integration, and comparison will be made between isotropic Mura dislocation 

segment integration model and isotropic Weinberger image stress model in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of dislocation loop isotropic Weinberger image 

gradient model can be calculated out respectively.  

19 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration 

along electron propagation direction. 

 

Algorithm. 4.13: 
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The details for implementing dislocation loop anisotropic WSL-Wu-WSL total gradient model into CUFOUR 

are described as following: 

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

9 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

10 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

11 for      ⁄       ⁄      ⁄       ⁄  do 

12 Calculate the dislocation loop induced bulk stress value via anisotropic WSL dislocation segment 

integration at given position  , according to formula (4-10) to (4-18) in crystal coordinate. 

13 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

14 end for 
15 Transform the image stress field from crystal coordinate to beam coordinate. 

16 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 
17 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic WSL 

dislocation segment integration, and comparison will be made between anisotropic WSL dislocation 

segment integration model and anisotropic WSL image stress model in Fourier space, thus satisfying free 

traction BC for each (     ) Fourier mode. Then, the 2D discrete Fourier coefficients for the symmetrical 

and asymmetrical image displacement field of dislocation loop anisotropic Wu image stress model can be 

calculated out respectively.  

18 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration 

along electron propagation direction. 

 

Algorithm. 4.14: 

The details for implementing dislocation loop anisotropic Mura-Wu-WSL total gradient model into CUFOUR 

are described as following: 

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

9 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

10 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

11 for      ⁄       ⁄      ⁄       ⁄  do 

12 Calculate the dislocation loop induced bulk stress value via dislocation loop anisotropic Mura dislocation 

segment integration at given position  , according to formula (4-31) to (4-37) in crystal coordinate. 
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13 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

14 end for 
15 Transform the image stress field from crystal coordinate to beam coordinate. 

16 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 
17 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic Mura 

dislocation segment integration, and comparison will be made between anisotropic Mura dislocation 

segment integration model and anisotropic WSL image stress model in Fourier space, thus satisfying free 

traction BC for each (     ) Fourier mode. Then, the 2D discrete Fourier coefficients for the symmetrical 

and asymmetrical image displacement field of dislocation loop anisotropic Wu image stress model can be 

calculated out respectively.  

18 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration 

along electron propagation direction. 

 

Algorithm. 4.15: 

The details for implementing dislocation loop isotropic Mura bulk gradient model into CUFOUR are described 

as following: 

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the Mura isotropic finite gradient value within thin TEM foil. 
11 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

12 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 

13 else 

14 Calculate the dislocation loop induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

15 endif 

16 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

17 Transform the finite gradient value from crystal coordinate to beam coordinate. 

18 Finally, harvest the finite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction. 

 

Algorithm. 4.16: 

The details for implementing dislocation loop isotropic Mura bulk gradient model into CUFOUR are described 

as following: 

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  
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4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

9 Step.2: Calculate the WSL anisotropic finite gradient value within thin TEM foil. 
10 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

11 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 

12 else 

13 Calculate the dislocation loop induced finite gradient value via WSL anisotropic dislocation segment 

integration at given position  , according to formula (4-10) to (4-16) in crystal coordinate. 

14 endif 

15 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

16 Transform the finite gradient value from crystal coordinate to beam coordinate. 

17 Finally, harvest the finite gradient value (    ⁄      ⁄      ⁄ ) in electron beam coordinate at given 

position   within thin TEM foil, and returned back into CUFOUR for Runge-Kutta integration along 

electron propagation direction. 

 

Algorithm. 4.17: 

The details for implementing dislocation loop isotropic Devincre-Weinberger-Mura total gradient model into 

CUFOUR are described as following:  

1 Input: Parameters declaration (                                       ). 

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 Calculate the dislocation loop induced bulk stress value via isotropic Devincre dislocation segment 

integration at given position  , according to formula (4-1) to (4-5) in crystal coordinate. 

14 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

15 end for 

16 Transform the image stress field from crystal coordinate to beam coordinate. 

17 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 

18 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Devincre 

dislocation segment integration, and comparison will be made between isotropic Devincre dislocation 

segment integration model and isotropic Weinberger image stress model in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of dislocation loop isotropic Weinberger image 

gradient model can be calculated out respectively.  
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19 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

18 Step.4: Calculate the Mura isotropic finite gradient value within thin TEM foil. 
19 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

20 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 

21 else 

22 Calculate the dislocation loop induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

23 endif 

24 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

25 Transform the finite gradient value from crystal coordinate to beam coordinate. 

26 Add the image gradient value via isotropic Devincre-Weinberger image gradient model and finite gradient 

value via isotropic Mura dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 

 

Algorithm. 4.18: 

The details for implementing dislocation loop isotropic Mura-Weinberger-Mura total gradient model into 

CUFOUR are described as following:  

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Calculate Voigt isotropic equivalent modulus  , poisson ratio  , and Lame  . 

8 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

9 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

10 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

11 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

12 for      ⁄       ⁄      ⁄       ⁄  do 

13 Calculate the dislocation loop induced bulk stress value via isotropic Mura dislocation segment integration 

at given position  , according to formula (4-6) to (4-9) in crystal coordinate. 

14 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

15 end for 
16 Transform the image stress field from crystal coordinate to beam coordinate. 

17 Step.3: Perform isotropic Weinberger image gradient calculation in Fourier space. 
18 Perform 2D discrete Fourier transformation of the harvested image stress field through isotropic Mura 

dislocation segment integration, and comparison will be made between isotropic Mura dislocation 

segment integration model and isotropic Weinberger image stress model in Fourier space, thus satisfying 

free traction BC for each (     )  Fourier mode. Then, the 2D discrete Fourier coefficients for the 

symmetrical and asymmetrical image displacement field of dislocation loop isotropic Weinberger image 

gradient model can be calculated out respectively.  

19 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

20 Step.4: Calculate the Mura isotropic finite gradient value within thin TEM foil. 
21 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

22 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 
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23 else 

24 Calculate the dislocation loop induced finite gradient value via Mura isotropic dislocation segment 

integration at given position  , according to formula (4-6) and (4-7) in crystal coordinate. 

25 endif 

26 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

27 Transform the finite gradient value from crystal coordinate to beam coordinate. 

28 Add the image gradient value via isotropic Mura-Weinberger image gradient model and finite gradient 

value via isotropic Mura dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 

 

Algorithm. 4.19: 

The details for implementing dislocation loop anisotropic WSL-Wu-WSL total gradient model into CUFOUR 

are described as following:  

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

9 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

10 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

11 for      ⁄       ⁄      ⁄       ⁄  do 

12 Calculate the dislocation loop induced bulk stress value via anisotropic WSL dislocation segment 

integration at given position  , according to formula (4-10) to (4-18) in crystal coordinate. 

13 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

14 end for 
15 Transform the image stress field from crystal coordinate to beam coordinate. 

16 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 
17 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic WSL 

dislocation segment integration, and comparison will be made between anisotropic WSL dislocation 

segment integration model and anisotropic Wu image stress model in Fourier space, thus satisfying free 

traction BC for each (     ) Fourier mode. Then, the 2D discrete Fourier coefficients for the symmetrical 

and asymmetrical image displacement field of dislocation loop anisotropic Wu image stress model can be 

calculated out respectively.  

18 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

19 Step.4: Calculate the WSL anisotropic finite gradient value within thin TEM foil. 
20 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

21 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 

22 else 

23 Calculate the dislocation loop induced finite gradient value via WSL anisotropic dislocation segment 

integration at given position  , according to formula (4-10) to (4-16) in crystal coordinate. 

24 endif 

25 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

26 Transform the finite gradient value from crystal coordinate to beam coordinate. 
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27 Add the image gradient value via anisotropic WSL-Wu image gradient model and finite gradient value via 

anisotropic WSL dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 

 

Algorithm. 4.20: 

The details for implementing dislocation loop anisotropic Mura-Wu-WSL total gradient model into CUFOUR 

are described as following:  

1 Input: Parameters declaration (                                       ).  

2 Output: (    ⁄      ⁄      ⁄ )  

3 Step.1: Building up the simulation physical condition.  

4 Define simulated TEM image sizes, and receive the calculated position vector   from TEM image 

simulation code CUFOUR. 

5 Define geometrical and physical parameters of TEM foil, diffraction beam, dislocation loop, such as:  

modulus      , core radius   , loop radius  , dislocation loop center depth within thin TEM foil from 

bottom  , and initialize the transformation matrix between crystal coordinate, beam coordinate, TEM foil 

coordinate and dislocation loop coordinate:                   respectively. 

6 Define dislocation loop habit plane normal vector and Burger vector      respectively. 

7 Initialize the Kronecker-Delta operator    , Levi-Civita permutation operator     . 

8 Segmentation of dislocation loop perimeter, and the position of dislocation segment is described by   .  

9 Step.2: Calculate the image stress field at free surfaces of thin TEM foil. 

10 Meshing the free surface of thin foil with given periodic length and meshing step (     ). 

11 for      ⁄       ⁄      ⁄       ⁄  do 

12 Calculate the dislocation loop induced bulk stress value via dislocation loop anisotropic Mura dislocation 

segment integration at given position  , according to formula (4-31) to (4-37) in crystal coordinate. 

13 Perform integration along dislocation loop perimeter, and harvest the bulk stress and image stress at free 

surfaces of thin TEM foil, according to free traction BC.  

14 end for 
15 Transform the image stress field from crystal coordinate to beam coordinate. 

16 Step.3: Perform anisotropic Wu image gradient calculation in Fourier space. 
17 Perform 2D discrete Fourier transformation of the harvested image stress field through anisotropic Mura 

dislocation segment integration, and comparison will be made between anisotropic Mura dislocation 

segment integration model and anisotropic Wu image stress model in Fourier space, thus satisfying free 

traction BC for each (     ) Fourier mode. Then, the 2D discrete Fourier coefficients for the symmetrical 

and asymmetrical image displacement field of dislocation loop anisotropic Wu image stress model can be 

calculated out respectively.  

18 Finally, the 2D discrete Fourier coefficients are employed for image gradient value 

(    ⁄      ⁄      ⁄ ) calculation in electron beam coordinate via reverse FFT transformation process 

at given position   within thin TEM foil. 

19 Step.4: Calculate the WSL anisotropic finite gradient value within thin TEM foil. 
20 If r is within the dislocation core region of dislocation loop within TEM thin foil, then 

21 Calculate dislocation loop core gradient     
    , according to eigengenstrain in crystal coordinate. 

22 else 

23 Calculate the dislocation loop induced finite gradient value via WSL anisotropic dislocation segment 

integration at given position  , according to formula (4-10) to (4-16) in crystal coordinate. 

24 endif 

25 Perform integration along dislocation loop perimeter, and harvest the finite gradient at the calculated 

position vector  .  

26 Transform the finite gradient value from crystal coordinate to beam coordinate. 

27 Add the image gradient value via anisotropic Green-Wu image gradient model and finite gradient value 

via anisotropic WSL dislocation segment integration together as the final total gradient value 

(    ⁄      ⁄      ⁄ ) in electron beam coordinate at given position   within thin TEM foil, and 

returned back into CUFOUR for Runge-Kutta integration along electron propagation direction. 
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Appendix D: Numerical implementation scheme for CUFOUR 

Originally, CUFOUR is employing displacement field    ( )  implementation scheme. The 

displacement field of defects is calculated out through dislocation theory or MD firstly; then, the 

derivative operation 
 

  
(   ( ))  and Runge-Kutta integration along beam direction will be 

performed. In order to display simulated TEM image of inclined dislocation, a transformation 

Cartesian coordinate is defined, which is the mathematical operation of beam direction vector B and 

dislocation direction vector U,  

{
   (   )

    

  (   )   
 

 

(A 4-1) 

The diffraction vector g and displacement field  ( )  of dislocation is calculated in the above-

mentioned Cartesian coordinate, whose   direction is not along the electron beam propagation 

direction. The purpose of such coordinate transformation operation is making the simulated 

dislocation along   direction, independent of beam diffraction condition. 

In the current thesis, alternative displacement gradient field 
 

  
(   ( )) implementation scheme is 

employed in CUFOUR, and the displacement gradient of defects is calculated out through dislocation 

theory directly, then integration along beam direction will be performed for 
 

  
 ( ).  

The details of the current implementation scheme are described as following:  

When performing TEM diffraction imaging experiments with certain diffraction direction g, only the 

lattice distortion of certain plane set (normal to the selected diffraction vector) will contribute to the 

final TEM image black-white contrast, and a Cartesian coordinate whose   is along election beam 

transmisson direction is employed for explanation of the emplementation scheme. 

The diffraction beam can be written as:  

  [    ]+[    ] (A. 4-2) 

Thus, there is no    component in electron beam coordinate.  

The displacement gradient vector can be decomposed as:  

  

  
 [

  

  
      ]  [  

  

  
   ]  [      

  

  
 ]  (A. 4-3) 

Then,  

  
  

  
   [

  

  
      ]    [  

  

  
   ]    [      

  

  
 ]  (A. 4-4) 

Finally, 

  
  

  
   

  

  
+  

  

  
 (A. 4-5) 

Thus,  
  

  
 will not have any contribution to the final TEM diffraction image contrast.  
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