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Abstract

This thesis is concerned with the definition and the study of properties of
homotopic Hopf-Galois extensions in the category Ch

�0
k of chain complexes

over a field k, equipped with its projective model structure.
Given a differential graded k-Hopf algebra H of finite type, we define

a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of
augmented H-comodule dg-k-algebras, where B is equipped with the trivial
H-coaction, for which the associated Galois functor (�')⇤ : M

W can
'

A ! M
W⇢

A

and the comparison functor (i')⇤ : ModAhcoH !ModB are Quillen equiv-
alences. Here AhcoH denotes the object of homotopy H-coinvariants of the
dg-algebra A, and ModAhcoH denotes the category of right modules over
AhcoH in Ch

�0
k , endowed with the model category structure right-induced

by the forgetful functor from Ch

�0
k (and similarly for B). The categories

M
W can

'

A and M
W⇢

A denote, respectively, the categories of right A⌦B A- and
A⌦H-comodules in the category ModA, and they are equipped with the
model category structures left-induced from ModA by the forgetful functor.

We investigate the behavior of homotopic Hopf-Galois extensions of com-
mutative dg-k-algebras under base change. First, we study their preservation
under base change. Given a homotopic H-Hopf-Galois extension ' : B ! A,
with B, A commutative, and a morphism f : B ! B0 of commutative dg-
k-algebras, we determine conditions on ' and f , under which the induced
morphism ' : B0 ! B0⌦B A is also a homotopic H-Hopf-Galois extension.
Secondly, we examine the reflection of such extensions under base change.
We suppose that the induced morphism ' : B0 ! B0⌦B A is a homotopic H-
Hopf-Galois extension, and we specify conditions on ' and f that guarantee
that ' : B ! A was a homotopic H-Hopf-Galois extension.

The main result of this thesis establishes one direction of a Hopf-Galois
correspondence for homotopic Hopf-Galois extensions over co-commutative
dg-k-Hopf-algebras of finite type. We show that if ' : B ! A is a homotopic
H-Hopf-Galois extension, and g : H ! K is an inclusion of co-commutative
dg-k-Hopf-algebras of finite type, then AhcoK ! A is always a homotopic K-
Hopf-Galois extension, and B ! AhcoK is a homotopic HhcoK-Hopf-Galois
extension, provided that A is semi-free as a B-module.

We end with an example, derived from the context of simplicial sets,
which offers interesting possibilities of application of our main result to prin-
cipal fibrations of simplicial sets.

Key words: Hopf algebra, homotopic Hopf-Galois extension, Hopf-
Galois correspondence, homotopic descent, coring, category of comodules
over a coring, homotopy coinvariants.
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Résumé

Cette thèse élabore une définition et étudie les propriétés des exten-
sions de Hopf-Galois homotopiques dans la catégorie Ch

�0
k des complexes de

chaînes sur un corps k, munie de sa structure de catégorie modèle projective.
Étant donné H une k-algèbre de Hopf différentielle graduée de type fini,

on appelle H-extension de Hopf-Galois homotopique un morphisme ' : B !
A de dg-k-algèbres augmentées, où B est munie avec une H-coaction triviale,
pour lequel le foncteur de Galois associé (�')⇤ : M

W can
'

A !M
W⇢

A et le foncteur
de comparaison associé (i')⇤ : ModAhcoH ! ModB sont des équivalences
de Quillen. Ici, AhcoH dénote l’objet des H-coinvariants homotopiques de
l’algèbre A, et ModAhcoH est la catégorie des AhcoH -modules à droite dans
Ch

�0
k , munie de sa structure de catégorie modèle induite à droite par le

foncteur oubli depuis Ch

�0
k (et de même, pour B). On note par M

W can
'

A et
M

W⇢

A , respectivement, la catégorie des A⌦B A- et A⌦H-comodules à droite
dans la catégorie ModA. Elles sont toutes les deux équipées de structures
de catégorie modèles induites à gauche par le foncteur oubli depuis ModA.

Nous examinons le comportement des extensions de Hopf-Galois homo-
topiques de dg-k-algèbres commutatives sous changement de base. Dans un
premier temps, nous étudions leur préservation sous changement de base.
Étant donné une H-extension de Hopf-Galois homotopique ' : B ! A, avec
B, A commutatifs, et un morphisme f : B ! B0 de dg-k-algèbres commuta-
tives, nous déterminons les conditions sur ' et f , sous lesquelles le morphisme
induit ' : B0 ! B0⌦B A est aussi une H-extension de Hopf-Galois homo-
topique. Dans un deuxième temps, nous considérons la question de réflexion
de telles extensions sous un changement de base. Nous supposons que le
morphisme induit ' : B0 ! B0⌦B A est une H-extension de Hopf-Galois
homotopique, et nous spécifions les conditions sur ' et f qui garantissent
que ' : B ! A était une H-extension de Hopf-Galois homotopique.

Le résultat principal de cette thèse établit une direction d’une corre-
spondance de Hopf-Galois pour des extensions de Hopf-Galois homotopiques
sur des dg-k-algèbres de Hopf co-commutatives de type fini. Nous démon-
trons le résultat suivant: si ' : B ! A est une H-extension de Hopf-Galois
homotopique et g : H ! K est une inclusion de dg-k-algèbres de Hopf co-
commutatives de type fini, alors AhcoK ! A est toujours une K-extension
de Hopf-Galois homotopique, et B ! AhcoK est une HhcoK-extension de
Hopf-Galois homotopique, à condition que A soit un module B-semi-libre.

Nous terminons avec un exemple, issu du contexte des ensembles simpli-
ciaux, qui offre des possibilités intéressantes d’application de notre résultat
principal aux fibrations principales des ensembles simpliciaux.

Mots-clés: algèbre de Hopf, extension de Hopf-Galois homotopique,
correspondance de Hopf-Galois, descente homotopique, coanneau, catégorie
des comodules sur un coanneau, coinvariants homotopiques.



Acknowledgements

First and foremost, I would like to express my deepest gratitude to my
advisor Prof. Kathryn Hess Bellwald for having supervised my thesis. I
thank her for her availability and encouragement, her rigor and motivation,
her generosity and her support through all these years. It was a pleasure and
an honor for me to work with her and to learn from her lectures and from her
mathematical experience. I am also grateful to Kathryn for giving me the
opportunity to travel and attend numerous conferences and for supporting
my participation in numerous activities linked to pedagogy and to promoting
mathematics to young people.

I would like to thank the president of the jury Prof. Marc Troyanov and
the members of the jury, Prof. Alexander Berglund, Prof. Birgit Richter
and Prof. Jacques Thévenaz for having accepted to examine my work and
for having done it with great care. I am grateful for all their questions
and helpful comments that allowed me to improve the final version of this
document.

I was extremely lucky with my colleagues. Ilias Amrani, Nicolas Michel,
Patrick Müller, Marc Stephan, Kay Werndli, Martina Rovelli, Dimitri Za-
ganidis, Sophie Raynor, Eric Finster, Gavin Seal, Justin Young, Giordano
Favi and Jérôme Scherer, I would like to thank each of you for your readi-
ness and willingness to discuss all sorts of mathematical questions and life
concerns, and for all the fun moments that we shared together.

I would like to say thank you to the secretaries Maria Cardoso Kühni,
Pierrette Paulou-Vaucher and Anna Dietler for their professionalism and for
having made the administrative side of my PhD life easier.

It was a pleasure for me to collaborate with Rosalie Chevalley on the
creation of two Welcome workshops for new PhD’s, as a contribution to the
EDMA program. I would also like to thank Alix Leboucq, Claudio Semadeni
and Shahin Tavakoli for our team work in the QED association.

Many words of gratitude go to Caroline Lassueur, David Kohler, Helena
Palmqvist, Jen Lehe, Valérie Seal, Maria Simonoff and Joseph Stupey for
their believing in me.

Bob Bidon, Noisette, Walnut and Freya, without you wrting my thesis
definitely would not be the same.

Clearly, I am grateful to Guillaume Tellez for having taught me how

5



6

to drive during the second and third years of my PhD and for making me
discover that, most of the time, I think too much. I thank Sylvie Dentan for
her young spirit and positive energy. And Jazz, ....on t’aime!

Many very special thanks go to Peter Jossen who supported me uncondi-
tionally through all these years, encouraged me in difficult moments, helped
me to distract myself from work when I seriously needed a break and made
me feel better by understanding me and by adding a good deal of humor in
all situations.

I would like to thank my parents Lilia Karpova and Alexander Karpov for
their patience, love and support, and for putting up with me being eternally
busy. I would also like to thank my parents in-law Helga and Michael Jossen
for their kindness, and for welcoming me into their family (and also for
putting up with me being eternally busy...).



Contents

Abstract / Résumé 3

Notations 9

Introduction 12

1 Background material 19
1.1 The zoo of categories . . . . . . . . . . . . . . . . . . . . . . . 19

1.1.1 Monoidal categories’ language . . . . . . . . . . . . . . 19
1.1.2 Lifting adjunctions . . . . . . . . . . . . . . . . . . . . 27
1.1.3 Digression on Hopf algebras . . . . . . . . . . . . . . . 28

1.2 Algebraic tools . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.1 Cobar construction and twisted structures . . . . . . . 30
1.2.2 Semi-free modules in Ch

�0
R . . . . . . . . . . . . . . . 36

1.2.3 A toolbox of spectral sequences . . . . . . . . . . . . . 38
1.2.4 Homologically faithful modules in Ch

�0
R . . . . . . . . 40

1.3 Model category theory . . . . . . . . . . . . . . . . . . . . . . 43
1.3.1 Recognizing Quillen equivalences . . . . . . . . . . . . 43
1.3.2 Some relevant model structures . . . . . . . . . . . . . 44

1.4 Quillen pairs and Quillen equivalences between categories of
modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.4.1 Quillen pairs induced by morphisms of algebras . . . . 47
1.4.2 Quillen equivalences induced by quasi-isomorphisms of

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 48
1.5 Adjunctions between categories of comodules over corings . . 50

1.5.1 Quillen adjunctions induced by bimodules . . . . . . . 50
1.5.2 Quillen equivalences induced by quasi-isomorphisms of

corings . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2 Foundations of homotopic Hopf-Galois extensions 57
2.1 (Homotopy) C-coinvariants . . . . . . . . . . . . . . . . . . . 57

2.1.1 Calculating C-coinvariants . . . . . . . . . . . . . . . . 57
2.1.2 Homotopy C-coinvariants in ComodC . . . . . . . . . 58
2.1.3 Homotopy H-coinvariants in Alg

"
H . . . . . . . . . . . 60

7



8 CONTENTS

2.2 Special maps associated to a morphism of augmented H-comodule
algebras ' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2.1 The comparison map i' . . . . . . . . . . . . . . . . . 63
2.2.2 The Galois map �' . . . . . . . . . . . . . . . . . . . . 64

2.3 The definition of homotopic Hopf-Galois extensions . . . . . . 65
2.4 Connections to other works . . . . . . . . . . . . . . . . . . . 66

2.4.1 Brief reminder of Galois extensions of fields . . . . . . 67
2.4.2 Galois extensions of commutative rings . . . . . . . . . 67
2.4.3 Hopf-Galois extensions of algebras . . . . . . . . . . . 69
2.4.4 Homotopifying (Hopf-)Galois extensions . . . . . . . . 72
2.4.5 Relation to (homotopic) Grothendieck descent . . . . . 73
2.4.6 Bujard’s Master Thesis . . . . . . . . . . . . . . . . . . 75

3 Behavior of homotopic Hopf-Galois extensions under base
change 77
3.1 The context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.1.1 Some comments on the comparison maps i', i' and
their induced functors . . . . . . . . . . . . . . . . . . 78

3.1.2 The context in which the Galois functors (�')⇤ and
(�')⇤ arise . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Preservation of homotopic Hopf-Galois extensions under base
change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.2.1 The behavior of the comparison functor (i')⇤ . . . . . 88
3.2.2 The behavior of the Galois functor (�')⇤ . . . . . . . . 91

3.3 Reflection of homotopic Hopf-Galois extensions under base
change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
3.3.1 The behavior of the Galois functor (�')⇤ . . . . . . . . 95
3.3.2 The behavior of the comparison functor (i')⇤ . . . . . 96

4 One direction of the homotopic Hopf-Galois correspondence 99
4.1 Generalized situation . . . . . . . . . . . . . . . . . . . . . . . 99
4.2 A brief reminder of Galois correspondence for fields . . . . . . 100
4.3 One direction of homotopic Hopf-Galois correspondence . . . 102

4.3.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3.2 The candidate Hopf algebra and the Main Theorem . 104
4.3.3 Technical preliminaries . . . . . . . . . . . . . . . . . . 107
4.3.4 Proof of the Main Theorem (Theorem 4.3.6) . . . . . . 116

4.4 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.4.1 The simplicial context . . . . . . . . . . . . . . . . . . 126
4.4.2 Obtaining a co-commutative Hopf algebra from a sim-

plicial set . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.4.3 An example of application of Theorem 4.3.6 . . . . . . 129

5 Perspectives 135



Index 136

References 137

9



10



Notations

AcoH H-coinvariants of A
AhcoH homotopy H-coinvariants of A
Alg

"
H category of augmented H-comodule algebras

Autk(E) group of k-automorphisms of E
B(B) bar construction on B

B BimodA, B ModA category of B-A-bimodules
C(X,Y ) hom-set of morphisms from X to Y in a small category C

Ch

�0
k category of non-negatively graded chain complexes over a field k

CoalgR category of R-coalgebras
ComodC category of C-comodules
grMod

�0
R category of graded R-modules

Homk(X,Y ) k-homomorphisms from X to Y
M ⇤

C
N cotensor product of M and N over C

M
⇠
⌦X M is semi-free on X

MW
A category of W -comodules in the category ModA

ModA category of A-modules
Set category of sets
sSet category of simplicial sets
Xc X is a cofibrant object
Xf X is a fibrant object
XG G-fixed points of X
⌦(A;H; k) one-sided cobar construction on an H-comodule algebra A
⌦(A;H;H) two-sided cobar construction on an H-comodule algebra A
⌦(C) cobar construction on C
⇠! weak equivalence
⇣ fibration
⇢ cofibration
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Introduction

The origins of (homotopic) Hopf-Galois theory

It is certainly classical Galois theory that lies at the origin of (homotopic)
Hopf-Galois theory. Given a finite algebraic field extension ↵ : k ,! E, an
important object associated to ↵ is the group of automorphisms of the field E
that fix k, which we denote by G. The extension ↵ : k ,! E is called G-Galois
if it is normal and separable. In this case, the Galois correspondence

{fields M : k ✓M ✓ E} ! {subgroups N  G}

holds. To a field M it associates the group AutM(E) of automorphisms of
E that fix M, and to a group N it associates the field of fixed points EN ,
thus defining a bijection between the set of intermediate field extensions of
↵ : k ,! E, and the set of subgroups of the Galois group G.

The first generalization of the Galois theory goes back to the sixties and
the work of Auslander and Goldman [AG60], who were the first to gen-
eralize the notion of Galois extension to commutative rings. This theory
was developed further by Chase, Harrison and Rosenberg in [CHR65], who
proposed six equivalent ways of characterizing a Galois extension of com-
mutative rings. One of these equivalent characterizations was formulated in
terms of two particular maps associated to this extension. Namely, an inclu-
sion of commutative rings ↵ : R ,! S was called G-Galois for G  AutR(S),
finite, if certain maps

i : R ,! SG and � : S⌦R S !
Y

G

S

(see Section 2.4.2) are isomorphisms of R-algebras, where SG is the ring of
G-fixed points in S and

Q
G

S is the set of all G-indexed sequences of elements

in S, equipped with point-wise multiplication.
In the case where S and R are fields, the definitions of Auslander and

Goldman, and Chase, Harrison and Rosenberg coincide with the original def-
inition of a finite Galois extension of fields. This not only offered a different,
“zoomed-out” perspective on what it means for a finite field extension to be
Galois, but it also turned out to be fruitful for proving a version of Galois

13



correspondence for commutative rings ([CHR65]) and crucial for the future
developments of Galois and (homotopic) Hopf-Galois theory in various con-
texts.

A dualization of the theory started with the emergence of Hopf-Galois
extensions of (not necessarily commutative) algebras over a commutative
ring R. This notion was first developed in a purely algebraic context, by
Chase and Sweedler in [CS69] and by Kreimer and Takeuchi in [KT81]. The
idea was to dualize the framework, by replacing the action of a group G by
a coaction of a Hopf R-algebra H. Hopf-Galois data consist of a morphism
of H-comodule R-algebras ' : B ! A, where B is augmented and has the
trivial H-coaction. One should not be surprised to learn that ' will be an
H-Hopf-Galois extension, if a relevant pair of maps, associated to ', are
isomorphisms. These maps are the Galois map

�' : A⌦B A
A⌦B ⇢ // A⌦B A⌦H

µA⌦H // A⌦H,

defined in Section 2.2.2, and the comparison map

i' : B ! AcoH .

Here ⇢ is the H-coaction on A, and AcoH denotes the H-coinvariants of A.
Hopf-Galois extensions are noteworthy for numerous reasons. It turns out

that a Hopf-Galois extension arises naturally from a free group action on a
set, as we will explain in Example 2.4.11, and they can also be used as a tool
in the study of the structure of Hopf algebras themselves ([Sch04]). Moreover,
Hopf-Galois extensions have an important relation to descent theory.

The classical descent problem for rings can be informally formulated as
follows. Given an inclusion of (not necessarily commutative) rings i : B ! A
and an A-module M , what extra structure on M guarantees that there exists
a B-module N , such that N ⌦B A ⇠= M?

In order to answer this question, one needs to work with the category
D(i) of descent data, associated to i, which is actually isomorphic to the cat-
egory M

W can
i

A of right A⌦B A-comodules in ModA. Given a Hopf algebra
H that is flat over a commutative ring R, Schneider’s structure theorem, es-
tablished in [Schn90], states that i : B ! A is an H-Hopf-Galois extension,
such that A is faithfully flat over B, if and only if the category ModB is
equivalent to the category M

W⇢

A of right A⌦H-comodules in ModA (i.e., '
satisfies effective descent).

The philosophy of homotopy theorists consists in studying objects and
concepts up to homotopy. So, a homotopic Hopf-Galois extension, “living”
in whichever category, will take into account the homotopical information
contained in the model structure of this category.

14



The first homotopic analog of Galois theory was studied in [Rog08] by
Rognes, in the category of structured ring spectra. He formulated the defi-
nition of a Galois extension of ring spectra (which mimicked the definition
from [CHR65]) and studied many of their properties, such as their behavior
under cobase change. Rognes also proved a full version of homotopic Galois
correspondence for ring spectra.

He discovered that the unit map from the sphere spectrum S to the com-
plex cobordism spectrum MU , can not be realized as a Galois extension, for
any group spectrum G, but rather constitutes an example of a homotopic
Hopf-Galois extension for the Hopf algebra given by ⌃1BU+, the unreduced
suspension spectrum of BU .

Motivated by the desire to provide a general framework in which to study
homotopic Hopf-Galois extensions, Hess laid the foundations of a theory
of Hopf-Galois extensions in monoidal model categories in [Hes09], gener-
alizing both the classical case of rings and its extension to ring spectra.
Just as in the algebraic case, there exists a close relation between homo-
topic Hopf-Galois extensions and homotopic descent theory, for which a new
homotopy-theoretic framework was developed by Hess in [Hes10] for simpli-
cially enriched categories, and by Müller in [Mul11] for categories enriched in
an arbitrary model monoidal category V. In this spirit, Berglund and Hess
established in [BH12] that a homotopic analog of Schneider’s result holds
and allows one to view homotopic Hopf-Galois extensions of dg-k-algebras
as an interesting class of morphisms, satisfying effective descent.

In [Hes09] homotopic Hopf-Galois extensions in two particular examples
of categories were briefly studied. These were the category of simplicial
monoids and the category of finite-type chain algebras of k-vector spaces.
The topic of this thesis takes its roots in [Hes09] and develops in yet another
category of interest, the category of chain complexes of k-vector spaces. It
also takes its inspiration from the work of Rognes [Rog08].

The goal of this thesis is to refine the definition of homotopic Hopf-
Galois extensions proposed in [Hes09] (see Definition 2.4.12), which allows us
to study the behavior of homotopic Hopf-Galois extensions in Ch

�0
k under

cobase change and to prove successfully one direction of homotopic Hopf-
Galois correspondence. We show that if ' : B ! A is a homotopic H-
Hopf-Galois extension, and g : H ! K is an inclusion of co-commutative
dg-k-Hopf-algebras of finite type, then AhcoK ! A is always a homotopic K-
Hopf-Galois extension, and B ! AhcoK is a homotopic HhcoK-Hopf-Galois
extension, provided that A is semi-free as a B-module.

15



Organization of the thesis

Chapter 1 gathers the categorical, algebraic and model-theoretic background
material that we will need for studying homotopic Hopf-Galois extensions.
In particular, the model category section contains all the right- and left-
transfer results that we will need to ensure that our categories of interest are
equipped with the appropriate model structures. The left-transfer results
appear in a very recent preprint [BHKKRS14].

One can formulate reasonable conditions under which a quasi-isomorphism
of algebras (respectively, of corings) induces a Quillen equivalence on the cat-
egories of modules (respectively, the categories of comodules over corings).
Reciprocally, one can determine when having a Quillen equivalence implies
that the underlying morphism is a quasi-isomorphism. These characteriza-
tions, some of which were established in [BH12], are given in Chapter 1 and
will prove extremely useful to us throughout the thesis.

The goal of Chapter 2 is to introduce our definition of homotopic Hopf-
Galois extensions. This definition involves the homotopy coinvariants of a
coaction of a Hopf algebra, so we will first need to know how to calculate the
homotopy coinvariants AhcoH of an H-comodule algebra A. To be able to do
this, it is important to have valid models for fibrant replacements in the cate-
gory Alg

"
H of augmented H-comodule algebras in Ch

�0
k . They will be given

by the two-sided cobar construction ⌦(A;H;H), so that AhcoH is modeled
by the one-sided cobar construction ⌦(A;H; k). The twisted multiplication,
defined in Corollary 3.6 [HL07], allows us to endow both ⌦(A;H;H) and
⌦(A;H; k) with a natural differential graded algebra structure.

We explain the construction of the Galois functor (�')⇤ : M
W can

'

A !M
W⇢

A

and the comparison functor (i')⇤ : ModAhcoH ! ModB, which are es-
sential to our definition of a homotopic Hopf-Galois extension (Definition
2.3.1). To make connections between this definition and other concepts of
(non-homotopic) (Hopf)-Galois extensions, mentioned earlier in this Intro-
duction, we end Chapter 2 with a more detailed panorama of (homotopic)
Hopf-Galois theory.

Chapter 3 explores the behavior of homotopic Hopf-Galois extensions of
commutative algebras under cobase change. The commutativity assumption
guarantees that the pushout of two algebras B0 and A over an algebra B, is
given by the coequalizer B0⌦B A. Given a homotopic H-Hopf-Galois exten-
sion ' : B ! A and its pushout ' : B0 ! B0⌦B A along a map f , we explain
in detail how the pairs of associated Quillen equivalences

�
(�')⇤, (i')⇤

�
and�

(�')⇤, (i')⇤
�

are related. After that, we address the question of preser-
vation “if ' is H-Hopf-Galois, when is ' H-Hopf-Galois?” (Proposition
3.2.7), followed by the question of reflection “if ' H-Hopf-Galois, under
which conditions was ' H-Hopf-Galois?” (Proposition 3.3.5). In both cases,
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we work under conditions such that the results from Chapter 1 on relation
between quasi-isomorphisms and associated Quillen equivalences are appli-
cable, which facilitates our task. We need primarily to impose semi-freeness
and homological faithfulness assumptions on some of the algebras.

The fourth chapter of this thesis is devoted to establishing the backward
direction of homotopic Hopf-Galois correspondence in Ch

�0
k . We will need

to work in the framework of “conormality”, developed in [FH12] and dual to
the Galois framework.

An important observation is the following. Since we are working up to
homotopy, studying a homotopic H-Hopf-Galois extension ' is equivalent
to studying the normal basis extension associated to ', ◆H : ⌦(A;H; k) !
⌦(A;H;H), which is also homotopic H-Hopf-Galois. So, instead of working
directly with the factorization B ! AhcoK ! A, we work with a certain
commuting diagram of cobar constructions.

Here is the exact statement of our Hopf-Galois correspondence result.
We refer the reader to the body of the thesis for the necessary definitions
and terminology.

Theorem 0.0.1 (Theorem 4.3.6). Let k be a field and g : H ! K a mor-
phism of co-commutative, 1-connected, degree-wise finitely generated Hopf
algebras in Ch

�0
k , such that K2 = 0. Let ' : B ! A be a homotopic H-

Hopf-Galois extension in Ch

�0
k and consider the following diagram

⌦(A;H; k) � � ◆H //

!
))SSSSSSSSSSSSSSSSSS
⌦(A;H;H) ' // ⌦(A;K;K),

⌦(A;K; k)
( �

◆K

55kkkkkkkkkkkkkkkkkk

where ◆H and ◆K denote the normal basis homotopic Hopf-Galois extensions,
associated to Hopf algebras H and K, respectively. If

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0; and

(2) g : (H,�H , dH) ,! (K,�K , dK) is an inclusion of differential graded
k-coalgebras,

then the map
! : ⌦(A;H; k) // ⌦(A;K; k)

is a generalized homotopic ⌦(H;K; k)-Hopf-Galois extension in Ch

�0
k .

Using results from Chapter 1 on the relation between quasi-isomorphisms
and associated Quillen equivalences, the proof proceeds by establishing that

17



the comparison map i! and the Galois map �! are quasi-isomorphisms, which
is done in several steps. In particular, properties of twisted extensions and
of semi-free extensions allow us to apply spectral sequence techniques to es-
tablish the existence of some of the intermediate quasi-isomorphisms.

Finally, Chapter 5 contains a few open questions.
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Chapter 1

Background material

1.1 The zoo of categories

Notation 1.1.1. The following notation is used throughout this thesis. If
A is an object of a small category C, we write A 2 C. The set of morphisms
from A 2 C to B 2 C is denoted by C(A, B). The identity morphism on an
object A is denoted by A or IdA.

1.1.1 Monoidal categories’ language

The goal of this section is to clarify the categorical context we are working
in, and also to fix notation. It starts with a brief reminder about monoidal
categories, as well as related categories, such as the categories of (co)modules
in a monoidal category, and then describes our categories of interest in this
project.

Definition 1.1.2. A monoidal category (M,⌦, I) is a category M, to-
gether with a bifunctor �⌦� : M⇥M ! M, called the monoidal prod-
uct and an object I 2 M, called the unit, such that �⌦� is associative
and unital with respect to I. More precisely, this means that for every triple
A, B,C 2M, there is given an isomorphism

↵A,B,C : (A⌦B)⌦C ! A⌦(B⌦C),

natural in A, B, C, and for all A 2M, there exist isomorphisms

lA : I⌦A! A and rA : A⌦ I! A,
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natural in A, such that the diagram

((A⌦B)⌦C)⌦D
↵A⌦B,C,D //

↵A,B,C ⌦D

✏✏

(A⌦B)⌦(C ⌦D)

↵A,B,C⌦D

✏✏

(A⌦(B⌦C))⌦D

↵A,B⌦C,D

✏✏
A⌦((B⌦C)⌦D)

A⌦↵B,C,D // A⌦(B⌦(C ⌦D))

commutes for all A, B,C, D 2M, and the diagram

(A⌦ I)⌦B
↵A,I,B //

rA⌦B &&MMMMMMMMMM
A⌦(I⌦B)

A⌦ lBxxqqqqqqqqqq

A⌦B

commutes for all A, B 2M.
A monoidal category (M,⌦, I) is called symmetric if, for all A, B 2

M, there is given an isomorphism twA,B : A⌦B ! B⌦A, natural in A
an B, appropriately compatible (see Chapter 7, §7 in [McL98]) with the
associativity isomorphism ↵ and the unit isomorphisms l and r, and such
that twB,A = tw�1

A,B, i.e., such that the diagram

B⌦A
twB,A //

=
))RRRRRRRRRRRRR A⌦B

twA,B

✏✏
B⌦A

commutes.
A monoidal category (M,⌦, I) is called closed if for any X 2 M, the

functor �⌦X : M ! M has a right adjoint, denoted HomM(X,�) : M !
M.

Notation 1.1.3. To avoid heavy notation, we will omit the names of the
natural isomorphisms ↵, l, r and tw in the diagrams and simply write the
symbol ⇠= when necessary.

Example 1.1.4. Our main underlying closed symmetric monoidal cate-
gory in this project is the category of non-negatively graded chain com-
plexes of k-modules over a field k, with differential of degree �1, denoted�
Ch

�0
k ,⌦, k[0]

�
. Here, ⌦ is the usual tensor product of chain complexes,

and k[0] stands for the chain complex with value k, concentrated in degree
0.

Occasionally, we will work in the category
�
Ch

�0
R ,⌦, R[0]

�
of chain com-

plexes over a commutative ring R.
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Notation 1.1.5. For any X 2 Ch

�0
k , if x 2 Xm, we say that the degree

of x, denoted deg(x), is equal to m, for all m � 0. Moreover, we adopt the
notation

Xm := {x 2 X : deg(x)  m},

and will sometimes identify this set of elements with the chain complex

Xm : · · ·! Xm ! Xm�1 ! · · ·! X1 ! X0 ! 0.

Remark 1.1.6. Note that, given X, Y 2 Ch

�0
k , the symmetry isomorphism

is defined by

tw : X ⌦Y ! Y ⌦X : x⌦ y 7! (�1)deg(x) deg(y)y⌦x,

for all x 2 X, y 2 Y .

Notation 1.1.7. For any X 2 Ch

�0
k , we will denote by \X the underlying

graded k-module of X.

Terminology 1.1.8. A chain complex X 2 Ch

�0
k is connected if X0 = k,

and is 1-connected if X0 = k, X1 = 0.

Definition 1.1.9. Let (M,⌦, I) be a symmetric monoidal category.

• A monoid (A, µA, ⌘A) in M consists of an object A 2 M, equipped
with two morphisms µA : A⌦A ! A and ⌘A : I ! A such that the
following diagrams commute.

A⌦A⌦A
A⌦µA //

µA⌦A

✏✏

A⌦A

µA

✏✏
A⌦A

µA // A

A⌦ I
A⌦ ⌘A //

⇠= ''PPPPPPPPPPPPP A⌦A

µA

✏✏

I⌦A
⌘A⌦Aoo

⇠=wwnnnnnnnnnnnnn

A

The monoid A is commutative if the diagram

A⌦A ⇠=

twA,A //

µA

✏✏

A⌦A

µA

✏✏
A A

commutes. The category of monoids in (M,⌦, I) will be denoted Alg.
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Remark 1.1.10. Under suitable assumptions on M, the forgetful functor
U : Alg ! M, given on objects by U(A, µA, ⌘A) = A, for any monoid
A, admits a left adjoint F

Alg

: M ! Alg, called the free monoid
functor, so that there exists an adjunction

M
FAlg //

Alg .
U

oo

For example, if M has all coproducts and is closed monoidal, then for
all X 2 M, � ⌦ X : M ! M preserves coproducts. In this case,
F

Alg

(X) := (tn�0X
⌦n, µX , ⌘X), for all X 2 M, with X0 := I, where

µX is given by concatenation of tensors, and ⌘X is the inclusion of the
summand I.

• A comonoid (C,�C , "C) in M consists of an object C 2M, equipped
with two morphisms �C : C ! C ⌦C and "C : C ! I such that the
following diagrams commute.

C
�C //

�C

✏✏

C ⌦C

�C ⌦C
✏✏

C ⌦C
C ⌦�C // C ⌦C ⌦C

C ⌦ I C ⌦C
C ⌦ "Coo "C ⌦C // I⌦C

C

⇠=

ggPPPPPPPPPPPPP
�C

OO

⇠=

77nnnnnnnnnnnnn

The comonoid C is co-commutative if the diagram

C

�C

✏✏

C

�C

✏✏
C ⌦C ⇠=

twC,C // C ⌦C

commutes.

• A bimonoid (H,µH , ⌘H ,�H , "H) in M consists of an object H 2 M,
such that (H,µH , ⌘H) is a monoid in M, (H,�H , "H) is a comonoid in
M, µH and ⌘H are morphisms of comonoids, where H ⌦H is equipped
with the comonoid structure given by

H ⌦H
�H ⌦�H //

�H ⌦H

22H ⌦H ⌦H ⌦H
H ⌦ twH,H ⌦H

⇠=
// H ⌦H ⌦H ⌦H
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and

H ⌦H
"H ⌦ "H //

"H ⌦H

44I⌦ I
⇠= // I,

and, moreover, "H � ⌘H = IdI.

Remark 1.1.11. The condition “µH and ⌘H are morphisms of comonoids” is
equivalent to the condition “�H and "H are morphisms of monoids”; one just
changes the viewpoint on the corresponding commuting diagrams.

Definition 1.1.12. Let A be a monoid in (M,⌦, I). The category ModA

of right A-modules has as objects pairs (M, r), where M 2 M and r :
M ⌦A!M is a morphism that makes the following diagrams commute.

M ⌦A⌦A
r⌦A //

M ⌦µA

✏✏

M ⌦A

r

✏✏
M ⌦A

r // M

M ⌦ I
M ⌦ ⌘A //

⇠=
✏✏

M ⌦A

r
wwnnnnnnnnnnnnn

M

The morphisms in ModA are morphisms in M that respect the structure
maps r.

For any monoid A 2M, there exists an adjunction

M
�⌦A //

ModA,
U

oo

where �⌦A is the left adjoint, which sends X 2 M to (X ⌦A, X ⌦µA) 2
ModA, and U denotes the forgetful functor, given by (M, r) 7! M , for all
(M, r) 2ModA.

One defines similarly the category A Mod of left A-modules in M.

Definition 1.1.13. Let (M,⌦, I) be a monoidal category that admits co-
equalizers. Given (A, µA, ⌘A) 2 Alg, (M, r) 2ModA and (N, l) 2 A Mod,
one defines the tensor product of M and N over A to be the coequalizer

M ⌦A N := coequal
⇣
M ⌦A⌦N

r⌦N //

M ⌦ l
// M ⌦N

⌘
,

computed in M.

Note that if (M,⌦, I) admits coequalizers, then one can define the cat-
egory

�
A ModA,⌦A, A

�
of A-bimodules, with the monoidal structure given

by the tensor product ⌦A.

23



Definition 1.1.14. Let C be a comonoid in (M,⌦, I). The category ComodC

of right C-comodules has as objects pairs (M, ⇢), where M 2 M and
⇢ : M ! M ⌦C is a morphism, making the following diagrams commuta-
tive.

M
⇢ //

⇢

✏✏

M ⌦C

M ⌦�C

✏✏
M ⌦C

⇢⌦C // M ⌦C ⌦C

M
⇢ //

⇠=
✏✏

M ⌦C

M ⌦ "Cwwnnnnnnnnnnnn

M ⌦ I

The morphisms in ComodC are morphisms in M that respect the structure
maps ⇢.

For any comonoid C 2M, there exists an adjunction

ComodC

U //
M,

�⌦C
oo

where �⌦C is the right adjoint, sending X 2 M to (X ⌦C, X ⌦�C) 2
ComodC , and U is the forgetful functor, given by (M, ⇢) 7! M , for all
(M, ⇢) 2 ComodC .

Definition 1.1.15. Let (M,⌦, I) be a monoidal category that admits equal-
izers. Given (C,�C , "C) a comonoid in M, (M, ⇢) 2 ComodC and (N,�) 2
C Comod, one defines the cotensor product of M and N over C to be
the equalizer

M ⇤
C

N := equal
⇣
M ⌦N

⇢⌦N //

M ⌦�
// M ⌦C ⌦N

⌘
,

computed in M.

Definition 1.1.16. Let (M,⌦, I) be a symmetric monoidal category and H
a bimonoid in M. The category of right H-comodule algebras in M will
be denoted AlgH . Its objects are monoids (A, µA, ⌘A) in M, that are also
equipped with a compatible H-comodule structure (A, ⇢), i.e., such that the
H-coaction ⇢ : A ! A⌦H is a morphism of monoids. Here, the monoid
structure on A⌦H is defined by

µA⌦H : (A⌦H)⌦(A⌦H) ⇠= A⌦A⌦H ⌦H
µA⌦µH // A⌦H

and
⌘A⌦H : I ⇠= I⌦ I ⌘A⌦ ⌘H // A⌦H.

There exists a cofree-forgetful adjunction

AlgH

U //
Alg,

�⌦H
oo

similar to the one in Definition 1.1.14.
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Definition 1.1.17. Let (M,⌦, I) be a monoidal category and A be a monoid
in M. An A-coring (W, , ") is a comonoid in

�
A ModA,⌦A, A

�
. In other

words, W is an object in M, equipped with

• a left A-action l : A⌦W !W ,

• a right A-action r : W ⌦A!W ,

• a comultiplication  : W !W ⌦A W ,

• a counit " : W ! A,

where l and r are compatible,  is co-associative and counital with respect
to ", and  and " are both morphisms of A-bimodules.

We now introduce two examples of corings that are essential for the rest
of this project.

Examples 1.1.18.

(1) Let ' : B ! A be a morphism of monoids in (M,⌦, I). The canonical
coring associated to ' is denoted by W can

' and has as underlying
A-bimodule A⌦B A. It is endowed with the comultiplication  can

' that
given by the composite

A⌦
B

A ⇠= A⌦
B

B ⌦
B

A
A⌦

B
'⌦

B
A

// A⌦
B

A⌦
B

A ⇠= (A⌦
B

A)⌦
A

(A⌦
B

A).

The counit "can
' is the morphism

µ : A⌦B A! A

induced by the multiplication µA : A⌦A! A, using the definition of
the tensor product A⌦B A and the universal property of coequalizers.
The left and right A-actions lcan

' and rcan
' on A⌦B A are both induced

by µA.

(2) Let (H,µH , ⌘H ,�H , "H) be a bimonoid in a symmetric monoidal cate-
gory (M,⌦, I) and let (A, µA, ⌘A, ⇢) be an H-comodule algebra. The
tensor product A⌦H can naturally be endowed with the structure of
an A-coring, denoted W⇢, and called the coring associated to ⇢. Its
left A-module action l⇢ is given by

A⌦(A⌦H) ⇠= (A⌦A)⌦H
µA⌦H // A⌦H,

and its right A-module action r⇢ by

(A⌦H)⌦A
A⌦H ⌦ ⇢������! A⌦H ⌦A⌦H ⇠= A⌦A⌦H ⌦H

µA ⌦µH�����! A⌦H,
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where we have used the symmetry isomorphism in the second compos-
ite. The comultiplication  ⇢ is

A⌦H
A⌦� // A⌦H ⌦H ⇠= (A⌦H)⌦A(A⌦H),

and the counit "⇢ is defined by

A⌦H
A⌦ "H // A⌦ I ⇠= A.

Definition 1.1.19. Let A be a monoid in a symmetric monoidal category
(M,⌦, I) that has coequalizers, and let (W, , ") be an A-coring, with right
A-action r : W ⌦A ! W . We denote by MW

A the category of right W -
comodules over the coring A, i.e., the category of right W -comodules in
ModA.

An object of MW
A is a triple (M, �, ✓), where M 2 M, � : M ⌦A ! M

is the right A-action on M and ✓ : M ! M ⌦A W is the W -coaction on
M . Recall that the object M ⌦A W is computed as a coequalizer in M (see
Definition 1.1.13).

Depending on the context, we will use for objects of MW
A the notation

(M, �, ✓), or (M, ✓), when the A-action � is not relevant.
Later on in this project, adjunctions of the form

MW
A

U //
ModA,

�⌦A W
oo

will play an essential role (namely, in obtaining a model category structure on
the category MW

A ). Here, �⌦A W is the right adjoint, which sends (M, r) 2
ModA to (M ⌦A W,M ⌦A r, M ⌦A  ) 2MW

A , and U is the forgetful functor,
given by (M, �, ✓) 7! (M, �), for all (M, �, ✓) 2MW

A .

Remark 1.1.20. We found helpful to end this section with a diagram offering
a general view of our “zoo of categories” and adjunctions between them,
with right adjoints always beneath and to the right of the corresponding left
adjoints.

AlgH

U //
Alg

�⌦H
oo

U

✏✏
ComodH

U //
M

�⌦H
oo

FAlg

OO

�⌦A //
ModA

U
oo

�⌦A W
// MW

A

Uoo

Here M is a symmetric monoidal category, (e.g., M := Ch

�0
k ), A, H are,

respectively, a monoid and a bimonoid in M, and U denotes the forgetful
functor.
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1.1.2 Lifting adjunctions

In Section 3.1.2 of this thesis, we will need to show the existence of (right)
adjoints of certain functors. Different adjoint functor theorems exist and
give methods for finding adjoints. Our situation will be somewhat particular,
since we will be interested in lifting an existing adjunction. In other words,
given an adjunction (F,G) between a pair of categories C and D, we will
need to establish the existence of an adjunction (F̂ , Ĝ) between another pair
of categories Ĉ and D̂ that are related to C and D in a special way. Because
of the particular nature of the adjunctions and functors involved, we will
be able to use the Adjoint lifting theorem for comonadic functors, presented
below.
Remark 1.1.21. Let K = (K,�, ") be a comonad on a category C. We denote
by CK the Eilenberg-Moore category of K-coalgebras in C. Its objects
are pairs (C, �), where C 2 C and � 2 C(C, KC) is a morphism satisfying

K(�) � � = �C � � and "C � � = IdC .

A morphism in CK from (C, �) to (C 0, �0) is a morphism f : C ! C 0 in C
such that K(f) � � = �0 � f .

Definition 1.1.22. A functor : W! C is called comonadic if there exists
a comonad K = (K,�, ") on C and an equivalence of categories J : W! CK,
such that the composite of functors UK � J : W! C is naturally isomorphic
to  , where UK : CK ! C denotes the left adjoint of the cofree coalgebra
functor FK : C! CK, i.e., UK is the forgetful functor.

Theorem 1.1.23 (Dual version of Theorem 4.5.6, [Bor94]). Let

A
Q //

U

✏✏

B

V

✏✏
C

L // D

be a diagram of functors, where

(i) L � U = V �Q;

(ii) the functors U and V are comonadic;

(iii) the category A has all equalizers.

Then the functor Q has a right adjoint, whenever L has a right adjoint.

Francis Borceux offers in his book [Bor94] a detailed proof of the dual
result about lifting a left adjoint in a monadic context. The entry “Adjoint
lifting theorem” on nLab can also be enlightening, because it reformulates
and highlights the key steps of Borceux’s proof.
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Remark 1.1.24. Observe that the forgetful functor UK : CK ! C is comonadic,
for any comonad K on C. Therefore, Theorem 1.1.23 is useful, for example,
if one wishes to prove the existence of a right adjoint R̂ in the following
situation

CK
L̂ //

UK

✏✏

DK0
R̂

oo

UK0

✏✏
C

L //

FK

OO

D,
R

oo

FK0

OO

where K, K0 are comonads on C and D, respectively, and left adjoints are
displayed on top and on the left.

1.1.3 Digression on Hopf algebras

A few words should be said about the concept of a (graded) Hopf algebra
over a field or a commutative ring, as there are a few subtleties.

The classical “algebraic” definition of a Hopf algebra over a field is the
following.

Definition 1.1.25. A Hopf algebra (H,µH , ⌘H ,�H , "H , SH) over a field k
consists of an k-vector space H, together with five k-linear morphisms, such
that

(1) (H,µH , ⌘H) is a k-algebra;

(2) (H,�H , "H) is a k-coalgebra;

(3) the maps µH , ⌘H are morphisms of k-coalgebras (or, equivalently, �H ,
"H are morphisms of k-algebras); and

(4) the morphism S : H ! H, called the antipode, makes the following
diagram commute.

H ⌦H
SH ⌦H // H ⌦H

µH

##GG
GG

GG
GG

G

H

�H ##GG
GG

GG
GG

G

�H

;;wwwwwwwww "H // R
⌘H // H

H ⌦H
H ⌦SH // H ⌦H

µH

;;wwwwwwwww

Example 1.1.26. Let G be any group and k a field. The group ring

H := k[G] := {
X

g2G

kg · g : kg 2 k, for all g 2 G}

28



is a k-vector space with basis given by the set of elements of G. The algebra
structure on k[G] is given on basis elements by the group structure on G, and
then extended k-linearly to all of k[G]. One defines a coalgebra structure on
k[G] on basis elements by

�k[G] : k[G]! k[G]⌦k[G] : g 7! g⌦ g

and
"k[G] : k[G]! k : g 7! 1,

for all g 2 G, and then extends it k-linearly to all of k[G]. The antipode
S : k[G]! k[G] is given by S(g) := g�1, for all g 2 G.

Example 1.1.27. If the group G is finite, then the dual of the group ring

H := Homk(k[G], k)

is also a Hopf algebra. Its algebra structure is defined by

µ : Homk(k[G], k)⌦Homk(k[G], k)! Homk(k[G], k) : f ⌦h 7! µ(f ⌦h),

with µ(f ⌦h)(g) := µk � (f ⌦h) � �k[G](g), for all g 2 G. Its coalgebra
structure is given by the formal dual of the algebra structure:

� : Homk(k[G], k)! Homk(k[G], k)⌦Homk(k[G], k) : f 7! �(f)

with �(f)(g⌦ g0) := f(gg0), for all g, g0 2 G. The antipode is

S : Homk(k[G], k)! Homk(k[G], k) : f 7! S(f)

with S(f)(g) := f(Sk(g)), for all g 2 G. Note that H = Homk(k[G], k) is
always commutative, and is co-commutative, if the group G is abelian.

This example truly is a “fundamental” example for constructing Hopf
algebras, in the sense that many Hopf algebras arise by dualizing a group
structure.

Example 1.1.28. A beautiful example of a Hopf algebra that is of interest
to algebraic topologists is given by the direct sum H⇤ =

L
n�0 Hn(X) of all

homology groups of an H-space X. It is a graded Hopf algebra.

In [MM65], Milnor and Moore introduced the definition of a graded
Hopf Algebra H⇤ = (H⇤, µH⇤, ⌘H⇤ ,�H⇤ , "H⇤) over a commutative ring R.
It consists of a non-negatively graded R-module H⇤, equipped with four mor-
phisms of graded R-modules, which satisfy properties, analogous to proper-
ties (1) � (3) in the Definition 1.1.25, only in the graded setting. Observe
that the antipode S is not explicitly part of the definition of a graded Hopf
algebra, so that H⇤ is actually only a bialgebra in the category of graded
R-modules.

However, if a graded R-bialgebra H⇤ is connected (see Terminology 1.1.8),
then the bimonoid structure on H⇤ is sufficient to define an antipode map
S : H⇤ ! H⇤, recursively for all x 2 Hn and all n � 0 (see Proposition 3.8.8
in [HGK10]).

29



Terminology 1.1.29. Since we will mainly work in the symmetric monoidal
category

�
Ch

�0
k ,⌦, k[0]

�
of differential graded k-modules over a field k, by

a Hopf algebra H we will mean a bimonoid (H,µH , ⌘H ,�H , "H) in Ch

�0
k

(which, eventually, will be taken to be connected).
More precisely, a Hopf algebra is an object (H, dH , µH , ⌘H ,�H , "H), such

that

(i) (H, dH) is a non-negatively graded chain complex, with differential
d : H ! H of degree �1, satisfying d2 = 0;

(ii) (H, dH , µH , ⌘H) is a unital, associative, differential graded algebra, i.e.,
a monoid in Ch

�0
k , with µH and ⌘H of degree 0, and the Leibniz rule

dH(hh0) = dH(h)h0 + (�1)deg(h)hdH(h0)

holds for all h, h0 2 H;

(iii) (H, dH ,�H , "H) is a counital, coassociative, differential graded coalge-
bra, i.e., a comonoid in Ch

�0
k , with �H and "H of degree 0, and the

“dual Leibniz” rule

�H � dH(h) =
�
dH ⌦H + tw � (dH ⌦H) � tw

�
��H(h)

holds for all h 2 H (see [Tan83], Definition 0.3 (7)), i.e., dH is a
coderivation;

(iv) µH and ⌘H are morphisms of comonoids;

(v) "H � ⌘H = Idk[0].

Remark 1.1.30. We will see other topologically interesting examples of graded
co-commutative k-Hopf-algebra in Section 4.4.2.

1.2 Algebraic tools

1.2.1 Cobar construction and twisted structures

The classical cobar construction ⌦(�) is a functor from the category Coalg

⌘,1
R

of 1-connected, coaugmented differential coalgebras in Ch

�0
R to the category

Alg

",0
R of connected, augmented differential algebras in Ch

�0
R .

We will use the cobar construction in Chapter 2, in order to build valid
models for fibrant replacements in the categories ComodC and AlgC , which
will allow us to define valid models for homotopy coinvariants of C-comodules
and C-comodule algebras, under mild hypotheses on the coalgebra C.

Before introducing the definition of the cobar construction for coalgebras
of chain complexes, we recall some preliminary constructions. Our references
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for this section are [Hes07], Chapter 10 in [Nei10] and Chapter 0 in [Tan83].

We fix a commutative ring R and denote by grMod

�0
R the category of

non-negatively graded modules over R.
Whenever we need to commute elements of a graded module past each

other, or commute a morphism of graded modules past an element in its
source, we will apply the Koszul sign convention. For instance, if X and
Y are graded algebras, then for all x⌦ y, x0⌦ y0 2 X ⌦Y their product is
given by

(x⌦ y) · (x0⌦ y0) = (�1)mnxx0⌦ yy0,

if x0 2 Xm and y 2 Yn. Also, if f : X ! X 0 and g : Y ! Y 0 are morphisms
of graded modules, of degree p and q, respectively, then we have

(f ⌦ g)(x⌦ y) = (�1)mqf(x)⌦ g(y),

for all x⌦ y 2 Xm⌦Yn.

Reminder 1.2.1.

(1) Let X 2 grMod

�0
R . The tensor algebra on X, denoted T (X), is

defined as follows. As a graded R-module, it is given by

T (X) = R[0]�X �(X ⌦X)�(X ⌦X ⌦X)⌦ . . . .

We write T (X) =
L

n�0 Tn(X). An element of T (X), coming from
the summand Tn(X), will be denoted by x1|...|xn. The multiplication

µ : T (X)⌦T (X)! T (X)

is given on elementary tensors of length n by concatenation

µ
�
(x1| · · · |xn)⌦(x01| · · · |x0m)

�
= x1| · · · |xn|x01| · · · |x0m

for all n, m � 0, x1| · · · |xn 2 Tn(X), x01| · · · |x0m 2 Tm(X).
The unit

⌘ : R[0]! T (X)

is simply the inclusion. Moreover, the algebra T (X) is augmented via

" : T (X)! R[0]

defined by "(r) = r, for all r 2 R and "(v) = 0, for all v 2 X.

(2) For any (X, d) 2 Ch

�0
R , the desuspension of X is a chain complex

(s�1X,D) given by (s�1X)n = Xn+1, for all n � 0 and D(s�1(x)) =
�s�1d(x), for all x 2 X.
(Note that the suspension of X is a chain complex (sX, D0) given by
(sX)n = Xn�1, for all n � 0, where X�1 = 0 and where D0(s(x)) =
�sd(x), for all x 2 X).
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(3) Given a coalgebra (C,�, ") in Ch

�0
R , the associated reduced coalgebra

is defined to be
C = ker(" : C ! R[0]).

If the coalgebra C is coaugmented, i.e., has a unit ⌘ : R[0]! C, then
" � ⌘ = IdR[0] and we have a direct sum decomposition

C ⇠= C � ⌘(R) ⇠= C �R.

The comultiplication � : C ! C ⌦C can be described by

�(1) = 1⌦ 1 and �(c) = c⌦ 1 + 1⌦ c +
X

i

ci⌦ ci,

for all c 2 C, and where ci, c
i 2 C. Thus, the reduced comultipli-

cation � : C ! C ⌦C is given for all c 2 C by

�(c) =
X

i

ci⌦ ci.

(4) An element c 2 C of a coaugmented coalgebra C is called primitive
if �(c) = c⌦ 1 + 1⌦ c. A coalgebra C is primitively generated if
any c 2 C can be expressed as an R-linear combination of primitive
elements in C.

Now we can state the definition of the classical cobar construction. Al-
though this construction is defined for any coaugmented coalgebra C, we
will assume our coalgebras to be 1-connected. This choice makes the cobar
construction ⌦(C) easier to handle in degree 0.

Definition 1.2.2. Let R be a commutative ring. The cobar construction
functor

⌦ : Coalg

⌘,1
R ! Alg

",0
R

is defined as follows.

• For any (C, dC) in Coalg

⌘,1
R , its cobar construction

(⌦C, D⌦C , µ⌦C , ⌘⌦C , "⌦C)

has the following description. As an augmented graded algebra,

⌦C :=
�
T (s�1C), µ⌦C , ⌘⌦C , "⌦C

�

i.e., it is the tensor algebra on the desuspension of the reduced coalge-
bra C. The differential D⌦C makes ⌦C into a dga and is given by

D⌦C = dI + dE ,
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where dI is the internal differential, specified on generators by

dI(s�1c) = �s�1(dC(c)), for all c 2 C,

and dE is the external differential, specified on generators by

dE(s�1c) =
X

i

(�1)deg cis�1ci|s�1ci, for all c 2 C.

• A map f 2 Coalg

⌘,1
R (C, C 0) induces a map ⌦f 2 Alg

",0
R (⌦C,⌦C 0),

satisfying ⌦f(s�1c) = s�1f(c).

In addition to classical cobar construction, we will need a few other in-
gredients for constructing fibrant replacements and homotopy coinvariants
in ComodC and AlgC in Chapter 2.

Definition 1.2.3. Let (C, dC) 2 Coalg

⌘,1
R and (A, dA) 2 Alg

",0
R . A twist-

ing morphism from (C, dC) to (A, dA) is a morphism t : C ! A of graded
R-modules, of degree �1, such that

dA � t + t � dC = µA � (t⌦ t) ��C .

Example 1.2.4. The universal twisting morphism, associated to a con-
nected augmented chain coalgebra C is the morphism t⌦ : C ! ⌦C specified
by t⌦(1) = 0 and t⌦(c) = s�1(c), for any c 2 C.

Twisting morphisms allow one to define twisted extensions.

Definition 1.2.5. Let (C, dC) 2 Coalg

⌘,1
R , (A, dA) 2 Alg

",0
R and let t : C !

A be a twisting morphism. Let (N, dN ) be a right C-comodule with coaction
⇢ : N ! N ⌦C and (M,dM ) a left A-module with action � : A⌦M !M .

• The twisted extension of N by M is

(N, dN )⌦t(M,dM ) := (N ⌦M,Dt),

where

Dt = dN ⌦M + N ⌦ dM + (N ⌦�) � (N ⌦ t⌦M) � (⇢⌦M).

In other words, the twisted extension of N by M has N ⌦M as its un-
derlying graded R-module, and its differential has an additional term,
involving the module and the comodule structure maps and t.

• Let � : C ! C 0 be a morphism of coalgebras, and (N, ⇢) 2 ComodC ,
(N 0, ⇢0) 2 ComodC0 . Note that � induces a C 0-coaction (N ⌦ �) � ⇢
on N . Let

g : (N, (N ⌦ �) � ⇢)! (N 0, ⇢0)
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be a morphism of C 0-comodules. Let also ↵ : A ! A0 be a morphism
of algebras, and (M,�) 2 A Mod, (M 0,�0) 2 A0 Mod. Similarly, ↵
induces an A-action �0 � (↵⌦M 0) on M 0. Let

g0 : (M,�)! (M 0,�0 � (↵⌦M 0))

be a morphism of A-modules. Suppose now that we are given t : C ! A
and t0 : C 0 ! A0 two twisting morphisms. If ↵ � t = t0 � �, then g and
g0 induce a morphism of twisted extensions

g
⇠
⌦ g0 : (N ⌦M, Dt)! (N 0⌦M 0, Dt0) : x⌦ y 7! g(x)⌦ g0(y)

which is a morphism of chain complexes from (N ⌦M,Dt) to (N 0⌦M 0, Dt0).

Notation 1.2.6. To simplify notation slightly, we will write N ⌦t M instead
of (N ⌦M,Dt). Thus, a morphism of twisted extensions induced by g and
g0 as above will be written

g
⇠
⌦ g0 : N ⌦t M ! N 0⌦t0 M

0.

Example 1.2.7. The twisted extension (C, dC)⌦t⌦(⌦C, D⌦C) = C ⌦t⌦ ⌦C,
associated to a connected augmented chain coalgebra C, is called the acyclic
cobar construction. The reason for this terminology is that there exists a
contracting homotopy c : C ⌦t⌦ ⌦C ! C ⌦t⌦ ⌦C of chain complexes, such
that C ⌦t⌦ ⌦C

'�! R[0] is a homotopy equivalence (see Proposition 10.6.3
in [Nei10]).

Proposition 1.2.8 (Proposition 3.5(2), [HMS74]). Let (C, dC) 2 Coalg

⌘,1
R

and (A, dA) 2 Alg

",0
R . There is a functorial, bijective correspondence

�
twisting morphisms t : C ! A

 
 !

�
morphims of algebras ✓t : ⌦C ! A

 
,

where

• t : C ! A gives rise to ✓t : ⌦C ! A, determined by ✓t(s�1c) = t(c),
for all c 2 C;

• ✓t : ⌦C ! A gives rise to t✓ : C ! A, given by the composite

C
t⌦�! ⌦C

✓�! A.

Example 1.2.9. The morphism of algebras, associated via this correspon-
dence to the universal twisting morphism t⌦ : C ! ⌦C, is ✓t⌦ = Id : ⌦C !
⌦C.
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Remark 1.2.10. Let C 2 Coalg

⌘,1
R . If the comultiplication �C on C is co-

commutative, then one can define a comultiplication on ⌦C, which makes
the cobar construction into a co-commutative Hopf algebra. We will now
explain the construction.

First of all, the fact that �C is co-commutative ensures that the map
�C : C ! C ⌦C is a map of coalgebras, because then the diagram

C
�C //

�C

✏✏

C ⌦C

�C ⌦�C

✏✏
�C⌦C

zz

C ⌦C

�C ⌦�C
))

(C ⌦C)⌦(C ⌦C)

C ⌦ tw⌦C ⇠=

✏✏
C ⌦C ⌦C ⌦C

commutes. The desired comultiplication map

�⌦C : ⌦C ! ⌦C ⌦⌦C

is constructed as the composite

�⌦C : ⌦C
⌦(�C)// ⌦(C ⌦C) m

'
// ⌦C ⌦⌦C,

where m : ⌦(C ⌦C) ! ⌦C ⌦⌦C is a morphism of chain algebras, called
the Milgram map. It is the map of algebras associated to the twisting
morphism

t⌦ ⇤ t⌦ := t⌦ ⌘⌦C � "C + ⌘⌦C � "C ⌦ t : C ⌦C ! ⌦C ⌦⌦C

using the correspondence described in Proposition 1.2.8. Unravelling the
definition, we see that m is defined on generating elements of ⌦(C ⌦C) by

m(s�1(c1⌦ c2)) =

8
<

:

0, if deg(c1) > 0,deg(c2) > 0,
1⌦ s�1c2, if c1 = 1,8c2 2 C,
s�1c1⌦ 1, if c2 = 1,8c1 2 C,

for all s�1(c1⌦ c2) 2 ⌦(C ⌦C).

Theorem 1.2.11 (Theorem A.1, [HPS07]). Let C and C 0 be coaugmented dif-
ferential graded coalgebras in Ch

�0
R . There exists a strong deformation re-

tract of chain complexes

⌦C ⌦⌦C 0
� // ⌦(C ⌦C 0)  h.
m

oo

In particular, m is a chain homotopy equivalence.
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Remark 1.2.12. Theorem 1.2.11 is an improvement of the original result
of Milgram (Theorem 7.4 [Mil66]), which stated that the Milgram map m
is a quasi-isomorphism of chain complexes, under the assumption that the
coalgebras C and C 0 are 1-connected (and not necessarily coaugmented).

Finally, �⌦C : ⌦C ! ⌦C ⌦⌦C is given on an arbitrary generating
element s�1c 2 ⌦C by

�⌦C(s�1c) = 1⌦ s�1c ± s�1c⌦ 1,

where we use that s�1 is additive and the expression of �C from Reminder
1.2.1 (3). More generally, for any s�1c1| . . . |s�1cn 2 (s�1C)⌦n,

�⌦C(s�1c1| . . . |s�1cn) =

n�1X

p=1

X

�2Sp,n

±(s�1c�(1)| . . . |s�1c�(p))⌦(s�1c�(p+1)| . . . |s�1c�(n)),

where Sp,n is the collection of all (p, n� p) shuffles, for n � 1.
The map �⌦C makes ⌦C into a co-commutative Hopf algebra in Ch

�0
R

(see [Tan83]).
An immediate consequence of the previous remark is that for any co-

commutative Hopf algebra H 2 Ch

�0
R , its cobar construction ⌦H can be

endowed with a co-commutative Hopf algebra structure, too.

1.2.2 Semi-free modules in Ch

�0
R

Definition 1.2.13 ([FHT01], Ch1, §6). Let (A, dA) be a dg-algebra in Ch

�0
R .

A left A-module (E, dE) in Ch

�0
R is semi-free on a generating graded R-

module Z, denoted by E ⇠= A
⇠
⌦Z, if the following properties hold.

(a) Z =
L

k�0 Z(k), where Z(k) is a graded R-free module, for all k � 0.

(b) The A-module E is equipped with a filtration

{0} = E(�1) ⇢ E(0) ⇢ · · · ⇢ E(k � 1) ⇢ E(k) ⇢ · · · ⇢ E =
[

k�0

E(k)

of A-submodules such that E(k)/E(k� 1) ⇠= (A, dA)⌦(Z(k), 0), as dg
A-modules, for all k � 0. It follows that there is an isomorphism of
graded R-modules

E(k) ⇠= E(k � 1)�
�
A⌦Z(k)

�
, with dE(A⌦Z(k)) ✓ E(k � 1),

for all k � 0, so that E ⇠=
L

k�0 A⌦Z(k), as graded R-modules.

(c) In addition to the conditions in [FHT01], we require that the induced
filtration on Z satisfy Z(k)n = 0, for all k > n.
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Lemma 1.2.14. Let R be a commutative ring, (A, dA) a differential graded
R-algebra and (B, dB) a chain complex over R, such that B0 = R and B is
degree-wise R-free and finitely generated.

The tensor product complex (A⌦B,D), where

D(a⌦ b) = dA(a)b + (�1)deg(a)a⌦ dB(b),

for all a 2 A, b 2 B, is semi-free as a left A-module on a generating graded
R-module that is degree-wise finitely generated.

Proof. The left A-module structure on A⌦B is given by A⌦(A⌦B) ⇠=
A⌦A⌦B

µA�! A⌦B.
The graded module, that generates A⌦B as A-semi-free, is the underly-

ing graded module of (B, dB). It satisfies B =
L

k�0 Bk, where we identify
Bk with the graded R-module with value Bk in degree k and 0 everywhere
else. In particular, for all k < n, (Bn)k = 0. By hypothesis, B is degree-wise
R-free and finitely generated.

Define a filtration F on the A-module A⌦B by setting

Fk(A ⌦B) = A⌦Bk,

for all k � 0 (recall Notation 1.1.5). Every A⌦Bk is a graded A-submodule
of A⌦B, and

{0} ⇢ A ⇢ A⌦B1 ⇢ · · · ⇢ A⌦Bk�1 ⇢ A⌦Bk ⇢ · · · ,

so that
S

k�0 Fk(A ⌦B) = A⌦B, as graded A-modules. The differential D
satisfies D(Bk) ⇢ Fk�1(A⌦B), for all k � 0, since for all k � 0 and for all
b 2 Bk,

D(1⌦ b) = (�1)k1⌦ dB(b) 2 A⌦Bk�1.

Therefore, the quotient

Fk(A ⌦B)/ Fk�1(A ⌦B) = (A⌦Bk)/(A⌦Bk�1)

is isomorphic, as a differential graded A-module, to the tensor product
(A, dA)⌦(Bk, 0), for all k � 0.

Lemma 1.2.15 (Lemma 6.3, [FHT01]). Let (T, dT ) be a differential graded
algebra. Suppose a (T, dT )-module (M, dM ) is the union of an increasing
sequence

{0} ⇢M(0) ⇢M(1) ⇢ · · · ⇢M(k � 1) ⇢M(k) ⇢ · · ·

of submodules, such that M(0) and each M(k)/M(k � 1) are (T, dT )-semi-
free. Then (M, dM ) itself is (T, dT )-semi-free.

Remark 1.2.16. The proof of Lemma 6.3 in [FHT01] ensures that conditions
(a) and (b) of Definition 1.2.13 hold for (M,dM ). A careful investigation of
this proof shows that the condition (c) of Definition 1.2.13 is also satisfied
for (M, dM ).
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1.2.3 A toolbox of spectral sequences

This section mainly assembles some spectral sequences that will be useful to
us for making calculations throughout the thesis. For the basic definitions
and terminology used in the world of spectral sequences, we refer the reader
to [McC01].

Notations 1.2.17.

• By “a graded object” we mean “a non-negatively graded object”.

• In this section it will be important to make a distinction between
graded and non-graded objects. Therefore, we will take special care of
notation, and decorate graded objects with subscript ⇤ when necessary.

• Given a differential graded module M⇤, we will denote by {M(p)⇤}p

a filtration on M⇤ and by {F pH⇤(M⇤)}p the induced filtration on its
homology. These filtrations are increasing.

The following spectral sequence is useful when one works with semi-free
modules.

Theorem 1.2.18 (Homological version of Theorem 2.6, [McC01]). Each
filtered differential graded module (M⇤, dM , M(�)⇤) determines a spectral se-
quence, {Er

⇤,⇤, dr}, r = 1, 2, ... with dr of bidegree (�r, r � 1), and the first
page given by

E1
p,q
⇠= Hp+q

�
M(p)⇤/M(p� 1)⇤

�
.

If the filtration is bounded, i.e., for each degree n, there exist s = s(n) and
t = t(n) so that

{0} ⇢M(s)n ⇢M(s + 1)n ⇢ · · · ⇢M(t� 1)n ⇢M(t)n = Mn,

then the spectral sequence converges to H⇤(M⇤, dM ), i.e.,

E1
p,q
⇠= F pHp+q(M⇤, dM )/F p�1Hp+q(M⇤, dM ).

On many occasions, we will use Zeeman’s comparison theorem, which is
a standard tool in the application of spectral sequences.

Theorem 1.2.19 ([Zee57]). Suppose {Er
⇤,⇤, dr} and {Er

⇤,⇤, dr} are first quad-
rant spectral sequences of homological type (that is, dr and dr are of bidegree
(�r, r � 1)), such that for all p, q � 0 there exist short exact sequences

0 // E2
p,0⌦E2

0,q
// E2

p,q
// Tor1R

�
E2

p+1,0, E
2
0,q

�
// 0

and

0 // E
2
p,0⌦E

2
0,q

// E
2
p,q

// Tor1R
�
E

2
p+1,0, E

2
0,q

� // 0.
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Suppose that A = �1n=0An, A = �1n=0An are filtered graded R-modules
such that their associated graded R-modules satisfy, respectively, Gr(A) =
�1p,q�0E

1
p,q, Gr(A) = �1p,q�0E

1
p,q. Moreover, suppose that there is a homo-

morphism f between the spectral sequences {Er
⇤,⇤, dr} and {Er

⇤,⇤, dr}, i.e.,
there are sets of homomorphisms

f r
p,q : Er

p,q ! E
r
p,q, (r = 2, 3, . . . ,1, and p, q � 0),

fA
n : An ! An, (n � 0),

f2
p : E2

p,0 ! E
2
p,0, (p � 0),

f2
q : E2

0,q ! E
2
0,q, (q � 0),

and that the following diagram commutes.

0 // E2
p,0⌦E2

0,q

f2
p ⌦ f2

q

✏✏

// E2
p,q

//

f2
p,q

✏✏

Tor1R
�
E2

p+1,0, E
2
0,q

�

Tor1R(f2
p+1,0,f2

0,q)

✏✏

// 0

0 // E
2
p,0⌦E

2
0,q

// E
2
p,q

// Tor1R
�
E

2
p+1,0, E

2
0,q

� // 0

Then any two of the following conditions imply the third:

(1) f2
p : E2

p,0 ! E
2
p,0 is an isomorphism for all p � 0;

(2) f2
q : E2

0,q ! E
2
0,q is an isomorphism for all q � 0;

(3) fA
n : An ! An is an isomorphism for all n � 0.

Theorem 1.2.18 applied to the context of twisted extensions gives the fol-
lowing spectral sequence. Here, we formulate a slightly more general version
of it than the one described in §10.4 in [Nei10].

Theorem 1.2.20 (Generalization of §10.4, [Nei10]). Let (C, dC) 2 Coalg

⌘,1
R ,

(A, dA) 2 Alg

",0
R and let t : C ! A be a twisting morphism. Given (N, dN ) a

right C-comodule in Ch

�0
R and (M, dM ) a left A-module in Ch

�0
R , consider

the twisted extension N ⌦t M .
If N is degree-wise flat over R, then the filtration

{Fk(N ⌦t M) = Nk⌦M}k�0

of N ⌦t M by differential graded submodules defines a first quadrant homology
spectral sequence {Er

⇤,⇤, dr}. Its initial pages are given by

E0
p,q = Np⌦Mq, d0 = Id⌦ dM ,

E1
p,q = Np⌦Hq(M), d1 = dN ⌦ Id,
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E2
p,q = Hp(N ⌦Hq(M), dN ⌦ Id),

for all p, q � 0, and the sequence converges to H⇤(N ⌦t M).
If, in addition, Hq(M) is flat over R for all q � 0, then the second page

simplifies to
E2

p,q = Hp(N)⌦Hq(M),

for all p, q � 0.

Remark 1.2.21. The spectral sequence given in [Nei10] is formulated in the
particular case where the C-comodule N is equal to C, and the A-module
M is equal to A. However, the construction of the spectral sequence requires
neither having a coalgebra structure on N nor having an algebra structure on
M . What really matters for defining the twisted extension N ⌦t M and for
building the associated spectral sequence is having a structure of a differential
C-comodule on N and a structure of a differential A-module on M .
Remark 1.2.22. Note that the spectral sequence of Theorem 1.2.20 admits a
short exact sequence of the form required in Theorem 1.2.19, by the Universal
Coefficient Theorem.

Finally, Zeeman’s comparison theorem gives the following result for twisted
tensor products.

Proposition 1.2.23 (Generalization of Proposition 10.4.6, [Nei10]). Let � :
C ! C 0 be a morphism of coalgebras, N 2 ComodC , N 0 2 ComodC0,
↵ : A ! A0 a morphism of algebras, M 2 A Mod and M 0 2 A0 Mod. In
addition, let t : C ! A and t0 : C 0 ! A0 be two twisting morphisms and
g
⇠
⌦ g0 : N ⌦t M ! N 0⌦t0 M

0 be a morphism of twisted extensions. Suppose
that N and N 0 are degree-wise flat as graded modules over R.

If two out of g, g0, g
⇠
⌦ g0, are quasi-isomorphisms, then so is the third.

Remark 1.2.24. In the context of twisted tensor products, a morphism g
⇠
⌦ g0 :

N ⌦t M ! N 0⌦t0 M
0 of twisted extensions is a morphism of filtered objects,

respecting the filtrations {Fk(N ⌦t M)}k�0, {F 0
k(N

0⌦t M 0)}k�0. Therefore,
g
⇠
⌦ g0 will induce a homomorphism of the associated spectral sequences, de-

scribed in Theorem 1.2.20. In particular, it will induce homomorphisms on
the homology groups

fA
n = Hn(g

⇠
⌦ g0) : An = Hn(M ⌦t N)! Hn(M 0⌦t N 0) = An,

for all n � 0, using notation of Theorem 1.2.19.

1.2.4 Homologically faithful modules in Ch

�0
R

Definition 1.2.25. Let B be a dg-algebra in Ch

�0
R . A left B-module M is

homologically faithful (over B) if for any right B-module N such that
Hn(N ⌦B M) = 0 for all n � 0, we have Hn(N) = 0 for all n � 0.
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Examples 1.2.26.

• If M ⇠= B⌦X, i.e., M is free as a left B-module on a generating graded
R-module that is degree-wise R-free and finitely generated, then M is
homologically faithful over B.

Indeed, if Hn(N ⌦B M) ⇠= Hn(N ⌦X) = 0, for all n � 0, then the
Künneth formula implies that Hn(N) = 0 for all n � 0.

• Let B(B)⌦tB B denote the acyclic bar construction, defined for any
dg-algebra B. Here, B(B) denotes the bar construction on B and
tB : B(B) ! B denotes the couniversal twisting cochain. All these
objects and constructions are dual to the ones that we described in
Section 1.2.1 (see Section 6.3 in [Nei10] for their definitions).

If M = B⌦tB B B⌦tB B, then N ⌦B M ⇠= N ⌦tB B B⌦tB B, and we
have N ⌦tB B B⌦tB B

'�! N , since N ⌦tB B B⌦tB B is a proper pro-
jective resolution of N over B, by Proposition 7.8 in [McC01]. Thus,
H⇤(N ⌦B M) = 0 if and only if H⇤(N) = 0, i.e., M is homologically
faithful over B.

We mention the following standard fact from homological algebra.

Lemma 1.2.27 ([Rot88], Chapter 9). A morphism g : X ! Y in Ch

�0
R is a

quasi-isomorphism if and only if its associated mapping cone C(g) is acyclic.

Lemma 1.2.28. Let B, B0 be two dg-algebras in Ch

�0
R . Suppose that B0

is a left B-module that is homologically faithful over B and is also semi-free
on a generating graded R-module Z that is degree-wise finitely generated.
Then, for any morphism g : X ! Y of right B-modules, the map g⌦B B0 :
X ⌦B B0 ! Y ⌦B B0 is a quasi-isomorphism in ModB0 if and only if g :
X ! Y is a quasi-isomorphism in ModB.

Proof. Suppose that g : X ! Y is a quasi-isomorphism in Ch

�0
R . By Lemma

1.2.27, the mapping cone C(g) is then acyclic. Consider the short exact
sequence of chain complexes

0! Y ! C(g)! s(X)! 0,

where s(X) denotes the suspension of X (see Reminder 1.2.1). It is easy to
check that C(g)⌦B B0 ⇠= C

�
g⌦B B0�, so if we apply �⌦B B0 to the sequence

above, we obtain the sequence

0! Y ⌦B B0 ! C
�
g⌦B B0�! s(X)⌦B B0 ! 0

that is short exact, because B0 is semi-free, hence flat over B. It remains to
show that Hn

�
C
�
g⌦B B0�� ⇠= Hn

�
C(g)⌦B B0� = 0 for all n � 0.
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By assumption, the dg-algebra (B0, dB0) is semi-free as a left B-module
on a generating graded R-module Z, and Z is degree-wise finitely generated.
Using the notation B0 ⇠= B

⇠
⌦Z, we have

Hn

�
C(g)⌦B B0� ⇠= Hn

�
C(g)⌦B B

⇠
⌦Z

� ⇠= Hn

�
C(g)

⇠
⌦Z

�
,

for all n � 0. To conclude that all the homology groups Hn

�
C(g)

⇠
⌦Z

�

vanish, we will apply Theorem 1.2.18.
The graded module M := C(g)

⇠
⌦Z inherits a filtration of R-submodules

{0} = M(�1) ⇢M(0) ⇢ · · · ⇢M(k � 1) ⇢M(k) ⇢ · · · ⇢M = [k�0M(k)

such that

M(k)/M(k � 1) ⇠= (C(g), d̄)⌦(Z(k), 0) for all k � 0.

Since Zn is finitely generated for all n � 0, the filtration on M is bounded.
Moreover, the differential on M satisfies dM : M(k) ! M(k � 1), for all
k � 0.

Applying Theorem 1.2.18, the first page of the spectral sequence associ-
ated to the filtration of (M,d) is given for all p, q � 0 by

E1
p,q
⇠= Hp+q

�
M(p)/M(p� 1)

�

⇠= Hp+q

�
C(g)⌦Z(p), d̄⌦ Id + Id⌦ 0

�

⇠=
M

�=p+q

H�(C(g))⌦Z(p), using that (Z(p), 0) is degree-wise R-free,

⇠=
M

��p

H�(C(g))⌦Z(p), since �, p, q � 0,

⇠= 0, since C(g) is acyclic.

The first page being null, E1
p,q = 0 as well for all p, q � 0, and therefore

Hn(M,d) = Hn

�
C(g)

⇠
⌦Z

� ⇠= 0, for all n � 0, as desired. So, we can
conclude that the map g⌦B B0 is a quasi-isomorphism, by Lemma 1.2.27.

Reciprocally, suppose that g⌦B B0 : X ⌦B B0 ! Y ⌦B B0 is a quasi-
isomorphism in ModB0 . Lemma 1.2.27 tells us that in that case for all
n � 0,

Hn

�
C
�
g⌦B B0�� ⇠= Hn

�
C(g)⌦B B0� = 0.

Since by assumption B0 is homologically faithful as a B-module, this implies
that Hn(C(g)) = 0, for all n � 0, which means that g is a quasi-isomorphism.

Remark 1.2.29. We observe that Lemma 4.3.2 (a) in [Rog08], analogous
to Lemma 1.2.28 in the case of ring spectra, also needs the (homotopical)
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faithfulness condition on B0, but does not require the semi-freeness condition
(or, at least, it is not mentioned explicitly). A possible reason for this may be
that Rognes assumes an implicit cofibrancy of all objects. (Therefore, given a
quasi-isomorphism g : Xc ! Y c between cofibrant objects, the fact that the
map g⌦B B0 : Xc⌦B B0 ! Y c⌦B B0 is a quasi-isomorphism, too, will follow
by Ken Brown’s lemma, whenever the functor�⌦B B0 : Mod : B !ModB0

is left Quillen.)

1.3 Model category theory

We assume that the reader is familiar with the definition of a model category
and the definition of a Quillen pair between model categories. Otherwise,
we invite him or her to look in [Hes02] for a good introduction to the basics
of model categories.

Notation 1.3.1. Given a model category M, we denote by WEM, FibM

and Cof M, respectively, the classes of weak equivalences, fibrations, and
cofibrations. In terms of arrows, ⇠! denotes a weak equivalence, ⇣ denotes
a fibration and ⇢ denotes a cofibration.

1.3.1 Recognizing Quillen equivalences

Why is recognizing Quillen equivalences particularly important for us in this
thesis? It is because our main objects of study - homotopic Hopf-Galois
extensions - will be characterized in terms of pairs of Quillen equivalences
that are induced by two special maps associated to them. Consequently, the
more tools we have for identifying Quillen equivalences, the better.

Let
F : C

//
D : Goo

be a Quillen pair between model categories C and D. We denote by

L F : HoC
//
Ho D : R Goo

the associated derived adjunction on the homotopy categories.

Definition 1.3.2. A Quillen pair (F,G) is called a Quillen equivalence if
for all cofibrant Xc 2 C and all fibrant Y f 2 D, a morphism f : FXc ! Y f

is a weak equivalence in D if and only if its transpose f ] : Xc ! GY f is a
weak equivalence in D.

The key property of a Quillen equivalence (F,G) is that it induces an
equivalence of categories (L F, R G) on the homotopy categories. We will
now see two useful criteria that allow one to recognize Quillen equivalences.
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Let Xc be a cofibrant object in C and let r : FXc ⇠! R(FXc) be a
fibrant replacement of FXc in D. The map ⌘̃Xc : Xc ! GRFXc, which is
the transpose of r, represents the homotopy unit, i.e., the unit of the derived
adjunction (L F, R G).

Dually, let Y f be a fibrant object in D and let q : Q(GY f ) ⇠! GY f be
a cofibrant replacement of GY f in C. The map "̃Y f : FQGY f ! Y f , which
is the transpose of q, represents the homotopy counit, i.e., the counit of the
derived adjunction (L F, R G).

Proposition 1.3.3 (Corollary 1.3.16, [Hov99]). A Quillen pair

F : C
//
D : Goo

is a Quillen equivalence if

(1) the homotopy unit ⌘̃Xc : Xc ! GRFXc is a weak equivalence in C for
all cofibrant Xc 2 C, and

(2) the functor G reflects weak equivalences between fibrant objects;

or, dually, if

(1’) the homotopy counit "̃Y f : FQGY f ! Y f is a weak equivalence for all
fibrant Y f 2 D, and

(2’) the functor F reflects weak equivalences between cofibrant objects.

1.3.2 Some relevant model structures

The model structure we will equip the category Ch

�0
R with is the projective

model structure. As shown in [DS95], it is specified by

WE
Ch

�0
R

= quasi-isomorphisms;

Fib
Ch

�0
R

= degree-wise surjections in strictly positive degrees;

Cof
Ch

�0
R

= degree-wise monomorphisms with degree-wise projective coker-
nel.

Convention 1.3.4. Throughout this project, the category Ch

�0
R is equipped

with the projective model structure, described above. Similarly, when k is a
field, the category Ch

�0
k is equipped with the projective model structure

44



Right-induced model structures on categories of modules and al-
gebras

Given a model category M and an adjunction F : M � D : G, we say
that D inherits a right-induced model structure if there exists a model
structure on D such that the right adjoint G creates the weak equivalencies
and fibrations in D, i.e., if WED := G�1(WEM) and FibD := G�1(FibM).
In this case, (F,G) becomes a Quillen pair with respect to these model
structures on M and D.

Let (M,⌦, I) be a cofibrantly generated monoidal model category. In
[SS00], S. Schwede and B. Shipley have established conditions under which
the category of modules over a monoid in M, and the category of monoids
in M both inherit a right-induced model structure from M. The following
two theorems state these results in the special case where M := Ch

�0
R .

Theorem 1.3.5 (follows from Theorem 4.1(1), [SS00]). Let R be a com-
mutative ring. For any differential graded algebra A in Ch

�0
R , there is a

cofibrantly generated model structure on the category ModA, obtained by
right transfer of the projective structure on Ch

�0
R via the adjunction

Ch

�0
R

�⌦A //
ModA,

U
oo

where U denotes the forgetful functor.

Theorem 1.3.6 (follows from Theorem 4.1(3), [SS00]). Let R be a commu-
tative ring. There is a cofibrantly generated model structure on the category
Alg of differential graded R-algebras, obtained by right transfer of the pro-
jective structure on Ch

�0
R via the adjunction

Ch

�0
R

FAlg //
Alg,

UAlg

oo

where F
Alg

denotes the free monoid functor and U
Alg

denotes the forgetful
functor.

Remark 1.3.7. In early October 2013, Tobias Barthel, J.P. May and Emily
Riehl submitted a new article to the arXiv (see [BMR13]), in which they
describe six projective-type model category structures on the category of
dg-modules over a dg-algebra A over a commutative ring R, which “offer
interesting alternatives to the model structures in common use”. We will
need one of these, namely the r-model structure, to prove the existence of a
model category structure on the categories MW

A and Alg

"
H , where the latter

denotes the category of augmented H-comodule algebras.
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Left-induced model structures on categories of comodules

Let us dualize the setting above. Given a model category M and an adjunc-
tion F : C�M : G, we say that C inherits a left-induced model structure
if there exists a model structure on C such that the left adjoint F creates
the weak equivalences and cofibrations in C, i.e., if WEC := F�1(WEM)
and Cof C := F�1(Cof M). In this case, (F,G) becomes a Quillen pair with
respect to these model structures on M and C.

To determine conditions under which there exist left-induced model struc-
tures on the categories that are relevant to us, we will need two crucial
left-transfer results from [BHKKRS14].

In order to understand their statements, we need first to introduce some
terminology.

Definition 1.3.8. A category M is locally presentable if it is locally
small, has all small colimits and there exists a set S ⇢ Ob M that generates
M under colimits (i.e., every object M 2M can be written as a colimit over
a diagram with objects in S).

Definition 1.3.9. A model structure on a category M is combinatorial if
it is cofibrantly generated and the underlying category is locally presentable.

Convention 1.3.10. From now and until the beginning of Section 1.4, we
work over a field k (see Remark 1.3.14).

(1) Model structure on the category of comodules over a coring in
Ch

�0
k

Theorem 1.3.11 ([Hes]). Let k be a field and A an augmented differential
graded k-algebra. Endow the category ModA with the model category struc-
ture right-induced from the projective model structure on Ch

�0
k (see Theorem

1.3.5). If V is an A-coring that is semi-free as a left A-module on a graded
k-vector space X of finite type, then the adjunction

MV
A

U //
ModA

�⌦A V
oo

left-induces a combinatorial model category structure on the category MV
A of

V -comodules in ModA.

(2) Model structure on the category of comodules over a comonoid
in Ch

�0
k

Observe that if A := k[0] and V := H, a Hopf algebra, the category MV
A is

the category ComodH . So Theorem 1.3.11 gives the following result.
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Theorem 1.3.12 ([Hes]). Let k be a field and H a differential graded k-Hopf
algebra that is finite-dimensional in each degree. Endow the category Ch

�0
k

with the projective model category structure. The adjunction

ComodH

U //
Ch

�0
k�⌦H

oo

then left-induces a combinatorial model category structure on the category
ComodH of H-comodules.

(3) Model structure on the category of augmented H-comodule
algebras in Ch

�0
k

Let Alg

" denote the category of augmented differential graded k-algebras,
over a field k. Equip it with the model category structure right-induced from
the projective structure on Ch

�0
k (see Theorem 1.3.6).

Theorem 1.3.13 (Theorem 3.8, [BHKKRS14]). If k is a field, and H is a
differential graded k-Hopf algebra that is finite-dimensional in each degree,
then the adjunction

Alg

"
H

U //
Alg

"

�⌦H
oo

left-induces a combinatorial model category structure on the category Alg

"
H

of augmented right H-comodule algebras.

Remark 1.3.14. It is highly likely that the left transfer results 1.3.11, 1.3.12
and 1.3.13 can be generalized to an arbitrary commutative ring R, but to
do this one needs an enriched version of Theorem 2.21 in [BHKKRS14].

1.4 Quillen pairs and Quillen equivalences between
categories of modules

Remark 1.4.1. In Section 1.4 we work over a commutative ring R.

1.4.1 Quillen pairs induced by morphisms of algebras

Let ↵ : C ! E be a morphism of dg-algebras in Ch

�0
R . It induces an

extension-restriction of scalars adjunction �⌦C E : ModC � ModE : ↵⇤.
When is (�⌦C E,↵⇤) a Quillen pair?

Lemma 1.4.2. Let R be a commutative ring and suppose that the category
Ch

�0
R is equipped with the projective model structure. Let ↵ : C ! E be a

morphism of dg-algebras in Ch

�0
R . Then the adjunction

ModC

�⌦C E //
ModE

↵⇤
oo
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is always a Quillen pair with respect to the model structures on ModC and
ModE, right-induced from Ch

�0
R .

Proof. It is easy to see that the right adjoint ↵⇤ preserves fibrations and
acyclic fibrations. Indeed, by the definition of the right-induced model struc-
ture on ModE and ModC , f 2 Fib

ModE
if and only if its underlying mor-

phism is a fibration of chain complexes if and only if ↵⇤(f) 2 Fib
ModC

.
Similarly, f 2 WE

ModE
if and only if its underlying morphism is a quasi-

isomorpism of chain complexes if and only if ↵⇤(f) 2WE
ModC

.

1.4.2 Quillen equivalences induced by quasi-isomorphisms of
algebras

In this section we would like to understand the relationship between the
situation where a morphism of algebras is a quasi-isomorphism and the sit-
uation where the extension/restriction of scalars adjunction induced by this
morphism on the categories of modules is a Quillen equivalence.

Knowing more about this relationship will allow us to investigate ques-
tions about the behavior of the comparison functor (i')⇤, which plays an
essential role in the definition of a homotopic Hopf-Galois extension ', at
least in a particular case where the underlying comparison map i' happens
to be a quasi-isomorphism.

The next Proposition comes from [BH12].

Proposition 1.4.3. Let R be a commutative ring. If g : B ! A is a
morphism of augmented dg-R-algebras in Ch

�0
R such that

(1) A ⇠= B
⇠
⌦X is semi-free as a left B-module on a generating graded

R-module X that is degree-wise finitely generated, and

(2) g is a quasi-isomorphism,

then the adjunction

ModB

�⌦B A //
ModA

g⇤
oo

is a Quillen equivalence with respect to the model structures on ModA and
ModB, right-induced from the projective model structure on Ch

�0
R , as in

Theorem 1.3.5.

Sketch of the proof: One can use the criteria (1) and (2) from Proposition
1.3.3. The restriction of scalars functor g⇤ : ModA ! ModB obviously
preserves and reflects weak equivalences. Since all objects in ModB are
fibrant, it remains to show that the homotopy unit

⌘̃Mc : M c ! '⇤(M c⌦B A)
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is a weak equivalence in ModA for all cofibrant M c 2 ModA, which is
equivalent to showing that

M c ! '⇤(M c
⇠
⌦X)

is a weak equivalence in ModA, using assumption (1). The idea is to use
a few spectral sequence arguments, involving the acyclic bar construction
B(B)⌦tB B (see Example 1.2.26). Here are the main steps of the argument.
There exists a homotopy equivalence ⌘B(B)⌦ ⌘B : R[0] ! B(B)⌦tB B (see
Proposition 10.6.1 in [Nei10]), so

H⇤(B(B)⌦tB B) ⇠= R[0] ⇠= H⇤((B(B)⌦tB B)⌦B B).

Since g : B ! B
⇠
⌦X is a quasi-isomorphism by assumption, and since

the acyclic bar construction B(B)⌦tB B is right B-semi-free, it follows from
Lemma 1.2.28 that the map

Id⌦B g : (B(B)⌦tB B)⌦B B ! (B(B)⌦tB B)⌦B(B
⇠
⌦X)

is a quasi-isomorphism, too.
By Theorem 1.2.18, a filtration of the domain (B(B)⌦tB B)⌦B B ⇠=

B(B)⌦tB B of Id⌦B g by the length in the bar construction B(B) will in-
duce a spectral sequence {Er

⇤,⇤}, converging to H⇤(B(B)⌦tB B). Similarly,
a filtration of the codomain (B(B)⌦tB B)⌦B(B

⇠
⌦X) ⇠= B(B)⌦tB B

⇠
⌦X

of Id⌦B g by the length in B(B) will induce a spectral sequence {Er
⇤,⇤},

converging to H⇤(B(B)⌦tB B
⇠
⌦X), with the second page given by E

2
p,q =

Hp(B(B)⌦tB B)⌦Hq(X), for all p, q � 0. One can then use the Zeeman
comparison Theorem to conclude that H⇤(B(B)⌦tB B

⇠
⌦X) ⇠= H⇤(X) ⇠=

R[0].
Now, consider the map

M c ⇠= M c⌦B B
Mc⌦

B
g

����!M c⌦B B
⇠
⌦X ⇠= M c

⇠
⌦X.

Because the graded R-module M c
⇠
⌦X is a semi-free extension of M by

X, which is degree-wise finitely generated, it is equipped with a filtra-
tion. Theorem 1.2.18 tells us that there exists a spectral sequence Êr

⇤,⇤

converging to H⇤(M c
⇠
⌦X), of which the second page will simplify to Ê2

p,q =
Hp(M c)⌦Hq(X), for all p, q � 0. Similarly, a filtration of M c by degree
will give rise to a spectral sequence converging to H⇤(M c). Using that
H⇤(X) ⇠= R[0] and the Zeeman comparison Theorem once again, one will
be able to conclude that the map M c ⌦

B
g is a quasi-isomorphism, as de-

sired.

Here is the converse result.
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Proposition 1.4.4. Let R be a commutative ring and let g : A ! B be
a morphism of dg algebras in Ch

�0
R . If the induced functor g⇤ : ModB !

ModA is a Quillen equivalence with respect to the model structures on ModB

and ModA that are right-induced from the projective model structure on
Ch

�0
R , as in Theorem 1.3.5, then g : A! B is a quasi-isomorphism.

Proof. By Lemma 1.4.2, the extension/restriction of scalars adjunction
�
�

⌦A B, g⇤
�

is a Quillen pair. By assumption, this is a Quillen equivalence, so
condition (1) from Proposition 1.3.3 holds, i.e., the homotopy unit

⌘̃Mc : M c ! g⇤
�
R(M c⌦A B)

�

is a weak equivalence in ModA, for all cofibrant M c 2ModA. Here R(�)
denotes the fibrant replacement functor. Because of the definition of the
right-induced model structure on the categories ModB and ModA, this
condition is equivalent to saying that the maps

⌘̃Mc : M c ! g⇤
�
M c⌦A B

�

are quasi-isomorphisms of chain complexes, for all M c 2 ModA, since all
objects are fibrant in ModA.

Now, A is cofibrant as a A-module in ModA, so Ac = A and the (homo-
topy) unit evaluated at A factors in ModA as

A
⌘A

'
//

g
''OOOOOOOOOOOOOO g⇤
�
A⌦A B

�

⇠=
✏✏

g⇤(B),

so g is a quasi-isomorphism, as desired.

1.5 Adjunctions between categories of comodules
over corings

1.5.1 Quillen adjunctions induced by bimodules

This section is based on [BH12]. It briefly introduces the concept of adjunc-
tions between categories of comodules over corings, induced by adjunctions
between categories of modules. This type of situation will be relevant later
on, because it will allow us to justify the existence of certain Quillen pairs
between certain model categories of interest.

Let A and B be monoids in a monoidal category (M,⌦, I). It follows
from [BH12] that, up to isomorphism, every adjunction

ModA

F //
ModB

G
oo
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is induced by a bimodule AXB 2 A BimodB in M, and is of the form

ModA

�⌦A X //
ModB .

HomB(X,�)
oo

Here, for any Y 2 ModB, the right A-module structure on the set of left
B-module morphisms HomB(X,Y ) is given by

⇠ : HomB(X,Y )⌦A! HomB(X,Y ) : f ⌦ a 7! (f · a),

where (f · a) : X ! Y is given by (f · a)(x) := f(ax), for all x 2 X.
Let (V, V , "V ) and (W, W , "W ) be corings in the categories A ModA

and B ModB, respectively. A fixed adjunction
ModA

F //
ModB

G
oo can

be lifted to a relative adjunction MV
A

F̃ //
MW

B
G̃

oo between the categories

of comodules over corings, in the sense that the diagram of left adjoints (or,
equivalently, the diagram of right adjoints) in

MV
A

F̃ //

UA

✏✏

MW
B

G̃

oo

UB

✏✏
ModA

F //

�⌦A V

OO

ModB
G

oo

�⌦B W

OO

commutes, up to natural isomorphism.

Definition 1.5.1. A braided bimodule is a pair (AXB, T V,W
X ), where AXB

is an A-B-bimodule in M and

T V,W
X : V ⌦A X ! X ⌦B W

is a morphism of A-B-bimodules such that the diagrams

(Pentagon axiom)

V ⌦A X
T V,W

X //

 V ⌦A X
✏✏

X ⌦B W

X ⌦B  W

✏✏
V ⌦A V ⌦A X

V ⌦A T V,W
X

))RRRRRRRRRRRRR X ⌦B W ⌦B W

V ⌦A X ⌦B W

T V,W
X ⌦B W

55kkkkkkkkkkkkkk
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(Counit axiom)

V ⌦A X
T V,W

X //

"V ⌦A X
✏✏

X ⌦B W

X ⌦B "W

✏✏
A⌦A X

⇠= // X X ⌦B B
⇠=oo

commute. The map T V,W
X will sometimes be referred to as a V -W -braiding

morphism.

Braided bimodules classify relative adjunctions, in the sense of the next
Proposition, which follows form Proposition 2.5 in [BH12].

Proposition 1.5.2 ([BH12]). Using the notation above, if the monoid A
admits a V -comodule structure, e.g., if V is coaugmented, then, up to iso-
morphism, every adjunction (F̃ , G̃) between MV

A and MW
B , relative to a given

adjunction (F,G) between ModA and ModB, is given by a braided bimodule
AXB in M.

The following Proposition holds for M := Ch

�0
k .

Proposition 1.5.3. Consider the category Ch

�0
k , endowed with the projec-

tive model structure. Let (A, V ) be a coring in A ModA and (B,W ) be a
coring in B ModB, such that

(i) there exist model structures on the categories ModA and ModB, right-
induced from M, as in Theorem 1.3.5;

(ii) there exist model structures on the categories MV
A and MW

B , left-induced
from ModA, respectively, ModB, as in Theorem 1.3.11.

Let (AXB, T V,W
X ) be a braided bimodule in M. If X is cofibrant as right

B-module, then the adjunction

MV
A

�̂⌦A X //
MW

B ,
gRX

oo

is a Quillen pair.

Proof. In the diagram

MV
A

�̂⌦A X //

UA

✏✏

MW
B

gRX

oo

UB

✏✏
ModA

�⌦A X //

�⌦A V

OO

ModB
HomB(X,�)

oo

�⌦B W

OO
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the left adjoints are displayed on top and on the left and they commute.
Moreover, the model category structures on MV

A and MW
B are left induced

via UA and UB, respectively. So, �̂⌦A X : MV
A ! MW

B is a left Quillen
functor if �⌦A X : ModA !ModB is.

Now, observe that the diagram of adjunctions

ModA

�⌦A X //

U

✏✏

ModB
HomB(X,�)

oo

U

zztttttttttttttttttttttt

M

�⌦X

::tttttttttttttttttttttt

�⌦A

OO

commutes, where left adjoint are displayed on top and on the left. Since
the model structure on ModA is right induced from M via the vertical
adjunction, the horizontal adjunction is a Quillen adjunction if and only if
the diagonal one is. By definition of a left Quillen functor, this happens if
and only if for every (acyclic) cofibration i : K

'⇢ L in M, the induced map
i⌦X : K ⌦X

'⇢ L⌦X is a (acyclic) cofibration in ModB. By assumption,
X is cofibrant as right B-module, so this condition is satisfied. Indeed,
the category ModB is model monoidal, because M is (see Theorem 1.3.5).
Hence, the push-out product axiom holds in ModB, which implies that i⌦X
is an acyclic cofibration.

1.5.2 Quillen equivalences induced by quasi-isomorphisms of
corings

In this section we work in the underlying category M := Ch

�0
k , where k is

a field. We would like to understand the relationship between the situation
where a morphism of corings is a quasi-isomorphism and the situation where
the functor induced by this morphism on the categories of comodules over
corresponding corings is a Quillen equivalence.

Knowing more about this relationship will allow us to investigate ques-
tions about the behavior of the Galois functor (�')⇤, which plays an essential
role in the definition of a homotopic Hopf-Galois extension ', at least in a
particular case where the underlying Galois map �' happens to be a quasi-
isomorphism.

Remark 1.5.4. Throughout this section we suppose that k is a field, A is an
augmented dg k-algebra and g : V !W is a morphism of A-corings in Ch

�0
k .

Moreover, we assume that V and W satisfy the semi-freeness hypothesis of
Theorem 1.3.11, so that the categories MV

A and MW
A inherit the left-induced

model structure from ModA, as described in Theorem 1.3.11.
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Remark 1.5.5. Let g : V ! W be a morphism of A-corings as in Remark
1.5.4. The induced functor g⇤ : MV

A ! MW
A preserves and reflects all weak

equivalences, hence it automatically satisfies condition (20) in Proposition
1.3.3.

The next Proposition comes from [BH12].

Proposition 1.5.6. Suppose that g : V ! W is a quasi-isomorphism of
A-corings (i.e., a quasi-isomorphism of underlying chain complexes), where
V and W are semi-free as left A-modules on generating graded k-modules
that are degree-wise finitely generated. Then the adjunction

MV
A

g⇤ //
MW

A
�⇤

W
g⇤(V )

oo

is a Quillen equivalence, whenever the categories MV
A and MW

A are equipped
with the model structure left-induced from ModA, as in Theorem 1.3.11.

How much can be said about the converse? In other words, if the induced
functor g⇤ : MV

A !MW
A is a Quillen equivalence, can one find reasonable con-

ditions that would guarantee that g was a quasi-isomorphism of A-corings?
It turns out that conditions of Remark 1.5.4 are sufficient to guarantee this.

Proposition 1.5.7. Let k, A, V and W be as in Remark 1.5.4 and let
g : V !W be a morphism of A-corings. Suppose that the functor g⇤ : MV

A !
MW

A is a Quillen equivalence. Then g : V ! W is a quasi-isomorphism of
A-corings.

Proof. Since g⇤ is a Quillen equivalence, criterion (10) from Proposition 1.3.3
implies that for all fibrant Nf 2MW

A the homotopy counit

"̃Nf : Q
⇣
g⇤
�
Nf ⇤

W
g⇤(V )

�⌘
! Nf

is a weak equivalence in MA
W , i.e., a quasi-isomorphism of underlying chain

complexes, where Q(�) stands for the cofibrant replacement functor.
Note that all objects are fibrant in the right-induced model structure on

ModA. In particular, the dg-algebra A is fibrant as a right A-module. Now,
the functor �⌦A W : ModA ! MW

A is the right member of a Quillen pair,
by Theorem 1.3.11, so it preserves fibrant objects. Therefore, the object
A⌦A W ⇠= W is fibrant in MW

A , and the associated homotopy counit "̃W is
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a quasi-isomorphism. We now look at the commutative diagram

Q
⇣
g⇤(W ⇤

W
g⇤(V ))

⌘
"̃W

⇠
//

⇠
✏✏

W

g⇤(W ⇤
W

g⇤(V ))

⇠=
✏✏

"W

88pppppppppppppp

g⇤(V )

g

@@�����������������������

and conclude that g is a quasi-isomorphism, as desired.

Propositions 1.5.6 and 1.5.7 combine together to give the following corol-
lary.

Corollary 1.5.8. Let g : V ! W be a morphism of A-corings and let
g⇤ : MV

A ! MW
A denote the induced functor. Suppose that V and W are

semi-free as left A-modules on generating graded k-modules that are degree-
wise finitely generated. Then g : V !W is a quasi-isomorphism of A-corings
if and only if the functor g⇤ : MV

A !MW
A is a Quillen equivalence.
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Chapter 2

Foundations of homotopic
Hopf-Galois extensions

2.1 (Homotopy) C-coinvariants

Convention 2.1.1. In this section, we will work over a field k.

To understand the definition of a homotopic H-Hopf-Galois extension
' : B ! A of H-comodule algebras in Ch

�0
k , for a given bimonoid H, it

is important to know how to calculate the object of homotopy coinvariants
AhcoH of A.

Actually, in the most general case, (homotopy) coinvariants of a coac-
tion are defined for coactions by a coaugmented comonoid C. Therefore,
this section starts with the definition of the (non-homotopy) C-coinvariants
of C-comodules, for a coaugmented comonoid C, and then considers their
homotopic analog.

2.1.1 Calculating C-coinvariants

Definition 2.1.2. Let (C,�C , "C , ⌘C) be a coaugmented coalgebra in Ch

�0
k .

Given a left C-comodule (X, ⇢) in Ch

�0
k , the object of C-coinvariants of

X is defined to be the cotensor product XcoC := X ⇤
C

k[0], calculated in

Ch

�0
k (see Definition 1.1.15).

The previous definition is functorial, so that one can define the coin-
variants functor

Coinv : ComodC ! Ch

�0
k : (X, ⇢) 7! XcoC

and its left adjoint, the trivial coaction functor

Triv : Ch

�0
k ! ComodC : X 7! Triv(X) = (X,X ⌦ ⌘C),
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where X ⌦ ⌘C is the composite X ⇠= X ⌦k[0]
X ⌦ ⌘C�! X ⌦C.

However, things become slightly more complicated when it comes to cal-
culating homotopy coinvariants of C-comodules. To be able to do this, it is
important to have valid models for fibrant replacements in ComodC .

2.1.2 Homotopy C-coinvariants in ComodC

Convention 2.1.3. In this section, we suppose that C is a coaugmented, 1-
connected comonoid in the category Ch

�0
k , i.e., that C 2 Coalg

⌘,1
k , and that

C is also degree-wise finitely generated.

In this situation, Theorem 1.3.12 guarantees that there exists a left-
induced model category structure on ComodC , coming from the adjunction

ComodC

U //
Ch

�0
k ,

�⌦C
oo

such that the weak equivalences and the cofibrations in ComodC are the
same as in Ch

�0
k , equipped with the projective model structure. In this

situation, it is easy to see that the adjunction

Ch

�0
k

Triv //
ComodC

Coinv
oo

is a Quillen pair. It turns out that a good model for fibrant replacements in
ComodC is given by two-sided cobar constructions.

Definition 2.1.4. Let k be a field and C a comonoid in Ch

�0
k , satisfying

Convention 2.1.3. Let (X, ⇢C) 2 ComodC . The two-sided cobar con-
struction on X is an object in ComodC , defined by the following twisted
tensor product of chain complexes

⌦(X;C;C) := (X ⌦⌦C ⌦C, Dt⌦⌦ t⌦)

(see Definitions 1.2.2, 1.2.3 and 1.2.5 and Example 1.2.4). The differential
Dt⌦⌦ t⌦ is given by

Dt⌦⌦ t⌦ = dX ⌦⌦C ⌦C + X ⌦D⌦C ⌦C + X ⌦⌦C ⌦ dC

+
�
(X ⌦µ⌦C ⌦C) � (X ⌦ t⌦⌦⌦C ⌦C) � (⇢C ⌦⌦C ⌦C)

�

�
�
(X ⌦µ⌦C ⌦C) � (X ⌦⌦C ⌦ t⌦⌦C) � (X ⌦⌦C ⌦�C)

�

(see also Definition 7.6 in [HS12]). The right C-coaction on ⌦(X;C;C) is
given on the underlying graded module by

⇢⌦(X;C;C) : X ⌦⌦C ⌦C
X ⌦⌦C ⌦�C// X ⌦⌦C ⌦(C ⌦C) ⇠= (X ⌦⌦C ⌦C)⌦C.
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Notation 2.1.5. We will often omit the differential Dt⌦⌦ t⌦ , but keep spec-
ifying the twisting morphisms. So, the two-sided cobar construction on X
will be denoted either ⌦(X;C;C) or X ⌦t⌦ ⌦C ⌦t⌦ C.

Remark 2.1.6. The homotopy equivalence X
'�! ⌦(X;C;C) is not a cofi-

bration in the model structure in ComodC we are working with. However,
it suffices for computing right derived functors. In the commutative diagram

Xvv'
vvlllllll

'

""EE
EE

EE
EE

// k[0]

Xf

)' ,, ,,XXXXXXXXXXXX

⌦(X;C;C)

<< <<yyyyyyyy

Xf denotes a fibrant replacement of a C-comodule X. It is obtained by
factoring the map X ! ⌦(X;C;C) as a trivial cofibration, followed by a
fibration that is necessarily trivial. Since the map Xf ! ⌦(X;C;C) is
a weak equivalence between fibrant objects, for any right Quillen functor
G : ComodC ! C, the map G(Xf )! G(⌦(X;C;C)) is a weak equivalence
in C.

Lemma 2.1.7. Let k be a field and C a comonoid in Ch

�0
k , satisfying Con-

vention 2.1.3. For any (X, ⇢) 2 ComodC , the two-sided cobar construction
⌦(X;C;C) is a fibrant replacement of (X, ⇢) in the left-induced model struc-
ture on ComodC , as described in Theorem 1.3.12.

Proof. This Lemma follows from §7 in [HS12] and from [BHKKRS14].

Using Definition 2.1.4 and Notation 2.1.5, for any (X, ⇢) 2 ComodC we
have

⌦(X;C;C)⇤
C

k[0] := (X ⌦t⌦ ⌦C ⌦t⌦ C)⇤
C

k[0]

(1)⇠= X ⌦t⌦ ⌦C ⌦t⌦

�
C ⇤

C
k[0]

�

(2)⇠= X ⌦t⌦ ⌦C ⌦
t⌦�⌘C

k[0]

(3)⇠= X ⌦t⌦ ⌦C,

where (1) uses that C is degree-wise k-flat, (2) follows from Chapter 1 in
[HMS74], and (3) holds because ⌦C ⌦k[0] ⇠= ⌦C as chain complexes and
t⌦ � ⌘C = 0.
Remark 2.1.8. Note that the chain complex X ⌦t⌦ ⌦C is actually the one-
sided cobar construction (X ⌦⌦C, Dt⌦) on (X, ⇢C). The differential Dt⌦

is given by

Dt⌦ = dX ⌦⌦C + X ⌦D⌦C +
�
(X ⌦µ⌦C) � (X ⌦ t⌦⌦⌦C) � (⇢C ⌦⌦C)

�
.
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Notation 2.1.9. We will also use the notation X ⌦t⌦ ⌦C := ⌦(X;C; k).

Remark 2.1.10. Given (X, ⇢) 2 C Comod, a left C-comodule, one defines
symmetrically the two-sided cobar construction ⌦(C;C;X), and the
one-sided cobar construction ⌦(k;C;X).

We are finally ready to define the homotopy coinvariants functor on the
category of C-comodules.

Definition 2.1.11. Let k be a field and C a comonoid in Ch

�0
k , satisfying

Convention 2.1.3. The homotopy coinvariants functor on ComodC can
be explicitly defined by

(�)hcoC : ComodC ! Ch

�0
k

(X, ⇢) 7! XhcoC = ⌦(X;C; k)

for all (X, ⇢) 2 ComodC .

2.1.3 Homotopy H-coinvariants in Alg

"
H

Convention 2.1.12. From now on, we suppose that H is a 1-connected Hopf
algebra in Ch

�0
k , such that Hn is finitely generated for all n � 0.

By Theorem 1.3.13, if H satisfies the conditions of Convention 2.1.12,
then there exists a model structure on the category Alg

"
H , left-induced from

the category of augmented monoids Alg

" via the adjunction

Alg

"
H

U //
Alg

",
�⌦H

oo

such that the weak equivalences and the cofibrations in Alg

"
H are the same

as in Alg

", equipped with the right-induced model structure from Ch

�0
k (see

Theorem 1.3.6). In this situation, it is easy to see that the adjunction

Alg

"
Triv //

Alg

"
H

Coinv

oo

is a Quillen pair. Using the free-forgetful adjunctions on both source and
target categories, the previous adjunction fits into the following diagram of
Quillen adjunctions (left adjoints are on top and on the left).

Alg

"
H

Coinv

//

UAlg,H

✏✏

Alg

"
Trivoo

UAlg

✏✏
ComodH

Coinv
//

FAlg,H

OO

Ch

�0
k

Trivoo

FAlg

OO
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This diagram commutes, because all limits of algebras are created in the
underlying category, and then equipped with a multiplicative structure. So,
for any (A, ⇢) 2 Alg

"
H we have

U
Alg

(Coinv(A, ⇢)) = U
Alg

(AcoH) = Coinv(U
Alg,H(A, ⇢)).

In particular, given an augmented H-comodule algebra (A, ⇢), the associated
object of H-coinvariants AcoH , can be calculated in the underlying category
Ch

�0
k and then equipped with an algebra structure.

We now turn to a discussion on how to calculate the homotopy coinvari-
ants of an augmented H-comodule algebra (A, ⇢) 2 Alg

"
H . If we forget the

multiplication, (UA, ⇢) is an H-comodule, and we have seen in the previ-
ous section that the one-sided cobar construction ⌦(UA;H; k) gives a good
model for homotopy coinvariants of (UA, ⇢) in ComodH .

On the other hand, Corollary 3.6 in [HL07], shows how the free right
⌦H-module structure on ⌦(A;H; k) can be extended to a natural differential
algebra structure. In other words, there exists a functor Cobar : Alg

"
H !

Alg

" that makes the following diagram commute.

Alg

"
H

Cobar //

UAlg,H

✏✏

Alg

"

UAlg

✏✏
ComodH

Cobar //
Ch

�0
k

Remark 2.1.13. The idea used in [HL07] for defining the multiplication
µA⌦t⌦

⌦H on A⌦t⌦ ⌦H is the following. Suppose that one wants to de-
termine the product

(a1⌦ s�1h1| · · · |s�1hm)(a01⌦ s�1h01| · · · |s�1h0n)

of two arbitrary elements a1⌦ s�1h1| · · · |s�1hm, a01⌦ s�1h01| · · · |s�1h0n 2
A⌦t⌦ ⌦H. Using the fact that the multiplication on ⌦H is free and associa-
tive, one can rewrite this product as a product of simpler terms of the form
a⌦ 1 and 1⌦ s�1h, for some a 2 A, s�1h 2 ⌦H. The key observation now
is that it is sufficient to know how to multiply two terms (1⌦ s�1h)(a⌦ 1)
to obtain the expression of the initial product.

Moreover, the partial product (1⌦ s�1h)(a⌦ 1) must be compatible with
the differential Dt⌦ : A⌦⌦H ! A⌦⌦H, if one wants it to induce a differ-
ential algebra structure on A⌦t⌦ ⌦H.

A careful investigation of the Leibniz rule then shows that one must set

(1⌦ s�1h)(a⌦ 1) := (�1)deg(h+1) deg(a)a⌦ s�1h

+ (�1)deg(h0)1⌦ s�1(h · h0)
+ (�1)deg(a)+deg(h) deg(h0i)

X

i

ai⌦ s�1(h · h0i),
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for all a 2 A, h 2 H, where ⇢A(a) = a⌦ 1 + 1⌦h0 +
P

i ai⌦h0i, and also
require that

(a⌦ 1)(a0⌦ 1) = a · a0⌦ 1,

for all a, a0 2 A and that

(a⌦ 1)(1⌦ s�1h) = a⌦ s�1h,

for all a 2 A, h 2 H.
An analogous construction holds for any left H-comodule A, and defines

a differential algebra structure µ⌦H ⌦t⌦
A on ⌦H ⌦t⌦ A.

It is also possible to endow the two-sided cobar construction ⌦(A;H;H)
with a multiplication µ⌦(A;H;H), making it into a differential H-comodule
algebra. Observe that

⌦(A;H;H) = A⌦t⌦ ⌦H ⌦t⌦ H ⇠= (A⌦t⌦ ⌦H) ⌦
⌦H

(⌦H ⌦t⌦ H),

and that Remark 2.1.13 tells us how to define multiplications µA⌦t⌦
⌦H and

µ⌦H ⌦t⌦
A.

Given two elements a⌦ s�1h1⌦h0, a0⌦ s�1h2⌦h00 in ⌦(A;H;H), their
product can be written as

(a⌦ s�1h1⌦h0)(a0⌦ s�1h2⌦h00) =

(a⌦ 1⌦ 1)(1⌦ s�1h1⌦h0)(a⌦ s�1h2⌦ 1)(1⌦ 1⌦h00),

using the fact that the multiplication on ⌦H is free and the conditions re-
quired for µA⌦t⌦

⌦H and µ⌦H ⌦t⌦
A. Applying this decomposition and taking

into account all conditions on multiplications required by Remark 2.1.13, one
defines a partial multiplication on ⌦(A;H;H) by setting

(1⌦ s�1h1⌦h0)(a⌦ s�1h2⌦ 1) =
�
(1⌦ s�1h1)(a⌦ 1)⌦ 1

��
1⌦(1⌦h0)(s�1h2⌦ 1)

�
,

(a⌦ 1⌦ 1)(a0⌦ s�1h1⌦h0) = aa0⌦ s�1h1⌦h0,

(a⌦ s�1h1⌦h0)(1⌦ 1⌦h00) = a⌦ s�1h1⌦h0h00,

for all a, a0 2 A, h, h0, h1, h2 2 H. This partial product satisfies the Leibniz
rule, because partial multiplications on A⌦t⌦ ⌦H and ⌦H ⌦t⌦ A do, and
therefore generates the multiplication µ⌦(A;H;H) on ⌦(A;H;H).

Lemma 2.1.14. Let k be a field and H a Hopf algebra in Ch

�0
k , satisfying

Convention 2.1.12. For any (A, ⇢) 2 Alg

"
H , the two-sided cobar construc-

tion ⌦(A;H;H) is a fibrant replacement of (A, ⇢) in the left-induced model
structure on Alg

"
H , as described in Theorem 1.3.13.
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Proof. This follows from Example 7.9 in [HS12] and from [BHKKRS14].

We can finally give a definition of the homotopy coinvariants functor on
the category of augmented H-comodule algebras.

Definition 2.1.15. Let k be a field, and H a Hopf algebra in Ch

�0
k , satis-

fying Convention 2.1.12. The homotopy coinvariants functor on Alg

"
H

can be explicitly defined by

(�)hcoH : Alg

"
H ! Alg

"

(A, ⇢) 7! AhcoH = ⌦(A;H; k),

for all (A, ⇢) 2 Alg

"
H .

2.2 Special maps associated to a morphism of aug-
mented H-comodule algebras '

Let k be a field and let H be a Hopf algebra in Ch

�0
k , satisfying Convention

2.1.12. Let (A, ⇢) be an augmented H-comodule algebra.

2.2.1 The comparison map i'

Let ' : Triv(B) ! A be a morphism of augmented H-comodule algebras.
Observe that, by definition, ' induces the map ⇠ in the equalizer

AcoH // A
⇢⌦ k //

A⌦ ⌘H

// A⌦H ⌦k,

Triv(B)

9! ⇠

OO

'

::uuuuuuuuuuu

computed in Ch

�0
k . The comparison map associated to ' is the morphism

of augmented H-comodule algebras

i' : Triv(B)! AhcoH

that fits into the following commutative diagram in Alg

"
H .

Triv(B)
' //

i'

⇢⇢

⇠

✏✏

A

AcoH � � //

✏✏

A

'
✏✏

(RA)coH = AhcoH � � // RA
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Here, R(�) stands for the fibrant replacement functor in the model cat-
egory Alg

"
H . Note that the two-sided cobar constructions ⌦(A;H; k) and

⌦(A;H;H) can be chosen as explicit models for AhcoH and RA, respectively,
as explained in Definition 2.1.15 and Lemma 2.1.14.

2.2.2 The Galois map �'

Recall from Examples 1.1.18 the definition of A-corings (W can
' , lcan

' , rcan
' , can

' , "can
' )

and (W⇢, l⇢, r⇢, ⇢, "⇢).
The Galois map �' : W can

' ! W⇢ is a morphism of A-corings, given
explicitly by the composite

A⌦B A

�'

44
A⌦B ⇢ // A⌦B A⌦H

µA⌦H // A⌦H,

where µA denotes the map induced in the coequalizer by the multiplication
µA on A.
Remark 2.2.1. To check that �' is indeed a morphism of A-corings, one
needs to show that it respects all the structure maps, i.e., that the following
four diagrams commute.

W can
'

�' //

 '

✏✏

W⇢

 ⇢

✏✏
W can
' ⌦A W can

'
�'⌦A �'// W⇢⌦A W⇢

W can
'

�' //

"' ""DD
DD

DD
DD

W⇢

"⇢~~}}
}}

}}
}}

A

A⌦W can
'

A⌦�' //

l'
✏✏

A⌦W⇢

l⇢

✏✏
W can
'

�' // W⇢

W can
' ⌦A

�'⌦A //

r'

✏✏

W⇢⌦A

r⇢

✏✏
W can
'

�' // W⇢

While verifying compatibility of �' with the left and right A-actions is
quite straightforward, establishing its compatibility with the coactions  ',
 ⇢ and counits "', "⇢ turns out to be a rather tedious and long exercise,
especially if one decides to check this property in an arbitrary monoidal
model category (M,⌦, I) (i.e., without the possibility of “taking elements”).

One difficulty is that many of objects and maps involved here have tensor
products over A and over B in their definition. So, breaking the above
diagrams into smaller pieces to check their commutativity, one immediately
has to deal with a lot of coequalizers and induced maps, and the number of
intermediate diagrams increases quickly.

On the other hand, taking M := Ch

�0
k , “element arguments” will quickly

allow one to see that the four diagrams above commute.
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2.3 The definition of homotopic Hopf-Galois exten-
sions

Before giving the definition of homotopic Hopf-Galois extensions, we need
to introduce two functors, induced by the two special maps from above.

The comparison functor

(i')⇤ : ModAhcoH !ModB

is the right adjoint of the extension/restriction of scalars adjunction

ModB

�⌦B AhcoH
//
ModAhcoH ,

(i')⇤
oo

induced by the morphism i' : Triv(B)! AhcoH in Alg

"
H .

The Galois functor

(�')⇤ : M
W can

'

A !M
W⇢

A

is induced by the morphism of A-corings �' : W can
' ! W⇢, and is given on

objects by �
M, ✓'

�
7!

⇣
M, (M ⌦A �') � ✓'

⌘
,

for all (M, ✓') 2M
W can

'

A . Observe that (�')⇤ does not change the underlying
A-module M , but only equips it with a new coaction.

Definition 2.3.1. Let k be a field, and let H be a Hopf algebra in Ch

�0
k ,

satisfying Convention 2.1.12. A morphism ' : Triv(B) ! A of augmented
H-comodule algebras in Ch

�0
k is called a homotopic H-Hopf-Galois ex-

tension if both the Galois functor

(�')⇤ : M
W can

'

A !M
W⇢

A

and the comparison functor

(i')⇤ : ModAhcoH !ModB

are Quillen equivalences with respect to the model structures given by The-
orems 1.3.5 and 1.3.11.

Remark 2.3.2. To make the definition of a homotopic H-Hopf-Galois exten-
sion ' meaningful, it is important that the extension/restriction of scalars
adjunction

ModB

�⌦B A //
ModA,

'⇤
oo

induced by ', be a Quillen pair. Lemma 1.4.2 actually tells us that this is
the case whenever the categories of modules are equipped with the model
structures right-induced from the projective model structure on Ch

�0
k (as in

Theorem 1.3.5).
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Example 2.3.3. Let k be a field, H a Hopf algebra satisfying Convention
2.1.12, and A 2 Alg

"
H . The map of H-coalgebras

◆H : ⌦(A;H; k)! ⌦(A;H;H)

is a homotopic H-Hopf-Galois extension, called the normal basis exten-
sion. Here, ⌦(A;H; k) is equipped with a trivial H-comodule structure, and
the H-coaction on ⌦(A;H;H) is defined similarly to the coaction described
in Definition 2.1.4. We explained in Section 2.1.3 how to equip the objects
⌦(A;H; k) and ⌦(A;H;H) with algebra structures.

Now, observe that

⌦(A;H;H) ⌦
⌦(A;H;k)

⌦(A;H;H) =
�
A ⌦

t⌦
⌦H ⌦

t⌦
H
�
⌦

A⌦
t⌦

⌦H

�
A ⌦

t⌦
⌦H ⌦

t⌦
H
�

⇠=
�
A ⌦

t⌦
⌦H ⌦

t⌦
H
�
⌦H

= ⌦(A;H;H)⌦H,

so the Galois map

�◆H : ⌦(A;H;H)⌦⌦(A;H;k)⌦(A;H;H)! ⌦(A;H;H)⌦H

is an isomorphism in Ch

�0
k . This implies that the Galois functor (�◆H )⇤ is

an equivalence of categories.
On the other hand, since ⌦(A;H;H) is fibrant in Alg

"
H (see Lemma

2.1.14), we can write

⌦(A;H;H)hcoH = ⌦(A;H;H)coH

:= ⌦(A;H;H)⇤
H

k[0]

⇠= ⌦(A;H; k),

which shows that the comparison map

i◆H : ⌦(A;H; k)! ⌦(A;H;H)hcoH

is an isomorphism in Ch

�0
k . This implies that the comparison functor (i◆H )⇤

is an equivalence of categories, as well.

2.4 Connections to other works

In the previous section, the definition of homotopic Hopf-Galois extensions,
as it will be used in this thesis, was given. It is a good moment to make
connections between this definition and the concepts of (non-homotopic)
(Hopf)-Galois extensions, which have been widely studied in other contexts
and which are at the origin of Definition 2.3.1.
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2.4.1 Brief reminder of Galois extensions of fields

Our reference book for this subsection is [Cox04]. Recall that an extension
of fields ↵ : k ,! E is an inclusion k ✓ E, where k is a sub-vector space of E.
We will assume that all our field extensions are finite. This will guarantee,
in particular, that they are algebraic. i.e., that for every e 2 E, there exists
a non-zero polynomial p 2 k[X], such that p(e) = 0.

Definitions 2.4.1. Let ↵ : k ,! E be a finite field extension.

• The extension ↵ is called normal if the minimal polynomial min(e; k) 2
k[X] of every element e 2 E splits completely over the field E.

• Suppose that the extension ↵ is normal. Then it is called separable if
for all e 2 E, its minimal polynomial min(e; k) 2 k[X] is non-constant
and all its roots are simple in E.

• The extension ↵ is called a Galois extension if it is normal and
separable.

Given a finite field extension ↵ : k ,! E, one can associate to it the
corresponding Galois group defined by

Gal(E; k) =
�
f : E! E : f is an automorphism and f(k) = k, for all k 2 k

 
.

This is a finite group, where the group law is given by composition, and the
neutral element is IdE : E! E.

2.4.2 Galois extensions of commutative rings

Auslander and Goldman were the first to define the notion of Galois ex-
tensions of commutative rings in [AG60]. We will need to introduce some
terminology and notation before we can state their original definition, for-
mulated in terms of two particular maps associated to such an extension.

An inclusion ↵ : R ,! S of commutative rings is an extension if R is a
subring of S. Observe that ↵ endows S with the structure of an R-algebra.
Denote by AutR(S) the group of automorphisms of S that fix R. For any
finite subgroup G  AutR(S),

SG := {s 2 S : gs = s, for all g 2 G}

is the ring of G-fixed points in S. Note that i : R ,! SG is an inclusion of
rings.

Define the twisted group ring by setting

S hGi := {
X

g2G

sg · g : sg 2 S, for all g 2 G},
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with at most finitely many sg 6= 0. It is an S-algebra, where the addi-
tion and the scalar multiplication are given component-wise, and where the
multiplication is “twisted” and defined by

⇣X

g2G

sg · g
⌘⇣ X

g02G

s0g0 · g0
⌘

=
X

g,g02G

(sg · g(s0g0)) · gg0,

for all g, g0 2 G, sg, s
0
g0 2 S.

On the other hand, consider the endomorphism ring EndR(S) with its
usual S-algebra structure, defined component-wise. The map

� : S hGi ! EndR(S) : sg · g 7! (�sg ·g : S ! S),

where
�sg ·g(s

0) := sg · g(s0)

is a homomorphism of S-algebras, for all g 2 G, sg, s
0 2 S.

Definition 2.4.2 ([AG60]). An extension of commutative rings ↵ : R ,! S
is G-Galois for a finite subgroup G  AutR(S) if S is a finitely generated
projective R-module and the maps

i : R ,! SG and � : S hGi ! EndR(S)

are isomorphisms of rings.

Let us define another map, �, as follows. Consider the tensor product
S⌦R S, endowed with an S-algebra structure by multiplication on the left.
Let

Q
G

S := {(sg)g2G} be the set of all G-indexed sequences of elements in

S. It is also an S-algebra, where the addition, multiplication and scalar
multiplication by S are all defined component-wise. The map

� : S⌦R S !
Y

G

S : s⌦ s0 7! (s · g(s0))g2G,

is then a homomorphism of S-algebras, for all s, s0 2 S.
Remark 2.4.3. Observe that the map � : S⌦R S !

Q
G

S is an isomorphism

of rings if and only if � : S hGi ! EndR(S) is an isomorphism of rings and
S is finitely generated and projective as an R-module. Indeed, using that G
is a finite group, and that

S⌦R� : ModS // ModS : HomR(�, S)oo

is an adjunction, one checks that

HomS

⇣Q
G

S, S
⌘

HomS(�,S) //

⇠=
✏✏

HomS(S⌦R S, S)

⇠=
✏✏

S hGi � // HomS(S, HomR(S, S)) ⇠= EndR(S),
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where HomS(A, S) denotes the set of all homomorphisms of S-modules from
any S-algebra A into S.

Definition 2.4.4 (follows from Definition 2.4.2 and Remark 2.4.3). An ex-
tension of commutative rings ↵ : R ,! S is G-Galois for a finite subgroup
G  AutR(S) if the maps

i : R ,! SG and � : S⌦R S !
Y

G

S

are isomorphisms of rings.

Remark 2.4.5. Definition 2.4.4 was proposed by Chase, Harrison and Rosen-
berg in [CHR65] as one of the six equivalent ways of defining a Galois exten-
sion of commutative rings (see [CHR65], Definition 1.4). In this paper, the
theory of Galois extensions of commutative rings was developed further and
a version of Galois correspondence was proven.

In the case where S and R are fields, Definition 2.4.2 coincides with
the original definition of a finite G-Galois extension of fields ↵ : k ,! E
(see [AG60], p.396 and Remark 1.5 in [CHR65]). Thus, it gives a way of
characterizing ↵ in terms of the isomorphisms of rings i : k ,! EG and
� : E⌦k E!

Q
G

E.

Proposition 2.4.6 (Proposition 1.2, [Gre92]). For any finite Galois exten-
sion of fields ↵ : k ,! E with Galois group G, the maps

i : k ,! EG and � : E hGi ! Endk(E)

are isomorphisms of rings.

2.4.3 Hopf-Galois extensions of algebras

The theory of classical (i.e., non-homotopic) Hopf-Galois extensions was de-
veloped by Chase and Sweedler in [CS69] (who considered coactions of Hopf
algebras on commutative k-algebras, for a fixed commutative ring R), and
by Kreimer and Takeuchi in [KT81] (who considered coactions of finite-
dimensional Hopf-algebras on k-algebras, for a fixed commutative ring R).
It offers a generalization of the Galois theory of fields and commutative
rings, by studying coactions of a Hopf (or bi-) algebra H on an algebra over
a commutative ring R.

Notation 2.4.7. Throughout this thesis we will sometimes use the notation
A H to mean that A is an H-comodule algebra with a non-trivial H-coaction.

The definition of a classical Hopf-Galois extension requires the following
data:
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• R, a commutative ring,

• H, an R-bialgebra,

• B, an augmented R-algebra, endowed with trivial H-coaction,

• A, an H-comodule algebra with coaction ⇢ : A! A⌦H,

• ' : B ! A H a morphism of H-comodule algebras.

Moreover, two associated homomorphisms are important, namely, the Ga-
lois map

�' : A⌦B A
A⌦B ⇢ // A⌦B A⌦H

µA⌦H // A⌦H,

defined exactly as in Section 2.2.2, and the comparison map

i' : B ! AcoH := {a 2 A : ⇢(a) = a⌦ 1}.

Definition 2.4.8. Using the notation above, the H-comodule algebra mor-
phism ' : B ! A is an H-Hopf-Galois extension if both �' and i' are
isomorphisms .

Remark 2.4.9. Observe that the Definition 2.3.1 of a homotopic Hopf-Galois
extension is “homotopified” (homotopy coinvariants, rather than simple coin-
variants) and also “categorified” (Quillen equivalences, rather than isomor-
phisms) in comparison to Definition 2.4.8 of a classical Hopf-Galois extension.

Example 2.4.10 (Example 2.3, [Mon09]). A finite G-Galois extension of
fields ↵ : k ,! E is an H-Hopf-Galois extension for the Hopf algebra H :=
Homk(k[G], k) (see Example 1.1.27), where k[G] denotes the usual group
ring on G.

Example 2.4.11 (Example 2.11, [Mon09]). Here is another motivating ex-
ample, which explains how a Hopf-Galois extension arises from a free group
action on a set.

Let G be a finite group acting on a finite set X via r : X ⇥G ! X :
(x, g) 7! x · g. Let Y := XG be the set of G-orbits of X and denote the
quotient map by q : X ! Y . Given a commutative ring R, consider the dual
objets

• H := HomR(R[G], R), which is a Hopf algebra, by Example 1.1.27;

• A := Set(X,R), the R-algebra of functions from X to R;

• B := Set(Y,R), the R-algebra of functions from Y to R (i.e., the
functions from X to R that have constant value on G-orbits).
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Both A and B are equipped with point-wise addition and multiplication.
The right G-action on X induces a left G-action on A given by

r⇤ : G⇥Set(X,R)! Set(X,R) : (g, f) 7! r⇤f : X ! R,

with r⇤(f)(x) := f(x · g), for all x 2 X, g 2 G. In turn, r⇤ induces a right
H-coaction on A

⇢ : Set(X,R)! Set(X,R)⌦HomR(R[G], R) : f 7! ⇢(f),

with ⇢(f)(x⌦ g) := f(x · g), for all x 2 X, g 2 G.
The map q induces then a morphism of H-comodule algebras

q⇤ : B = Set(Y, R)! Set(X,R) = A,

where B has a trivial H-coaction and, moreover, iq⇤ : B
⇠=�! AcoH is an

isomorphism.
Now, consider the following diagram

X ⇥G

�⇥G9!

✏✏

�⇥G

))RRRRRRRRRRRRRRRRRRRRRRRR

↵

!!

X ⇥Y X ⇥G

X ⇥Y r

✏✏

� � // X ⇥X ⇥G
((1⇥ q⇥ 1)�(�⇥X))⇥ r

//
((1⇥ q⇥ 1)�(X ⇥�))⇥ r//

X ⇥ r

✏✏

X ⇥Y ⇥X ⇥G

X ⇥Y ⇥ r

✏✏
X ⇥Y X

� � // X ⇥X
(1⇥ q⇥ 1)�(�⇥X)

//
(1⇥ q⇥ 1)�(X ⇥�) //

X ⇥Y ⇥X,

where �⇥G : X ⇥G ! X ⇥X ⇥G satisfies the equalizer condition, since
� is coassociative. One can check that the dual of the map ↵ is actually the
Galois map associated to q⇤ : Set(Y,R)! Set(X,R), i.e.,

↵⇤ = �q⇤ : Set(X,R)⌦
Set(Y,R) Set(X,R)! Set(X,R)⌦HomR(R[G], R).

It follows that q⇤ is a HomR(R[G], R)-Hopf-Galois extension if and only if
�q⇤ is an isomorphism. I.e., if and only if ↵⇤ is an isomorphism, which is
equivalent to ↵ : X ⇥G! X ⇥Y X being an isomorphism. This happens if
the G-action r is free.

A few more examples of Hopf-Galois extensions can be found in [Mon09],
which is a very good survey paper on (classical) Hopf-Galois theory by Susan
Montgomery.
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2.4.4 Homotopifying (Hopf-)Galois extensions

“Brave new” Galois and Hopf-Galois extensions

Homotopic Hopf-Galois extensions were first introduced by John Rognes in
his monograph on Galois extensions of structured ring spectra [Rog08].

Among other things, Rognes formulated in [Rog08] the definition of Ga-
lois extensions of spectra, investigated the behavior of Galois extensions
under cobase change (which inspired Chapter 3 of this thesis) and was able
to establish a full version of Galois correspondence for ring spectra (which
inspired Chapter 4 of this thesis).

He also observed that the unit map ⌘ : S ! MU from the sphere spec-
trum S to the complex cobordism spectrum MU was a Hopf-Galois extension
in a homotopical sense, for the Hopf algebra spectrum ⌃1BU+, the unre-
duced suspension spectrum of BU (Proposition 12.2.1, [Rog08]). Rognes
noticed that ⌘ could not be a G-Galois extension for any G (Remark 12.2.2
[Rog08]).

Foundations of homotopic Hopf-Galois theory

Motivated by the desire to provide a general framework in which to study
homotopic Hopf-Galois extensions, Kathryn Hess laid the foundations of a
theory of Hopf-Galois extensions in monoidal model categories in [Hes09],
generalizing both the classical case of rings and its extension to ring spectra.
This article of K. Hess is at the origin of this thesis.

We use the same notation as in Definition 2.3.1.

Definition 2.4.12 (Definition 3.2, [Hes09]). Let (M,⌦ I) be a monoidal
model category and let H be a bimonoid in M. A map ' : Triv(B)! A of
H-comodule algebras is a homotopic H-Hopf-Galois extension if

(1) the associated Galois map �' : A⌦B A! A⌦H is a weak equivalence
in M, and

(2) there is a choice of fibrant replacement j : A
'⇢ A0 in AlgH such that

the comparison map i' : B ! AhcoH induces a Quillen equivalence

�⌦B AhcoH : ModB
//
ModAhcoH : i⇤'.oo

Observe that, in the spirit of Remark 4.22 from [Hes09], condition (1) of
the definition above was “categorified” in Definition 2.3.1 and transformed
into the requirement for the Galois functor (�')⇤ : M

W can
'

A ! M
W⇢

A to be a
Quillen equivalence (at least, as far as one works in the case where M :=
Ch

�0
k ).
In [Hes09], the conditions for having model structures on the categories

ComodH , AlgH , MW
A that are left-induced from a suitable category M with
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Postnikov presentation (X,Z) were already under investigation (Theorems
1.13, 1.17, 4.10 in [Hes09]) The difficult problem was to prove the existence
of required factorizations in ComodH , AlgH , MW

A , as well as to characterize
fibrant replacements therein. More progress on these questions was done in
[HS12], and also in [BHKKRS14] during the Banff project in August 2013.

However, the existence of required factorizations and the form of fibrant
replacements were well-understood in a number of particular cases, which
made it possible in [Hes09] to study examples of homotopic Hopf-Galois
extensions in the categories of simplicial monoids and of finite-type chain
algebras of k-vector spaces.

K. Hess also conjectured in [Hes09] that a homotopic version of Schnei-
der’s theorem (see Theorem 2.4.14 below) should hold for homotopic Hopf-
Galois extensions, which turned out to be true, at least in the category
Ch

�0
k .

2.4.5 Relation to (homotopic) Grothendieck descent

There is an interesting relation between the theory of (homotopic) Hopf-
Galois extensions and the Grothendieck descent theory. We will only give
a brief sketch of it here, and invite the reader to find more details in the
mini-course “Homotopic Hopf-Galois extensions and Descent” [Hes13], given
by K. Hess in September 2013 in Louvain-la-Neuve.

Any ring homomorphism ' : B ! A induces an adjunction

ModB

�⌦B A//
ModA .

'⇤
oo

In this situation, the classical descent problem for modules over (com-
mutative) rings tries to answer the following two questions.

• Given an A-module M , what extra structure on M guarantees that
there exists a B-module N , such that N ⌦B A ⇠= M?

• Given f : N ⌦B A! N 0⌦B A, what extra structure on the B-modules
N , N 0 guarantees that there exists a map of B-modules g : N ! N 0,
such that f = g⌦B A?

In order to formalize answers to these questions, one needs to work with
the category of descent data, associated to '. This category is sometimes
denoted D(') and is actually isomorphic to the category M

W can
'

A of W can
' -

comodules in ModA, where W can
' is the canonical coring associated to '
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(see Examples 1.1.18, (1)). There is a commutative diagram of functors

ModB

�⌦B A //

Can'

✏✏

ModA
'⇤

oo

M
W can

'

A

Prim

OO

U

::tttttttttttttt

where Can' : ModB ! M
W can

'

A is the canonical functor, defined for all
N 2ModB by Can'(N) = (N ⌦B A, ⇢N ), with ⇢N given by the composite

N ⌦B A ⇠= N ⌦B B⌦B A
1⌦

B
'⌦

B
1

�! N ⌦B A⌦B A ⇠= (N ⌦B A)⌦A(A⌦B A).

See Definition 4.15 in [Hes09] for the definition of the right adjoint Prim to
Can'

This allows one to formulate the following definition for classical descent.

Definition 2.4.13. A morphism of rings ' : B ! A satisfies descent if the
functor Can' is fully faithful, and satisfies effective descent if the functor
Can' is an equivalence of categories.

For example, a homomorphism of rings ' will satisfy descent if A is
faithfully flat as a B-module, i.e., if M ⌦B A = 0 , M = 0, for all M 2
ModB (see Theorem 4.16, [Hes09]).

Schneider’s structure theorem given below relates H-Hopf-Galois exten-
sions of rings ' : B ! A to the category M

W⇢

A , where, W⇢ = A ⌦ H, see
Examples 1.1.18, (2). Peter Schauenburg provides in [Sch04] a proof of this
theorem, based on the characterization of faithfully flat ring extensions in
terms of descent.

Theorem 2.4.14 ([Schn90]). Let R be a commutative ring, and let H be
an R-flat Hopf algebra. The following are equivalent for any H-comodule
algebra A, with coinvariant algebra B = AcoH .

1. The inclusion i : B ,! A is an H-Hopf-Galois extension, and A is a
faithfully flat B-module.

2. The categories ModB and M
W⇢

A are equivalent via the adjunction

ModB

Can' //
M

W can
'

A ,
Prim

oo

i.e., ' satisfies effective descent.
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Once all the categories in the triangular diagram above are endowed with
“appropriate” model structures, the classical definition of effective descent
can be “homotopified” as follows.

Definition 2.4.15. A morphism ' : B ! A of algebras in Ch

�0
k satisfies

effective homotopic descent if the adjunction

ModA

Can //
M

W can
'

APrim
oo

is a Quillen equivalence, where the category ModA is endowed with a model
structure, right-induced from Ch

�0
k and M

W can
'

A is endowed with a model
structure, left-induced from ModA.

The following result establishes a homotopic version of Schneider’s result
and allows us to view homotopic Hopf-Galois extensions as an interesting
class of morphisms of differential graded algebras, satisfying effective descent.

Theorem 2.4.16 ([BH12]). Let k be a field and H a 1-connected dg-k-Hopf
algebra of finite type. Let ' : B ! A be a morphism of augmented H-
comodule algebras in Ch

�0
k , where B is endowed with a trivial H-coaction.

If the functor i⇤' : ModAhcoH ! ModB is a Quillen equivalence, then '
is a homotopic H-Hopf-Galois extension if and only if ' satisfies effective
homotopic descent.

2.4.6 Bujard’s Master Thesis

We end our panorama with a short comment on Chapter 5 of the Master
thesis of Cédric Bujard [Buj06]. His work took place in a general cofibrantly
generated symmetric monoidal model category C. However, he made a lot
of assumptions and conjectures throughout his project, and many gaps re-
mained to be filled in.

Given a morphism ' : Triv(B) ! A H of commutative monoids in C,
where A has a coaction of a commutative bimonoid H, Bujard used two
models for the object of homotopy coinvariants AhcoH and worked under the
assumption that suitable (functorial) fibrant replacements existed.

One of them was given by the totalization of a fibrant replacement of the
Hopf cobar complex

C(H;A) := tot(RC•(H;A)),

under the assumption that such fibrant replacements exist in the category of
cosimplicial commutative B-algebras (see Definition 5.1.6 in [Buj06]). The
other model was given by the totalization of a fibrant replacement of the
Amitsur complex

C(A/B) := tot(RC•(A/B)),
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also assuming that such fibrant replacements are given in the category of
cosimplicial commutative B-algebras (see Definition 5.1.12 in [Buj06]).

A morphism ' : Triv(B) ! A H was defined to be a homotopic H-
Hopf-Galois extension if both the Galois map �' : A⌦B A! A⌦H and the
comparison map i' : B ! C(H;A) were weak equivalences in C.

Working under assumptions, Cédric Bujard attempted to characterize
homotopic Hopf-Galois extensions in terms of faithfulness and dualizability
(Theorem 5.2.18 in [Buj06]), and also to investigate their behavior under
cobase change (Propositions 5.3.1, 5.3.2, Theorem 5.3.4 in [Buj06]), which
leads us smoothly to the subject of our next chapter.
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Chapter 3

Behavior of homotopic
Hopf-Galois extensions under
base change

Remark 3.0.17. In this chapter, we work over a field k. All dg-k-algebras are
assumed to be commutative, except the algebra underlying the bialgebra
H. The commutativity assumption on dg-algebras ensures that the pushout
of two commutative dg-algebras B0 and A over a commutative dg-algebra B,
is given by the coequalizer B0⌦B A.

3.1 The context

This chapter is inspired by results in Section 1 of Chapter 7 in [Rog08] on
preservation and reflection of (faithful) G-Galois extensions of commutative
ring spectra under base change along arbitrary maps. Our goal is to see
whether and how these results translate into our context.

Let H be a dg-k-Hopf algebra in Ch

�0
k and consider a pushout of com-

mutative augmented H-comodule algebras in Ch

�0
k

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0.

Remark 3.1.1. Observe that the category Alg

"
H is the Eilenberg-Moore cat-

egory of coalgebras over the comonad �⌦H : Alg

" ! Alg

" (see Remark
1.1.21). It has all colimits that exist in Alg

", and they are created by the
forgetful functor U : Alg

"
H ! Alg

". The same is true in the commutative
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case, so the pushout (⌅) is actually a pushout in the category of commutative
augmented H-comodule algebras.

Firstly, we will suppose that the map ' is a homotopic H-Hopf-Galois
extension, and we will investigate under which conditions on the initial data
in the pushout (⌅) the map ' is again a homotopic H-Hopf-Galois extension.
This is the question of preservation of Hopf-Galois extensions under base
change.

Secondly, we will assume that the map ' is a homotopic H-Hopf-Galois
extension, and we will find conditions on the initial data in the pushout
(⌅) that guarantee that the map ' was initially a homotopic H-Hopf-Galois
extension. This is the problem of reflection of Hopf-Galois extensions under
base change.
Remark 3.1.2. In [AH86], Avramov and Halperin provide an existence result
for a semi-free replacement of a morphism of commutative differential graded
�-algebras (i.e., commutative dga’s equipped with an assigned system of di-
vided powers (see Definition 1.3 in [AH86])). More specifically, if follows from
the “Existence Property” and Lemma 2.2(i) in [AH86] that every morphism
of dg-�-algebras f : B ! A admits a factorization

B
f //

""EEEEEEEE A

B hXi
'

<<yyyyyyyyy

in the category of dg-�-algebras, where the graded B-module, underlying
B hXi is B-semi-free.

3.1.1 Some comments on the comparison maps i', i' and
their induced functors

We first make a useful observation on the relation between the comparison
maps i' : B ! AhcoH and i' : B0 ! (A0)hcoH .
Remark 3.1.3. Consider the pushout of the comparison map i' along f :

B

i'

✏✏

f // B0

i'
✏✏

AhcoH
f

// B0⌦B AhcoH .

Recall from Section 2.1.3 that if H satisfies conditions of Convention 2.1.12,
then the homotopy H-coinvariants of A can be modeled via the cobar con-
struction by AhcoH = A⌦t⌦ ⌦H. Therefore, one can write

B0⌦B AhcoH ⇠= B0⌦B(A⌦t⌦ ⌦H) ⇠= (B0⌦B A)⌦t⌦ ⌦H
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⇠= (B0⌦B A)hcoH = (A0)hcoH .

In other words, the previous pushout square becomes

B

i'
✏✏

f // B0

i'
✏✏

i'

zz

AhcoH
f

// B0⌦B AhcoH

⇠=
✏✏

(A0)hcoH

and shows that the comparison map i' : B0 ! (A0)hcoH is obtained from i'
by pushout along f . In particular, since B0 ⇠= B0⌦B B, the two comparison
maps are related via i' = B0⌦B i'.

The induced comparison functors (i')⇤ and (i')⇤ are right adjoints of
two extension/restriction of scalars adjunctions, which will be discussed in
more detail in Section 3.2.1.

3.1.2 The context in which the Galois functors (�')⇤ and (�')⇤
arise

The Galois functors (�')⇤ and (�')⇤ arise in a slightly complicated context.
It will be useful to have a good understanding of the situation before studying
the reflection and preservation of homotopic Hopf-Galois extensions.

The commutative diagram below gives a general picture and helps to
understand what the categories of interest are, when studying the Galois
functors, and also how these categories are related. The left adjoints are
displayed on top and on the left.

M
W can

'

A

^�⌦A A0
'

//

U

✏✏
(�')⇤

$$

M
W can

'

A0
R'

oo

U

✏✏
(�')⇤

{{

ModA

�⌦
A

W⇢

✏✏

�⌦A A0 //

�⌦
A

W can
'

OO

ModA0

f
⇤

oo

�⌦
A0

W can
'

OO

�⌦
A

W⇢0

✏✏

(⌥)

M
W⇢

A

^�⌦A A0
⇢

//

U

OO

;;

M
W⇢0
A0

R⇢
oo

U

OO

cc

Remark 3.1.4. Recall from Examples 1.1.18 that W can
' = A⌦B A and W⇢ =

A⌦H. Also, it follows from the pushout (⌅) that W can
' = A0⌦B0 A0 and

W⇢ = A0⌦H, where A0 = B0⌦B A.
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We will now explain how all the functors involved in the diagram (⌥) are
defined.

The definition of functors in the diagram (⌥)

• The Galois functor (�')⇤, described in Section 2.3, admits a right ad-
joint

� ⇤
W⇢

(�')⇤(W can
' ) : M

W⇢

A !M
W can

'

A .

For all (M 0, ✓0⇢) 2 M
W⇢

A , its value (M 0, ✓0⇢) ⇤
W⇢

(�')⇤(W can
' ) is given by

the equalizer

equal
⇣
M 0 ⌦

A
W can
'

✓0⇢⌦
A

W can
'

//

(M 0⌦
A
�'⌦

A
W can

' )�(M 0⌦
A
 )

// M 0 ⌦
A

W⇢ ⌦
A

W can
'

⌘
,

computed in M
W can

'

A (see [Hes09], Remark 4.7). Since we will be work-
ing under conditions that guarantee the existence of a model structure
on the category M

W can
'

A , all such equalizers will exist.

• The definition of the adjoint pair
�
(�')⇤,� ⇤

W⇢0
(�')⇤(W can

' )
�

is similar.

The top and the bottom adjunctions in the diagram (⌥) are relative to
the central adjunction

�
�⌦A A0, f

⇤�, in the sense that in both squares, the
diagrams of left adjoints (or equivalently, the diagrams of right adjoints)
commute up to natural isomorphism.

• More precisely, the left adjoint �̂⌦A A0
'

: M
W can

'

A !M
W can

'

A0 is defined
for all (X, �, ✓') 2M

W can
'

A by

�̂⌦A A0
'
(X, �, ✓') =

⇣
X ⌦A A0, X ⌦A µA0 , (X ⌦A T

W can
' ,W can

'

A0 )�(✓'⌦A A0)
⌘
.

The map
T

W can
' ,W can

'

A0 : W can
' ⌦A A0 ! A0⌦A0 W

can
'

is the (W can
' , W can

' )–braiding morphism, associated to A0 2 A BimodA0

(see Definition 1.5.1). Use Remark 3.1.4 to see that

W can
' ⌦A A0 = (A⌦B A)⌦A A0 ⇠= A⌦B A0

and

A0⌦A0 W
can
' = A0⌦A0(A0⌦B0 A0) ⇠= A0⌦B0 A0 ⇠= A0⌦B0(B0⌦B A) ⇠= A0⌦B A.
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One can check that the symmetry isomorphism

T
W can

' ,W can
'

A0 : A⌦B A0 ⇠=�! A0⌦B A

satisfies the axioms of Definition 1.5.1 and gives a braiding morphism.

• On the other hand, the left adjoint �̂⌦A A0
⇢

: M
W⇢

A !M
W⇢0
A0 is defined

for all (X, �, ✓⇢) 2M
W⇢

A by

�̂⌦A A0
⇢
(X, �, ✓⇢) =

⇣
X ⌦A A0, X ⌦A µA0 , (X ⌦A T

W⇢,W⇢0
A0 )�(✓⇢⌦A A0)

⌘
.

Here the map

T
W⇢,W⇢0
A0 : W⇢⌦A A0 ! A0⌦A0 W⇢0

is the (W⇢, W⇢0)–braiding morphism, associated to A0 2 A BimodA0 .
Use Remark 3.1.4 to see that

W⇢⌦A A0 = (A⌦H)⌦A A0 and A0⌦A0 W⇢0 = A0⌦A0(A0⌦H) ⇠= A0⌦H.

The braiding morphism

T
W⇢,W⇢0
A0 : (A⌦H)⌦A A0 ! A0⌦H

is induced in the coequalizer

(A⌦H)⌦A⌦A0
(µA ⌦µH ⌦ 1)�(1⌦ 1⌦ ⇢⌦ 1)//

(1⌦ 1⌦µA0 )�(1⌦ 1⌦ f ⌦ 1)

// (A⌦H)⌦A0

⇠

))RRRRRRRRRRRRRRRRRRRRRRR
// (A⌦H)⌦A A0

T
W⇢,W

⇢0
A0

✏✏
A0⌦H,

where ⇠ is the composite

A⌦H ⌦A0 1⌦ 1⌦ ⇢0
// A⌦H ⌦A0⌦H

⇠= // A⌦A0⌦H ⌦H
1⌦ 1⌦µH// A⌦A0⌦H

⇠=
✏✏

A0⌦A⌦H

1⌦ f ⌦ 1
✏✏

A0⌦A0⌦H

µA0 ⌦ 1
✏✏

A0⌦H.

When showing that ⇠ satisfies the coequalizer condition the crucial facts
are that ⇢ and f are morphisms of algebras, and that the multiplication
µA0 is commutative.
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To see that the map T
W⇢,W⇢0
A0 defined above is indeed a braiding mor-

phism, one needs to check that the associated diagrams for Pentagon
axiom

(A⌦H)⌦A A0
T

W⇢,W⇢0
A0 //

 ⇢⌦A A0

✏✏

A0⌦A0(A0⌦H)

A0⌦A0  W

✏✏
(A⌦H)⌦A(A⌦H)⌦A A0

(A⌦H)⌦A T
W⇢,W⇢0
A0 &&MMMMMMMMMMMMMMMM

A0⌦A0(A0⌦H)⌦A0(A0⌦H)

(A⌦H)⌦A A0⌦A0(A⌦H)

T
W⇢,W⇢0
A0 ⌦A0 (A

0⌦H)

88qqqqqqqqqqqqqqqq

and for Counit axiom

(A⌦H)⌦A A0
T

W⇢,W⇢0
A0 //

"⇢0 ⌦A A0

✏✏

A0⌦A0(A0⌦H)

A0⌦A0 "⇢0
✏✏

A⌦A A0 ⇠= // A0 A0⌦A0 A
0⇠=oo

commute. The Pentagon axiom is quite quick to check. It holds, thanks
to the coassociativity of ⇢0 and the compatibility of µH and �H . The
counit axiom is slightly more tedious to verify; and it uses the fact
that A0 is an augmented H-comodule algebra, i.e., the compatibility
between "A0 and both µA0 and ⇢0 (the explicit definition of "A0 is given
in the proof of Proposition 3.1.8).

The remaining right adjoints R' and R⇢ in the diagram (⌥)

Recall that adjunctions induced by bimodules were introduced in Section
1.5.1. Consider AA0

A0 2 A BimodA0 with the right A-action on A0 induced
by f : A! A0 and the left A0-action induced by multiplication µA0 . We will
discuss the existence and sketch the definition of the right adjoint R in the
following situation

MW
A

^�⌦A A0 //

U

✏✏

MW 0
A0

R
oo

U 0

✏✏

(⌃)

ModA

�⌦A A0 //

�⌦
A

W

OO

ModA0 ,
HomA0 (A

0,�)
oo

�⌦
A0

W 0

OO
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assuming some conditions on the algebras A, A0 and on the corings W , W 0.
The existence and the definition of right adjoints R' : M

W can
'

A0 !M
W can

'

A and
R⇢ : M

W⇢0
A0 !M

W⇢

A in the diagram (⌥) will then follow as two special cases,
by setting W 0 := W can

' , W⇢0 and W := W can
' , W⇢.

Lemma 3.1.5. Let f : A ! A0 be the map of algebras as in the pushout
(⌅). Let W = (W, , ") be an A-coring and W 0 = (W 0, 0, "0) be an A0-
coring. Consider the diagram of categories and functors

MW
A

^�⌦A A0 //

U

✏✏

MW 0
A0

R
oo

U 0

✏✏

(⌃)

ModA

�⌦A A0 //

�⌦
A

W

OO

ModA0 ,
HomA0 (A

0,�)
oo

�⌦
A0

W 0

OO

where the left adjoints are displayed on top and on the left, and where we
have U 0 � (�̂⌦A A0) = (�⌦A A0) � U . Assume moreover that the A-coring
W is semi-free as a left A-module on a generating graded k-module that is
degree-wise finitely generated. Then the right adjoint R : MW 0

A0 !MW
A exists.

Proof. Observe that we are in the situation described in Remark 1.1.24.
Indeed, it is easy to check that the category MW

A of W -comodules in ModA

is isomorphic to the category
�
ModA

�
KW

of KW -coalgebras in ModA, for
the comonad KW :=

�
�⌦A W,�⌦A  ,�⌦A "

�
. The fact that W is assumed

to be A-semi-free allows us to apply Lemma 6.8 from [HS12] to establish that
all limits in MW

A are created in ModA. Since ModA is complete, it follows
in particular that MW

A admits all equalizers. We can therefore use Theorem
1.1.23 and conclude that the right adjoint R : MW 0

A0 !MW
A exists.

Dualizing carefully Borceux’s proof, one can see that R is defined on any
(X 0, ✓0) 2MW 0

A0 by the equalizer

R(X 0)! HomA0(A0, X 0)⌦A W
¿ //

¡
// HomA0(A0, X 0⌦A0 W

0)⌦A W.

Here

¿ := (✓0)⇤⌦A W : HomA0(A0, X 0)⌦A W ! HomA0(A0, X 0⌦A0 W
0)⌦A W,

and the map ¡ is the composite

HomA0(A0, X 0)⌦A W
(�⌦A0 W 0)⌦A W// HomA0(A0⌦A0 W

0, X 0⌦A0 W
0)⌦A W
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(T W,W 0
A0 )⇤⌦A W

// HomA0(W ⌦A A0, X 0⌦A0 W
0)⌦A W

Id⌦A  // HomA0(W ⌦A A0, X 0⌦A0 W
0)⌦A W ⌦A W

ev]⌦A W// HomA0(A0, X 0⌦A0 W
0)⌦A W,

where TW,W 0

A0 : W ⌦A A0 ! A0⌦A W 0 is the (W,W 0)-braiding morphism
associated to A0 2 A BimodA0 and

ev] : HomA0(W ⌦A A0, X 0⌦A0 W
0)⌦A W ! HomA0(A0, X 0⌦A0 W

0)

is the adjoint of the evaluation map

ev : HomA0(W ⌦A A0, X 0⌦A0 W
0)⌦A W ⌦A A0 ! X 0⌦A0 W

0.

The important facts for establishing the definition of R are the following.

• Every object (X 0, �0, ✓0) 2 MW 0
A0 can be written as a split equalizer of

cofree W 0-comodules (see [BW05]).

• Since the diagram (⌃) must commute, R must satisfy

R(�⌦A0 W
0) = HomA0(A0,�)⌦A W

and preserve limits.

• At this point, one will be able to define a collection of functions R :
Ob(MW 0

A0 )! Ob(MW
A ). In order to complete this family into a functor,

having �̂⌦A A0 : MW
A ! MW 0

A0 as a left adjoint, one uses Theorem
IV.1.2 (iv) in [McL98] and constructs a family of �̂⌦A A0-couniversal
arrows.

Remark 3.1.6. Our results on the behavior of homotopic Hopf-Galois exten-
sions in Sections 3.2 and 3.3 will all be formulated under the assumption that
the algebra A is semi-free (as a left B-module) on a generating graded k-
module X that is degree-wise finitely generated. This hypothesis will imply
(see proof of Proposition 3.1.7) that the A-corings W can

' and W⇢ satisfy the
semi-freeness condition of Lemma 3.1.5, which will give us the existence and
construction of right adjoints R' : M

W can
'

A0 !M
W can

'

A and R⇢ : M
W⇢0
A0 !M

W⇢

A .
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Existence of model structures and Quillen pairs in the diagram (⌥)
(p.79)

We will see that, under reasonable conditions on the initial data given by
the pushout (⌅), all adjunctions in the diagram (⌥) are Quillen pairs with
respect to suitable model structures.

Recall that the categories of modules ModA and ModA0 are both equipped
with the right-induced model structure from Ch

�0
k (see Theorem 1.3.5).

The fact that the adjoint pair

ModA

�⌦A A0//
ModA0

f
⇤

oo

is a Quillen pair follows directly from Lemma 1.4.2.
To determine conditions under which there exist induced model struc-

tures on the categories M
W can

'

A , M
W⇢

A , M
W can

'

A0 and M
W⇢0
A0 , we apply Theorem

1.3.11.
We first concentrate on the adjunction

�
(�')⇤,� ⇤

W⇢

(�')⇤(W can
' )

�
from

the diagram (⌥).

Proposition 3.1.7. Let k be a field, and let H be a Hopf algebra satisfying
Convention 2.1.12. Suppose that

(1) A is an augmented k-algebra; and

(2) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0.

Under these assumptions the categories M
W can

'

A and M
W⇢

A admit model struc-
tures, left-induced from the category ModA by the forgetful functor. More-
over, the adjoint pair

M
W can

'

A

(�')⇤ //
M

W⇢

A
� ⇤

W⇢
(�')⇤(W can

' )
oo

is then a Quillen pair.

Proof. Using assumption (2), one can write A ⇠= B
⇠
⌦X. So, the A-coring

W can
' = A⌦B A ⇠= A⌦B(B

⇠
⌦X) ⇠= A

⇠
⌦X

is semi-free as a left A-module on X. It follows from Theorem 1.3.11 that
there exists a model structure on the category M

W can
'

A , left-induced by the
forgetful functor U from ModA.
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On the other hand, by hypothesis the A-coring W⇢ = A⌦H is free as a
left A-module on the generating graded k-module H, satisfying Convention
2.1.12, and thus satisfying the conditions of Theorem 1.3.11. Hence, there
exists a model structure on the category M

W⇢

A , left-induced by the forgetful
functor U from ModA.

It remains to show that the adjunction
�
(�')⇤,� ⇤

W⇢

(�')⇤(W can
' )

�
is a

Quillen pair with respect to these model structures. Let (M, �, ✓') 2M
W can

'

A .
From the definition of (�')⇤, it follows that applying this functor to M does
not change the underlying A-module (M, �), but only modifies its comodule
structure.

Therefore, if j : M⇢N is a cofibration in M
W can

'

A , i.e., a cofibration in
ModA, the map of A-modules underlying (�')⇤(j), remains the same and
is a cofibration in M

W⇢

A , by Theorem 1.3.11. Similarly, if j : M
⇠! N is a

weak-equivalence in M
W can

'

A , i.e., a quasi-isomorphism of chain complexes,
the map of A-modules underlying (�')⇤(j), remains a quasi-isomorphism
of chain complexes and is a weak-equivalence in M

W⇢

A , again by Theorem
1.3.11. Consequently, the functor (�')⇤ preserves cofibrations and acyclic
cofibrations, so it is left Quillen.

Now we study conditions under which the adjunction
�
(�')⇤,� ⇤

W⇢0
(�')⇤(W can

' )
�

from the diagram (⌥) is a Quillen pair.

Proposition 3.1.8. Let k be a field, and let H be a Hopf algebra satisfying
Convention 2.1.12. Suppose that

(1) A is an augmented k-algebra;

(2) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0;

(3) B0 is an augmented k-algebra.

Under these assumptions the categories M
W can

'

A0 and M
W⇢0
A0 admit model struc-

tures, left-induced from the category ModA0 by the forgetful functor. More-
over, the adjoint pair

M
W can

'

A0

(�')⇤ //
M

W⇢0
A0� ⇤

W⇢0
(�')⇤(W can

' )
oo

is then a Quillen pair.

Proof. We show this result by applying Proposition 3.1.7 to A0, W can
' and

W⇢0 . By assumption (2), one can write A ⇠= B
⇠
⌦X, so that

A0 = B0⌦B A ⇠= B0⌦B B
⇠
⌦X ⇠= B0 ⇠⌦X,
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i.e., A0 is semi-free as a left B0-module on a generating graded k-module X,
where Xn is finitely generated for all n � 0. This gives us condition (2) of
Proposition 3.1.7 for A0.

Since both algebras A and B0 are augmented by hypotheses (1) and
(3), the pushout algebra A0 is augmented via the map "A0 induced in the
coequalizer

B0⌦B⌦A
(µB0 ⌦ 1)�(1⌦ f ⌦ 1)//

(1⌦µA)�(1⌦'⌦ 1)
// B0⌦A

"B0 ⌦ "A
))TTTTTTTTTTTTTTTTTTTT

// B0⌦B A

"A0

✏✏
R.

Therefore, condition (1) of Proposition 3.1.7 is satisfied for A0 and it follows
that there exist model structures on the categories M

W can
'

A0 and M
W⇢0
A0 , left-

induced from ModA0 by the forgetful functor U .
It is not difficult to show that the adjunction

�
(�')⇤,� ⇤

W⇢0
(�')⇤(W can

' )
�

is a Quillen pair with respect to these model structures. To do this, one
proceeds in exactly the same way as in the proof of Proposition 3.1.7 for the
adjunction

�
(�')⇤,� ⇤

W⇢

(�')⇤(W can
' )

�
.

It remains now to see when the top and the bottom adjunctions in the
diagram (⌥) are Quillen pairs.

Lemma 3.1.9. Under the conditions that guarantee the existence of the left-
induced model structures on the categories M

W can
'

A , M
W can

'

A0 , M
W⇢

A and M
W⇢0
A0

(for example, under hypotheses of Proposition 3.1.8) both adjunctions

M
W can

'

A

^�⌦A A0
'

//
M

W can
'

A0
R'

oo and M
W⇢

A

^�⌦A A0
⇢

//
M

W⇢0
A0

R⇢
oo

are Quillen pairs.

Proof. Since A0 is cofibrant as a right A0-module in the right-induced model
structure on ModA0 , Proposition 1.5.3 applies and allows us to deduce that
both adjunctions

�
�̂⌦A A0

'
, R'

�
and

�
�̂⌦A A0

⇢
, R⇢

�
give rise to Quillen

pairs.

3.2 Preservation of homotopic Hopf-Galois exten-
sions under base change

We recall the following result in [Rog08] on preservation of faithful G-Galois
extensions of commutative ring spectra under base change along arbitrary
maps.
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Lemma 3.2.1 (Lemma 7.1.1, [Rog08]). Let f : A ! B be a map of com-
mutative S-algebras and ' : A ! C be a faithful G-Galois extension. Then
the induced map ' : B ! B ^A C in the pushout is also a faithful G-Galois
extension.

A
f //

'

✏✏

B

'

✏✏
C

f

// B ^A C

Our goal is to prove an analog of this result for homotopic H-Hopf-Galois
extensions in the closed symmetric monoidal model category

�
Ch

�0
k ,⌦, k[0]

�
.

See Proposition 3.2.7 for the final result.

3.2.1 The behavior of the comparison functor (i')⇤

As Definition 2.3.1 shows, the comparison functor (i')⇤ is crucial for defin-
ing a homotopic H-Hopf-Galois extension ' : B ! A. Let us first de-
termine conditions under which the adjunctions

�
� ⌦B AhcoH , (i')⇤

�
and�

�⌦B0(A0)hcoH , (i')⇤
�

are Quillen pairs.

Lemma 3.2.2. Let k be a field. If the category Ch

�0
k is equipped with the

projective model structure, then both adjunctions

ModB

�⌦B AhcoH
//
ModAhcoH

(i')⇤
oo

and

ModB0

�⌦B0 (A
0)hcoH

//
Mod(A0)hcoH

(i')⇤
oo

are Quillen pairs with respect to the right-induced model structures from
Ch

�0
k on, respectively, ModB, ModAhcoH , and ModB0 , Mod(A0)hcoH , for

any models AhcoH , (A0)hcoH of the homotopy coinvaraints.
Proof. This is a direct consequence of Lemma 1.4.2.

We now state conditions under which (i')⇤ is a Quillen equivalence.

Proposition 3.2.3. Let k be a field and H a Hopf algebra in Ch

�0
k , sat-

isfying Convention 2.1.12. Consider the following pushout of commuta-
tive objects in Alg

"
H , where B and B0 have trivial H-coactions, and where

' : B ! A is a homotopic H-Hopf-Galois extension.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0

88



If

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0; and

(2) B0 is semi-free as a right B-module on a generating graded k-module Z,
such that Zn is finitely generated for all n � 0,

then the comparison functor associated to ',

(i')⇤ : Mod(A0)hcoH !ModB0 ,

is a Quillen equivalence.

Proof. The strategy is to apply the criterion from Proposition 1.3.3 to the
adjunction

�
�⌦B0(A0)hcoH , (i')⇤

�
. We must show that

(a) the homotopy counit

"̃0Mf : QB0
�
(i')⇤(Mf )

�
⌦B0(A0)hcoH !Mf

is a weak equivalence in Mod(A0)hcoH for all fibrant Mf 2Mod(A0)hcoH ,
where QB0(�) stands for the cofibrant replacement functor in ModB0 ;
and that

(b) the functor�⌦B0(A0)hcoH : ModB0 !Mod(A0)hcoH reflects weak equiv-
alences between cofibrant objects.

In view of the model structure on Mod(A0)hcoH , every object in Mod(A0)hcoH

is fibrant. So, point (a) amounts to showing that

"̃0M : QB0
�
(i')⇤(M)

�
⌦B0(A0)hcoH !M

is a quasi-isomorphism of chain complexes, for any (A0)hcoH -module M .
Using Remark 3.1.3, we have (A0)hcoH ⇠= B0⌦B A⌦t⌦ ⌦H, and therefore

QB0
�
(i')⇤(M)

�
⌦B0(A0)hcoH "̃0M //

⇠=
✏✏

M

QB0
�
(i')⇤(M)

�
⌦B0 B0⌦B A⌦t⌦ ⌦H

⇠=
✏✏

f⇤
⇣
QB0

�
(i')⇤(M)

�⌘
⌦B A⌦t⌦ ⌦H,

"̃0M

JJ

where f⇤ : ModB0 ! ModB equips QB0
�
(i')⇤(M)

�
2 ModB0 with a B-

action. It follows from assumption (2) that B0 is cofibrant as a B-module,
which implies that f⇤

⇣
QB0

�
(i')⇤(M)

�⌘
is cofibrant in ModB.
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Now, observe that the composite of functors

f⇤ � (i')⇤ : Mod(A0)hcoH !ModB

is equal to the composite

(i')⇤ � f
⇤ : Mod(A0)hcoH !ModB,

since f � i' = i' � f (see Remark 3.1.3). Therefore, f⇤
⇣
QB0

�
(i')⇤(M)

�⌘

gives a cofibrant replacement of (i')⇤(f⇤(M)), as a B-module. Thus, the
homotopy counit "̃0M can be rewritten as

"̃0M : QB

⇣
(i')⇤(f⇤(M))

⌘
⌦B A⌦t⌦ ⌦H !M,

where QB(�) stands for the cofibrant replacement functor in ModB.
Now, by hypothesis, ' : B ! A is a homotopic H-Hopf-Galois extension,

so its comparison functor (i')⇤ : ModAhcoH !ModB is Quillen equivalence.
This means that the homotopy counit

"̃N : QB

⇣
(i')⇤(N)

⌘
⌦B A⌦t⌦ ⌦H ! N

of the adjunction
�
�⌦B AhcoH , (i')⇤

�
is a quasi-isomorphism of chain com-

plexes, for all N 2ModAhcoH . By setting N := f
⇤(M), the fact that "̃0M is

a quasi-isomorphism follows.

It remains to show point (b). Let g : M ! M 0 be a map of B0-modules
and suppose that the morphism

g⌦B0(A0)hcoH : M ⌦B0(A0)hcoH !M 0⌦B0(A0)hcoH

is a weak equivalence (i.e., a quasi-isomorphism of underlying chain com-
plexes), with both M ⌦B0(A0)hcoH and M 0⌦B0(A0)hcoH cofibrant in Mod(A0)hcoH .
We want to show that g : M !M 0 is a quasi-isomorphism, too.

Using the definition of A0, the explicit model for the coinvariants (A0)hcoH

and the hypothesis that A is semi-free as a B-module on a generating graded
k-module X, we can write

M ⌦B0(A0)hcoH ⇠= M ⌦B0 B0⌦B(B
⇠
⌦X)⌦t⌦ ⌦H ⇠= M

⇠
⌦X ⌦t⌦ ⌦H,

and, similarly, M 0⌦B0(A0)hcoH ⇠= M 0 ⇠⌦X ⌦t⌦ ⌦H. So we have a quasi-
isomorphism

g
⇠
⌦X ⌦t⌦ ⌦H : M

⇠
⌦X ⌦t⌦ ⌦H !M 0 ⇠⌦X ⌦t⌦ ⌦H.
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Observe that the following square commutes in Ch

�0
k

M
⇠
⌦X ⌦t⌦ ⌦H ⌦t⌦ H

g
⇠
⌦X ⌦t⌦

⌦H ⌦t⌦
H '

✏✏

' //
M

⇠
⌦X

)' g
⇠
⌦X

✏✏

M 0 ⇠⌦X ⌦t⌦ ⌦H ⌦t⌦ H
' //

M 0 ⇠⌦X.

The left vertical map is a quasi-isomorphism, because H is degree-wise k-free,
and the horizontal maps are quasi-isomorphisms induced by the homotopy
equivalence ⌦H ⌦t⌦ H

⇠�! k[0] (see Proposition 10.6.3 in [Nei10] and Propo-
sition 7.8 in [McC01]). So, by 2-out of-3 property, the right-hand map g

⇠
⌦X

is also a quasi-isomorphism.
We will use Theorem 1.2.18 and the Zeeman comparison Theorem 1.2.19,

to conclude that g is a quasi-isomorphism, too.
Because the graded k-module N = M

⇠
⌦X is semi-free on X, which

is degree-wise finitely generated, it is equipped with a bounded filtration.
Theorem 1.2.18 then tells us that there exists a spectral sequence {Er

⇤,⇤}
converging to H⇤(M

⇠
⌦X). For similar reasons, for N 0 = M 0 ⇠⌦X there

exists a spectral sequence {Er
⇤,⇤} converging to H⇤(M 0 ⇠⌦X).

By definition, the quasi-isomorphism g
⇠
⌦X : M

⇠
⌦X !M 0 ⇠⌦X induces

isomorphisms on all homology groups

Hn(g
⇠
⌦X) : H⇤(M

⇠
⌦X)! H⇤(M 0 ⇠⌦X),

for all n � 0. Because both spectral sequences converge, the collection of
isomorphisms {Hn(g

⇠
⌦X)}n�0 gives the isomorphism

(g
⇠
⌦X)1 : E1

p,q ! E
1
p,q.

On the second pages, we have E2
p,0
⇠= Hp(X) = E

2
p,0 and E2

0,q = Hq(M),
E

2
0,q = Hq(M 0), for all p, q � 0. it follows form the Universal Coefficient

Theorem that E
2
p,q = E

2
p,0⌦E

2
0,q, and the Tor part in the diagram of The-

orem 1.2.19 is zero, since we are working over a field k. Therefore, we can
conclude that E2

0,q = Hq(M) ! Hq(M 0) = E
2
0,q is an isomorphism for all

q � 0.

3.2.2 The behavior of the Galois functor (�')⇤

Our goal in this section is to determine when the Galois functor (�')⇤ asso-
ciated to ' is a Quillen equivalence, assuming that the Galois functor (�')⇤
associated to ' is a Quillen equivalence, by hypothesis.

To begin with, we observe that Proposition 1.5.6 allows us to formulate
the following Corollary.
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Corollary 3.2.4. Let k be a field, and let H be a Hopf algebra satisfying
Convention 2.1.12. Let ' : B ! A be a map of commutative H-comodule
algebras, where

(1) A is an augmented k-algebra;

(2) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0.

Suppose that the map �' : W can
' !W⇢ is a quasi-isomorphism of A-corings

and that the categories M
W can

'

A and M
W⇢

A are equipped with the induced model
structures, as in Proposition 3.1.7. Then the functor

(�')⇤ : M
W can

'

A !M
W⇢

A

is a Quillen equivalence.

Proof. As was already observed in the proof of Proposition 3.1.7, assumption
(2) implies that the A-coring W can

'
⇠= A

⇠
⌦X is semi-free as a left A-module

on X. Also, the A-coring W⇢ = A⌦H is free as a left A-module on H. By
Proposition 1.5.6, it follows that the functor (�')⇤ : M

W can
'

A ! M
W⇢

A is a
Quillen equivalence.

Remark 3.2.5. Note that this Corollary works for a morphism ' that is not
assumed to be a homotopic H-Hopf-Galois extension. This is crucial if one
wants to apply it to ' in Proposition 3.2.6.

Suppose now that ' : B ! A is a homotopic H-Hopf-Galois extension.
The next result gives conditions under which �' : W can

' ! W⇢ will be a
quasi-isomorphism and (�')⇤ will be a Quillen equivalence.

Proposition 3.2.6. Let k be a field, and let H be a Hopf algebra satisfying
Convention 2.1.12. Consider the following pushout of commutative objects
in Alg

"
H , where B and B0 have trivial H-coactions, and where ' : B ! A is

a homotopic H-Hopf-Galois extension.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0

Suppose that

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0;
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(2) B0 is semi-free as a right B-module on a generating graded k-module Z,
such that Zn is finitely generated for all n � 0,

then

• the Galois map �' : W can
' !W⇢ is a quasi-isomorphism, and

• the functor
(�')⇤ : M

W can
'

A0 !M
W⇢0
A0

is a Quillen equivalence.

Proof. Since ' : B ! A is a homotopic H-Hopf-Galois extension, the func-
tor (�')⇤ is a Quillen equivalence, by Definition 2.3.1. As was observed in
the proof of Proposition 3.1.7, assumption (1) also implies that the A-coring
W can
' is semi-free as a left A-module on a generating graded k-module X

that is degree-wise finitely generated. The coring W⇢ = A⌦H is free as a
left A-module. Therefore, the assumptions of Proposition 1.5.7 hold for A,
W can
' , W⇢, and we can deduce that the Galois map �' : W can

' ! W⇢ is a
quasi-isomorphism, which shows the first statement in this Proposition.

We now prove the second statement. By assumption (1), we know that
A0 is semi-free as a left B0-module on a generating graded module X that is
degree-wise finitely generated, as we saw in the proof of Proposition 3.1.8. It
follows from the proof of Corollary 3.2.4 that the A0-corings W can

' and W⇢0

are then semi-free as left A0-modules.
On the other hand, we have

W can
'
⇠= (B0⌦B A)⌦B0(B0⌦B A) ⇠= (B0⌦B A)⌦B A ⇠= B0⌦B(A⌦B A) ⇠= B0⌦B '

⇤(W can
' )

and
W⇢0 ⇠= (B0⌦B A)⌦H ⇠= B0⌦B(A⌦H) = B0⌦B '

⇤(W⇢),

where we used the fact that the tensor product �⌦B � is associative, and
the functor '⇤ to equip the A-corings with left B-actions, being careful with
notation. Therefore, the two Galois maps associated to ' and ' are related
via �' = B0⌦B '

⇤(�'). Since the morphism �' is a quasi-isomorphism and
in view of assumption (2), we can apply Lemma 1.2.28 to deduce that �' is
a quasi-isomorphism, too.

Assumption (1) guarantees that the categories M
W can

'

A0 and M
W⇢0
A0 are

equipped with the induced model structures as in Proposition 3.1.8. To
conclude that the induced functor (�')⇤ : M

W can
'

A0 ! M
W⇢0
A0 is a Quillen

equivalence, we can apply Corollary 3.2.4 to ' : B0 ! A0, since all required
hypotheses for doing so have been fulfilled.

In conclusion, the following Proposition gives the conditions under which
a homotopic H-Hopf-Galois extension ' will be preserved under base change.
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Proposition 3.2.7. Let k be a field and H a Hopf algebra in Ch

�0
k , sat-

isfying Convention 2.1.12. Consider the following pushout of commutative
objects in Alg

"
H , where B and B0 have trivial H-coactions.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0

If ' : B ! A is a homotopic H-Hopf-Galois extension in Ch

�0
k , and

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0;

(2) B0 is semi-free as a left B-module on a generating graded k-module Z,
such that Zn is finitely generated for all n � 0,

then ' : B0 ! A0 is also a homotopic H-Hopf-Galois extension in Ch

�0
k .

Proof. This follows from Proposition 3.2.3 and Proposition 3.2.6.

3.3 Reflection of homotopic Hopf-Galois extensions
under base change

We return to the pushout of commutative augmented H-comodule algebras
in Ch

�0
k

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0.

This time, we assume that the map ' is a homotopic H-Hopf-Galois ex-
tension, and would like to find conditions on the initial data in the pushout
(⌅) that guarantee that the map ' was a homotopic H-Hopf-Galois exten-
sion.

We are inspired by the following result in [Rog08] on reflection of (faith-
ful) G-Galois extensions of commutative ring spectra under base change
along arbitrary maps.

Lemma 3.3.1 (Lemma 7.1.4., [Rog08]). Let ' : A ! C and f : A ! B be
maps of commutative S-algebras, with B a faithful and dualizable A-module,
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and let G be a stably dualizable group acting on C through A-algebra maps.
Consider the following pushout

A
f //

'

✏✏

B

'

✏✏
C

f

// B ^A C.

(a) If ' : B ! B ^A C is a G-Galois extension, then ' : A ! C is a
G-Galois extension;

(b) If ' : B ! B ^A C is a faithful G-Galois extension, then ' : A! C is
a faithful G-Galois extension.

Just as we did in the previous section, we will split our investigation into
two parts and analyze separately the behavior of the Galois functor and the
behavior of the comparison functor “under reflection”.

3.3.1 The behavior of the Galois functor (�')⇤

Proposition 3.3.2. Let k be a field, and let H be a Hopf algebra satisfying
Convention 2.1.12. Consider the following pushout of commutative objects
in Alg

"
H , where B and B0 have trivial H-coactions.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0.

Suppose that ' : B0 ! A0 is a homotopic H-Hopf-Galois extension. If

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0;

(2) B0 is homologically faithful as a B-module,

then the functor
(�')⇤ : M

W can
'

A !M
W⇢

A

is a Quillen equivalence.

Proof. Since ' : B0 ! A0 is a homotopic H-Hopf-Galois extension, the func-
tor (�')⇤ is a Quillen equivalence, by Definition 2.3.1. Note that assumption
(1) implies that the A-corings W can

' and W⇢ are A-semi-free. In this situa-
tion, Corollary 1.5.8 tells us that showing that the functor (�')⇤ is a Quillen
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equivalence is equivalent to showing that the map �' is a quasi-isomorphism
of A-corings. This is what we will do.

It also follows from assumption (1) that the A0-corings W can
' and W⇢0 are

A0-semi-free. Since (�')⇤ is a Quillen equivalence, Proposition 1.5.7 tells us
that the map �' is a quasi-isomorphism. By definition, the Galois maps are
related via �' = B0⌦B '

⇤(�') (where the functor '⇤(�) permits to view �'
as a map in ModB), so assumption (2) allows us to conclude that �' is a
quasi-isomorphism, as desired, using Lemma 1.2.28.

3.3.2 The behavior of the comparison functor (i')⇤

Remark 3.3.3. Under conditions of Lemma 3.2.2, all categories of modules
ModB, ModAhcoH , ModB0 and Mod(A0)hcoH in adjunctions

ModB

�⌦B AhcoH
//
ModAhcoH

(i')⇤
oo

and

ModB0

�⌦B0 (A
0)hcoH

//
Mod(A0)hcoH

(i')⇤
oo

are equipped with the right-induced model structures from Ch

�0
k , where

the weak equivalences are quasi-isomorphisms, i.e., quasi-isomorphisms of
underlying chain complexes. In this situation, both comparison functors
(i')⇤ and (i')⇤ preserve and reflect all weak equivalences. It follows that
they both automatically satisfy condition (2) in Proposition 1.3.3.

We obtain the following “reflection result” for the comparison functor.
Proposition 1.4.3 is crucial here.

Proposition 3.3.4. Let k be a field and H a Hopf algebra in Ch

�0
k , sat-

isfying Convention 2.1.12. Consider the following pushout of commutative
objects in Alg

"
H , where B and B0 have trivial H-coactions.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0.

Suppose that ' : B0 ! A0 a homotopic H-Hopf-Galois extension. If

(1) A is semi-free as a B-module on a generating graded k-module X that
is degree-wise finitely generated;

(2) B0 is homologically faithful as a B-module,
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then the comparison functor associated to ',

(i')⇤ : ModAhcoH !ModB,

is a Quillen equivalence.
Proof. The adjunction

�
�⌦B0(A0)hcoH , (i')⇤

�
is a Quillen pair, as explained

in Lemma 3.2.2. Because ' is a homotopic H-Hopf-Galois extension, its asso-
ciated comparison functor (i')⇤ : Mod(A0)hcoH !ModB0 is a Quillen equiv-
alence, by definition. It then follows that the map i' is a quasi-isomorphism,
according to Proposition 1.4.4.

Since the coinvariants maps associated to ' and ' are related via i' =
B0⌦B(i') (as observed in Remark 3.1.3), and since B0 is homologically faith-
ful over B, Lemma 1.2.28 implies that i' is a quasi-isomorphism, as well.

To conclude that the functor (i')⇤ is a Quillen equivalence, we can apply
Proposition 1.4.3. Indeed, it follows from assumption (1) that AhcoH ⇠=
B

⇠
⌦X ⌦t⌦ ⌦H is B-semi-free. The underlying graded k-module X ⌦⌦H is

degree-wise finitely generated, because for all n � 0

(X ⌦⌦H)n =
M

p+q=n

Xp⌦(⌦H)q

has a finite number of summands (since the underlying chain complexes are
bounded below), with Xp finitely generated for all p � 0 by hypothesis, and
(⌦H)q = T (s�1H>0) finitely generated for all q � 0, because H satisfies
Convention 2.1.12.

Summarizing the results above, the following Proposition gives conditions
under which a homotopic Hopf-Galois extension ' is reflected under base
change.
Proposition 3.3.5. Let k be a field and H a Hopf algebra in Ch

�0
k , sat-

isfying Convention 2.1.12. Consider the following pushout of commutative
objects in Alg

"
H , where B and B0 have trivial H-coactions.

B

'

✏✏

f // B0

'

✏✏
(⌅)

A
f

// B0⌦B A := A0

Assume that ' : B0 ! A0 is a homotopic H-Hopf-Galois extension. If
(1) A is semi-free as a left B-module on a generating graded k-module X,

such that Xn is finitely generated for all n � 0;

(2) B0 is homologically faithful as a B-module,
then ' : B ! A is also a homotopic H-Hopf-Galois extension in Ch

�0
k .

Proof. This follows from Propositions 3.3.2 and 3.3.4.
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Chapter 4

One direction of the homotopic
Hopf-Galois correspondence

4.1 Generalized situation

The notion of a homotopic Hopf-Galois extension can be seen from a slightly
more general perspective, for which we need the following setup. This gen-
eralized setup will be important in our Main Theorem (Theorem 4.3.6).

Let � : H 0 ! H be a morphism of dg-k-Hopf algebras. Let B 2 AlgH0 ,
A 2 AlgH , and let ' : B ! A be a morphism of dg-k-algebras, such that
the diagram

B
' //

⇢B

✏✏

A

⇢A

✏✏
B⌦H 0 '⌦ � // A⌦H

commutes in Ch

�0
k .

Remark 4.1.1. The morphism ' underlying a homotopic H-Hopf-Galois ex-
tension ' : Triv(B) ! A in the sense of Definition 2.3.1, can be seen as
part of the general setup above, in the special case where H 0 := k[0] and
(� : H 0 ! H) = (⌘H : k[0]! H).

The morphisms ' : B ! A and � : H 0 ! H induce a morphism of
dg-algebras 'co� : BcoH0 ! AcoH between the objects of coinvariants, which
arises from the diagram

BcoH0 � � //

'co� 9!
✏✏

B

'

✏✏

⇢B //

B⌦ ⌘H0
// B⌦H 0

'⌦ �
✏✏

AcoH � � // A
⇢A //

A⌦ ⌘H

// A⌦H.
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On the other hand, to identify the map 'hco� : BhcoH0 ! AhcoH induced
by ' : B ! A and � : H 0 ! H on the objects of homotopy coinvariants
can be more difficult, in general. However, if one works under conditions
allowing the use of the particular models AhcoH ⇠= ⌦(A;H; k) and BhcoH0 ⇠=
⌦(B;H 0; k) for the homotopy coinvariants (see Section 2.1.3), then the map
'hco� is given precisely by

⌦('; �; k) : ⌦(B;H 0; k)! ⌦(A;H; k).

Remark 4.1.2. Observe that in the special case of Remark 4.1.1, the map

'hco⌘H : Bhco k[0] ⇠= B �! AhcoH

is the comparison map i', associated to the homotopic H-Hopf-Galois ex-
tension ' : Triv(B)! A.

4.2 A brief reminder of Galois correspondence for
fields

We follow the notation and terminology of Section 2.4.1.
Let ↵ : k ,! E be a finite field extension, and let G := Gal(E; k) denote

its Galois group. For all subgroups N  G, one defines the object of fixed
points in E by

EN := {e 2 E : n(e) = e, for all n 2 N},

called the fixed field of N . It is easy to show that EN is a subfield of E
(see [Cox04], Section 7.1).

The following result is known as the Fundamental Theorem of the Galois
Theory. It recovers the classical Galois correspondence in the case of finite
fields.

Theorem 4.2.1 (Theorems 7.3.1 and 7.3.2, [Cox04]). Let ↵ : k ,! E be a
finite Galois extension of fields and denote by G := Gal(E; k) its associated
Galois group.

(a) For any sub-extension k ⇢M ⇢ E, we have

Gal(E; M)  G and EGal(E;M) = M .

k ↵

G�Galois //

&&MMMMMMMMMMMMMMMMMMM E

M = EGal(E;M)

)Gal(E;M)�Galois

88qqqqqqqqqqqqqqqqqqq
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(b) For any subgroup N  G, we have

k ✓ EN ✓ E and Gal(E; EN ) = N.

k ↵

G�Galois //

&&MMMMMMMMMMMMMMMMMMMM E

EN

)N�Galois ,8NG

88qqqqqqqqqqqqqqqqqqq

(c) The correspondence given by

{fields M : k ✓M ✓ E} ! {subgroups N  G}

M 7�! Gal(E; M)

EN  �7 N

is a bijection of sets. Both maps reverse the order of inclusions.

(d) Suppose we are given a diagram

k ↵

G�Galois //

&&

E,

M

N�Galois

88qqqqqqqqqqqqqqqqqqqq

where the field M and the group N are related via Gal(E; M) = N (or,
equivalently, via M := EN , by (c)). The field extension k ✓ M is then
a Galois extension if and only if N is a normal subgroup of G. In this
case, Gal(M; k) = G/N .

k ↵

G�Galois //

G/N�Galois, iff NEG

$$

E

(⇤)

M = EN

N�Galois

::tttttttttttttttt

Terminology 4.2.2. Sometimes authors speak about the “forward” and the
“backward” parts of the Galois correspondence. According to our choice of
notation in (c) of Theorem 4.2.1 (i.e., the set of field extensions is on the
left, the set of subgroups is on the right), the directions are interpreted as
follows.

101



Given a Galois extension k ,! E and an intermediate sub-field M, the
“forward” part consists of identifying the sub-group of the Galois group
Gal(E; k) that corresponds to M under (c) of Theorem 4.2.1.

Reciprocally, given a Galois extension k ,! E and a sub-group N of the
Galois group Gal(E; k), the “backward” part consists of identifying the sub-
field extension between k and E that corresponds to H under (c) of Theorem
4.2.1.

Warning: the choice of notation for these directions in [Rog08] is opposite!

4.3 One direction of homotopic Hopf-Galois corre-
spondence

Remark 4.3.1. In this Section, we will sometimes omit the word “homo-
topic” when talking about homotopic Hopf-Galois extensions, especially in
diagrams. Without doubt, we will always mean “homotopic” implicitly, and
we kindly ask the reader to keep this in mind.

Here is the backward part of the Galois correspondence for E-local com-
mutative S-algebras, established in [Rog08] by John Rognes. The object
BhG denotes the homotopy fixed points of a spectrum B under the action of
a stably dualizable group G.

Theorem 4.3.2 (Theorem 7.2.3, [Rog08]). Let A! B be a faithful G-Galois
extension and N ⇢ G any allowable subgroup. Then BhN ! B is a faithful
N -Galois extension.

If furthermore N ⇢ G is an allowable normal subgroup, then A ! BhN

is a faithful G/N -Galois extension.

A
G�Galois //

G/N�Galois

if NEG allowable

''

B

BhN

N�Galois

77ooooooooooooooooooooo

Theorem 4.3.2 inspired us to investigate and provide an answer to the
question: how could one formulate the backward part of a homotopic Hopf-
Galois correspondence problem, and what are the conditions under which
this problem be solved?

4.3.1 The setting

Let k be a field and g : H ! K a map of Hopf algebras in Ch

�0
k . Consider

a homotopic H-Hopf-Galois extension ' : Triv(B) ! A and recall from
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Section 2.2 that the diagram of augmented H-comodule algebras

B
' //

i' '

✏✏

A

'

✏✏
AhcoH � � // RA

commutes. Here, the comparison map i' : B ! AhcoH is a quasi-isomorphism,
by Proposition 1.4.4, because the functor (i')⇤ : ModAhcoH ! ModB is a
Quillen equivalence, by definition of a homotopic Hopf-Galois extension.

Choosing explicit models for AhcoH and RA, given respectively by two-
sided cobar constructions ⌦(A;H; k) and ⌦(A;H;H) (see Section 2.1.3),
and adding to this diagram the normal basis extension ◆K associated to the
Hopf algebra K (see Example 2.3.3), we obtain the following commutative
diagram.

B
' //

i' '

✏✏

A

'

✏✏

'

''OOOOOOOOOOOOOOOOOOOOO

⌦(A;H; k) � � ◆H //

⌦(A;g;R) =!

''OOOOOOOOOOOOOOOOOO
⌦(A;H;H)

⌦(A;g;g)

)'
// ⌦(A;K;K) (⇤ ⇤)

⌦(A;K; k)
*
⌦

◆K

77oooooooooooooooooo

Let us make a few comments.

• Recall from Section 2.1.3 that ⌦(A;H; k), ⌦(A;H;H), ⌦(A;K; k) and
⌦(A;K;K) can all be endowed with a structure of a dga.

• We consider this diagram in the category Alg

"
K of augmented K-

comodule algebras, using the map g : H ! K to endow each of the
augmented H-comodule algebras A, B, ⌦(A;H; k) and ⌦(A;H;H)
with K-coactions, by post-compostion with g.

• The map ⌦(A; g; g), induced by g on the two-sided cobar constructions,
is a weak equivalence, by 2-out-of-3 property.

• Homotopically speaking, this diagram indicates that, up to homotopy,
studying the homotopic H-Hopf-Galois extension ' is the same as
studying the normal basis extension ◆H .
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The last point above allows us to reformulate the homotopic Hopf-Galois
correspondence problem. Recall Notation 2.4.7 and consider the lower sub-
diagram of (⇤ ⇤) in Alg

"
K .

⌦(A;H; k) � �

◆H

H�Hopf-Galois //

!

?�Hopf-Galois
))SSSSSSSSSSSSSSSSSSSSSS ⌦(A;H;H) H ' // ⌦(A;K;K) K

⌦(A;K; k) ?

( �

◆K

K�Hopf-Galois

55kkkkkkkkkkkkkkkkkkkkk

It was shown in Example 2.3.3 that the normal basis extensions ◆H and ◆K are
homotopic H- and K-Hopf-Galois, respectively. The goal of the subsequent
sections is to find the appropriate candidate for the Hopf algebra ? and to
formulate conditions on the Hopf algebras H, K, and on the algebra A,
under which the map

! : ⌦(A;H; k)! ⌦(A;K; k) 
?

will be a homotopic ?-Hopf-Galois extension.

4.3.2 The candidate Hopf algebra and the Main Theorem

Convention 4.3.3. From now on, we suppose that both H and K are co-
commutative, 1-connected, degree-wise finitely generated Hopf algebras in
Ch

�0
k . Moreover, we assume that K2 = 0.
We remind the reader that the co-commutativity assumption on H and

K guarantees that their respective cobar constructions ⌦H and ⌦K both
inherit (co-commutative) comultiplications (see Remark 1.2.10).

Let g : H ! K be a morphism of Hopf algebras. It endows H with a
right K-comodule structure

⇢H,K : H
�H��! H ⌦H

H ⌦ g���! H ⌦K,

and therefore makes it meaningful to consider the one-sided cobar construc-
tion ⌦(H;K; k) on (H, ⇢H,K) 2 ComodK . We use Remark 2.1.8 to see
that

⌦(H;K; k) := (H ⌦⌦K, Dt⌦) 2 Ch

�0
k .

The differential Dt⌦ is given by

Dt⌦ = dH ⌦⌦K +H ⌦D⌦K +
�
(H ⌦µ⌦K)� (H ⌦ t⌦⌦⌦K)� (⇢H,K ⌦⌦K)

�
.

Remark 4.3.4. Observe that the diagram

H
t⌦ //

g

✏✏

⌦H

⌦(g)

✏✏
K

t⌦ // ⌦K
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commutes, by definition of the maps t⌦ and ⌦(g). Therefore, there exists
another way of writing the differential Dt⌦ : H ⌦⌦K ! H ⌦⌦K that is

Dt⌦ = dH ⌦⌦K + H ⌦D⌦K

+
�
(H ⌦µ⌦K) � (H ⌦⌦(g)⌦⌦K) � (H ⌦ t⌦⌦⌦K) � (�H ⌦⌦K)

�
,

where
⌦(g) � t⌦ : H

t⌦�! ⌦H
⌦(g)�! ⌦K

is the new twisting morphism.
At this point, we know from Chapter 2 only that ⌦(H;K; k) is a chain

complex. Let us see how it can be endowed with a Hopf algebra structure.

Lemma 4.3.5. If H and K satisfy Convention 4.3.3, the one-sided cobar
construction ⌦(H;K; k) is a Hopf algebra.

Proof. The multiplication

µH ⌦t⌦
⌦K : H ⌦t⌦ ⌦K ⌦H ⌦t⌦ ⌦K ! H ⌦t⌦ ⌦K

is the twisted multiplication, defined in Corollary 3.6 in [HL07] and explained
in Remark 2.1.13.

At the level of the underlying graded modules, we define morphisms

⌘H ⌦t⌦
⌦K : k[0] ⇠= k[0]⌦k[0] ⌘H ⌦ ⌘⌦K // H ⌦⌦K,

�H ⌦t⌦ ⌦K : H ⌦⌦K
�H ⌦�⌦K�������! H ⌦H ⌦⌦K ⌦⌦K

⇠=�! (H ⌦⌦K)⌦(H ⌦⌦K),

"H ⌦t⌦
⌦K : H ⌦⌦K

"H ⌦ "⌦K // k[0]⌦k[0] ⇠= k[0],

(see Reminder 1.2.1, Definition 1.2.2 and Remark 1.2.10 for the expres-
sions of ⌘⌦K , �⌦K and "⌦K). We observe that

(1) the associativity of µH ⌦t⌦
⌦K follows from the fact that the multipli-

cation µ⌦K is associative, and the definition of µH ⌦t⌦
⌦K was designed

in order to make it satisfy the Leibniz rule with respect to Dt⌦K
(see

Remark 2.1.13 and Corollary 3.6 in [HL07] for details).

(2) an easy calculation shows that µH ⌦t⌦
⌦K is unital with respect to

⌘H ⌦t⌦
⌦K ;

(3) the comultiplication �H ⌦t⌦
⌦K is co-associative, because both �H and

�⌦K are coassociative, and it is counital with respect to ", because �H

and �⌦K are counital regarding "H and "⌦K , respectively;

(4) the comultiplication �H ⌦t⌦
⌦K satisfies the “dual Leibniz” rule with

respect to Dt⌦ , because both (H, dH ,�H) and (⌦K, D⌦K ,�⌦K) are
differential coalgebras, and �H is coassociative and co-commutative;
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(5) to see that ⌘H ⌦t⌦
⌦K is a morphism of comonoids (i.e., is appropriately

compatible with �H ⌦t⌦
⌦K and "H ⌦t⌦

⌦K) one uses the compatibility
between ⌘H and �H , "H on the one hand, and the compatibility be-
tween ⌘⌦K and �⌦K , "⌦K on the other hand;

(6) an easy calculation shows that µH ⌦t⌦
⌦K is counital with respect to

"H ⌦t⌦
⌦K ;

(7) µH ⌦t⌦
⌦K is compatible with �H ⌦t⌦

⌦K because �H is coassociative
and co-commutative;

(8) "H ⌦t⌦
⌦K � ⌘H ⌦t⌦

⌦K = Idk[0], because "H � ⌘H = Idk[0], "⌦K � ⌘⌦K =
Idk[0] and by bifonctoriality of �⌦�.

To summarize, (1) and (2) imply that
�
H ⌦⌦K, Dt⌦ , µH ⌦t⌦

⌦K , ⌘H ⌦t⌦
⌦K

�

is a monoid in Ch

�0
k ; (3) and (4) imply that

�
H ⌦⌦K, Dt⌦ ,�H ⌦t⌦

⌦K , "H ⌦t⌦
⌦K

�

is a comonoid in Ch

�0
k ; finally, having (5), (6), (7) and (8) allow us to con-

clude that

⌦(H;K; k) =
�
H ⌦⌦K, Dt⌦ , µH ⌦t⌦

⌦K , ⌘H ⌦t⌦
⌦K ,�H ⌦t⌦

⌦K , "H ⌦t⌦
⌦K)

is a Hopf algebra in Ch

�0
k , as desired.

We now state our Main Theorem, which establishes one direction of ho-
motopic Hopf-Galois correspondence for homotopic Hopf-Galois extensions
of chain complexes. This theorem will be proved in Section 4.3.4

Theorem 4.3.6. Let k be a field and g : H ! K a morphism of co-
commutative, 1-connected, degree-wise finitely generated Hopf algebras in
Ch

�0
k , such that K2 = 0. Let ' : B ! A be a homotopic H-Hopf-Galois

extension in Ch

�0
k and consider the following diagram

⌦(A;H; k) � � ◆H //

!
))SSSSSSSSSSSSSSSSS ⌦(A;H;H) H ' // ⌦(A;K;K) K

,

⌦(A;K; k) ⌦(H;K;k)
( �

◆K

55kkkkkkkkkkkkkkkkk

where ◆H and ◆K denote the normal basis homotopic Hopf-Galois extensions,
associated to Hopf algebras H and K, respectively. If

(1) A is semi-free as a left B-module on a generating graded k-module X,
such that Xn is finitely generated for all n � 0; and

(2) g : (H,�H , dH) ,! (K,�K , dK) is an inclusion of differential graded
k-coalgebras,
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then the map
! : ⌦(A;H; k) // ⌦(A;K; k)

is a generalized homotopic ⌦(H;K; k)-Hopf-Galois extension in Ch

�0
k .

Remark 4.3.7. We use the terminology “generalized” to indicate that the map

! : ⌦(A;H; k) // ⌦(A;K; k)

has the special property that its codomain ⌦(A;H; k) is equipped with a
trivial k[0]-coaction, up to homotopy. This follows from putting the map
of dg-algebras ! : ⌦(A;H; k) ! ⌦(A;K; k) into the general perspective,
described in Section 4.1.

More specifically, the morphism of dg-Hopf algebras g : H ! K induces
a morphism of dg-Hopf algebras ⌦(H; g; k) : ⌦(H;H; k) ! ⌦(H;K; k) (see
Lemma 4.3.5, which also holds for K = H), and ! fits into the commutative
diagram

⌦(A;H; k)
!=⌦(A;g;k) //

⇢

✏✏

⌦(A;K; k)

⇢!

✏✏
⌦(A;H; k)⌦⌦(H;H; k)

'
✏✏

⌦(A;g;k)⌦⌦(H;g;k) // ⌦(A;K; k)⌦⌦(H;K; k).

⌦(A;H; k)⌦k[0]

The coaction maps ⇢ : ⌦(A;H; k) ! ⌦(A;H; k)⌦⌦(H;H; k) and ⇢! :
⌦(A;K; k)! ⌦(A;K; k)⌦⌦(H;K; k) will be defined in Lemma 4.3.10.

The comparison map induced by ! and ⌦(H; g; k) between the objects
of homotopy coinvariants is denoted by

!hco⌦(H;g;k) : ⌦(A;H; k)hco(⌦(H;H;k)) ! ⌦(A;K; k)hco(⌦(H;K;k))

and will be defined in Section 4.3.4.
We need a series of preliminary results before we can prove Theorem

4.3.6.

4.3.3 Technical preliminaries

Recall from diagram (⇤) and Theorem 4.2.1 that in the Galois case, the
sub-extension of fields k! EN is G/N -Galois if N is a normal subgroup of
G. So, the meaningful algebraic object, associated to k ! EN is the group
quotient G/N .

Why is ⌦(H;K; k) an appropriate object to consider in the situation of
diagram (⇤ ⇤)? I.e., why can the Hopf algebra ⌦(H;K; k) be seen as the
right analog of the quotient group G/N from the dual Galois context?
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Our situation is not only dual to (⇤), but it also needs to be homotopically
coherent.

In the case of a group G acting on a set X, a good model for the homotopy
quotient of the action of G on X, denoted XhG, and also called the homotopy
orbit space, is given by the Borel construction. It can be modelled by the
coequalizer

XhG := coequal
⇣
X ⇥G⇥EG

�⇥EG //

X ⇥�
// X ⇥EG

⌘
,

Here EG is a contractible space with free G-action � and is cofibrant (because
it can be built as a colimit of CW -complexes), and � : X ⇥G ! X is the
G-action on X.

We are interested in the dual situation. We have already observed at
the beginning of this Section that a morphism of Hopf algebras g : H ! K
endows H with a K-coaction ⇢H,K : H ! H ⌦K. In this situation, the
object of homotopy K-coinvariants of H, which can also be seen as homotopy
fixed points of the K-coaction on H, is given by the equalizer

HhcoK := equal
⇣
RH ⌦k[0]

⇢⌦ k[0] //

RH ⌦�
// RH ⌦K ⌦k[0]

⌘
,

where RH denotes a fibrant replacement of H. It followed from Lemma
2.1.7 and Definition 2.1.11 that a good, homotopically meaningful model for
HhcoK is precisely given by the one-sided cobar construction ⌦(H;K;R).
Remark 4.3.8. In the discussion above the crucial relation between the groups
N and G is codified via “normality”. Given a subgroup inclusion N ,! G,
the quotient G/N has a group structure (and thus, makes it meaningful to
talk about G/N -Galois extensions), if and only if N is a normal subgroup of
G.

In [FH12], Emmanuel Farjoun and Kathryn Hess defined and studied
homotopy-invariant and dual notions of normality for maps of monoids, and
of conormality for maps of comonoids within a twisted homotopical category
M.

In particular, if a map of comonoids g : C 0 ! C is (homotopy) conormal
(see Definition 2.4, [FH12]), then the Borel kernel of g, C\\C 0, which models
the homotopy kernel of g (see Definition B.16, [FH12]), is weakly equivalent
to a comonoid. This codifies the desired situation in a context, dual to the
context of groups. (Moreover, and reciprocally, they also provided conditions
under which a comonoid structure on C \ \C 0 implies conormality of g, see
Lemma 2.8, [FH12]).

We emphasize that in the case M := Ch

�0
k , the co-commutativity of H

and K as coalgebras turns out to be crucial for establishing the conormality
of the map g : H ! K (see Proposition 2.20 [FH12]).
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Remark 4.3.9. Let g : H ! K be a map of co-commutative Hopf algebras,
satisfying Convention 4.3.3. Recall that in Lemma 4.3.5 we defined a Hopf
algebra structure on ⌦(H;K; k).

In view of our choice of models for fibrant replacements in Alg

"
K , dis-

cussed in Chapter 2, the Borel kernel of g is given exactly by K \ \H =
⌦(H;K; k). So, one could apply Proposition 2.20 in [FH12] and conclude
directly that g is conormal, and that the comultiplication �H ⌦t⌦

⌦K , defined
in Lemma 4.3.5, endows ⌦(H;K; k) with a coassociative, counital coalgebra
structure. However, this argument does not suffice to prove that �H ⌦t⌦

⌦K

is appropriately compatible with the multiplication µH ⌦t⌦
⌦K to give a Hopf

algebra structure on ⌦(H;K; k). The corresponding verifications were done
in Lemma 4.3.5.

The next lemma shows that the algebra ⌦(A;K; k) has an ⌦(H;K; k)-
comodule structure.

Lemma 4.3.10. If H and K satisfy Convention 4.3.3, then the differential
algebra ⌦(A;K; k) admits a ⌦(H;K; k)-coaction

⇢! : ⌦(A;K; k)! ⌦(A;K; k)⌦⌦(H;K; k).

This coaction is compatible with the algebra structure and therefore makes
⌦(A;K; k) into an ⌦(H;K; k)-comodule algebra.

Proof. The coaction ⇢! : ⌦(A;K; k) ! ⌦(A;K; k)⌦⌦(H;K; k) is given on
the underlying graded modules by the composite

⇢! : A⌦⌦K
⇢A⌦�⌦K������! A⌦H ⌦⌦K ⌦⌦K

A⌦ tw ⌦⌦K��������! A⌦⌦K ⌦H ⌦⌦K,

where tw is the twisting morphism. One checks by calculation that ⇢! is

- coassociative with respect to � (because ⇢A and �⌦K are both coas-
sociative and because �K is co-commutative);

- counital with respect to " (because ⇢A and �⌦K are both counital);

- compatible with the unit ⌘A⌦⌦K (because both ⇢A and �⌦K are mor-
phisms of algebras, so, in particular, they are compatible with respec-
tive units);

- compatible with the twisted multiplication µA⌦t⌦
⌦K , defined in Re-

mark 2.1.13. To see this, it is sufficient to check the compatibility of ⇢!
with the partial multiplication (1⌦ s�1k)(a⌦ 1), for all k 2 K, a 2 A.
This works, because ⇢A and �⌦K are both coassociative and because
g is a morphism of Hopf algebras;

- compatible with respect to the differential Dt⌦ : A⌦⌦K ! A⌦⌦K.
This is a consequence of the fact that ⇢A and �⌦K are compatible with
the differentials dA and D⌦K , respectively.
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Consequently,
�
⌦(A;K; k), ⇢!

�
is a ⌦(H;K; k)-comodule algebra in Ch

�0
k .

Most of the subsequent results have to do with the semi-freeness of certain
objects. This will be an important factor in the proof of the main theorem.

Recall the definition of a semi-free module from Definition 1.2.13. The
following proposition, of a general flavor, will be extremely useful for detect-
ing semi-freeness of various cobar constructions.

Proposition 4.3.11. Let R be a commutative ring and let V ,W be graded
R-modules, that are degree-wise R-free and finitely generated, and such that
V0 = W0 = 0. Equip the free algebras TV and T (V �W ) with differentials
d and d0, respectively, such that d0|TV = d and such that the extension of
differential graded algebras (TV, d) ,! (T (V �W ), d0) is a free extension of
TV . Then

(a) (T (V �W ), d0) is semi-free as a left (TV, d)-module; and

(b) (T (V �W ), d0) is cofibrant in the category TV Mod, equipped with the
model structure right-induced from the projective model structure on
Ch

�0
R , as in Theorem 1.3.5.

Proof. Proof of (a): For all words b 2 (T (V �W ), d0) denote by

`w(b) = number of w 2W in the word b.

Define an increasing filtration on (T (V � W ), d0) by “word-length in W ”,
setting

F0(T (V �W )) = TV

and
Fk(T (V �W )) = {b 2 T (V �W ) : `k(b)  k}

for all k � 1. Every Fk(T (V �W )) is a left TV -submodule of T (V �W ),
the action being given by multiplication in TV . Moreover,

L
k�0 Fk(T (V �

W )) = T (V �W ), as TV -modules. Observe that

Fk+1(T (V �W )) := {b 2 T (V �W ) : `k(b)  k + 1}
= {b 2 T (V �W ) : `k(b)  k}

�{b 2 T (V �W ) : `k(b) = k + 1}
= Fk(T (V �W ))

�{a0w1a1 · · ·wk+1ak+1 : ai 2 TV,wi 2W}
= Fk(T (V �W ))

�TV ⌦ {w1a1 · · ·wk+1ak+1 : wi 2W,ai 2 TV }| {z }
=:Z(k+1)

= Fk(T (V �W ))�TV ⌦Z(k + 1),
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where Z(k + 1) is degree-wise R-free for all k � 0, because V and W are
degree-wise R-free by assumption. To be able to conclude that T (V �W )
is semi-free as a left TV -module on Z =

L
k�0 Z(k), we should check that

the differential d0 : T (V �W )! T (V �W ) respects the filtration, i.e., that
d0 : Z(k + 1) ! Fk(T (V � W )), for all k � 0. This verification is quite
technical, and we distinguish several cases.

Given b = w1a1 · · ·wk+1ak+1 2 Z(k + 1), we have `w(b) = k + 1 and

d0(b) =
k+1X

i=1

±(w1a1 · · ·wid(ai) · · ·wk+1ak+1)

+
k+1X

i=1

±(w1a1 · · · d0(wi)ai · · ·wk+1ak+1),

where the signs are given by the Koszul sign rule.

Case 1: d0(w) 2 TV , for all w 2W .

• If d(a) = 0, for all a 2 TV , then

d0(b) =
k+1X

i=1

±(w1a1 · · · d0(wi)ai| {z }
2TV

· · ·wk+1ak+1),

thus `w(d0(b)) = k and d0(b) 2 Fk(T (V �W )).

• Suppose now that d0|TV = d 6= 0.
Fix k � 0, and filter Z(k + 1) by degree of elements in TV by setting

FmZ(k + 1) = {w1a1 · · ·wk+1ak+1 2 Zk+1 :
k+1X

i=1

deg(ai)  m},

for all m � 0. Clearly, this filtration satisfies FmZk+1 ⇢ Fm+1Zk+1

and
L

m�0 FmZk+1 = Zk+1.
There exists an m � 0 such that b 2 Fm+1Z(k + 1) and we have

d0(b) =
k+1X

i=1

±(w1a1 · · ·wid(ai) · · ·wk+1ak+1| {z }
2FmZ(k+1)

)

+
k+1X

i=1

±(w1a1 · · · d0(wi)| {z }
2TV

ai · · ·wk+1ak+1

| {z }
`w=k

),

so d0(Fm+1Z(k + 1)) ⇢ Fk(T (V �W ))�TV ⌦FmZ(k + 1).
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In other words, for any fixed k � 0, the quotient

Fk+1(T (V �W ))/ Fk(T (V �W ))

is semi-free as a left TV -module on the free graded R-module Q =L
m�0 Q(m), where

Q(m) = {a1w1 · · · ak+1wk+1 2 Zk+1 :
k+1X

i=1

deg(ai) = m}

is degree-wise free on R for all m � 0. We can therefore apply Lemma
1.2.15 to conclude that T (V�W ) is itself semi-free as a left TV -module.

Case 2: d0(W ) * TV , i.e., the image of any w 2W by d0 might have factors
in both TV and TW .
Write W = W�Nmin , where Nmin � 0 is such that Wn = 0 for all
n < Nmin. Set

T (V �W(Nmin+l)) := {w↵a↵w�a� · · · : deg(wi)  (Nmin + l)},

for all l � 0, with TV = T (V �W(Nmin+0)).
For every l � 0, the inclusion

(T (V �W(Nmin+l)), d
0) ,! (T (V �W(Nmin+l+1)), d

0)

is an extension of dg-algebras, where the differential d0 sends a w 2
W(Nmin+l+1) to d0(w) 2 T (V �W(Nmin+l)), and, therefore, satisfies
the situation of Case 1. To show that this extension is TV -semi-
free, one can apply the previous strategy, first filtering elements of
T (V �W(Nmin+l+1)) by the number of w’s in WNmin+l+1 and then
treating both cases where d = 0 and where d 6= 0.
Finally, since T (V �W ) ⇠= coliml�0 T (V �W(Nmin+l)), as differential
graded algebras, we conclude that the algebra T (V �W ) is semi-free
as a left TV -module, by Lemma 1.2.15.

Proof of (b): This follows from §9.2 in [BMR13].

Remark 4.3.12. By [FHT95], every morphism of differential graded algebras
f : B ! A admits a factorization

B
f //

%%KKKKKKKKKKK A,

(B t TW, d0)

'

99sssssssssss

where (B t TW, d0) is a free algebra over B. Since the proof of Proposition
4.3.11 easily generalizes to the case of a free extension of dg-algebras of the
form (B, dB) ,! (B t TW, d0), it follows that every morphism of differential
graded algebras f : B ! A admits a semi-free replacement, up to homotopy.
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Corollary 4.3.13. Let g : H ! K be a morphism of Hopf algebras in Ch

�0
k ,

where H and K satisfy Convention 4.3.3. Suppose that (H,�H , dH) ,!
(K ⇠= H �Z,�K , dK) is an inclusion of differential graded coalgebras.

The algebra (⌦K, Dt⌦K ) is then semi-free as a left module over ⌦H on a
generating graded k-module that is degree-wise finitely generated.

Proof. Since we are working over a field, the inclusion H ,! K splits, and
we have K ⇠= H � Z, as graded k-modules, where Z is k-free. The counit
"K : K ! k[0] is induced by "H + "Z : H �Z ! k[0], and therefore K =
ker("K) = ker("H) � ker("Z) = H �Z, whence, s�1K = s�1H � s�1Z.
Therefore,

⌦(K) := (T (s�1K), D⌦K) ⇠= (T (s�1H � s�1Z), D⌦K)
⇠= (T (s�1H) t T (s�1Z), D⌦K)
= (⌦H t ⌦Z, D⌦K),

where the differential satisfies

D⌦K(s�1h) = �s�1dK(h) ±
X

i

s�1hi|s�1hi,

| {z }
2(⌦H)n

for all s�1h 2 (⌦H)n, and

D⌦K(s�1z) = �s�1dK(z)| {z }
2(⌦H)n�1t(⌦Z)n�1

±
X

i

s�1zi|s�1zi

| {z }
2(⌦H �Z)n�1

,

for all s�1z 2 (⌦Z)n, for all n � 1. We can apply Proposition 4.3.11 to
conclude that the differential graded algebra ⌦K is semi-free as a left ⌦H-
module.

Lemma 4.3.14. Let g : H ! K be a morphism of Hopf algebras in Ch

�0
k ,

where H and K satisfy Convention 4.3.3. Suppose that (H,�H , dH) ,!
(K ⇠= H �Z,�K , dK) is an inclusion of differential graded coalgebras.

The chain complex ⌦(A;K; k)hco(⌦(H;K;k)) is then semi-free as a left
⌦(A;H; k)-module on a generating graded k-module that is degree-wise finitely
generated.

Proof. Observe that

⌦(A;K; k)hco(⌦(H;K;k)) = ⌦
�
⌦(A;K; k);⌦(H;K; k);⌦(H;K; k)

�
⇤

⌦(H;K;k)
k[0]

⇠= ⌦
�
⌦(A;K; k);⌦(H;K; k); k[0]

�

:= (A ⌦
⌦(g)�t⌦

⌦K)⌦
t
⌦(H ⌦

⌦(g)�t⌦
⌦K),
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where t denotes the universal twisting morphism

t : H ⌦
⌦(g)�t⌦

⌦K ! ⌦(H ⌦
⌦(g)�t⌦

⌦K).

Since A ⌦
⌦(g)�t⌦

⌦K ⇠= (A ⌦
t⌦
⌦H) ⌦

⌦H
⌦K, and since ⌦K is semi-free as a left

module over ⌦H by Corollary 4.3.13, we have that A ⌦
⌦(g)�t⌦

⌦K is semi-free

as a left module over A⌦
t⌦
⌦H, which implies that (A ⌦

⌦(g)�t⌦
⌦K)⌦

t
⌦(H ⌦

⌦(g)�t⌦
⌦K) is semi-free over A ⌦

t⌦
⌦H.

Remark 4.3.15. Lemma 4.3.14, applied to the case K = H and g = IdH

gives us an isomorphism of chain complexes

⌦(A;H; k)hco(⌦(H;H;k)) ⇠= (A ⌦
t⌦
⌦H)⌦

s
⌦(H ⌦

t⌦
⌦H),

where s denotes the universal twisting morphism

s : H ⌦
t⌦
⌦H ! ⌦(H ⌦

t⌦
⌦H).

Lemma 4.3.16. Let g : H ! K be a morphism of Hopf algebras in Ch

�0
k ,

where H and K satisfy Convention 4.3.3. Suppose that (H,�H , dH) ,!
(K ⇠= H �Z,�K , dK) is an inclusion of differential graded coalgebras.

The tensor product of chain complexes ⌦(A;K; k) ⌦
⌦(A;H;k)

⌦(A;K; k) is

then semi-free as a left ⌦(A;K; k)-module on a generating graded k-module
that is degree-wise finitely generated.

Proof. Observe that

⌦(A;K; k) ⌦
⌦(A;H;k)

⌦(A;K; k) = (A ⌦
⌦(g)�t⌦

⌦K) ⌦
A⌦

t⌦
⌦H

(A ⌦
⌦(g)�t⌦

⌦K)

⇠= (A ⌦
⌦(g)�t⌦

⌦K) ⌦
A⌦

t⌦
⌦H

((A ⌦
t⌦
⌦H) ⌦

⌦H
⌦K)

⇠= (A ⌦
⌦(g)�t⌦

⌦K) ⌦
⌦H
⌦K,

where the first isomorphism uses properties of twisted extensions (see Chap-
ter 1 in [HMS74]), specifically, the fact that the K-comodule structure on A
is created by the morphism g : H ! K, which also induces a morphism of
algebras ⌦(g) : ⌦H ! ⌦K.

By Corollary 4.3.13, ⌦K is semi-free as a left module over ⌦H. Thus,
(A ⌦

⌦(g)�t⌦
⌦K) ⌦

⌦H
⌦K is semi-free as a left module over A ⌦

⌦(g)�t⌦
⌦K.

Lemma 4.3.17. Let g : H ! K be a morphism of Hopf algebras in Ch

�0
k ,

where H and K satisfy Convention 4.3.3.
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The tensor product of chain complexes ⌦(A;K; k)⌦⌦(H;K; k) is then
semi-free as a left ⌦(A;K; k)-module on a generating graded k-module that
is degree-wise finitely generated.

Proof. It follows from Convention 4.3.3 that the underlying graded k-module
of ⌦(H;K; k), H ⌦⌦K, is degree-wise finitely generated over k, and that
(H ⌦⌦K)0 = k. So, the proof is a direct application of Lemma 1.2.14.

We need to have one more Lemma in our toolbox before proving Theorem
4.3.6.

Lemma 4.3.18. Let H be a 1-connected Hopf algebra in Ch

�0
k and let H ⌦

t⌦
⌦H be the associated acyclic cobar construction. The contracting homotopy

c : H ⌦t⌦ ⌦H ! H ⌦t⌦ ⌦H

defined by
h⌦ s�1h1| · · · |s�1hn 7! 0, if deg(h) > 0

and
1⌦ s�1h1| · · · |s�1hn 7! h1⌦ s�1h2| · · · |s�1hn,

for all h 2 H, s�1h1| · · · |s�1hn 2 ⌦H, is a morphism of right ⌦H-modules.

Proof. Proposition 10.6.3 in [Nei10] shows that c is indeed a contracting
homotopy of chain complexes. We must prove that c respects the right ⌦H-
actions, i.e., that the following diagram commutes in Ch

�0
k .

H ⌦t⌦ ⌦H ⌦⌦H
c⌦⌦H //

H ⌦µ⌦H

✏✏

H ⌦t⌦ ⌦H ⌦⌦H

H ⌦µ⌦H

✏✏
H ⌦t⌦ ⌦H c // H ⌦t⌦ ⌦H

Let s�1h1| · · · |s�1hn 2 ⌦n(H), s�1h01| · · · |s�1h0m 2 ⌦m(H), h 2 H. If
deg(h) > 0, we have

(H ⌦µ⌦H) � (cn⌦⌦Hm)(h⌦ s�1h1| · · · |s�1hn⌦ s�1h01| · · · |s�1h0m)
= 0
= cn+m(h⌦ s�1h1| · · · |s�1hn|s�1h01| · · · |s�1h0m)
= cn+m � (H ⌦µ⌦H)(h⌦ s�1h1| · · · |s�1hn⌦ s�1h01| · · · |s�1h0m).

If h = 1, then

(H ⌦µ⌦H) � (cn⌦⌦Hm)(1⌦ s�1h1| · · · |s�1hn⌦ s�1h01| · · · |s�1h0m)

= (H ⌦µ⌦H)(h1⌦ s�1h2| · · · |s�1hn⌦ s�1h01| · · · |s�1h0m)
= h1⌦ s�1h2| · · · |s�1hn|s�1h01| · · · |s�1h0m

= cn+m(1⌦ s�1h1| · · · |s�1hn|s�1h01| · · · |s�1h0m)
= cn+m � (H ⌦µ⌦H)(1⌦ s�1h1| · · · |s�1hn⌦ s�1h01| · · · |s�1h0m).
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4.3.4 Proof of the Main Theorem (Theorem 4.3.6)

Proof. Since ' : B ! A is a homotopic H-Hopf-Galois extension, A is
an augmented algebra, by definition. This implies that the domain of !,
⌦(A;H; k), and its codomain, ⌦(A;K; k), are augmented algebras, too, as
required by Definition 2.3.1.

Recall from Definition 2.3.1 and Remark 4.3.7 that to prove that the map
! : ⌦(A;H; k) ! ⌦(A;K; k) is a generalized homotopic ⌦(H;K; k)-Hopf-
Galois extension, we need to show that both the Galois functor

(�!)⇤ : MW!

⌦(A;K;k)
// M

W⇢!

⌦(A;K;k)

and the comparison functor

(!hco⌦(H;g;k))⇤ : Mod

⌦(A;K;k)hco(⌦(H;K;k)) //
Mod⌦(A;H;k)hco(⌦(H;H;k))

are Quillen equivalences. To do this, we will first show that, under the
conditions of this theorem, the maps

�! : ⌦(A;K; k) ⌦
⌦(A;H;k)

⌦(A;K; k)! ⌦(A;K; k)⌦⌦(H;K; k)

and

!hco⌦(H;g;k) : ⌦(A;H; k)hco(⌦(H;H;k)) ! ⌦(A;K; k)hco(⌦(H;K;k))

are quasi-isomorphisms of chain complexes, and then use criteria from Propo-
sition 1.5.6 and Proposition 1.4.3 to deduce that they induce Quillen equiv-
alences.

Part I. We begin by studying the comparison map

!hco⌦(H;g;k) : ⌦(A;H; k)hco(⌦(H;H;k)) ! ⌦(A;K; k)hco(⌦(H;K;k)).

Recall from the proof of Lemma 4.3.14 that

⌦(A;K; k)hco(⌦(H;K;k)) ⇠= (A ⌦
⌦(g)�t⌦

⌦K)⌦
t
⌦(H ⌦

⌦(g)�t⌦
⌦K),

as chain complexes, where t is the universal twisting morphism

t : H ⌦
⌦(g)�t⌦

⌦K ! ⌦(H ⌦
⌦(g)�t⌦

⌦K).

Similarly, recall from Remark 4.3.15 that

⌦(A;H; k)hco(⌦(H;H;k)) ⇠= (A ⌦
t⌦
⌦H)⌦

s
⌦(H ⌦

t⌦
⌦H),

as chain complexes, where s denotes the universal twisting morphism

s : H ⌦
t⌦
⌦H ! ⌦(H ⌦

t⌦
⌦H).
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Therefore, the comparison map !hco⌦(H;g;k) is the map

(A⌦
t⌦
⌦H)⌦

s
⌦(H⌦

t⌦
⌦H)

F=A⌦⌦(g)⌦⌦(H ⌦⌦(g))�����������������! (A ⌦
⌦(g)�t⌦

⌦K)⌦
t
⌦(H ⌦

⌦(g)�t⌦
⌦K).

Claim. To show that F is a quasi-isomorphism in Ch

�0
k , it suffices to show

that

⌦H ⌦
t⌦�(⌘H ⌦⌦H)

⌦(H⌦
t⌦
⌦H)

FF=⌦(g)⌦⌦(H ⌦⌦(g))����������������! ⌦K ⌦
t⌦�(⌘H ⌦⌦K)

⌦(H ⌦
⌦(g)�t⌦

⌦K)

is a quasi-isomorphism in Ch

�0
k , where ⌦H 2 Comod⌦H , ⌦K 2 Comod⌦K ,

⌦(H ⌦
t⌦
⌦H) and ⌦(H ⌦

⌦(g)�t⌦
⌦K) are seen as left modules over themselves,

and

t⌦ � (⌘H ⌦⌦H) : ⌦H ⇠= k[0]⌦⌦H ! H ⌦⌦H ! ⌦(H ⌦⌦H),

t⌦ � (⌘H ⌦⌦K) : ⌦K ⇠= k[0]⌦⌦K ! H ⌦⌦K ! ⌦(H ⌦⌦K)

are twisting morphisms.

Proof of the Claim: We use a version of Zeeman’s comparison the-
orem for twisted extensions. Consider the map F and, using notation of
Proposition 1.2.23, set N = N 0 := A, M := ⌦H ⌦

t⌦�(⌘H ⌦⌦H)
⌦(H ⌦

t⌦
⌦H),

M 0 := ⌦K ⌦
t⌦�(⌘H ⌦⌦K)

⌦(H ⌦
⌦(g)�t⌦

⌦K). The maps � := IdH and ↵ := ⌦(g)

are appropriately compatible (see Definition 1.2.5) with twisting morphisms
t⌦ : H ! ⌦H and ⌦(g) � t⌦ : H ! ⌦K, because

⌦(g) � t⌦ = ⌦(g) � t⌦ � IdH .

Since A is degree-wise k-flat, Proposition 1.2.23 guarantees that the mor-
phism of twisted extensions

(A ⌦
t⌦
⌦H)⌦

s
⌦(H ⌦

t⌦
⌦H)

F�! (A ⌦
⌦(g)�t⌦

⌦K)⌦
t
⌦(H ⌦

⌦(g)�t⌦
⌦K)

is a quasi-isomorphism in Ch

�0
k if and only if the morphism

⌦H ⌦
t⌦�(⌘H ⌦⌦H)

⌦(H ⌦
t⌦
⌦H)

FF��! ⌦K ⌦
t⌦�(⌘H ⌦⌦K)

⌦(H ⌦
⌦(g)�t⌦

⌦K)

is a quasi-isomorphism in Ch

�0
k . ⇤
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The proof of the fact that FF is a quasi-isomorphism breaks down into
several steps, explained in the following commutative diagram of chain com-
plexes.

⌦H ⌦
t⌦�(⌘H ⌦⌦H)

⌦(H ⌦
t⌦
⌦H)

⌦H ⌦⌦(⌧)¿ ⇠=
✏✏

FF // ⌦K ⌦
t⌦�(⌘H ⌦⌦K)

⌦(H ⌦
⌦(g)�t⌦

⌦K)

⌦K⌦⌦(⌧)  ⇠=
✏✏

⌦H ⌦
⌦(⌧)�t⌦�(⌘H ⌦⌦H)

⌦(⌦H ⌦
t⌦

H)

⌦H ⌦m¡ '
✏✏

// ⌦K ⌦
⌦(⌧)�t⌦�(⌘H ⌦⌦K)

⌦(⌦K ⌦
⌦(g)�t⌦

H)

⌦K⌦mÀ '
✏✏

⌦H ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦H)

(⌦2H ⌦
t⌦
⌦H)

⌧ 0 ⌦⌦2H ⌦⌦H¬ ⇠=
✏✏

// ⌦K ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦K)

(⌦2K ⌦
⌦2(g)�t⌦

⌦H)

⌧ 0 ⌦⌦2K⌦⌦HÃ ⇠=
✏✏

⌦H ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦H)�⌧ 0

(⌦2H ⌦
t⌦
⌦H)

√

// ⌦K ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦K)�⌧ 0

(⌦2K ⌦
⌦2(g)�t⌦

⌦H)

Õ

⌦H ⌦
t⌦
⌦2H ⌦

t⌦
⌦H

ƒ '
✏✏

// ⌦K ⌦
t⌦
⌦2K ⌦

⌦2(g)�t⌦
⌦H

Œ '
✏✏

⌦H
= // ⌦H

If we show Steps   through Œ, and Steps ¿ through ƒ, then the equal-
ity in the bottom row and the 2-out-of-3 property will imply that FF is a
quasi-isomorphism, using the commutativity of this diagram.

Step  :

Lemma 4.3.19. Let K be a co-commutative Hopf algebra. The map

⌧ 0 : ⌦K ! ⌦K

given by
s�1k1| · · · |s�1kn 7! s�1kn| · · · |s�1k1,

for all ki 2 K, 1  i  n, for all n � 0, is an isomorphism of differential
graded coalgebras.

Proof. The inverse of ⌧ 0 clearly sends s�1kn| · · · |s�1k1 to s�1k1| · · · |s�1kn,
for all ki 2 K, 1  i  n, for all n � 0.

The compatibility of ⌧ 0 and ⌧ 0�1 with the comultiplication �⌦K : ⌦K !
⌦K ⌦⌦K is checked using the definition of �⌦K on n-fold elements of ⌦K,
involving (p, n� p)-shuffles (see Remark 1.2.10).
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Lemma 4.3.20. Let g : H ! K be a morphism of co-commutative Hopf
algebras in Ch

�0
k . The map

⌧ : H ⌦
⌦(g)�t⌦

⌦K ! ⌦K ⌦
⌦(g)�t⌦

H

h⌦ s�1k1| · · · |s�1kn 7! ±s�1kn| · · · |s�1k1⌦h

is an isomorphism of differential graded coalgebras.

Proof. Recall that the existence of a differential graded coalgebra structure
on H ⌦

⌦(g)�t⌦
⌦K was shown in Lemma 4.3.5. The proof of this fact for

⌦K ⌦
⌦(g)�t⌦

H is the same, up to a symmetry.

The co-commutativity assumptions on both H and K play a crucial role
in establishing that ⌧ commutes with the differentials. Let D denote the
differential on H ⌦

⌦(g)�t⌦
⌦K and D0 denote the differential on ⌦K ⌦

⌦(g)�t⌦
H.

For all kj 2 K, 1  j  n, we use the notation �K(kj) =
P

l kjl⌦ kl
j . Also,

for all h 2 H, we use the notation �H(h) =
P

i hi⌦hi.
We have

⌧ �D(h⌦ s�1k1| · · · |s�1kn) = ⌧
⇣
dH(h)⌦ s�1k1| · · · |s�1kn

+h⌦
nX

j=1

±s�1k1| · · · |s�1dk(kj)| · · · |s�1kn

+h⌦
X

l

nX

j=1

±s�1k1| · · · |s�1kjl|s�1kl
j | · · · |s�1kn

+
X

i

±hi⌦ s�1g(hi)|s�1k1| · · · |s�1kn

⌘

= ±s�1kn| · · · |s�1k1⌦ dH(h)

+
nX

j=1

±s�1kn| · · · |s�1dk(kj)| · · · |s�1k1⌦h

+
X

l

nX

j=1

±s�1kn| · · · |s�1kl
j | s�1kjl| · · · |s�1k1⌦h

+
X

i

±s�1kn| · · · |s�1k1|s�1g(hi)⌦hi

119



=
nX

j=1

±s�1kn| · · · |s�1dk(kj)| · · · |s�1k1⌦h

X

l

nX

j=1

±s�1kn| · · · |s�1kjl|s�1kl
j | · · · |s�1k1⌦h

±s�1kn| · · · |s�1k1⌦ dH(h)

+
X

i

±s�1kn| · · · |s�1k1|s�1g(hi)⌦hi

= D0(s�1kn| · · · |s�1k1⌦h)
= D0(⌧(h⌦ s�1k1| · · · |s�1kn)),

for all h 2 H, ki 2 K, 1  i  n, and the signs are given by the Koszul rule.
Here we used that kjl⌦ kl

j = ±kl
j ⌦ kjl, for all j, l, since �K : K ! K ⌦K

is co-commutative, that hi⌦hi = ±hi⌦hi, for all i, since �H : H ! H ⌦H
is co-commutative, and also that g : H ! K is a morphism of coalgebras.

Finally, ⌧ is an isomorphism of differential graded coalgebras, because ⌧ 0
is so, by Lemma 4.3.19.

It follows from Lemma 4.3.20 that

⌦(⌧) : ⌦(H ⌦
⌦(g)�t⌦

⌦K)! ⌦(⌦K ⌦
⌦(g)�t⌦

H)

is an isomorphism of differential graded algebras, and this completes Step  .

Step À:

Lemma 4.3.21. Let g : H ! K be a morphism of Hopf algebras in Ch

�0
k ,

satisfying Convention 4.3.3. The Milgram map (see Remark 1.2.10)

m : ⌦(⌦K ⌦H) '�! ⌦2K ⌦⌦H

commutes with the differentials on ⌦(⌦K ⌦
⌦(g)�t⌦

H) and on ⌦2K ⌦
⌦2(g)�t⌦

⌦H.

Therefore, it induces a morphism of differential graded algebras

m : ⌦(⌦K ⌦
⌦(g)�t⌦

H) '�! ⌦2K ⌦
⌦2(g)�t⌦

⌦H,

which is a quasi-isomorphism of the underlying chain complexes. Here, the
codomain algebra ⌦2K ⌦

⌦2(g)�t⌦
⌦H is equipped with the multiplication defined

in Corollary 3.6 in [HL07] (see Remark 2.1.13).

Proof. Recall that the Milgram map is given on generating elements of
⌦(⌦K ⌦H) by

m(s�1(w⌦h)) =

8
<

:

0, if deg(w) > 0,deg(h) > 0,
1⌦ s�1h, if w = 1,8h 2 H,
s�1w⌦ 1, if h = 1,8w 2 ⌦K,
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for all s�1(w⌦h) 2 ⌦(⌦K ⌦H).
We use the notation �H(h) =

P
i hi⌦hi, for all h 2 H and �⌦K(w) =P

j wj ⌦wj for all w 2 ⌦K. The differential on ⌦(⌦K ⌦
⌦(g)�t⌦

H), denoted

by D1, is given on s�1(w⌦h) 2 ⌦(⌦K ⌦H) by

D1(s�1(w⌦h)) = �s�1(D⌦K(w)⌦h) ± s�1(w⌦ dH(h))

+
X

i

±s�1
�
w|s�1g(hi)⌦hi

�

X

i

X

j

±s�1(wj ⌦hi)|s�1(wj ⌦hi).

On the other hand, the differential on ⌦2K ⌦
⌦2(g)�t⌦

⌦H, denoted by D2, is

given on s�1w⌦ s�1h 2 ⌦2K ⌦⌦H by

D2(s�1w⌦ s�1h) = �s�1(D⌦K(w))⌦ s�1h ±
X

j

s�1wj |s�1wj ⌦ s�1h

±s�1w⌦ s�1dH(h) + s�1w⌦
X

i

±s�1hi|s�1hi

±s�1w|s�1(s�1g(h))⌦ 1.

In view of the definition of the Milgram map, it suffices to check the com-
patibility of m, D1, D2 in the following three cases.

• If w = 1, we have for all h 2 H

m �D1(s�1(1⌦h)) = m
⇣
(�1)s�1(1⌦ dH(h))

+
X

i

(�1)s�1
�
s�1g(hi)⌦hi

�

+
X

i

(�1)deg(hi)s�1(1⌦hi)|s�1(1⌦hi)
⌘

= �(1⌦ s�1dH(h))� (s�1(s�1(g(h)))⌦ 1)

+
X

i

(�1)deg(hi)1⌦ s�1hi|s�1hi,

and

D2 �m(s�1(1⌦h)) = D2(1⌦ s�1h)
= �(1⌦ s�1dH(h))

+
X

i

(�1)deg(hi)1⌦ s�1hi|s�1hi

�(s�1(s�1(g(h)))⌦ 1).
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• If h = 1, we have for all w 2 ⌦K

m �D1(s�1(w⌦ 1)) = m
⇣
� s�1(D⌦K(w)⌦ 1)

+
X

j

(�1)deg(wj)s�1(wj ⌦ 1)|s�1(wj ⌦ 1)
⌘

= �(s�1D⌦K(w)⌦ 1)

+
X

j

(�1)deg(wj)s�1wj |s�1wj ⌦ 1,

and

D2 �m(s�1(w⌦ 1)) = D2(s�1w⌦ 1)
= �(s�1D⌦K(w)⌦ 1)

+
X

j

(�1)deg(wj)s�1wj |s�1wj ⌦ 1.

• If deg(w) � 1, and deg(h) � 1, then we can actually suppose that
deg(w) > 1 and deg(h) > 1, because it follows from Convention 4.3.3
that H1 = (⌦K)1 = 0. We then have D2 �m(s�1(w⌦h)) = 0 and

m �D1(s�1(w⌦h)) = m
⇣
� s�1(D⌦K(w)⌦h) + (�1)|v|+1s�1(w⌦ dH(h))

+
X

i

(�1)�|v|+1s�1
�
w|s�1g(hi)⌦hi

�

+
X

i,j

(�1)|wj |+|hi|+|hi||wj |s�1(wj ⌦hi)|s�1(wj ⌦hi)
⌘

= (�1)�|v|+1s�1
�
w|s�1g(h)

�
⌦ 1

+(�1)|h|+|h||v|(1⌦ s�1h) · (s�1w⌦ 1)
+(�1)|v|(s�1w⌦ 1) · (1⌦ s�1h)

= (�1)�|v|+1s�1
�
w|s�1g(h)

�
⌦ 1

+(�1)|h|+|h||v|+(|v|+1)(|h|�1)s�1w⌦ s�1h

+(�1)|v|�1s�1(w|s�1g(h))⌦ 1
+(�1)|v|(s�1w⌦ s�1h)

= (�1)|v|+1s�1w⌦ s�1h + (�1)|v|s�1w⌦ s�1h

= 0,

where we wrote |x| for deg(x) for space reasons, and where one should
be careful to use the twisted multiplication · on ⌦2K ⌦

⌦2(g)�t⌦
⌦H.

This finishes the proof that

m : ⌦(⌦K ⌦
⌦(g)�t⌦

H) '�! ⌦2K ⌦
⌦2(g)�t⌦

⌦H

is a quasi-isomorphism of differential graded algebras.
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To complete Step À, we apply a version of Zeeman’s comparison theorem
for twisted extensions. Using notation of Proposition 1.2.23, set N = N 0 :=
⌦K, M := ⌦(⌦K ⌦

⌦(g)�t⌦
H), M 0 := ⌦2K ⌦

⌦2(g)�t⌦
⌦H. The maps � := Id⌦K

and ↵ := m are appropriately compatible (see Definition 1.2.5) with the
twisting morphisms by definition. It follows from Convention 4.3.3 that ⌦K
is degree-wise k-flat, so Proposition 1.2.23 guarantees that the morphism of
twisted extensions

⌦K ⌦
⌦(⌧)�t⌦�(⌘H ⌦⌦K)

⌦(⌦K ⌦
⌦(g)�t⌦

H)! ⌦K ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦K)

(⌦2K ⌦
⌦2(g)�t⌦

⌦H)

is a quasi-isomorphism in Ch

�0
k , because m is a quasi-isomorphism, by

Lemma 4.3.21.

Step Ã: This step is immediate because ⌧ 0 is an isomorphism of coalge-
bras by Lemma 4.3.19.

Step Õ:

Lemma 4.3.22. There is an equality of twisted tensor products of chain
complexes

⌦K ⌦
m�⌦(⌧)�t⌦�(⌘H ⌦⌦K)�⌧ 0

(⌦2K ⌦
⌦2(g)�t⌦

⌦H) = ⌦K ⌦
t⌦
⌦2K ⌦

⌦2(g)�t⌦
⌦H.

Proof. A careful observation of twisted structures shows that the chain com-
plex ⌦K ⌦

t⌦
⌦2K ⌦

⌦2(g)�t⌦
⌦H is identical to the chain complex

⌦K ⌦
(⌦2K⌦ ⌘⌦H)�t⌦

�
⌦2K ⌦

⌦2(g)�t⌦
⌦H

�
.

Secondly, for all ki 2 K, 1  i  n, n � 1, we have

m�⌦(⌧)�t⌦�(⌘H ⌦⌦K)�⌧ 0(s�1k1| · · · |s�1kn) =

= ±m � ⌦(⌧) � t⌦ � (⌘H ⌦⌦K)(s�1kn| · · · |s�1k1)
= ±m � ⌦(⌧) � t⌦(1⌦ s�1kn| · · · |s�1k1)
= ±m � ⌦(⌧)(s�1(1⌦ s�1kn| · · · |s�1k1))
= m(s�1(s�1k1| · · · |s�1kn⌦ 1))
= s�1(s�1k1| · · · |s�1kn)⌦ 1
= ((⌦2K ⌦ ⌘⌦H) � t⌦)(s�1k1| · · · |s�1kn).

This shows that for any element s�1k1| · · · |s�1kn of length n in ⌦K, the
twisting morphism

m � ⌦(⌧) � t⌦ � (⌘H ⌦⌦K) � ⌧ 0 : ⌦K ! ⌦2K ⌦
⌦2(g)�t⌦

⌦H
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is equal to the twisting morphism

(⌦2K ⌦ ⌘⌦H) � t⌦ : ⌦K ! ⌦2K ⌦
⌦2(g)�t⌦

⌦H

and preserves the internal order of the s�1ki’s, which finishes the proof.

Step Œ: The homotopy equivalence

"⌦K ⌦ "⌦2K : ⌦K ⌦
t⌦
⌦2K �! k[0]⌦k[0] ⇠= k[0]

is a homotopy equivalence of right ⌦2K-modules, where k[0] is equipped with
a trivial ⌦2K-action. The associated contracting homotopy c : ⌦K ⌦⌦n(⌦K)!
⌦K ⌦⌦n�1(⌦K) is also a homotopy of right ⌦2K-modules, by Lemma 4.3.18
(note that ⌦K is a 1-connected Hopf algebra, by Convention 4.3.3). There-
fore,

"⌦K ⌦ "⌦2K ⌦⌦H : ⌦K ⌦
t⌦
⌦2K ⌦

⌦2(g)�t⌦
⌦H = ⌦(⌦K;⌦K;⌦H) '�! ⌦H

is a quasi-isomorphism by the dual of Proposition 7.8 in [McC01].

Steps ¿ through ƒ follow from Steps   through Œ, respectively, by set-
ting K := H and g := IdH .

At this point, we have established that !hco⌦(H;g;k) is a quasi-isomorphism.
Use Proposition 1.4.3 to show that the induced comparison functor (!hco⌦(H;g;k))⇤

is a Quillen equivalence. By Lemma 4.3.14, the chain complex ⌦(A;K; k)hco(⌦(H;K;k))

is semi-free as a left ⌦(A;H; k)-module on a generating graded k-module that
is degree-wise finitely generated. We can therefore conclude that (!hco⌦(H;g;k))⇤

is a Quillen equivalence, as desired.

Part II. We now study the Galois map

�! : ⌦(A;K; k) ⌦
⌦(A;H;k)

⌦(A;K; k)! ⌦(A;K; k)⌦⌦(H;K; k).

From Lemma 4.3.16 and Corollary 4.3.13 it follows that the domain of
�! is given by

⌦(A;K; k) ⌦
⌦(A;H;k)

⌦(A;K; k) ⇠= (A ⌦
⌦(g)�t⌦

⌦K) ⌦
⌦H
⌦K

⇠= (A ⌦
⌦(g)�t⌦

⌦K)
⇠
⌦Y,
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where Y is a graded k-module of finite type. On the other hand, the
codomain of �! is

⌦(A;K; k)⌦⌦(H;K; k) = (A ⌦
⌦(g)�t⌦

⌦K)⌦(H ⌦
⌦(g)�t⌦

⌦K)

⇠= (A ⌦
⌦(g)�t⌦

⌦K)⌦H ⌦
t⌦

(⌦H
⇠
⌦Y )

⇠= (A ⌦
⌦(g)�t⌦

⌦K)⌦(H ⌦
t⌦
⌦H)

⇠
⌦Y,

where we use again that ⌦K is ⌦H-semi-free on a graded k-module Y of
finite type, by Corollary 4.3.13. To show that

�! : (A ⌦
⌦(g)�t⌦

⌦K)
⇠
⌦Y ! (A ⌦

⌦(g)�t⌦
⌦K)⌦(H ⌦

t⌦
⌦H)

⇠
⌦Y

is a quasi-isomorphism of chain complexes, one proceeds in two steps.
Observe that H⌦

t⌦
⌦H

'�! k[0] and both A and ⌦K are degree-wise k-free.

Thus, (A ⌦
⌦(g)�t⌦

⌦K)⌦(H ⌦
t⌦
⌦H) '�! A ⌦

⌦(g)�t⌦
⌦K is a quasi-isomorphism

of chain complexes, so that

H⇤(A ⌦
⌦(g)�t⌦

⌦K)
(⇤)⇠= H⇤

�
(A ⌦

⌦(g)�t⌦
⌦K)⌦(H ⌦

t⌦
⌦H)

�
.

In the second step one uses that the graded modules (A ⌦
⌦(g)�t⌦

⌦K)
⇠
⌦Y

and (A ⌦
⌦(g)�t⌦

⌦K ⌦(H ⌦
t⌦
⌦H))

⇠
⌦Y are filtered, as they are semi-free on

Y , which is degree-wise finitely generated. Theorem 1.2.18 gives us two
spectral sequences, converging, respectively, to H⇤(A ⌦

⌦(g)�t⌦
⌦K)

⇠
⌦Y and to

H⇤(A ⌦
⌦(g)�t⌦

⌦K ⌦(H ⌦
t⌦
⌦H)

⇠
⌦Y . Using (⇤), the fact that Y is degree-wise

k-free, and the Zeeman Comparison Theorem 1.2.19, one can conclude that
�! is a quasi-isomorphism.

Since we know that �! is a quasi-isomorphism of chain complexes, we
can apply Proposition 1.5.6 to show that the induced Galois functor (�!)⇤
is a Quillen equivalence. Indeed, assumption (3) and Convention 4.3.3 al-
low us to use Lemmas 4.3.16 and 4.3.17 to see that the chain complexes
⌦(A;K; k) ⌦

⌦(A;H;k)
⌦(A;K; k) and ⌦(A;K; k)⌦⌦(H;K; k) are both semi-

free as left ⌦(A;K; k)-modules on generating graded k-modules that are
degree-wise finitely generated. We can therefore conclude that (�!)⇤ is a
Quillen equivalence, as desired.
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4.4 An example

The purpose of this section is to illustrate the context where our Main Theo-
rem can be applied, through an example coming from the world of simplicial
sets. Let k be a field. Given a simplicial set, one can associate to it a dg-
k-algebra, in a natural way, using the cobar construction on the normalized
chain complex of X. If one puts an extra assumption on X, one can even
obtain a co-commutative dg-Hopf algebra from X. In the same vein, a map
of simplicial sets will induce a morphism of dg-k-algebras. Adding (trivial)
coactions of dg-Hopf algebras to the picture will give us data tying together
into a homotopic Hopf-Galois extension of chain complexes over k and allow
to apply our Main Theorem in this context.

Since this section serves mainly as an illustration of differential graded
Hopf-Galois extensions, we chose to be brief “simplicially speaking”. This
means that we will neither reproduce all of the definitions, nor prove all
of the results concerning simplicial sets and associated constructions here.
For details, we refer the reader to the classical reference [May67]. Another
good reference is [HPS07], which offers a concise reminder on the relevant
simplicial constructions, as well as establishes some facts that we will use.

We will denote by C⇤ : sSet ! Ch

�0
k the normalized chain complex

functor.

4.4.1 The simplicial context

Let (sSet,⇥, ⇤) be the monoidal category of simplicial sets, where the monoidal
product is the categorical product, and the unit is the terminal object.

Any object X 2 sSet is naturally a comonoid, with comultiplication
given by the diagonal �X : X ! X ⇥X and the counit given by the
unique map to the terminal object " : X ! ⇤. Consequently, any map
f 2 sSet(X,Y ) endows X with a right Y -comodule structure

X
�X //

⇢

33X ⇥X
X ⇥ f // X ⇥Y.

Let Y 2 sSet. It is easy to show that the category ComodY is equivalent
to the slice category sSet /Y of simplicial sets over Y (see [Hes09], Section
1.2.1). Recall that objects of sSet /Y are morphisms of simplicial sets with
codomain Y , and a morphism from (f : X ! Y ) 2 sSet /Y to (g : Z !
Y ) 2 sSet /Y is a morphism of simplicial sets a : X ! Z such that the
diagram

X
a //

f   A
AA

AA
AA

Z

g
��~~

~~
~~

~

Y
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commutes.
The next lemma is our first step towards dg-algebras.

Lemma 4.4.1. Let k be a field. For any X 2 sSet, the normalized chain
complex C⇤(X) has a structure of a differential graded k-coalgebra.

Sketch of the proof: Let X 2 sSet. The composite

C⇤(X)
C⇤(�X) //

�C⇤(X)

11C⇤(X ⇥X)
AWX,X // C⇤(X)⌦C⇤(X),

where AWX,X : C⇤(X ⇥X)! C⇤(X)⌦C⇤(X) denotes the Alexander-Whitney
map, endows the normalized chain complex C⇤(X) with a natural, coassocia-
tive, and counital comultiplication (see [May67]). The unique simplicial mor-
phism " : X ! ⇤ induces a morphism of chain complexes C⇤(") : C⇤(X) !
C⇤(⇤) ⇠= R which gives the counit map

"C⇤(X) : C⇤(X)! k[0]

compatible with �C⇤(X).

For any pointed simplicial set X 2 sSet⇤, we denote by E(X) the sim-
plicial suspension of X (see [May67]). The idea is that the simplicial set
E(X) is a “shifted version” of X, where a non-degenerate point was added
in degree 0. A crucial property of this construction is the existence, for any
X 2 sSet⇤, of a homeomorphism ⌃(|X|) ⇡ |E(X)| between the topologi-
cal reduced suspension of the geometric realization of X and the geometric
realization of E(X).

4.4.2 Obtaining a co-commutative Hopf algebra from a sim-
plicial set

Remark 4.4.2. Henceforth, we will work in the subcategory of sSet⇤ consist-
ing of (0�)reduced pointed simplicial sets, denoted by sSet0. The objects of
sSet0 are pointed simplicial sets X such that X0 = {x0} (i.e., they have only
one 0-simplex), and the morphisms are simplicial maps between them. This
restriction on the nature of simplicial sets will guarantee that an important
connectivity condition holds for associated cobar constructions.

Remark 4.4.3. More generally, a simplicial set X is called r-reduced if
Xi = {xi}, for 0  i  r, for any r � 0. Observe that if X is r-reduced then
its suspension E X is (r + 1)-reduced.

For any simplicial set X that is 1-reduced, the chain coalgebra C⇤(X)
is 1-connected, so its cobar construction ⌦(C⇤(X)) is well-defined and is a
coaugmented dg-k-algebra (see Definition 1.2.2). In [HPST06], a coalgebra
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structure on ⌦(C⇤(X)) was defined, for any X 2 sSet0. It is given by the
composite

 X := m � 'AW � ⌦(C⇤(�X)) : ⌦(C⇤(X))! ⌦(C⇤(X))⌦⌦(C⇤(X)),

and extended to an algebra morphism. Here 'AW is the natural quasi-
isomorphism of chain algebras realizing the strongly homotopy coalgebra
map structure of the Alexander-Whitney map

AWX,X : C⇤(X ⇥X)! C⇤(X)⌦C⇤(X),

and m denotes the Milgram map (see Remark 1.2.10).
This coalgebra structure is compatible with the algebra structure on

⌦(C⇤(X)) and makes ⌦(C⇤(X)) into a Hopf algebra. Let G denote the Kan
loop group functor (see [Kan58]). Theorem 4.4 in [HPST06] establishes that
there exists a quasi-isomorphism ⌦(C⇤(X)) '�! C⇤(G X), which is a map of
differential graded algebras, and a map of differential graded coalgebras up
to strong homotopy.

Remark 4.4.4. Let k be a field. Lemma 3.1 in [HPS07] shows that for any X 2
sSet0, the differential graded k-coalgebra C⇤ E(X) is primitively generated
(see Reminder 1.2.1), and thus is co-commutative.

Remark 4.4.5. Theorem 4.9 in [HPS07], applied in the case K := E X, and
Remark 4.4.4 imply that the cobar construction ⌦(C⇤ E2(X)) on the nor-
malized chains of the double suspension of X will have a primitively gen-
erated coalgebra structure. Being primitively generated, ⌦(C⇤ E2(X)) is a
co-commutative Hopf algebra in Ch

�0
k . Therefore, the above construction

gives us an example of how graded co-commutative Hopf algebras can arise,
starting from a reduced simplicial set.

It follows that any morphism of reduced simplicial sets f : X ! Y
induces a morphism of co-commutative Hopf algebras

⌦(C⇤ E2(f)) : ⌦(C⇤ E2(X))! ⌦(C⇤ E2(Y )).

Moreover, since X and Y are reduced, the coalgebras, underlying the associ-
ated cobar constructions ⌦(C⇤ E2(X)) and ⌦(C⇤ E2(Y )), are 1-connected. It
then follows from Proposition 2.20 in [FH12] that the colagebra map, under-
lying the map of Hopf algebras ⌦(C⇤ E2(f)) : ⌦(C⇤ E2(X))! ⌦(C⇤ E2(Y )),
is conormal (see Remarks 4.3.8 and 4.3.9).
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4.4.3 An example of application of Theorem 4.3.6

We start with the following simplicial data, organized into a commutative
diagram in sSet0

W
⇣ //

⇤

��7
77

77
77

77
77

77
V

⇠

✏✏

(⇤)

E2(X)
E2(f) // E2(Y ),

where ⇤ : W ! E2(X) denotes the constant map, sending all w 2Wn to the
basepoint of E2(X). More precisely, f : X ! Y is a map of reduced simplicial
sets, inducing a map on double suspensions E2(f) : E2(X) ! E2(Y ). The
map ⇣ : W ! V is a morphism in the slice category sSet0 / E2(X), between
⇤ : W ! E2(X) and ⇠ : V ! E2(X). As observed in Section 4.4.1, this
implies that V 2 sSet0 is a E2(X)-comodule with coaction

V
�V //

⇢
22

V ⇥V
V ⇥ ⇠ // V ⇥E2(X)

and that W 2 sSet0 has a trivial E2(X)-comodule structure

W
�W //

⇢
22

W ⇥W
W ⇥⇤ // W ⇥E2(X).

We now apply Theorem 4.3.6 to this situation.

Corollary 4.4.6. Let k be a field. Consider the following commutative dia-
gram in sSet0.

W
⇣ //

⇤

��7
77

77
77

77
77

77
V

⇠

✏✏

(⇤)

E2(X)
E2(f) // E2(Y )

Suppose that

(a) the map f : X ,! Y is an inclusion of simplicial sets, where X is
reduced, and Y is 1-reduced, such that for all n � 0, (Y/X)n has finite
number of non-degenerate simplices;
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(b) the map ⇣ : W ,! V is an inclusion of reduced simplicial sets, such that
for all n � 0, Vn has finitely many non-degenerate simplices;

(c) the map ⌦(C⇤(⇣)) : ⌦(C⇤(W ))! ⌦(C⇤(V )) is a homotopic ⌦(C⇤ E2(X))-
Hopf-Galois extension in Ch

�0
k .

Then the map

⌦C⇤V ⌦
t⌦
⌦2C⇤ E2 f : ⌦C⇤V ⌦

t⌦
⌦2C⇤ E2 X ! ⌦C⇤V ⌦

t⌦
⌦2C⇤ E2 Y

in the commutative diagram

⌦C⇤W
⌦C⇤⇣ //

'

✏✏

⌦C⇤V

'

✏✏
⌦C⇤V ⌦

t⌦
⌦2C⇤ E2 X � �

◆⌦C⇤ E2 X //

⌦C⇤V ⌦
t⌦

⌦2C⇤ E2 f

✏✏

⌦C⇤V ⌦
t⌦
⌦2C⇤ E2 X ⌦

t⌦
⌦C⇤ E2 X

⌦C⇤V ⌦
t⌦

⌦2C⇤ E2 f⌦
t⌦

⌦C⇤ E2 f '
✏✏

⌦C⇤V ⌦
t⌦
⌦2C⇤ E2 Y � �

◆⌦C⇤ E2 Y

// ⌦C⇤V ⌦
t⌦
⌦2C⇤ E2 Y ⌦

t⌦
⌦C⇤ E2 Y

(where we chose to omit all parentheses for space reasons) is a homotopic
⌦(C⇤ E2(X)) ⌦

t⌦
⌦2(C⇤ E2(Y ))-Hopf-Galois extension in Ch

�0
k .

Proof. We use the notation of Theorem 4.3.6 (however, note that the letter
X has a different role now). It will become clear that the diagram in the
statement of this theorem is of the same form as the diagram (⇤ ⇤) in Section
4.3.1.

Set
H := ⌦(C⇤ E2(X)) and K := ⌦(C⇤ E2(Y )).

From Remark 4.4.5 it follows that the map f : X ! Y induces a morphism

g := ⌦(C⇤ E2(f)) : ⌦(C⇤ E2(X))! ⌦(C⇤ E2(Y ))

of co-commutative Hopf algebras in Ch

�0
k that are

- 1-connected, because X and Y are reduced;

- degree-wise finitely generated, by assumption (a);

- and ⌦(C⇤ E2(Y ))2 = 0, since Y is 1-reduced.
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This shows that the Hopf algebras H and K satisfy Convention 4.3.3. Ob-
serve that the inclusion f : X ,! Y induces an inclusion

(g : H ! K) = ⌦(C⇤ E2(f)) : ⌦(C⇤ E2(X))! ⌦(C⇤ E2(Y ))

of dg-coalgebras in Ch

�0
k . Thus, condition (2) of Theorem 4.3.6 holds.

Furthermore, set

B := ⌦(C⇤W ) and A := ⌦(C⇤V ).

The map ⇣ : W ! V induces a morphism

(' : B ! A) = ⌦(C⇤(⇣)) : ⌦(C⇤(W ))! ⌦(C⇤(V ))

of differential graded k-algebras, where ⌦(C⇤(W )) has a trivial ⌦(C⇤ E2(X))-
structure and ⌦(C⇤(V )) has an ⌦(C⇤ E2(X))-structure ⇢ given by the com-
posite

⌦(C⇤(V ))
 V��! ⌦(C⇤(V ))⌦⌦(C⇤(V ))

Id⌦⌦(C⇤⇠)�������! ⌦(C⇤(V ))⌦⌦(C⇤ E2(X)).

Recall Notation 1.1.7. It follows from assumption (b) that there is an
isomorphism \C⇤(V ) ⇠= \C⇤(W )� \C⇤(V/W ) of graded k-modules, and that
\C⇤(W ), \C⇤(V ) are degree-wise k-free and finitely-generated. Moreover, the
differentials on the free algebras ⌦(C⇤(V )) ⇠= T (s�1\C⇤(W )� s�1\C⇤(V/W ))
and ⌦(C⇤(W )) = T (s�1\C⇤(W )) satisfy the condition of Proposition 4.3.11.
So, ⌦(C⇤(V )) is semi-free as a left ⌦(C⇤(W ))-module, on a generating graded
k-module that is degree-wise finitely generated. Thus, condition (1) of The-
orem 4.3.6 holds, as well.

Finally, since HhcoK := ⌦(H;K; k) ⇠= ⌦(C⇤ E2(X)) ⌦
t⌦
⌦2(C⇤ E2(Y )), it

follows from Theorem 4.3.6 that the map

⌦(C⇤V )⌦
t⌦
⌦2(C⇤ E2(f)) : ⌦(C⇤V )⌦

t⌦
⌦2(C⇤ E2 X)! ⌦(C⇤V )⌦

t⌦
⌦2(C⇤ E2 Y )

is a homotopic ⌦(C⇤ E2(X))⌦
t⌦
⌦2(C⇤ E2(Y ))-Hopf-Galois extension of chain

complexes.

We now give an example of reasonable conditions on the simplicial data
in the diagram (⇤) that will imply hypothesis (c) of Corollary 4.4.6.

Example 4.4.7. Suppose we are given the following data:

• G, a simplicial group,

• W 2 sSet0 of finite-type, equipped with a right G-action r : W ⇥G!
W ,

• Z 2 sSet0 of finite type, and
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• ⌧ : Z ! G, a twisting function.

Denote by WG the Kan classifying space of G (see [May67]) and consider
the pullback

G⇥
⌧

Z

✏✏✏✏

// G ⇥
⌫G

WG

✏✏✏✏
Z

⌧
// WG

of the universal G-bundle G ⇥
⌫G

WG ! WG along the map ⌧ : Z ! WG,

induced by the couniversal twisting function ⌫G : WG ! G in the commu-
tative diagram

Z

9! ⌧

����
��

��
��

⌧

✏✏
WG

⌫G // G.

Now, set V = W ⇥⌧ Z := W ⌦
G

(G⇥
⌧

Z), i.e.,

V := coequal
⇣

W ⇥G⇥G⇥
⌧

Z
r⇥G⇥Z //

W ⇥mG⇥Z
// W ⇥G⇥

⌧
Z
⌘
.

We then obtain a commutative diagram of reduced simplicial sets

W
� � ⇣ //

⇤
&&LLLLLLLLLLLL V = W ⇥⌧ Z

prZ

✏✏
Z,

where both W and V are of finite type. By Corollary 4.3.13 it follows that
⌦C⇤V ⇠= ⌦C⇤W

⇠
⌦U is semi-free as a left ⌦C⇤W -module on a generating

graded module U of finite type. One can then show that the induced map
of dg-k-algebras

⌦C⇤(⇣) : ⌦C⇤W ! ⌦C⇤V

is a homotopic ⌦C⇤Z-Hopf-Galois extension in Ch

�0
k .

Let us briefly sketch the main steps of the argument. To show that
⌦C⇤(⇣) is a homotopic ⌦C⇤Z-Hopf-Galois extension, it suffices to show that
i⌦C⇤(⇣) : ⌦C⇤W ! (⌦C⇤V )hco(⌦C⇤Z) and �⌦C⇤(⇣) : ⌦C⇤V ⌦⌦C⇤W ⌦C⇤V !
⌦C⇤V ⌦⌦C⇤Z are quasi-isomorphisms, using the semi-freeness hypothesis
on ⌦C⇤V . Note also that the existence of a Hopf algebra structure on ⌦C⇤Z
is guaranteed because Z 2 sSet0 (see Section 4.4.2).
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We have

(⌦C⇤V )hco(⌦C⇤Z) ⇠= ⌦C⇤V ⌦t⌦ ⌦
2C⇤Z

' ⌦C⇤W ⌦t⌦ ⌦C⇤Z ⌦t⌦ ⌦
2C⇤Z

' ⌦C⇤W.

using that
⌦C⇤V = ⌦C⇤(W ⇥

⌧
Z) '�! ⌦C⇤W ⌦

t⌦
⌦C⇤Z,

which is a consequence of Thm 3.15 and a generalization of Thm 3.16 in [?].
This implies that the comparison map is i⌦C⇤(⇣) is a quasi-isomorphism.

Because ⌦C⇤V ⇠= ⌦C⇤W
⇠
⌦U is semi-free as a left ⌦C⇤W -module, there

is a commuting diagram of ⌦C⇤W -modules

⌦C⇤W ⌦t⌦ ⌦C⇤Z

'

✏✏

⌦C⇤W
( �

55lllllll
� v

))RRRRRR

⌦C⇤W
⇠
⌦U.

Using semi-freeness over ⌦C⇤W , we will have

(⌦C⇤W ⌦t⌦ ⌦C⇤Z) ⌦
⌦C⇤W

(⌦C⇤W ⌦t⌦ ⌦C⇤Z) '! (⌦C⇤W
⇠
⌦U) ⌦

⌦C⇤W
(⌦C⇤W

⇠
⌦U),

i.e.,
⌦C⇤W ⌦t⌦(⌦C⇤Z ⌦⌦C⇤Z) ' //

'
✏✏

⌦C⇤W
⇠
⌦(U ⌦U)

⌦C⇤V ⌦⌦C⇤Z

which will imply that the Galois map �⌦C⇤(⇣) is a quasi-isomorphism, too.

Remark 4.4.8. To apply Corollary 4.4.6 to the simplicial context of the pre-
vious example, one needs to restrict to Z := E2 X and to consider a map of
simplicial sets E2 f : E2 X ! E2 Y , where both X, Y 2 sSet0 are of finite
type.
Remark 4.4.9. We started this chapter with a review on the classical Galois
correspondence for fields, and John Rognes’s analog of it for ring spectra was
our motivating starting point. We will end it with a very brief remark on
(Hopf)-Galois correspondence results in other contexts.

The Galois correspondence holds for Galois extensions of commutative
rings, if the codomain ring is connected (i.e., if its only idempotents are 0
and 1). More precisely, given a G-Galois extension of commutative rings
↵ : R ,! S, with S connected, there is a bijection of sets

{separable sub-R-algebras of S} ! {subgroups of G},
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(see Theorem 2.3, [CHR65]). (An R-algebra A is called separable if it is
projective as a module over A⌦R A, with action given by (a⌦ a0) ·x := axa0,
for all a, a,0 x 2 A).

A detailed discussion on various attempts to establish a Hopf-Galois cor-
respondence for classical Hopf-Galois extensions of algebras can be found in
§6 in [Mon09].
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Chapter 5

Perspectives

As a follow-up to this work, one could consider the following open questions.

• Can one obtain an analog of Theorem 4.3.6 if the hypotheses on the
Hopf algebras H and/or K are relaxed, e.g., if they are not assumed
to be co-commutative?

• How one should proceed if one desires to establish the other direction of
the homotopic Hopf-Galois correspondence in Ch

�0
k ? More precisely,

the question to answer would be the following.
If ' : Triv(B) ! A is a homotopic H-Hopf-Galois extension, such
that the underlying morphism factors as B ! C

'0! A, when is '0
a homotopic H 0-Hopf-Galois extension, and what the associated Hopf
algebra H 0 is exactly?
Note that in the classical Galois case, as well as in the Hopf-Galois
case, this direction of the correspondence is more difficult to establish
(see Chapter 6 in [Mon09]).

• Another interesting topic will be to explore the relation of homotopic
Hopf-Galois extensions with localization and Quillen homology.

• It will be interesting to see whether and how it is possible to establish
results similar to Propositions 3.2.7 and 3.3.5 and to Theorem 4.3.6
in other contexts, e.g., working in a simplicial monoidal category, in
a monoidal dg-category, in a monoidal category enriched over spectra,
or in a monoidal category enriched over a model monoidal category V.
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Hopf algebra, 28
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61
twisting morphism, 33

Zeeman comparison theorem, 38

136



Bibliography

[Ada77] Adámek, J. Colimits of algebras revisited, Bull. Austral. Math.
Soc. 17 (1977), no. 3, 433– 450.

[AR94] Adamek, J., Rosicky, J. Locally Presentable and Accessible Cate-
gories, London Mathematical Society Lecture Note Series, vol. 189, Cam-
bridge University Press, Cambridge, (1994).

[AH86] Avramov, L., Halperin, S. Through the looking glass: a dic-
tionary between rational homotopy theory and local algebra, in “Algebra,
algebraic topology and their interactions”, Springer Lecture Notes 1183
(1986).

[AG60] Auslander, M., Goldman, O. The Brauer group of a commuta-
tive ring, Trans. Amer. Math. Soc. 97 (1960).

[BH12] Berglund, A., Hess, K. Duality, descent and extensions, in prepa-
ration.

[BHKKRS14] Bayeh, M., Hess, K., Karpova, V., Kedziorek, M.,
Riehl, E., Shipley, B. Left-induced model structures and diagram cate-
gories, Available on the arXiv, http://arxiv.org/abs/1401.3651

[BMR13] Barthel, T., May, J.P., Riehl E. Six model structures for
DG-modules over DGAs: Model category theory in homological action,
Available on the arXiv, http://arxiv.org/abs/1310.1159v1

[Bor94] Borceux, F. Handbook of categorical algebra II Encyclopedia of
Mathematics and its Applications 52, Cambridge University Press, Cam-
bridge, (1994).

[Brz03] Brzezinsky, T., Wisbauer, R. Corings and comodules, London
Mathematical Society, Lecture Notes Series 309, Cambridge University
Press, (2003).

[Buj06] Bujard, C.Towards a general theory of homotopic
Hopf-Galois extensions, Master thesis, EPFL, (2006). Avail-
able at http://infoscience.epfl.ch/record/197062/files/Bujard-
PdM.pdf?version=1

137



[BW05] Barr, M., Wells, Ch. Toposes, triples and theories, Repr. Theory
Appl. Categ. (2005), no. 12, x+288, Corrected reprint of the 1985 original
[MR0771116].

[CHR65] Chase, S.U., Harrison, D.K., Rosenberg, A. Galois theory
and cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52
(1965) 15–33.

[Cox04] Cox, D. Galois theory Collections :Pure and applied mathematics
(Wiley-Interscience); Hoboken, N.J. : Wiley, (2004).

[CS69] Chase S.U., Sweedler M.E. Hopf algebras and Galois theory, Lec-
ture Notes in Math. 97, Springer, Berlin (1969).

[DS95] Dwyer, W. G., Spaliński, J. Homotopy theories and model cate-
gories, Handbook of algebraic topology, 73-126. North-Holland, Amster-
dam, (1995).

[FH12] Farjoun, D.-E., Hess, K. Normal and conormal maps in homotopy
theory in Homology, Homotopy and Applications, vol. 14, num. 1, p. 79-
112, (2012).

[FHT01] Félix, Y., Halperin, S., Thomas, J.-C. Rational Homotopy
Theory, Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New
York, (2001).

[FHT95] Félix, Y., Halperin, S., Thomas, J.-C. Differential graded
algebras in topology Handbook of algebraic topology, 829–865, North-
Holland, Amsterdam, (1995).

[Gre92] Greither, C. Cyclic Galois Extensions of Commutative Rings Lec-
ture Notes in Mathematics, Springer-Verlag, Berlin Heidelberg (1992).

[Hes] Hess, K. Personal communication, January 2014.

[Hes02] Hess, K. Model categories in algebraic topology Appl. Categ. Struc-
tures 10 (2002), no.3, 195-220.

[Hes07] Hess, K. The cobar construction: a modern perspective Lecture
notes from a mini-course given at Louvain-la-Neuve, (2007). Available at
http://sma.epfl.ch/⇠hessbell/Minicourse_Louvain_Notes.pdf

[Hes09] Hess, K. Homotopic Hopf-Galois extensions: foundations and ex-
amples, Geometry and Topology Monographs 16 (2009) 79–132.

[Hes10] Hess, K. A General Framework for Homotopic Descent and Code-
scent Available on the arXiv, http://arxiv.org/abs/1001.1556v3

138



[Hes13] Hess, K. Homotopic Hopf-Galois extensions and Descent Lec-
ture notes from a mini-course given in Louvain-la-Neuve. Available on
http://gr-he.epfl.ch/files/content/sites/gr-he/files/Louvain2013.pdf

[HGK10] Hazewinkel, M., Gubareni, N., Kirichenko, V.V. Algebras,
Rings and Modules. Lie Algebras and Hopf Algebras, Mathematical surveys
and monographs; vol. 168; American Mathematical Society, (2010).

[HL07] Hess, K., Levi, R. An algebraic model for the loop space homology
of a homotopy fiber, in Algebr. Geom. Topol., vol. 7, p. 1699-1765 (2007).

[HMS74] Husemoller, D., Moore, J.C., Stasheff, J. Differential ho-
mological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974),
113–185.

[Hov99] Hovey, M. Model categories Mathematical Surveys and Mono-
graphs, 63. American Mathematical Society, Providence, RI, (1999).

[HPS07] Hess, K., Parent, P.-E., Scott, J. A chain coalgebra model for
the James map, in Homology, Homotopy and Applications, vol. 9, num.
2, p. 209-231, (2007).

[HPST06] Hess, K., Parent, P.-E., Scott, J., Tonks, A. A canonical
enriched Adams-Hilton model for simplicial sets, in Adv. Math., vol. 207,
num. 2, p. 847-875, (2006).

[HS12] Hess, K., Shipley, B. The homotopy theory of coalgebras over a
comonad, accepted in Proceedings of the London Mathematical Society,
(2013).

[Kan58] Kan, D. A combinatorial definition of homotopy groups, Ann. of
Math. (2) 67 (1958), 282–312.

[KT81] Kreimer, H.F., Takeuchi, M. Hopf algebras and Galois exten-
sions of an algebra, Indiana Univ. Math. J. 30 (1981) 675–692.

[May67] May, J. P. Simplicial objects in algebraic topology Van Nostrand
Mathematical Studies, No. 11 D. Van Nostrand Co., Inc., Princeton, N.J.-
Toronto, Ont.-London (1967).

[McC01] McCleary, J. A user’s guide to spectral sequences, Cambridge
studies in advanced mathematics; 58 ; Cambridge University Press, (2001).

[McL98] Mac Lane, S. Categories for the working mathematician Graduate
Texts in Mathematics. Springer-Verlag, New York, (1998).

[Mil66] Milgram, R. J. Iterated loop spaces, Ann. of Math. (2) 84 (1966)
386–403.

139



[MM65] Milnor, J. W., Moore, J. C., Peterson, F. On the structure
of Hopf algebras, Ann. of Math. (2) 81 (1965) 211–264.

[Mon09] Montgomery, S. Hopf Galois theory: A survey Geometry and
Topology Monographs, Volume 16 (2009) 367-400.

[MP73] Moore, J. C., Peterson, F. Nearly Frobenius algebras, Poincaré
algebras and their modules, J. Pure Appl. Alge- bra 3 (1973), 83–93.

[Mul11] Müller, P. Homotopic Descent over Monoidal Model
Categories PhD Thesis, EPFL, Lausanne, (2011). Available at
http://infoscience.epfl.ch/record/168654

[Nei10] Neisendorfer, J. Algebraic methods in unstable homotopy theory
New mathematical monographs; 12 , Cambridge University Press, (2010).

[Rog08] Rognes, J. Galois Extensions of Structured Ring Spectra Mem.
Amer. Math. Soc., Vol. 192, No. 898 (2008).

[Rot88] Rotman, J. J. An Introduction to Algebraic Topology Graduate
texts in mathematics; 119, Springer-Verlag (1988).

[Sch04] Schauenburg, P. Hopf–Galois and bi-Galois extensions, from:
“Galois theory, Hopf algebras, and semiabelian categories”, (G Janelidze,
B Pareigis, W Tholen, editors), Fields Inst. Commun. 43, Amer. Math.
Soc. (2004) 469–515.

[Schn90] Schneider, H.-J. Principal homogeneous spaces for arbitrary
Hopf algebras, Israel J. Math. 72 (1990) 167–195.

[SS00] Schwede, S., Shipley, B. Algebras and modules in monoidal model
categories Proc. London Math. Soc. (3), 80 (2000), no.2, 491-511.

[Tan83] Tanré, D. Homotopie rationnelle, Modèles de Chen, Quillen, Sul-
livan Lecture notes in mathematics; 1025, Springer, (1983).

[Zee57] Zeeman E. C. A proof of the comparison theorem for spectral se-
quences Proc. Camb. Phil. Soc. 53, 57-62 (1957).

140



Varvara Karpova

Route de la Maladière, 20

1022 Chavannes-près-Renens

Switzerland

T +41 79 958 02 18

B varvara.karpova@epfl.ch

Education
March 2010 -

February 2014
PhD studies in Mathematics, EPFL, Lausanne.

PhD thesis: “Homotopic Hopf-Galois extensions of commutative di�erential graded
algebras”
Advisor: Prof. Kathryn Hess Bellwald
Thesis exam passed: February, 24 2014

September 2004
- February 2010

Master of Sciences (MSc) in Mathematics, EPFL, Lausanne.

Master thesis: “Why HZ-algebra Spectra are Di�erential Graded Algebras?”
Advisors: Prof. Kathryn Hess Bellwald and Dr. John E. Harper
MSc Diploma obtained: October 2010

September 1999
- July 2004

Baccalauréat Général, Specialization: Mathematics,
Institut Florimont, Geneva.

Professional experience

March 2014 -
May 2014

Postdoc internship at the laboratory UPBRI of Prof. C. Brisken (ISREC,

School of Life Sciences), EPFL, Lausanne.

March 2010 -
February 2014

Teaching Assistant (Department of Mathematics), EPFL, Lausanne.

Head teaching assistant and substitute lecturer for the courses Topology I and II (since
2011)
Teaching assistant for the courses Linear Algebra I and II for Mathematicians (2011-
2012), Mathematics for Chemistry Engineers (2010-2011)
Supervised three Semester Projects (Bachelor and Master level) and six Mini-projects
(Travaux pratiques de mathématiques, Bachelor level)

2011 Award for exceptional quality of teaching

September 2008
- February 2010

Student Assistant (Department of Mathematics), EPFL, Lausanne.

Student Assistant for the course General Mathematics I and II for Forensic Science
students (UNIL) and the course General Mathematics for HEP students

1/3

mailto:varvara.karpova@epfl.ch


Teaching and promotion of mathematics to young people

November 2012 Designed and taught a few lessons for the course “Mardimatiques”, given by Dr.
Jérôme Scherer. This was a weekly mathematics course for children (age 12-14),
organized in partnership with the Equal Opportunities O�ce of the EPFL.

October 2012 Designed and animated a Scientific camp for children (age 11-13), on an invitation
of the Bureau de la promotion des sciences auprès des jeunes of the EPFL. The goal
was to make the children discover the world of algebraic topology and knot theory in
an interactive and playful manner.

March - April
2010 and 2011

Co-organized the Swiss (semi-)finals of Jeux Mathématiques et Logiques

November 2010
and 2011

Designed and held workshops on the theme “Topology” for the Journées “Oser tous
les métiers”, organized by the Equal Opportunities O�ce of the EPFL

NB: All of the activities above were organized on a volunteer basis.

Conferences and workshops organized

2011 and 2013 Co-organized two editions of annual international conferences for young researchers
in mathematics “Young Topologists’ Meeting”

September 2012
and 2013

Designed and held Welcome Workshops for new PhD students in Mathematics, on
the request of the EDMA

Skills
Languages

Russian Native
French Fluent
English Fluent

Computer skills
Software Microsoft O�ce, Open O�ce, Matlab

Programing LATEX
Systems Windows, Mac OS X

Workshops attended
June 2013 Public Speaking Workshop, University of Edinburgh, Edinburgh.
June 2013 Workshop “Donner du Feedback” , EPFL, Lausanne.

Organized by the Sta� Training Service (STS) of the EPFL, this one-day workshop
focused on learning how to give and receive feedback e�ciently, through practical
exercises.

July 2012 Instructional Skills Workshop (ISW), EPFL, Lausanne.

2/3



The goal of this internationally recognized three-day workshop was to allow one to
develop their teaching and presentation skills through giving mini-lectures and through
group discussion.

Organizations

2011 - present EPFL PhD students’ representative at the Conférence des Universités de la Suisse
Occidentale (CUSO), for the Swiss doctoral program in Mathematics

November 2012 Co-organized the CUSO Career Day held at the EPFL
2005 - 2011 Member of the Association des étudiants en mathématiques à l’EPFL (CQFD);

Class representative, Vice-Presidency (2006-2007) and Presidency (2007-2008)

Personal data
Born 19 December 1986 in Moscow, Russian Federation

Nationalities Russian, Swiss
Martial status Engaged

3/3


	Abstract / Résumé
	Contents 
	Notations

	Introduction

	1. Background material 
	The zoo of categories
	Monoidal categories' language
	Lifting adjunctions
	Digression on Hopf algebras

	Algebraic tools
	Cobar construction and twisted structures
	Semi-free modules in `39`42`"613A``45`47`"603ACh0R
	A toolbox of spectral sequences
	Homologically faithful modules in `39`42`"613A``45`47`"603ACh0R

	Model category theory
	Recognizing Quillen equivalences
	Some relevant model structures

	Quillen pairs and Quillen equivalences between categories of modules
	Quillen pairs induced by morphisms of algebras
	Quillen equivalences induced by quasi-isomorphisms of algebras

	Adjunctions between categories of comodules over corings
	Quillen adjunctions induced by bimodules
	Quillen equivalences induced by quasi-isomorphisms of corings


	2. Foundations of homotopic Hopf-Galois extensions
	(Homotopy) C-coinvariants
	Calculating C-coinvariants
	Homotopy C-coinvariants in `39`42`"613A``45`47`"603AComodC
	Homotopy H-coinvariants in `39`42`"613A``45`47`"603AAlgH

	Special maps associated to a morphism of augmented H-comodule algebras 
	The comparison map i
	The Galois map 

	The definition of homotopic Hopf-Galois extensions
	Connections to other works
	Brief reminder of Galois extensions of fields
	Galois extensions of commutative rings
	Hopf-Galois extensions of algebras
	Homotopifying (Hopf-)Galois extensions
	Relation to (homotopic) Grothendieck descent
	Bujard's Master Thesis


	3. Behavior of homotopic Hopf-Galois extensions under base change
	The context
	Some comments on the comparison maps i, i and their induced functors
	The context in which the Galois functors ()* and ()* arise

	Preservation of homotopic Hopf-Galois extensions under base change
	The behavior of the comparison functor (i)*
	The behavior of the Galois functor ()*

	Reflection of homotopic Hopf-Galois extensions under base change
	The behavior of the Galois functor ()*
	The behavior of the comparison functor (i)*


	4. One direction of the homotopic Hopf-Galois correspondence
	Generalized situation
	A brief reminder of Galois correspondence for fields
	One direction of homotopic Hopf-Galois correspondence
	The setting
	The candidate Hopf algebra and the Main Theorem
	Technical preliminaries
	Proof of the Main Theorem (Theorem 4.3.6)

	An example
	The simplicial context
	Obtaining a co-commutative Hopf algebra from a simplicial set
	An example of application of Theorem 4.3.6


	5. Perspectives
	Index
	Bibliography

	Curriculum vitae




