Activity pattern modeling: A path choice approach

Antonin Danalet, Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

14th Swiss Transport Research Conference (STRC)

May 15, 2014
1. Motivation: Pedestrian demand management strategies
2. A path choice approach to activity modeling
3. Case study: EPFL campus
4. Conclusion
Pedestrian demand management strategies

- Pedestrian facilities
 - Transportation hubs (train stations, airports, ...)
 - Mass gathering (music festivals, ...)
 - Shops
 - ...

- Challenges
 - Designing efficient buildings
 - Locating points of interest
 - Modifying schedules
 - ...

⇒ Pedestrian demand management strategies
Activity modeling: Sensitivity to policies

(Lenntorp; 1978)
Observations: Activity-episode sequences

Activity types

Restaurant
Office
Classroom
Other

8:24
8:33-34
11:37-58
13:09-11
16:20-33
18:33
Modeling assumption

- **Sequential choice:**
 1. activity type, sequence, time of day and duration
 2. destination choice conditional on the previous choice

- **Motivations:**
 - Behavior: “I’m hungry at lunch time”, then “Which restaurant?”
 - Dimensional: destinations \times time \times position in the sequence is not tractable

Here we focus on ①.

Examples of ②: Ton (2014); Kalakou and Moura (2014).
Activity network

\[S \quad \cdots \quad e \]

Activity types

\[\mathcal{A}_1 \]
\[\mathcal{A}_2 \]
\[\vdots \]
\[\mathcal{A}_k \]

Activity network

\[1 \quad 2 \quad \cdots \quad T \quad \text{Time} \]
Activity network
Activity network
Choice set generation in route choice

- Universal choice set:
 - Too big, not usable
 - Decision maker doesn’t consider all routes
- Consideration choice set:
 - Not available
 - Too small
- Sampling of alternatives from the universal choice set: Metropolis-Hastings algorithm (Flötteröd and Bierlaire; 2013).
Choice set generation: Metropolis-Hastings algorithm

(Flötteröd and Bierlaire; 2013)
Choice set generation in the activity network

With Metropolis-Hastings algorithm, possibility to define non-link additive cost

Target weight defined as

\[\delta(\Gamma) = -\mu_v \cdot \sum_{v \in \Gamma} \delta_v(v) - \delta_\Gamma(\Gamma) \]

with

- link cost: frequency of observations
- path cost: length of observed paths
Activity network: frequency of observations
Activity path choice model for WiFi traces: sampling of alternatives

- Frejinger et al. (2009): a sampling correction must be added

\[
\ln q(C_n|\Gamma) = \ln \frac{k_{\Gamma n}}{q(\Gamma)}
\]

with \(k_{\Gamma n}\) the number of occurrences and \(q(\Gamma)\) the sampling probability

- Sampling probability require full enumeration

\[
q(\Gamma) = \frac{b(\Gamma)}{\sum_{\Gamma' \in U} b(\Gamma')}
\]

but cancels out in logit
Activity path choice model for WiFi traces: additive utility function

\[V_\Gamma = \sum_{\tau} V(A_{k,\tau}) \]

Inspired by Ettema et al. (2007):

\[V(A_{k,\tau}) = \eta_k \ln(t_k) + \sum_{k,\tau} \beta_{k,\tau} l_{k,\tau} \]

with

- \(\eta_k \) the satiation parameter for activity type \(k \)
- \(\sum_{k,\tau} \beta_{k,\tau} l_{k,\tau} \) the time-of-day utility
Case study: EPFL campus

- EPFL campus approximately hosts 13'000 people per day
- Similar to transport hubs: some users follow schedules
- Different activities on campus: working, eating, ...
- Recent development of the campus: 1 billion investment in real estate
- WiFi traces processed as in Danalet et al. (2014) with $L = 1$
Length of activity paths
Length of activity paths: filtering

Removed short activity paths and less than 5.4 measurements / hour.
Time of day

![Graph showing Time of day distribution with a peak around 10-11 AM and a drop in the evening.]

- **Mobility survey**
- Nb of observations
Estimation of the model

- The model:

\[V_{\Gamma n} = \eta_k \ln(t_k) + \sum_k \beta_k I_k + \ln \frac{k_{\Gamma n}}{b(\Gamma)} \]

- Summary statistics:
 - Number of alternatives: 1201
 - Number of observations = 2219
 - Number of estimated parameters = 10

\[
\begin{align*}
\mathcal{L}(\beta_0) &= -17952.561 \\
\mathcal{L}(\hat{\beta}) &= -1484.635 \\
-2[\mathcal{L}(\beta_0) - \mathcal{L}(\hat{\beta})] &= 32935.852 \\
\rho^2 &= 0.917 \\
\overline{\rho}^2 &= 0.917
\end{align*}
\]
Estimation results for the model

<table>
<thead>
<tr>
<th>Parameter number</th>
<th>Description</th>
<th>Coeff. estimate</th>
<th>Robust Asympt. std. error</th>
<th>t-stat</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>β_{Lab}</td>
<td>-0.337</td>
<td>0.0949</td>
<td>-3.55</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>$\beta_{Library}$</td>
<td>-2.74</td>
<td>0.0795</td>
<td>-34.45</td>
<td>0.00</td>
</tr>
<tr>
<td>3</td>
<td>β_{Other}</td>
<td>-2.78</td>
<td>0.0483</td>
<td>-57.62</td>
<td>0.00</td>
</tr>
<tr>
<td>4</td>
<td>$\beta_{Restaurant}$</td>
<td>-0.725</td>
<td>0.0612</td>
<td>-11.85</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>β_{Shop}</td>
<td>-0.473</td>
<td>0.103</td>
<td>-4.59</td>
<td>0.00</td>
</tr>
<tr>
<td>6</td>
<td>η_{Lab}</td>
<td>2.55</td>
<td>0.895</td>
<td>2.85</td>
<td>0.00</td>
</tr>
<tr>
<td>7</td>
<td>η_{Office}</td>
<td>-0.787</td>
<td>0.600</td>
<td>-1.31</td>
<td>0.19</td>
</tr>
<tr>
<td>8</td>
<td>η_{Other}</td>
<td>9.66</td>
<td>1.27</td>
<td>7.63</td>
<td>0.00</td>
</tr>
<tr>
<td>9</td>
<td>$\eta_{Restaurant}$</td>
<td>5.56</td>
<td>0.789</td>
<td>7.05</td>
<td>0.00</td>
</tr>
<tr>
<td>10</td>
<td>$\eta_{Shop, Library, Classroom}$</td>
<td>-3.26</td>
<td>0.782</td>
<td>-4.16</td>
<td>0.00</td>
</tr>
</tbody>
</table>
• Not home-based, nor tour-based model.
• Can adapt to different contexts and activity types.
• Manage large dimensionality of the problem through importance sampling techniques.
• First results show that the approach is feasible in a realistic context.
Future works

- Improve the specification
 - In particular, add in the utility function variables that are related to the path itself (patterns).
- Evaluate the quality of the generated choice set and its impact on the choice model.
- Correct for the correlation structure
- Manage measurement error
Thank you!

Questions?
URL: http://dx.doi.org/10.1016/j.trc.2014.03.015

URL: http://dx.doi.org/10.1016/j.tra.2007.03.001

URL: http://dx.doi.org/10.1016/j.trb.2012.11.002
References II

URL: http://dx.doi.org/10.1016/j.trb.2009.03.001

URL: http://www.strc.ch/conferences/2014/Kalakou_Moura.pdf

URL: http://trid.trb.org/view.aspx?id=1170511
References III